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Fguivariant Moore Spaces

by
Justin R. Smith*

Introduction.

This paper studies the following problem, originally proposed by Steenrod in 1960:
Given a group 7, a right Zw-module M and an integer n>1, does there exist a

topological space X with the properties:

1. nl(X)=11;

2. H(X) =0, iz0, n;
3.Hy(X) - Z;

4. H(X) = M?

where X is the universal covering space of X, equipped with the usual 7-action. The
space X, if it exists, is called an equivariant Moore space of rype (M, n, n/ or just a

spaceof type (M, n; 1). A triple (M, n; 1) for which such a space exists will be said to be
topologically realizable

Section 1 of the present paper develops an obstruction theory for the existence of
equivariant Moore spaces and proves that:
Theorem: Letr (M, n; n) be a2 triple as described above and suppose that the

n+2— dimensional homological k-invariant of the chain compler K'(M, n)®ZLs /s

nonzero. Then there doesn't exist a topological space, X, with the property
that "1(X) =, H(XZn)=0,0<i<n, or i=n+1,ms2, H (X;Zw) = M. /n particular, no

equivariant Moore space of type (M, n; 1) exists O

Remarks: 1. K'(Mn) is the quotient of the chain complex of a K(M,n) by the
0-dimensional chain module and Z, is a Zn-projective resolution of Z. The tensor

product in the hypothesis is over Z and equipped with the d7ggona/ tu-action.

2. The statement about the homological k-invariant of Y=K*(M,n)®Z, is equivalent to
Y)) — Homh(H (Y),H

the statement that the evaluation map H™2(Y; H

[

(Y)) is not

n+2 n+2 n+2

surjective.
* The author was partially supported by NSF Grant*M(CS81-16614.
AMS (MOS) Subject Classification (1980): Primary 55545; Secondary 18G55.
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Sections 2 and 3 of the present paper develop an algorithm for the computation of
this homological k-invariant and show that:

Theorem: The hypotheses of the theorem above are salisfied if
1=2/27 ® Z/2Z (on generators s and t) and M is the ©LIu-module whose

underlying abelian group is IDLOL with s and 1 acling via right

multiplication by the malrices.
o 1 1] 1 0 0
1 0 1 and -1 0 -11 respectively.
0 0 -1 1 -1 0

The first counterexample to the Steenrod conjecture was due to Gunnar Carlsson in
[2]. The present counterexample has the advantage that the Z-rank of the module is

minimal and the fundamental group is the smallest possible -- Peter Kahn (in
unpublished work) proved that any module whose underlying abelian group is Z®Z is

topologically realizable. On the positive side of the Steenrod conjecture we have:

Theorem: Let M be a Zu-module of homological dimension X and suppose
that M/peM = Mp =0 for all primes p< | +Kk/2. Then there exist equivarianl

Moore spaces of type (M, n; 1), where n is any inieger >k. [
Here Mp denotes the p-torsion submodule of M.

The Steenrod problem has been studied before by Frank Quinn, James Arnold, Peter
Kahn, and Gunnar Carlsson.

Frank Quinn developed an obstruction theory to putting a suitable group action on a
pre-existing (non equivariant) Moore space. The main drawback to his theory is that the

obstructions (and even the obstruction groups) do not seem to be readily computable --
see [14].

James Arnold, in [19], developed a form of homological algebra based upon
permutation modules rather than projective modules and used it to prove that all
modules over a cyclic group are topologically realizable. Peter Kahn developed an

obstruction theory to the existence of equivariant Moore spaces for Z-torsion free

modules. When coupled with the results of Kiyoshi Igusa (see [10] and [11]) it implies
that the ZGL(Z)-module 7* (where the group acts by matrix multiplication) is not
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topologically realizable in any dimension. Unfortunately the resuit; EF mi
provide for an easy computation of the obstruction. | : .

The work of Gunnar Carlsson (which resulted in the first counterexample) hinged
upon an argument involving cohomology operations that doesnt appear to generalize
beyond the examples given in his paper (see [2]). Carlsson approached the problem from
the point of view of group actions on CW complexes and the induced actions on homology.
The present paper was originally written in 1980 after Carlsson’s result.

It was felt that Carlsson’s result laid the Steenrod problem to rest but in recent years
there has been renewed interest in the approach of the present paper. This is due to
connections between the Steenrod problem and the theory of Iransformation groups.
The present paper develops an obstruction theory for equivariant Moore spaces that is
completely different from all of the theories discussed above and which appears to be
much more tractable from a computational point of view. It also turns out that the
obstruction theory presented here generalizes to an obstruction theory to topologically
realizing chain compleres that have nonvanishing homology in more than one
dimension. Such an obstruction theory provides a first obstruction to imposing a
group-action upon a space (e.g., a manifold). Certainly, if no group-action exists on a
CW-complex homotopy-equivalent to the desired space then it can’t exist on the desired
space either. Also, if one can demonstrate the existence of some desired group-action on
a CW-complex homotopy equivalent to a manifold one can explore the (surgery-theoretic)
problem of smoothing the action (for instance) to get a similar action on the manifold.

Section 3 of this paper gives an explicit formula for the obstruction for all
modules whose underlying abelian group is 23. This formula can be readily generalized

to a// Z-free modules.

