
ILLINOIS JOURNAL OF MATHEMATICS
Volume 22, Number 2, June 1978

COMPLEMENTS OF CODIMENSION-TWO SUBMANIFOLDS
I" THE FUNDAMENTAL GROUP

BY

JUSTIN R. SMITH

Introduction and statement of results

This paper is the first in a series that will study the homotopy types of the
complements of certain classes of codimension-two imbeddings of compact
manifolds--in particular, this paper will study the groups that can occur as
fundamental groups. The results of this paper apply equally to smooth, PL, or
topological imbeddings and manifolds. All manifolds in this paper will be
assumed to be compact and connected and all imbeddings will be assumed to be
locally-flat and to carry the boundry of the imbedded manifold transversely to
that of the ambient manifold.

This paper generalizes Kervaire’s characterization of high-dimensional knot
groups in [4].
The results in this paper formed part of my doctoral dissertation and I am

indebted to my thesis advisor, Professor Sylvain Cappell, for having suggested
this problem and for his guidance and criticism. I would also like to thank the
referee for his helpful comments.

Before we can state the main result of this paper we need the following
definition:

DEFINITION AND PROPOSITION 1. Let M be a compact manifold and let

W: /1;I(M)--Z2--{’+-1}
be a homomorphism and Z the ZTc l(M)-module of twisted integers defined by w.

If x HZ(M, ZTM) is any element, define
C(x, w)= ZW/(x H2(M; Zl(m));

the cap product takes its values in Ho(M; Z (R) ZrI(M)) Zw. Ifx’ is the image
of x under the change of coefficient homomorphism

H2(M; ZTM) HZ(M; C(x, w)),
then x’ is in the image of the injection

H2(TI(M); C(x, w))--H2(M; C(x, w))
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induced by the characteristic map of M. Let G(x, w) be the 9roup extension of
C(x, w) by tel(M) defined by the inverse image of x’ in HZ(rcl(M); C(x, w)),
regardin9 this as the 9roup of equivalence classes of extensions of C(x, w) by
tea(M).

Remark. The statement that x’ is in the image of the map in cohomology
induced by the characteristic map of M will be proved in Section I.

Thus, for each twisted class x H2(M; Zw) we get a cyclic group C(x, w) and
a canonical imbedding C(x, w) G(x, w) as a normal subgroup with quotient
rl (M)--henceforth we will identify C(x, w)with its image in G(x, w). Suppose
f: M" V"+ 2 is an imbedding of compact manifolds. Then we define wi(9)
wt(9)wv(f, 9), where wt and Wv are the orientation characters of m and V
respectively and 9 r(M). If ; HZ(M; Zwe) is the Euler class of/we will
adopt the abbreviated notation CI C(Zy, wy), Gy G(Zy, wi). Then the state-
ment of our main theorem is:

THEOREM 2. Let M and V + 2 be compact manifolds with m >_ 3 and suppose
there exists an imbeddin9 f: M"-- Vm+2 that induces an isomorphism offun-
damental 9roups and a surjection of second homotopy 9roups.

Then a 9roup G can be thefundamental 9roup of the complement of an imbed-
din9 ofM in V homotopic to f if and only if the followin9 conditions hold:

(1) G is finitely presented.
(2) There exists a homomorphismj: G--G:r, split by a homomorphismjsand

such that
(a) if K j-(Cy), then K is the normal closure within itself ofjs(Cf)and
(b) Hz(K, Z)= 0.

The proof will be given in Section II.

Remarks. (1) Note that Gy and its subgroup Cy only depend upon the
homotopy class off since they are determined by the Euler class and orienta-
tion character.

(2) Conditions (2)(a) and (2)(b) above imply that H (K, Z)= Cy, the iso-
morphism being induced by j. This follows from the fact that, since CI is
abelian, the homomorphism j JK: KCy must factor through the map
K K/[K, K] H(K, Z) and the fact that no cyclic group is isomorphic to a
proper quotient of itself.

(3) In the case of a high-dimensional knot, rl(m) r(V) 0 and 0
which implies that C G Z. This and the remark above show that, in this
case, Theorem 2 reduces to Kervaire’s characterization of high-dimensional
knot groups.

(4) The existence portion of the proof of Theorem 2 will construct an
imbedding with complementary fundamental group any G satisfying the condi-
tions above that is concordant to the imbeddingfin the hypothesismwhere two
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imbeddings fo, fl: M V are defined to be concordant if they are restrictions
of an imbedding of M x I in V x I to M x 0 and M x 1, respectively. This
shows that the groups that can occur as complementary fundamental groups
are, in a sense, independent of the concordance class of the imbeddingmthey
only depend upon the Euler class.

