COMPLEMENTS OF CODIMENSION-TWO SUBMANIFOLDS I: THE FUNDAMENTAL GROUP

BY

JUSTIN R. SMITH

Introduction and statement of results

This paper is the first in a series that will study the homotopy types of the complements of certain classes of codimension-two imbeddings of compact manifolds—in particular, this paper will study the groups that can occur as fundamental groups. The results of this paper apply equally to smooth, *PL*, or topological imbeddings and manifolds. All manifolds in this paper will be assumed to be *compact* and *connected* and all imbeddings will be assumed to be *locally-flat* and to carry the boundry of the imbedded manifold transversely to that of the ambient manifold.

This paper generalizes Kervaire's characterization of high-dimensional knot groups in [4].

The results in this paper formed part of my doctoral dissertation and I am indebted to my thesis advisor, Professor Sylvain Cappell, for having suggested this problem and for his guidance and criticism. I would also like to thank the referee for his helpful comments.

Before we can state the main result of this paper we need the following definition:

DEFINITION AND PROPOSITION 1. Let M^m be a compact manifold and let

$$w: \pi_1(M) \longrightarrow \mathbb{Z}_2 = \{\pm 1\}$$

be a homomorphism and \mathbb{Z}^w the $\mathbb{Z}\pi_1(M)$ -module of twisted integers defined by w. If $x \in H^2(M, \mathbb{Z}^w)$ is any element, define

$$C(x, w) = \mathbf{Z}^w/(x \cap H_2(M; \mathbf{Z}\pi_1(M));$$

the cap product takes its values in $H_0(M; \mathbb{Z}^w \otimes \mathbb{Z}\pi_1(M)) = \mathbb{Z}^w$. If x' is the image of x under the change of coefficient homomorphism

$$H^2(M; \mathbb{Z}^w) \rightarrow H^2(M; C(x, w)),$$

then x' is in the image of the injection

$$H^{2}(\pi_{1}(M); C(x, w)) \rightarrow H^{2}(M; C(x, w))$$

 ${\rm I\!C}$ 1978 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received April 26, 1976; received in revised form October 18, 1976.

induced by the characteristic map of M. Let G(x, w) be the group extension of C(x, w) by $\pi_1(M)$ defined by the inverse image of x' in $H^2(\pi_1(M); C(x, w))$, regarding this as the group of equivalence classes of extensions of C(x, w) by $\pi_1(M)$.

Remark. The statement that x' is in the image of the map in cohomology induced by the characteristic map of M will be proved in Section I.

Thus, for each twisted class $x \in H^2(M; \mathbb{Z}^w)$ we get a cyclic group C(x, w) and a canonical imbedding $C(x, w) \to G(x, w)$ as a normal subgroup with quotient $\pi_1(M)$ —henceforth we will identify C(x, w) with its image in G(x, w). Suppose $f: M^m \to V^{m+2}$ is an imbedding of compact manifolds. Then we define $w_f(g) = w_M(g)w_V(f_*g)$, where w_M and w_V are the orientation characters of M and Vrespectively and $g \in \pi_1(M)$. If $\chi_f \in H^2(M; \mathbb{Z}^{w_f})$ is the *Euler* class of f we will adopt the *abbreviated notation* $C_f = C(\chi_f, w_f)$, $G_f = G(\chi_f, w_f)$. Then the statement of our main theorem is:

THEOREM 2. Let M^m and V^{m+2} be compact manifolds with $m \ge 3$ and suppose there exists an imbedding $f: M^m \to V^{m+2}$ that induces an isomorphism of fundamental groups and a surjection of second homotopy groups.

Then a group G can be the fundamental group of the complement of an imbedding of M in V homotopic to f if and only if the following conditions hold:

(1) G is finitely presented.

(2) There exists a homomorphism $j: G \rightarrow G_f$, split by a homomorphism j_s and such that

(a) if $K = j^{-1}(C_f)$, then K is the normal closure within itself of $j_s(C_f)$ and (b) $H_2(K, \mathbb{Z}) = 0$.

The proof will be given in Section II.

Remarks. (1) Note that G_f and its subgroup C_f only depend upon the homotopy class of f since they are determined by the Euler class and orientation character.