I am indebted to Sylvain Cappell and Andrew Ranicki for their encouragement.

§1 The Obstruction Theory

In this section we will describe the obstructions to the existence of equivariant
Moore spaces. Essentially they will turn out to be obstructions to adjoining terms to a
partial Postnikov tower in such a way that the first non-vanishing homology module
above the one we want to realize, is annihilated

Definition 1.1: Let M be a right Zn-module and n be an integer > 1. The equivariant
Eilenberg-MacLane space Ki(M, n) is defined to be a space homotopy-equivalent to
(K(M,n) x K(w,1))/n where:

a the second factor is the universal cover of a K(m,1);

b. the cartesian product above is equipped with the diagonal/ m-action. O
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Remarks: 1. Note that Kﬂ(M, n) has the following properties:
in l(K“(M,n)) =T
ii. ﬂi(K'(M.n)) =0,i= 1, n;
fii. nn(K'(M,n)) = M, as Zu-modules, i.e. the action of the fundamental group on n

coincides with the action of 7 on M.

2. In the definition of Ku(M,n) above we could have used the cellular bar construction
of Milgram for K(M,n) instead of the semi-simplicial complex of Eilenberg and MacLane --
see [13].

Let X be a topological space with fundamental group 1 and consider a map inducing,

an isomorphism of fundamental groups:

1.2: XL k (Mn)

The homotopy class of this map defines a cohomology class [f] in H*(X;M) and it is
well-known that the map f,.H (X;Zn)— M is the image of [f] under the evaluation map:

HYX;M) € Hom, (H (X.Z1), M)

-- ie. [f] is just the element of H¥X;M) given by f*(}), where €H*(K(M,n);:M) is an element
whose image under the evaluation map is the /dentity map of M -- see [18, chapter 8].
Furthermore the map f is the classifying map for a fibration over X with fiber a K(M,n-1 ).
If E is the total space of this fibration its homology fits into the Serre exact sequence of a
fibration:

I Hn(K(M,n-l ))— Hn(E;Zn)—v Hn(X;ln)g* H,_ l(K(M,n- 1))

—~H_(EZw)—H,_(XZm)—0
where the map o can be regarded as coinciding with f, or e[f] since it is essentially the

pullback of the transgression homomorphism for the universal fibration over K(Mn) --
which can be regarded as the identity map of M.

Lemma 1.3 Let B _[(X;Zw) = 0. Then there exists a K(Mn-1)-fibration over X
with total space E such that B (EZn)-H_(EZw)=0 i and only if M =H (XZ1)

and there exists a map fX— KI(M,n) inducing an isomorphism of 1 " and an

fsomorphism in homology in dimension n. A map f{ with those properties
exists i and only if the evaluation map with local coefficients in M --
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e:H“(X;M)—»Hom;;’(M,M), where M=Hn(X;Z1I), is surjective.

Proof: Most of this follows immediately from the Serre exact sequence above. We
need only prove the last statement about the evaluation map. Let A denote Homh(M,M ),

regarded as a r/ng. From the remarks following 1.1 it is clear that a map fX — KI(M,n)

inducing an isomorphism in homology in dimension n represents a cohomology class
[fl € H (X;M) whose image under the evaluation map is an gufomorphism of M, and

conversely, the existence of such a cohomology class implies the existence of the map.
Since the evaluation map HYXM) — Hom, (M,M) is nazura/with respect to changes of

coefficients it follows that it is a homomorphism of A -modules (where A acts on the right

by changes of coefficienls in the cohomology, and by composition in the
Hom-group). Since A is generated, as a module over itself, by any automorphism of M it

follows that an automorphism is in the image of the evaluation map if and only if that
map is surjective [

Lemma 1. 4: A lopological realization for the triple (Mn; ) exists if and only
If there exists a4 sequence of spaces (Xi} such that.

1. X, is & K(M, n)-fibration over a K(u,1),

2. X, 7s a K(N,n+i)-Zibration over X, with N, = H (X.Iu) and whose

characterrsiic class 1s a cohomology class of H”*i(Xi;N i) whose Image
under the evalvation map Is an avtomorphism of Ni.

Remarks: 1. 1t is clear from lemma 1.3 that X, , can't exist unless the evaluation

map H™{(X;N.) — Hom, (N.N,) is surjective. Consequently the ith obstruction to the

existence of a topological realization of the triple (M,n;n) is defined if and only if the
previous i-1 obstructions vanssh.

2. Since the evaluation map for /nregra/cohomology is well-known to be surjective
it is easy to see why all of the obstructions in the theory presented here vanish if 7 is the
Lrivial group.

Proof: The if part of the statement follows from 1.3 which implies that
Hi(Xi;Z‘n)-Oif0<j<n;
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Hi(Xi; Zu)=0if n<j<n+
The X, form a convergent sequence of fibrations whose limit will be a suitable

equivariant Moore space.
The on/y if part of the argument is a consequence of the existence and uniqueness
of equivariant Postnikov towers -- see [1]. O

The remainder of this section will be spent developing algebraic criteria for the
surjectivity of lhe evalvation map -- since the results above show that the
equivariant Moore space can be constructed if this map is surjective. Essentially we will

show that it is possible to define ofstructionsto the surjectivity of the evaluation map
- these will turn out to be closely related to the Aomo/ogical k-invarianisof chain

complexes defined by Heller in [8].