(5) Suppose f is an orientable map, i.e., f preserves orientation characters.
Then we can define the Euler class off as follows: Let [M] Hm(M, OM; Zt),
IV] H,,+ 2(V, c3V; Z’) be fundamental classes. Then there exists an
x H2(V; Z) such that x [V] =f.[M] and )I is then the image of x in
H2(M; Z)underf* (see [6]).

COROLLARY 3. Let M", V"+ 2 be compact manifolds with m > 3, that are
simply-connected and 2-connected, respectively, and suppose there exists an im-

beddin9 ofM in V. Then a 9roup can be thefundamental 9roup ofthe complement
of an imbeddin9 ofM in V if and only if it is a high-dimensional knot 9roup.

Proof The conditions on M and V imply H2(V) 0 so that the Euler class
of any imbedding of M in V is 0. The conclusion follows from Remark 3.

COROLLARY 4. Let L21 k- 1, L22k+ be homotopy lens spaces ofindex n, i.e., they
are quotients of spheres by Z,-actions, where n is an odd inteoer, and suppose
there exists an imbeddino ofL in L2. Then a oroup G is thefundamental oroup of
the complement of an imbeddino ofL in L2 if and only if:

(1) G is finitely presented;
(2) G is the normal closure of a sinole element x such that G/(x")- Z,,

where (x") is the normal closure of x";
(3) Ha((x")G, Z)= Z;
(4) H2((x"), Z)= O.

Remark. It is not difficult to see that H(G) Z and H2(G) 0 so that, by
Kervaire’s criteria, G is a high-dimensional knot group. Not all knot groups
can occur in this manner though--all exponents of the Alexander polynomial
must be multiples of n (this can be seen by regarding the Alexander polynomial
as defining a presentation of the first homology module of the infinite cyclic
covering of the complement).

Proof In [2] Cappell and Shaneson have completely characterized locally-
flat codimension-two imbeddings of homotopy lens spaces (in terms of invar-
iant spheres under Z,-actions) and their results imply that any such imbedding
induces an isomorphism of fundamental groups and has a Euler class that is a
unit in Z,. This implies that in the statement of Theorem 2, GI Z and C is
the subgroup n" Z. If G satisfies the conditions in the corollary, G/[G, G] will
be a cyclic group containing a copy of Z since it will contain a copy of
Hl((x")); so G/[G, G] Z and this defines the map j in Theorem 2. The
splitting j carries 1 in Z to x G and the remaining conditions follow.



COMPLEMENTS OF CODIMENSION-TWO SUBMANIFOLDS 235

Conversely, if G satisfies the conditions of Theorem 2 it is only necessary to
verify that G is the normal closure of an element whose nth power normally
generates K (x")a.
But the image of 1 e Z G under the splitting j has these properties.

I. Properties of the fundamental group

Proof of Proposition 1. Let A Z (R) Zrx(M) and consider the low-order
exact sequence in cohomology induced by the universal covering space spectral
sequence (see [1, chapter 15, Section 9])

0 HZ(rx(M); Zw) HZ(M; Zw) HZ(M; At)r

where the f in the term on the right denotes the submodule fixed by the
elements of rc (M). Since H(M; Zrt(M)) O,

HZ(M, At) Homz (Hz(M; A’), Z)
and we can regard h above as the dual of the Hurewicz homomorphism. Then
c* is the map induced by the characteristic map in cohomology and

H2(M; A’)* Homz(H2(M; A’) (R) Z, Zt
Zn (M) !

and h carries x H(M; Z) to the map y (R) n --. n(x y), y H(M; A),
n Z (see [1, p. 28]). The change of coefficients from Z to C(x, w) induces the
following commutative exact diagram (of groups)"

O--’HZ(rc(M);ZW)-* HZ(M;ZW) -Homz(Hz(M,A’) (R) Z,Z)--,’..
O--’HZ(rc(M);C) - HZ(M;C) h- Homz 2(M,A’) (R) Z,C

Zrl(M)

where C C(x, w). It is clear by the definition of C(x, w) and the description of
the map h above that h’(x’) 0 so that x’ is in the image of c’*.

L.MMa 1.1. Let M, w, and x be as in Proposition 1. IfS() is the total space of
the unique (up to isomorphism)circle bundle withfirst Stiefel-Whitney class w and
twisted Euler class x, then an isomorphism between Z and Ho(M; ZTM) induces an
isomorphism between C(x, w)and the cyclic subgroup F of rc (S())9enerated by
the inclusion of a fiber. Furthermore, this isomorphism extends to a commutative
exact diagram:

0----+ F ---* 71(S())-----) 7l(M 0

0 ----* C(x, w) G(x, w) 71(M ------) 0

where is the canonical inclusion of C(x, w) in G(x, w). In particular, by the
5-1emma, G(x, w)is isomorphic to t(S()).