(2) Conditions (2)(a) and (2)(b) above imply that $H_1(K, \mathbb{Z}) = C_f$, the isomorphism being induced by *j*. This follows from the fact that, since C_f is *abelian*, the homomorphism $j | K: K \to C_f$ must factor through the map $K \to K/[K, K] = H_1(K, \mathbb{Z})$ and the fact that no cyclic group is isomorphic to a proper quotient of itself.

(3) In the case of a high-dimensional knot, $\pi_1(M) = \pi_1(V) = 0$ and $\chi_f = 0$ which implies that $C_f = G_f = \mathbb{Z}$. This and the remark above show that, in this case, Theorem 2 reduces to Kervaire's characterization of high-dimensional knot groups.

(4) The existence portion of the proof of Theorem 2 will construct an imbedding with complementary fundamental group any G satisfying the conditions above that is *concordant* to the imbedding f in the hypothesis—where two

imbeddings $f_0, f_1: M \rightarrow V$ are defined to be concordant if they are restrictions of an imbedding of $M \times I$ in $V \times I$ to $M \times 0$ and $M \times 1$, respectively. This shows that the groups that can occur as complementary fundamental groups are, in a sense, independent of the concordance class of the imbedding-they only depend upon the Euler class.

(5) Suppose f is an *orientable* map, i.e., f preserves orientation characters. Then we can define the Euler class of f as follows: Let $[M] \in H_m(M, \partial M; \mathbb{Z}^t)$, $[V] \in H_{m+2}(V, \partial V; \mathbb{Z}^t)$ be fundamental classes. Then there exists an $x \in H^2(V; \mathbb{Z})$ such that $x \cap [V] = f_*[M]$ and χ_f is then the image of x in $H^{2}(M; \mathbb{Z})$ under f^{*} (see [6]).

COROLLARY 3. Let M^m , V^{m+2} be compact manifolds with $m \ge 3$, that are simply-connected and 2-connected, respectively, and suppose there exists an imbedding of M in V. Then a group can be the fundamental group of the complement of an imbedding of M in V if and only if it is a high-dimensional knot group.

Proof. The conditions on M and V imply $H^2(V) = 0$ so that the Euler class of any imbedding of M in V is 0. The conclusion follows from Remark 3.

COROLLARY 4. Let L_1^{2k-1} , L_2^{2k+1} be homotopy lens spaces of index n, i.e., they are quotients of spheres by \mathbb{Z}_n -actions, where n is an odd integer, and suppose there exists an imbedding of L_1 in L_2 . Then a group G is the fundamental group of the complement of an imbedding of L_1 in L_2 if and only if:

(1) G is finitely presented;

(2) G is the normal closure of a single element x such that $G/(x^n)^G = \mathbb{Z}_n$ where $(x^n)^G$ is the normal closure of x^n ;

(3) $H'_1((x^n)^G, \mathbf{Z}) = \mathbf{Z};$ (4) $H_2((x^n)^G, \mathbf{Z}) = 0.$

Remark. It is not difficult to see that $H_1(G) = \mathbb{Z}$ and $H_2(G) = 0$ so that, by Kervaire's criteria, G is a high-dimensional knot group. Not all knot groups can occur in this manner though-all exponents of the Alexander polynomial must be multiples of n (this can be seen by regarding the Alexander polynomial as defining a presentation of the first homology module of the infinite cyclic covering of the complement).

Proof. In [2] Cappell and Shaneson have completely characterized locallyflat codimension-two imbeddings of homotopy lens spaces (in terms of invariant spheres under \mathbb{Z}_n -actions) and their results imply that any such imbedding induces an isomorphism of fundamental groups and has a Euler class that is a unit in \mathbb{Z}_n . This implies that in the statement of Theorem 2, $G_f = \mathbb{Z}$ and C_f is the subgroup $n \cdot \mathbb{Z}$. If G satisfies the conditions in the corollary, G/[G, G] will be a cyclic group containing a copy of Z since it will contain a copy of $H_1((x^n)^G)$; so $G/[G, G] = \mathbb{Z}$ and this defines the map j in Theorem 2. The splitting j_s carries 1 in Z to $x \in G$ and the remaining conditions follow.