Definition 1.5 Let C« be a projective Zr-chain complex with the following properties:
i H(C) =0, I¢m
ii. H (Ce)=M;
iii. H(C:)=0,n¢icnek;
iv. H , (Cs) =N.

Let P, be a projective resolution for M. Then there exists a unique chain-homotopy
class of chain maps cC, — P, inducing an isomorphism in homology in dimension n.
Let Y(c) denote the algebraic mapping cone of c. We have the exact sequence:

0— L"P— Uc) = LG — 0

and H(¥(c)) = O for i < n+k+l and H (%(c)) = N so that there exists a map

n+k+1
+k+1 . .. . iys . .
Ac)—) . Q, where Q, is a projective resolution of N. By composition there is a chain

map 1°P, — Y™*"'Q, defining a class x€Ext, *"'(MN). This will be called the

homological k-invariant of C, in dimensionn+k. 0

Remarks- 1. It is not hard to see that this definition agrees with that of Heller in
[8]: the pair (). "C,, } "%(c)) can be regarded as a O-truncated segregated pair asin
§6 of [8] -- see §3 of that paper also; C, is regarded as a triangular complex such that
T,'i-O if 0.

2. It is also clear that if C, is the (cellular or singular) chain complex of a oonnected

topological space and n=0, the homological k-invariant defined above agrees with the
fopological k-invarianiof the topological space.
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Definition [.6- Letf:C, — D, be achain map of chain complexes. Then §(f) is defined

to be Z"n(r ) -- the desuspension of the algebraic mapping cone. [1

Remark: We have the usual short exact sequence of chain complexes:

0— Z"D, — §(f) — C, — 0. Let C, be a chain complex such that
HO(C‘) = Z,
H (C)=M;
Hi(C,) =0, n<i<n+k;
H,. (C)=H
where M and H are Zw-modules, n and k are positive integers andn > 1.

There exists a unique chain-homotopy class of chain maps fo'G—Z, inducing an

isomorphism of Hy, where Z, is some projective resolution of Z over Zu. Then Hy(§(f)) =0
and the canonical projection @(f 0) — C, induces homology isomorphisms in all higher
dimensions. If P, is a projective resolution of M then there exists a unique

chain-homotopy class of chain maps f n:@(f,,) — ZDP, inducing an isomorphism of
homology in dimension n.

Proposition 1.7: Under the conditions discussed above the following disgram
commules, with gll horizontal and vertical sequences eract,

Exty £ (MH) & A —Hﬂ*"*'(TV,;H) ¢————H"" Y(y, H)

| | ‘

Exth"”(M,H)é—C —Hom,, (HH) <— 6 mﬁﬁ*k((;(fo);ﬁ)

% A\P
H™¥(C,; H) H™X(C,; H)

where e and § are the evalvation maps, respectively, of C, and Q(f,). If
¢ = {(IH), then the evaluation map of C, is surjective if and only if ¢ = 0.
Furthermore, 'Nc) is the homological k-invariant of Q(t,) in dimension n+k.
The complex V, is the algebraic mapping cone of the composite Z’lZ, C

i o)ﬁ{ P, where o-f . 4nd '\ is induced by the canonical inclusion Y%, CV,
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Remarks: 1. The element c defined above is just the homological k-invariant of C,
in dimension n+k -- the simple definition given in 1.5 doesn't apply here because C, has
homology in dimension 0. See [8] for the general definition of homological k-invariants.

2. When C, is the chain complex of X, in 1.4 the element ¢ will be the obstruction to
the existence of X, , and the k™™ obstruction to the existence of the corresponding
equivariant Moore space. In order to prove the nonexistence of a given equivariant
Moore space it clearly suffices to show that A(c) = 0 at some stage of the construction.

This will form the basis of the proof of the main results stated in the introduction since
Ac) turns out to be more readily computable than ¢ itself.

Proof- The diagram in the statement is the result of applying H2*K(*;H) to the
following commutative -exact diagram of chain complexes (where, as usual, Z, is a

projective resolution of Z):

0— Y"'p, >V > V', —0
v v
0o —>1"'p, —>air) —>8lf,) —>0
A % v ]
0- > C, > C, >0
A
0 0

where:
1. The middle row and the right column are the canonical exact sequences for

B(f,) and B(f;), respectively;
2. G(f ) — C,is the composite of the canonical projections §(f )—@(f;) and
B(f,)— C, and V' is defined to be its kernel.

The existence and exactness of the remaining maps in the diagram now follows by a
straightforward diagram chase. The fact that H"""(G,(fn);H) = Hom,, (HH) follows from
the fact that the homology of G(f ) vanishes below dimension n+k. That e and d are the

evaluation maps followsfrom the naturality of evaluation maps with respect to maps of
chain complexes. That Nc) is the n+k-dimensional homological k-invariant of B(f,)

folllows from the definition. It is also not hard to see that V'-B(g), where g is the



246

composite Z"Z, CB(f,y) — ¥ "P, so that V=r V. O

It was noted above that the elements A(c) are easier to calculate than the

obstructions themselves. The Ac) do, however, occur in a natural geometric setting that
will be described now.