236 JUSTIN R. SMITH

Proof The first statement follows from the interpretation of the map h in
the Thom-Gysin sequence in homology as cap-product with the Euler class (see
[6, Chapter 5):

H2(M; Zg(M)) Ho(M; Z (R) ZZl(M))

H,(S(); Zr(M)) 0

where HI(S(); Zrl(M)) is the cyclic subgroup of ,(S()) generated by the
inclusion of a fiber, by Shapiro’s lemma. The second statement follows from
Proposition 11.4 of [7], which implies that there exists a circle fibration r/over a
space X such that a(X) is isomorphic to g(M) and, given any isomorphism
between a(X) and g(M), there exists a unique homotopy class of maps
f: M--X such that f* is fiber homotopy equivalent to . Furthermore, given
any isomorphism (S(f))(S()), compatible withf, there exists a unique
homotopy class of fiber-homotopy equivalences inducing the isomorphism.
The proof of 11.4 in [7] shows that, in this universalfibration, the image of the
Euler class in HZ(M; C) (where C is the cyclic group generated by the inclusion
of the fiber) is the image of the class in H2(a(X), C) defining the group exten-
sion OCgl(S(rl))l(X)O, under the map induced by the character-
istic map of X. The conclusion now follows from the functoriality of Euler
classes and group extension classes.

DEFINITION 1.2. Letf: M" V"+2 be an imbedding ofcompact manifolds.
Then there exists a homeomorphism h" V V’ such that a regular neighbor-
hood of hf(M) in V’ is the total space of a 2-plane bundle over M. An element
of(V -f(M)) will be called a meridian class if it is of the form h; a’, where a’
is a fiber of the unit circle bundle associated to . If i.: a(V -f(M))g(V)is
induced by inclusion, the kernel will be called the meridian subgroup.

The existence of h follows from the fact thatfis locally-flat and the facts that
TOP2/PL2 and PL2/02 are contractible. Note that, in view of I.1 and 1.2, if S is
the boundary of a tubular neighborhood off(M) in V, we may identify G with
ga(S) and C with the subgroup generated by inclusion of a fiber.

PROPOSITION 1.3. Let f: M" V"+ 2 be an imbedding of compact manifolds
that induces a surjection offundamental groups. Then the meridian suboroup of
l(V-T(M)) is the normal closure, within itself, of a sinole meridian class.

Proofi This follows by a well-known argument of Kervaire (see [4])applied
to the universal covering space of V, which, by hypothesis, contains a con-
nected covering off(M).

PROPOSITION 1.4. Let f: M"--} Vm+2 be an imbedding of compact manifolds
that induces an isomorphism offundamental roups and a surjection of second
homotopy roups and has normal bundle , with associated unit circle bundle S.
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Then the inclusion of S in V-f(M) induces

(1)
(2)

an isomorphism Hi(S; ZrcI(M))--H(V-f(M); Zrca(V))and
a surjection H2(S; Zn,(M)--’H2(V-f(M); Zzl(V)).

Proof If T is the total space of the unit disk bundle associated to , the map
of the long exact sequence of the pair (T, S) to that of the pair (V, E)
(E V- T) induced by inclusion, excision, the Thorn isomorphism for , and
the 5-1emma together imply the result.

PROPOSITION 1.5. Letf, M, V be as in 1.4 and let S and E be the boundary and
the closed complement ofa tubular neighborhood off(M) in V, respectively. IfK
is the meridian subgroup of G nx(E), then G/[K, K] is isomorphic to Gy and the
projection to the quotient j: G-- Gy is split by the homomorphlsm Js: Gy G
induced by the inclusion of S in E (see the remarks following 1.2). Furthermore,
K j-a(Cy) is the normal closure ofjs(Cy) and Hz(K, Z)= 0.

_Proof We begin by defining j as the composite of an isomorphism of Gy
with n(S) that carries Cy to the cyclic subgroup generated by a fiber with the
homomorphism n(S)n(E)induced by inclusion. Clearly, j(Cy)will be a
cyclic subgroup of G generated by a meridian class. Consider the following
commutative exact diagram, induced by the composite ofj with the projection

K]:
0 ---> Cy ’ Gf rex(M) 0

0 K/[K, K] G/[K, K] re, (M) 0

where r is an isomorphism. Ifwe identify Cy with n (S; Zg (M))(i.e., the cyclic
subgroup generated by a fiber) and K/[K,K] with H I(K,Z)=
H(E; Zrca(M)), then p coincides with the map induced by inclusion so that, by
1.4, it must be an isomorphism. It follows, by the 5-1emma, that q is an isomor-
phism and we can define j as the composite of q- with the projection
G---, G/[K, K]. It is clear that, with this definition, j-(Cy)= K and therefore,
by 1.3, is the normal closure within itself of j(Cy). The remaining statement
follows upon considering the diagram