Conversely, if G satisfies the conditions of Theorem 2 it is only necessary to verify that G is the normal closure of an element whose *n*th power normally generates $K = (x^n)^G$.

But the image of $1 \in \mathbb{Z} = G_f$ under the splitting j_s has these properties.

I. Properties of the fundamental group

Proof of Proposition 1. Let $\Lambda^t = \mathbb{Z}^w \otimes \mathbb{Z}\pi_1(M)$ and consider the low-order exact sequence in cohomology induced by the universal covering space spectral sequence (see [1, chapter 15, Section 9])

$$0 \longrightarrow H^{2}(\pi_{1}(M); \mathbb{Z}^{w}) \xrightarrow{c^{*}} H^{2}(M; \mathbb{Z}^{w}) \xrightarrow{h} H^{2}(M; \Lambda^{t})^{f} \longrightarrow \cdots$$

where the f in the term on the right denotes the submodule fixed by the elements of $\pi_1(M)$. Since $H_1(M; \mathbb{Z}\pi_1(M)) = 0$,

$$H^{2}(M, \Lambda^{t}) = \operatorname{Hom}_{\mathbb{Z}}(H_{2}(M; \Lambda^{t}), \mathbb{Z})$$

and we can regard h above as the dual of the Hurewicz homomorphism. Then c^* is the map induced by the characteristic map in cohomology and

$$H^{2}(M; \Lambda^{t})^{f} = \operatorname{Hom}_{\mathbf{Z}}\left(H_{2}(M; \Lambda^{t}) \bigotimes_{\mathbf{Z}\pi_{1}(M)} \mathbf{Z}, \mathbf{Z}\right)$$

and h carries $x \in H^2(M; \mathbb{Z}^w)$ to the map $y \otimes n \to n(x \cap y)$, $y \in H^2(M; \Lambda^t)$, $n \in \mathbb{Z}$ (see [1, p. 28]). The change of coefficients from \mathbb{Z}^w to C(x, w) induces the following commutative exact diagram (of groups):

where C = C(x, w). It is clear by the definition of C(x, w) and the description of the map h above that h'(x') = 0 so that x' is in the image of c'*.

LEMMA I.1. Let M, w, and x be as in Proposition 1. If $S(\xi)$ is the total space of the unique (up to isomorphism) circle bundle with first Stiefel-Whitney class w and twisted Euler class x, then an isomorphism between \mathbb{Z}^w and $H_0(M; \mathbb{Z}^w)$ induces an isomorphism between C(x, w) and the cyclic subgroup F of $\pi_1(S(\xi))$ generated by the inclusion of a fiber. Furthermore, this isomorphism extends to a commutative exact diagram:

$$\begin{array}{cccc} 0 \longrightarrow & F & \longrightarrow \pi_1(S(\xi)) \longrightarrow \pi_1(M) \longrightarrow 0 \\ & \downarrow & & \downarrow & \\ 0 \longrightarrow & C(x, w) \xrightarrow{i} & G(x, w) \longrightarrow \pi_1(M) \longrightarrow 0 \end{array}$$

where i is the canonical inclusion of C(x, w) in G(x, w). In particular, by the 5-lemma, G(x, w) is isomorphic to $\pi_1(S(\xi))$.

Proof. The first statement follows from the interpretation of the map h in the Thom-Gysin sequence in homology as cap-product with the Euler class (see [6, Chapter 5):

where $H_1(S(\xi); \mathbb{Z}\pi_1(M))$ is the cyclic subgroup of $\pi_1(S(\xi))$ generated by the inclusion of a fiber, by Shapiro's lemma. The second statement follows from Proposition 11.4 of [7], which implies that there exists a circle fibration η over a space X such that $\pi_1(X)$ is isomorphic to $\pi_1(M)$ and, given any isomorphism between $\pi_1(X)$ and $\pi_1(M)$, there exists a unique homotopy class of maps $f: M \to X$ such that f_{η}^* is fiber homotopy equivalent to ξ . Furthermore, given any isomorphism $\pi_1(S(f_{\eta}^*)) \to \pi_1(S(\xi))$, compatible with f, there exists a unique homotopy class of fiber-homotopy equivalences inducing the isomorphism. The proof of 11.4 in [7] shows that, in this universal fibration, the image of the Euler class in $H^2(M; C)$ (where C is the cyclic group generated by the inclusion of the fiber) is the image of the class in $H^2(\pi_1(X), C)$ defining the group extension $0 \to C \to \pi_1(S(\eta)) \to \pi_1(X) \to 0$, under the map induced by the characteristic map of X. The conclusion now follows from the functoriality of Euler classes and group extension classes.