Delinition 1.8 Let (M, n; 1) be atriple as in 1.1. A sp/it topological realization of
(M, n; ) is a space X of type (M, n; w) such that the characteristic map cX—K(w,1)

(inducing an isomorphism of fundamental groups) is sp//t by a map sK(m,1)— X (ie. cos

is homotopic to the identity). OO

Kemarks: 1. Note that in the split case the first k-invariant of the space X must
vanish. The condition that X be split is stronger than the vanishing of the first
k-invariant, however. It essentially implies that there is no interaction between the

fundamental group and the homotopy groups above 112.

2. Since the splitting map sK(m1)— X, must lift to X,,, in each stage of the
construction it follows that the classifying element of the fibration used to construct X,  ,

comes from the re/ative cohomology group H“*“(Xk,K(ﬂ,l);H) -- since the relative chain

complex is essentially §(f o) (in the setting of 1.7) -- it follows that the obstructions of the

existence of a sp/it equivariant Moore space are the images of the nonsp/if obstructions
under A.

The geometric significance of the split case is connected with Steenrod's original
definition of an equivariant Moore space as a CW-complex acted upon by a group, 1, such

that its equivariant homology had prescribed properties (so, for instance, the equivariant
Moore space was generally s/impl/y connected and corresponded to the wniversal
coverof an equivariant Moore space in our sense).

Proposition: A tripfe (M, n; w) has a split topofogical realization (in the sense

of the present paper) it and only if it is realizable (in Steenrod s sense/ by a
7-complerxr that has a fired poinl.

Proof- Suppose (M, n; 1) has a split realization X, in our sense. Then there exists a
n-equivariant map zK(n,1)—~X whose mapping cone is a pointed n-complex realizing
(M, n; 11) in Steenrod's sense.

The converse follows by taking a Steenrod realization and taking the topological
product with K(w,1) and defining the group action diagonally. The group 7 acts on the
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resulting space freely so we can take the quotient to get a realization in our sense. The
existence of the fired point in the original space implies that the final space will be

split (it will contain a copy of K(m,1)= K(w,1)xfixed point/w). 0O

Suppose we are at the beginning of the process of constructing an equivariant Moore
space of type (M, n; 7), in the non split case. Then Xl will be the total space of a

K(M.n)-fibration over K(w,1). The results of V. K. A. M. Gugenheim in [7] imply that the
(equivariant) chain-complex of X, will be a twisted tensor product of the chain
complex for a K(M,n) by that of K(m1) (we can use the description of these

chain-complexes that appears in [4]). Since in the stable range (all dimensions <2n, in this
case) a twisted tensor product is the same as an ordinary tensor product followed by a
twisted direct sum it follows that:

Proposition 1.9- Under the hypolheses of 1.4 and 1.7 (with 02,k = 2, and C,
the chain complex of Xl) the obstrucition, C;, 10 the existence of X3 is an

element of H3(V,; M/2M) that maps under N to the n+k-dimensional

homological k-invariant of K'(M,n)®LZ,.

Remarks: 1. This result has the interesting consequence that, if the first
obstruction c, is nonvanishing in the sp/it case it doesn’t vanish in the generas/ case,

i.e, one can't "cancel out” the first obstruction by introducing a non-trivial topological
k-invariant in the lowest dimension.

Phrased in the terms of Steenrod's original formulation of the problem this says that
if the first obstruction to introducing an appropriate m-action to a pointed complex is

nonvanishing, then letting the basepoint move freely won't simplify matters.

2. In the non-split case there will turn out to be zAreeessentially different sources
of obstruction:

A. The ‘homological” obstructions -- coming from the homological
k-invariants of the equivariant Eilenberg-MacLane spaces;

B. 7he ‘topological” obstructions -- defined when the homological
obstructions vanish and coming from the rightmost colume of 1.7. They
derive from the effects of cohomology operations on the first topological
k-invariant and vanssh identically in the split case.

C. The “multiplicative” obsiructions -- derived from the fact that fibrations
correspond to fwisted tensor products rather than twisted direct sums.
This obstruction is explored in [18] and is shown to be nonvanishing in
general.

3. K*(M.n) denotes the quotient of K(Mn) by the subcomplex of 0-dimensional
elements. See 1.7 for definitions of V, and A.
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Proof- This follows from the fact that, in the stable range (i.e. dimensions n through

2n-1), z(ﬂ,l)®£K(M,n)='lZ(11,l)EBt,'K(ﬂ,l)@)K"(M,n), (where ' is the restriction of § to the

stable range), and by direct computation of §(fy) in this setting (see the discussion
preceding 1.7). O

At this point we are in a position to state sufficient conditions for the existence of
equivariant Moore spaces. We will make use of the results involving the homology of
Eilenberg-MacLane spaces in [5] and [3].

We begin with the following well-known result (which can be proved directly using
the Hurewicz homomorphism):
Corollary 1.10: If M is alw- module of homological dimensions2, there exists

a space of typeM, n; n) for any n>l. O

Remark:  Using the obstruction theory described above, this follows from the fact
that H  ,(K(M;n)Z) = 0 for all n>1 and all abelian groups M -- see [5, §20].