Z l(V))

where is induced by inclusion, s by the characteristic map of E, and r by that of
S. Shapiro’s lemma implies that Hz(G;Zrc(M))=Hz(K;Z)and
H2(S; Zn(M)) Hz(Cy) 0. The conclusion now follows from the fact that i,
s, and r ar.e surjective and r factors through Hz(Cf)= O.
The following proposition is essentially the same as the theorem in the

appendix of [3]. We will give a proof for the sake of completeness.
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PROPOSITION 1.6. Let f M, V, E, and S be as in 1.5 and suppose that the
dimension of M is > 3. Then f is concordant to an imbedding f’ such that
nl(E’) Gs with meridian subgroup Cs, where E’ is the closed complement of a
tubular neighborhood off’(M) in V.

Remark. Note that concordant imbeddings are homotopic so that
(Gs,, Cr,)= (Gf, Cf).

Proof. Let G I(E} and let K be the meridian subgroup. Then since G
and Gx are finitely presented groups and since, by 1.4, G/[K, K] GI. it follows
that [K, K] is normally generated in G by a finite number of elements. Attach
2-cells to E via maps representing normal generators of [K, K] forming E 1.

Then H(E1, E; ZI(V)) is 0 for 2 and a free module F for i= 2, and

for 4:2 and Hz(E; Zt(V))= Hz(E; Zrt(V)) F. The universal covering
space spectral sequence shows that

/4(,(,); Z,(V))=/(; ZI(V))= (C)
(the last equality is Shapiro’s lemma)is the cokernel of the Hurewicz homo-
morphism. It follows that we can attach 3-cells to E forming E2 $o that the
inclusion E E2 is a simple Zt(V)-homology equivalence. By an argument
identical to that used in the proof of Lemma 4.3 of [2] we can perform surgery
on E to obtain E’E2 such that the new map induces an isomorphism of
fundamental groups and the trace of the surgeries is a Zt (V)-homology s-
cobordism. It follows that the complement E’ is the complement of a tubular
neighborhood of an imbedding of M in V concordant to f and such that the
fundamental group of the complement is G,.

II. Proof of Theorem 2

The necessity of the conditions in the statement of Theorem 2 has already
been proved in 1.5 except for the requirement that G be finitely presented. This
follows from the fact that the complement of an imbedding of compact mani-
folds has the homotopy type of a finite complex. It only remains to prove that
the conditions are sufficient. In view of 1.6 we may assume, without loss of
generality, that the map fin the statement of Theorem 2 has the property that
tel(V-f(M))= Gs. with meridian subgroup C. Let T be a tubular neighbor-
hood off(m) in V and let E V- T and S cT. Then 1(S)= G and
inclusion of S in E induces an isomorphism of fundamental group.
Suppose G is a group that satisfies the hypotheses of the theorem. We must

construct a locally-flat imbeddingf’: M V that is concordant to f, such that
rca(V-f’(m)) G. The splitting ofj gives an injection j: Gs--G.

Since G is finitely presented we can attach a wedge of circles to E (off S) and a
finite number of 2-disks forming E1 such that tl(E1)= G and such that the
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inclusion E Ex induces Js on fundamental groups. Since js splits j and j
induces an isomorphism (by Remark 2 following Theorem 2)

it follows that j induces an isomorphism

H,(E; Znl(V))--H,(E,
This implies, since only 1- and 2-cells have been attached, that

0,
H,(Ea, E; Zrca(V))= F, i= 2

and

H2(E, Zn,_(V))= H2(E; Zrt,(V)) F
where F is a free Zn l(V)-module. Since H2(G; Zn I(V)) 0 (by hypothesis, and
by Shapiro’s lemma), a variation of Hopf’s theorem implies that the map
n2(E)---H2(EaZnx(V)) induced by the Hurewicz homomorphism, is surjec-
tire. Then we may attach 3-cells (via maps representing basis elements of F) to
obtain E2 such that the inclusion i: E---, E2 induces a simple Zn (V)-homology
equivalence. By an argument identical to that used in Lemma 4.3 of [2] we get a
Zrl(V)-homology s-cobordism I" (W; E, E’)----E2 such that ’[E =/and ’[E’
is a 2-connected simple Zn(V)-homology equivalence. Since ker Gna(V)is
the normal closure (within itself) of j(Cy), it follows (by van Kampen’s
theorem) that if we take the union of W with T x I along S x I W we get a
homotopy equivalence (i.e., n(W w T x I)= n(V)), and the union is an
s-cobordism).

This implies that E’ Ws T is homeomorphic to V and the imbedding
M T E’ Ws T V has x(V im (M)) G and is concordant tof
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