DEFINITION I.2. Let $f: M^m \to V^{m+2}$ be an imbedding of compact manifolds. Then there exists a homeomorphism $h: V \to V'$ such that a regular neighborhood of hf(M) in V' is the total space of a 2-plane bundle ξ over M. An element of $\pi_1(V - f(M))$ will be called a meridian class if it is of the form $h_*^{-1}a'$, where a'is a fiber of the unit circle bundle associated to ξ . If $i_*: \pi_1(V - f(M)) \to \pi_1(V)$ is induced by inclusion, the kernel will be called the meridian subgroup.

The existence of h follows from the fact that f is locally-flat and the facts that TOP_2/PL_2 and PL_2/O_2 are contractible. Note that, in view of I.1 and I.2, if S is the boundary of a tubular neighborhood of f(M) in V, we may identify G_f with $\pi_1(S)$ and C_f with the subgroup generated by inclusion of a fiber.

PROPOSITION I.3. Let $f: M^m \to V^{m+2}$ be an imbedding of compact manifolds that induces a surjection of fundamental groups. Then the meridian subgroup of $\pi_1(V - f(M))$ is the normal closure, within itself, of a single meridian class.

Proof. This follows by a well-known argument of Kervaire (see [4]) applied to the universal covering space of V, which, by hypothesis, contains a connected covering of f(M).

PROPOSITION I.4. Let $f: M^m \to V^{m+2}$ be an imbedding of compact manifolds that induces an isomorphism of fundamental groups and a surjection of second homotopy groups and has normal bundle ξ , with associated unit circle bundle S.

Then the inclusion of S in V - f(M) induces

- (1) an isomorphism $H_1(S; \mathbb{Z}\pi_1(M)) \rightarrow H_1(V f(M); \mathbb{Z}\pi_1(V))$ and
- (2) a surjection $H_2(S; \mathbb{Z}\pi_1(M) \rightarrow H_2(V f(M); \mathbb{Z}\pi_1(V)))$.

Proof. If T is the total space of the unit disk bundle associated to ξ , the map of the long exact sequence of the pair (T, S) to that of the pair (V, E) $(E = \overline{V - T})$ induced by inclusion, excision, the Thom isomorphism for ξ , and the 5-lemma together imply the result.

PROPOSITION I.5. Let f, M, V be as in I.4 and let S and E be the boundary and the closed complement of a tubular neighborhood of f(M) in V, respectively. If K is the meridian subgroup of $G = \pi_1(E)$, then G/[K, K] is isomorphic to G_f and the projection to the quotient j: $G \rightarrow G_f$ is split by the homomorphism j_s : $G_f \rightarrow G$ induced by the inclusion of S in E (see the remarks following I.2). Furthermore, $K = j^{-1}(C_f)$ is the normal closure of $j_s(C_f)$ and $H_2(K, \mathbb{Z}) = 0$.

Proof. We begin by defining j_s as the composite of an isomorphism of G_f with $\pi_1(S)$ that carries C_f to the cyclic subgroup generated by a fiber with the homomorphism $\pi_1(S) \rightarrow \pi_1(E)$ induced by inclusion. Clearly, $j_s(C_f)$ will be a cyclic subgroup of G generated by a meridian class. Consider the following commutative exact diagram, induced by the composite of j_s with the projection $G \rightarrow G/[K, K]$:

$$\begin{array}{cccc} 0 & & & & & \\ & & & & \\ & & \downarrow^p & & & \downarrow^q \\ 0 & & & \downarrow^r & & \downarrow^r \\ 0 & & & & & \\ \end{array} \xrightarrow{f} & & & & \\ & & & & & \\ & & & & & \\ \end{array} \xrightarrow{f} & & & & \\ & & & & & \\ & & & & & \\ \end{array} \xrightarrow{f} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array} \xrightarrow{f} & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} \xrightarrow{f} & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} \xrightarrow{f} & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