It follows that the first nontrivial obstruction is c, € Extu"’(M,HmZ(K(M,n);Z).

Since it is proved in [5, §821, 22] that:
H,(K(M,2); Z) = [ (M);
H_,(K(Mn); Z) - M/2M, if n> 2.

(where (M) is the Whitehead functor).

Corollary 1.11. Let M be a ln-module of homological dimension < 3 ana

suppose that Extha(M,I' (M)) =0. 7hen there exists an equivariant Moore space

of type(M, 2;n). O

Theorem 71.12: Let M be a Lu-module of homological dimension k and
suppose Mp (1he p-torsion submodule)= M/peM =0 for &/f primes p <1 + k/2.

Then there exist equivariant Moore spaces of type (M, n; 1), where n is any

integer: K.

Proof- This follows immediately from the results on the homology of

Eilenberg-MacLane spaces in the stable range in [3]. Those results imply that the

homology of a K(M,n) in dimension n+k is a sum of copies of Mp and M/peM for primes p
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such that 2{(p-1) ¢ k wherek <n. []

§ 2 The Pirst Homological k-Invariast of a Chaia-Complex.

In this section we will develope methods for computing the homological k-invariants
of a chain complex. We will make extensive use of the perturbation theory of
DGA-algebras. This theory was developed by H. Cartan in unpublished work and later
elaborated by V.K.A.M. Gugenheim (see [7]).

Definition 2.1: Let fC —D, g:D— C be maps of chain-complexes. Then:

1. if f maps each G to Dm then f will be called a map of degree k:

2. if [ is a map of degree k then df is defined to be db-h(-l)mf-dc. The map f is
defined to be a chain map if it is of degree 0 and df=0.

3. if f and g, above, are both chain maps and:
a.fog=1 p- and g*f=de, where @ is some map of degree +1; and

b. [-9=0, p+g=0, and ¢2=0;
then zhe Iriple(f, g, ¢) is called a contraction of C onto D. The map f is called
the projection of the contraction, and g is called the injection. 0O

Remarks: 1. Since df has the special meaning given above, we will follow
Gugenheim in [7] in using d-f to denote the composite.

2. We will aiso wes the convention thet i f:C,—~D,, gC,—D, are mape, and
a®b € C,8cC, (where 2 is a homogenous eilement), then
(f®g)(a®b)-(-1)dea(RIdes(ad(q)@o(b). This convention simplifies some of the common
expressions in homological algebra. For instance the differential, d@* of the tensor

product C®D is just d.®1+1 @dy,.

3. It is not difficult to see that the definition of a chain-map given above coincides
with the usual definition.

4. The definition of a contraction of chain complexes given here is slightly stronger
than the original definition due to Eilenberg and MacLane in [4], since they don't require
the chain-homotopy to be self-annihilating. The present definition is due to Weishu
Shih in [16]. Its use in the present paper is justified by the fact that it enables us to use
WkamnthdemmmdﬂhﬂM&ebm

Lemma 2.2 (Porturbetion Lemma): Les (1. g, 9)C—D de & comiraction of chaln
compleres with differentials d¢e 2nd dy, respectively. Suppose C is equipped
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with second differential d' .m)i an increasing filtration (Fic} svuch that:

1. t=d'-d. Jowers filtration degree by at least 1,
2. 9 and d preserve the filiration,
3. (F,C)=0.

Then there erxists a second differential d' on D and a contraction
(f'g'9)(Cd)—(Dd"). The contraction (f'g' @) is defined by:

1 ffo(1 + tTopop);
2. g'=T 8
3. ¢=Ty0:
whereTy=1+3 i “"'(ﬁwt)i and the differential d', on D, is given by d'=d+ft-Ty 8.
0

Remarks: 1. The summation above has i going from 1 to infinity. Note that this
"infinite series” actually reduces to a finste sum when evaluated on elements of C
because of the conditions on the filtration of C. Throughout the remainder of this section

we will use the notation T,-(1-p<t)’!. This is more than just a notationa:

convention -- the condition of the filtration of C implies that T (1-@-t)=1.

2. This lemma first appeared in [7], although it was used /mplicit/yin [16].

Definition 2.3: If M and N are Zw-modules, F is a free Zw-module with preferred
basis (y;) and fM—N is a homomorphism of abelian groups that doesn't necessarily

preserve the action of 1 then the F-erxrtension of f, denoted fF:M®lF-' N®zF (with

diagonal/ w-action) is defined to be the 1Z-linear map for which

i‘F( m®(y,ov))-f(mev-!)ev®(y,ev) for all mEM and vEn. O

Remarks: 1. This construction will be used as a way to convert maps into
module fomomorphisms -- it is not difficult to see that P is a Zn-module

homomorphism. The coastruction was motivated by the JBore/ Comsiruction for
making a group action free (i.e. take the product with a space upon which the group acts
freely and give the product the diagona/ action).

2. The F-extension of f clearly depends upon the preferred basis for F that was used
in its construction. If f is already a module homomorphism f = ®1.
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3. The definition above can clearly be generalized to the case where M, N, and F are
chain compleres. In this case bases for the chain modules of F must be defined in each
dimension. If f was originally a chain mapits F-extension will &#/so be a chain map if
the differential/ onF is identically zero

Lemma 2.4 (The Module Lemma): Lez C and D be chain compleres and let
(f, 8, 9)C—D be a L-coniraction (ie. the maps involved aren't necessarily

module homomorphisms). Le! 1, be a free resolution of L over Iu and
suppose some prelerred basis has been chosen in each dimension. Define:

LE-T -1 - (18d) ) ";
2.§-(1-90184)r"

3. 9-(1-9-(18d))";

4. d' =@ )y + T (18 (1-p (18, " §
5. ¢ =(d Jrt 184

zl

KRemark: Notice that when the composite vz-(l®dz) is evaluated on a®b€C,®Z, the

dimension of the first factor is /oweredby 1 and that of the second factor is ra/sed by
1.

Proof: This is a straightforward application of the Perturbation Lemma to the
contraction (f §,9):C,®Z,— D,®7Z, where the differentials of C,®Z, and D,®7Z, are taken to

be (E’ic)z and (3D)z, respectively. The "perturbation”, t, is 1®d, , which evaluates to

(-l)‘""""a@dz(b) on a®b, by the convention regarding evaluation of maps on tensor
products. The filtration degree of such an element is defined to be the dimension of b. O

Let G, be a chain complex over Zw and suppose its lowest dimensional non-vanishing
homology module is Hn (in dimension n). Furthermore suppose the next non-vanishing
homology module is Hmt (in dimension n+k) with k 2 1. Let D, be a Zn-chain complex
with:

1. D;=0,icm

2. D = H_(as a Zn-module);

3. D,;=0,n<i<n+k;

4. D, is Z-chain homotopy equivalent to C,.

(to simplify the discussion somewhat we'll assume that the boundary
homomorphisms of D, commute with the action of v, although this isn't necessary).



The theory of chain-complexes over a PID (Z in this case) guarantees the existence of
such a D, and a contraction (see theorem S.1.15 on p. 164 of [9]):

2.35: (1,8, 9)C—D,

over Z. If Z, is a free Zn-resolution of Z with preferred bases for its chain modules
chosen (so fz' §z, and G)z can be defined as in 2.3) then 2.4 implies the existence of a

contraction over Zv -- (f § $):C.®Z— (D,8Z,d') where {, §, and § are defined as in 2.4.

Corollary 2.6: Under the conditions in the discussion above, the first
non-trivial homological k-invariant of C,®L, is given by the cocycle:

(-1™pf (184 (§(18d))g_H &L, —H,,,

where p:Dmk®Zo—+Hmk Is the projection of the cycle module to the homology
module.

Remarks: 1. We may consider this cocycle as being defined in either Homz'(Hn®Z.,

H,,,) Which defines an element of Ext, **'(H H_ )or Homg,(Z,, Hom,(H H_ . )), which

v n+k

gives rise to the isomorphic group H**!(w,Hom,(H_H ) -- see [17].

n+k

2. By the remarks following 1.4 and 1.7 it follows that, if C, = K(M,n) with M a Z-free
Zn-module then C,®Z, is the (equivariant) chain complex of K'(M,n) and the homological

k-invariant in question is the first obstruction to the existence of an equivariant Moore
space of type (M.a:).

3. Note that this cocycle vanjshes if any of the Z-homomorphisms [, g, or ¢ is also

Zi/-l/'neaiz in the dimension range of the formula.

4. It should be kept in mind that the boundary map in the resolution, H ®Z, ofH

is not 18d, -- it is (f z),,-(l@dz)-(i z)n (it is not difficult to see that H ®Z,, with this
differential, is sz/// a resolution of H, -- at least up to dimension n+k). This twisted
differential coincides with 1®d, if and only if f is Zu-linear, ie. Tz ={®1 in dimension n.

Proof: Throughout this argument the term characteristic map of a chain complex
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will refer to the canonical map (up to a chain homotopy) from a chain complex to a
projective resolution of its lowest dimensional homology module, ie. if the lowest
dimensional nonvanishing homology module of C, is in dimension n and has a projective

resolution P, then the characteristic map of C, is a chain map Q.—'X "P,.

We will prove that the cocycle in the statement of the theorem represents the first
homological k-invariant of D"a(D,@zl.. d'), which is chain homotopy equivalent to C,®Z,.

First note that D" can be regarded as the direct sum D"-H ®Z,®D', where D' has no
nonvanishing chain modules below dimension n+k. This is not necessarily a direct sum
decomposition of chain compleres. In fact, by the description of d' in 2.4 it follows
that:

1. D'®Z, is a chain subcomplex of D",

2. The boundary of Hn®l. may contain components in D'®Z,.

This follows from the existence of a corresponding direct sum decomposition of
chain compleres when the unperturbed differential is used, and the fact the
perturbation terms in d' /ower the dimension of the Z,-factor and rasse that of the

D,-factor. Let dy denote "the portion of the boundary of H ®L, that lies in D', ie. the

composite Hn®Z,-’D"-od,D"—-»D'. where the leftmost map is the inclusion and the
rightmost map is the projection.

It is not hard to see that there is a chain homotopy equivalence h:3{c)—3 D' (recall
that ¥(c) is the algebraic mapping cone of c), where c.D"— H @1, is the projection, which

is also the cAaracterisiic map. The map h can be described oa the various direct
summands of 3l(c) as follows (where D" is regarded as the direct sum H ®2,@D’).