where r is an isomorphism. If we identify C_f with $H_1(S; \mathbb{Z}\pi_1(M))$ (i.e., the cyclic subgroup generated by a fiber) and K/[K, K] with $H_1(K, \mathbb{Z}) =$ $H_1(E; \mathbb{Z}\pi_1(M))$, then p coincides with the map induced by inclusion so that, by I.4, it must be an isomorphism. It follows, by the 5-lemma, that q is an isomorphism and we can define j as the composite of q^{-1} with the projection $G \rightarrow G/[K, K]$. It is clear that, with this definition, $j^{-1}(C_f) = K$ and therefore, by I.3, is the normal closure within itself of $j_s(C_f)$. The remaining statement follows upon considering the diagram

where *i* is induced by inclusion, *s* by the characteristic map of *E*, and *r* by that of *S*. Shapiro's lemma implies that $H_2(G; \mathbb{Z}\pi_1(M)) = H_2(K; \mathbb{Z})$ and $H_2(S; \mathbb{Z}\pi_1(M)) = H_2(C_f) = 0$. The conclusion now follows from the fact that *i*, *s*, and *r* are surjective and *r* factors through $H_2(C_f) = 0$.

The following proposition is essentially the same as the theorem in the appendix of [3]. We will give a proof for the sake of completeness.

PROPOSITION I.6. Let f, M, V, E, and S be as in I.5 and suppose that the dimension of M is ≥ 3 . Then f is concordant to an imbedding f' such that $\pi_1(E') = G_f$ with meridian subgroup C_f , where E' is the closed complement of a tubular neighborhood of f'(M) in V.

Remark. Note that concordant imbeddings are homotopic so that $(G_{f'}, C_{f'}) = (G_f, C_f)$.

Proof. Let $G = \pi_1(E)$ and let K be the meridian subgroup. Then since G and G_f are finitely presented groups and since, by I.4, $G/[K, K] = G_f$ it follows that [K, K] is normally generated in G by a finite number of elements. Attach 2-cells to E via maps representing normal generators of [K, K] forming E_1 . Then $H_i(E_1, E; \mathbb{Z}\pi_1(V))$ is 0 for $i \neq 2$ and a free module F for i = 2, and

$$H_i(E_1; \mathbb{Z}\pi_1(V)) = H_i(E; \mathbb{Z}\pi_1(V))$$

for $i \neq 2$ and $H_2(E_1; \mathbb{Z}\pi_1(V)) = H_2(E; \mathbb{Z}\pi_1(V)) \oplus F$. The universal covering space spectral sequence shows that

$$H_2(\pi_1(E_1); \mathbb{Z}\pi_1(V)) = H_2(G_f; \mathbb{Z}\pi_1(V)) = H_2(C_f)$$

(the last equality is Shapiro's lemma) is the cokernel of the Hurewicz homomorphism. It follows that we can attach 3-cells to E_1 forming E_2 so that the inclusion $E \rightarrow E_2$ is a simple $\mathbb{Z}\pi_1(V)$ -homology equivalence. By an argument identical to that used in the proof of Lemma 4.3 of [2] we can perform surgery on E to obtain $E' \rightarrow E_2$ such that the new map induces an isomorphism of fundamental groups and the trace of the surgeries is a $\mathbb{Z}\pi_1(V)$ -homology scobordism. It follows that the complement E' is the complement of a tubular neighborhood of an imbedding of M in V concordant to f and such that the fundamental group of the complement is G_f .

II. Proof of Theorem 2

The necessity of the conditions in the statement of Theorem 2 has already been proved in I.5 except for the requirement that G be finitely presented. This follows from the fact that the complement of an imbedding of compact manifolds has the homotopy type of a finite complex. It only remains to prove that the conditions are sufficient. In view of I.6 we may assume, without loss of generality, that the map f in the statement of Theorem 2 has the property that $\pi_1(V - f(M)) = G_f$ with meridian subgroup C_f . Let T be a tubular neighborhood of f(M) in V and let $E = \overline{V - T}$ and $S = \partial T$. Then $\pi_1(S) = G_f$ and inclusion of S in E induces an isomorphism of fundamental group.