1. Al 3D' = 1: 3D'— 3D}
2. hl 3H ®Z, =0: 3H ®LC¥c)— 3D;
3. hiH ®Z~(-1)"*'dH ®LCUc)-3 D"

where in the last statement dg is regarded as a map from H ®Z,to D', , - (2D,

The conclusion now follows from the fact that the component of d' that maps
H ®Z,,, to D, ®Z, is the cocycle given in the statement of this theorem. [

n+k
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Definition 2.7- Let n and k be integers 2 1, let E=(f8.9):C,— D, be a Z-contraction of
Zw-chain complexes and fet ul.....pMGu. The c-symbof
of the elements b, for the coniraction E, and in dimensionn, is denotea

@n(B; pl,...,pm) and is defined to be the element of Hom,(D D, ) given by:
. - - ﬂ*t . . ‘l ° .
Sn(E. “1""'“x+1) (-1)*%f (Otk ", op R

where o is defined inductively by & = g+« -1) and x -2.0

k+2-i

Remarks: 1. By abuse of notation we have used the symbo/ for W to denote the

homomorphismof C, or D, induced by pi.

2. Note that, due to the self- and mutual annihilating properties of f, g, and ¢, the

c-symbol will van/sAif any of the |1 is equal to the /dentity element

3. The definition above will be extended to the case where the W are arbitrary
elements of the group-ring Iw. This is done by simply defining it to be Z-/inear in
each argument, ui.

Delinition 2.8: Let I, be a free resolution of Z over Zx and suppose preferred basis
elements have been chosen in each dimension. If a€Zt is a preferred basis element its
boundary tree with respect to 1, is defined to be a tree whose nodes are labelled
with triples (k,\,b) as follows:

1. k is an integer, called the d/mension of the node;
2. N€Zvis called its muliiplier;

3. b is a preferred basis element of Zt called the Haseof the node.
The boundary tree of a is constructed inductively as follows:

1. There is one node of dimension t labelled with (t,0,a);
2. Given a node, n, of dimension i with label (i, \b), suppose the boundary of b is

equal to Z)\'c’. )\ro, where the ¢, are preferred basis elements. Then

there is one descendant of n for each ferm of that linear combination and
these descendant nodes are labelled (i'l')‘;'ci)’ respectively. Each node of

dimension i<t is joined to a ¥n/guenode of dimension i+1.
3. The process described above terminates in nodes of dimension 0. 0
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Remarks: This is simply a way of keeping track of all the terms that arise from
taking boundaries of elements and then taking boundaries of the individual terms of the
linear combinations that arise. This notational device will turn out to be indispensible in
performing explicit computations. k

Definition 2.9: 1. A track through a boundary tree is defined to be a path that starts

at the node of highest dimension and proceeds to a node of dimension 0 without ever
covering a given edge more than once

2. A track will be called essentsg/ if the number 1€Zw never occurs as a multiplier.
Otherwise it will be called /nessential

3. A boundary tree that has no inessential tracks will be called redvced 0

KRemarks: 1.Since a track isn't allowed to double back on itself, dimension is clearly
a monotone decreasing function of distance along a track.

2. Given an arbitrary boundary tree it is clearly possible to reduce it, ie. to find a
subtree containing all of the essential tracks of the original tree and not containing any
inessential tracks. Simply delete from the original tree any subtree whose root has a

multiplier of 1.

3. Given a track, T, its mu/ltiplier segquence is defined to be the sequence of
multipliers encountered in traversing the track from the root to the end. This sequence is
assumed to begin at one dimension below the top dimension. If T is a track in the

boundary tree of a€Z, as in 2.8, then the multiplier sequence is denoted (T,_,,...T,).

Our main result is the following:

Theorem 2.10: Let E=(fg9)C,—D, be a 1L -contraction of In-chain compleres

such that: ' .
1. The lowest-dimensional nonvanishing homology module of C, is K in

dimension n, and it is L-1lorsion free;

2. The next nonvanishing homology module of C, is H . /o dimension
n+k;

3. D=0,i<n, D =H_, D=0, n <i ¢ nsk.

Let 1, be a free resolution of 1 over 1w with preferred basis elements

chosen in each dimension and with the propertly that the augmentaition
L,—1 maps preferred basis elements to \. Then the lirst homologics:

k-invariant of C®L, is an element of H*'(wHom (H H_ .)) = Extz"‘"(Hn.Hn,t)
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represented by & cocycle that maps a preferred basis element bEZM to

Y € (ET,..T,)

Where the sum is taken over all essential Iracks in a boundary tree of b
with respect to 1,.

Remarks: 1. The condition involving the augmentation homomorphism of Z, won't
prove to be very restrictive.

2. Let Z, be the right bar resolution of T with the symbols p : I...Iui] as preferred
basis elements (where i is any positive integer and the s run over all elements of 7).

Then it isn’t hard to see that a reduced boundary treefor |y ll...ht l] is:
(k+1.0, w:"“"p ll)-' (k, K.y lul l...hkl)-» .= (0, " 1)

so that the first homological k-invariant is a cocycle whose value on [pll...lpk+ ‘l is
poGn(B;p!,...,pM)EHomz(Dn,Hmt) where D -H and pD ,—D ./® .., = H ., is the
projection.