Suppose G is a group that satisfies the hypotheses of the theorem. We must construct a locally-flat imbedding $f': M \to V$ that is concordant to f, such that $\pi_1(V - f'(M)) = G$. The splitting of j gives an injection $j_s: G_f \to G$.

Since G is finitely presented we can attach a wedge of circles to E (off S) and a finite number of 2-disks forming E_1 such that $\pi_1(E_1) = G$ and such that the

inclusion $E \hookrightarrow E_1$ induces j_s on fundamental groups. Since j_s splits j and j induces an *isomorphism* (by Remark 2 following Theorem 2)

$$H_1(S; \mathbb{Z}\pi_1(V)) = H_1(E; \mathbb{Z}\pi_1(V)) \leftarrow H_1(G; \mathbb{Z}\pi_1(V)),$$

it follows that j_s induces an isomorphism

$$H_1(E; \mathbb{Z}\pi_1(V)) \longrightarrow H_1(E_1; \mathbb{Z}\pi_1(V)).$$

This implies, since only 1- and 2-cells have been attached, that

$$H_i(E_1, E; \mathbb{Z}\pi_1(V)) = \begin{cases} 0, & i \neq 2\\ F, & i = 2 \end{cases}$$

and

$$H_2(E_1; \mathbb{Z}\pi_1(V)) = H_2(E; \mathbb{Z}\pi_1(V)) \oplus F$$

where F is a free $\mathbb{Z}\pi_1(V)$ -module. Since $H_2(G; \mathbb{Z}\pi_1(V)) = 0$ (by hypothesis, and by Shapiro's lemma), a variation of Hopf's theorem implies that the map $\pi_2(E_1) \rightarrow H_2(E_1\mathbb{Z}\pi_1(V))$ induced by the Hurewicz homomorphism, is *surjective*. Then we may attach 3-cells (via maps representing *basis* elements of F) to obtain E_2 such that the inclusion $i: E \rightarrow E_2$ induces a *simple* $\mathbb{Z}\pi_1(V)$ -homology *equivalence*. By an argument identical to that used in Lemma 4.3 of [2] we get a $\mathbb{Z}\pi_1(V)$ -homology *s-cobordism* I: $(W; E, E') \rightarrow E_2$ such that $\tilde{I} \mid E = i$ and $\tilde{I} \mid E'$ is a 2-connected simple $\mathbb{Z}\pi_1(V)$ -homology equivalence. Since ker $G \rightarrow \pi_1(V)$ is the normal closure (within itself) of $j_s(C_f)$, it follows (by van Kampen's theorem) that if we take the union of W with $T \times I$ along $S \times I \subset W$ we get a homotopy equivalence (i.e., $\pi_1(W \cup T \times I) = \pi_1(V)$), and the union is an *s-cobordism*).

This implies that $E' \cup_S T$ is homeomorphic to V and the imbedding $M \hookrightarrow T \hookrightarrow E' \cup_S T \hookrightarrow V$ has $\pi_1(V - \operatorname{im}(M)) = G$ and is concordant to f.

BIBLIOGRAPHY

- 1. HENRI CARTAN AND SAMUEL EILENBERG, Homological algebra, Princeton University Press, Princeton, N.J., 1956.
- 2. SYLVAIN CAPPELL AND JULIUS SHANESON, The codimension-two placement problem and homology equivalent manifolds, Ann. of Math., vol. 99 (1974), pp. 277–348:
- 3. ——, Fundamental groups, Γ-groups and codimension-two imbeddings; Comm. Math. Helv., vol. 51 (1977), pp. 437-446.
- 4. MICHELKERVAIRE, Les Noeuds de Dimensions Supérieures, Bull. Soc. Math. France, vol. 93 (1965), pp. 225–271.
- 5. JUSTIN SMITH, Complements of codimension-two submanifolds, Ph.D. thesis, New York University, New York, 1976.
- 6. EDWIN H. SPANIER, Algebraic topology, McGraw-Hill, New York, 1966.
- 7. C. T. C. WALL, Surgery on compact manifolds, Academic Press, London, 1970.

RICE UNIVERSITY HOUSTON, TEXAS