Proof: First note that the defintions of the two quantities equated in the statement

of the theorem sever make use of the self-annihilating property of the boundary
homomorphism d,. Thus, in principle, it is possible to define the terms in the theorem

with d, an arbitrary sequence of homomorphisms, d i'li—'ZH. We will,
consequently, separate the proof of the theorem into two cases:

Case I: We assume that the boundary homomorphisms d, have the property that
dz(b){ m,bjui if bi is a preferred basis element, where pi€11, miEZ. (In case II the
coefficients of the b, will be arbitrary elements of Zx).

Define:

1. Bi to be the subtree of the boundary tree of b spanned by all the nodes of
dimension 2i;

2. The endof a track, T, to be the base of its lowest-dimensional node, denoted
e(T). See 2.8 for a definition of the base of a node in a boundary tree.

3. A(Ty...T)) (where each Tj=mv, for some m€Z, v,€w) to be o . Tp.eTy. where

@ is defined as in 2.7 using “;’Vi-l and T is some track in B;
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4. Vitobe (184"  asin 26;

- Remarks: 1. Note that iz(x®b), where 1€D , is equal to g(x)®b if b is a preferred
basis element -- see 2.3.

2. We will actuallygive an inductive proof of the following statement:
Claim. Under the hypotheses of the theorem

LA(T,...T)0®e(MeT T -V (x8b)
(where b is a preferred basis element and the sum is over all tracks in Bi)

for all x € D, #and all 1 < i < k+1, where ?i denotes the element vEv

whenever ‘I‘i 15 of the form mv and m€Z.

Kemarks: 1. Since the c-symbol vanishes sdentical/ly on tracks that arem?
essentsa/(and this doesn't depend upon d, being self-annihilating) the sum above can be

regarded as a sum over essenzia/ tracks.

2. Proving the claim above proves the theorem in Case I because, when i=1 we
simply take the boundary dz one more time and take fz and apply the sugmentation,

which maps all preferred basis elements to 1 (by hypothesis).

Proof of claim: First we will verify the claim in the case where i=k. Suppose
dz(b)-{ mibi";' Where m€Z, b, are preferred basis elements of Z, and piGn. Then V, (x®b)
= (ﬁz'(l@'dz)(g(x)@b) (see remark 1 preceding the claim) = E)z(Zmig(xmb'ui) =

Zmi(@(g(x)pi-f)pi®bipi) (see 2.3) = ):Ak(’l‘t)®e('l‘ﬁ ‘ (where the sum is over all TEB,). The

last equality is a consequence of the definition of a boundary tree (2.8) which implies
that the ends of tracks in B, are in a 1-1 correspondence with the bi‘

Now we will assume the inductive hypothesis and assume the claim is true in
dimensions 2 i. Note that V, (x®b) = G)z-(l®dz)vi(x®b). By hypothesis V,(x®b) =

ZAi(Tt,...,T‘)®e(T)Ti...Tk. The inductive definition of a boundary tree implies that
(1@d)L A(T,...T)8e(T)T .T (summed over all T€B) - LA(T,...T)®e(mT, T .5
(summed over all TEBi_I——see 2.8) and evaluating é‘)z on ZAss gives
A —l N -‘ A N N N A
(1) Lo(A(T,,.THT LT T T.T @err , T.1

(summed over all TEB, ,)
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N N

= -1 -1 " -
Let T, of, Then  o(A(T,..T)T 1.8 )Ti_” )

N

-3 - T - =
LCTI I 4 S s A %, SR C O S ’T,_,Ti---Tx « , f T.T,

i_,('l'k.....'l‘,_,)/l:. Submuniu um into formula (1) gives

(0 LA (T,..T, )@emi T.7

(summed over all TEB, )

which proves the induction step and, by the remarks following the claims, also
proves the theorem in case 1. Case Il follows from case I by noting that each of the terms
in the formula

(2) L € (BT, T)x) (-1)™Epf +(1®d,)(,(18d;)): (x®b)
(summed over all TEB)
is /inear in the boundary maps in the following sense:

1. Suppose d, d', d" are sequences of homomorphisms zi—»zi_, that are identical

except that, in dimension j di-d'i+d"i. Then the value of the right-hand side of equation
(2) calculated using d,=d (in all dimensions) will be the sz of the values obatined using
d' and d".

2. The same is true of the /e/t hand side if we define the boundary trees of d, d', d"
to have the same underlying tree structure (with the possibility of many of the
multipliers begin 0).

Since, in each dimension, we can decompose the boundary homomorphism (dz)i into

linear combinations of homomorphisms that satisfy the conditions of case I, it follows that
the theorem is true in all cases. [l

We will now give a second example of how to calculate and use boundary trees
(recall that the first example used the bar resolution of Z and appeared immediately

after the szartementof the theorem). This second example will be more important than
the first since it will be used extensively in the next section.

We will consider the case where Z, is the Grvenberg Resolution of 1 over 1.

Suppose the group 7 has the presentation <x P b YN (we are only assuming that the

presentation is finite to simplify the discussion). Then theorem 10.9 on p.271 of [15]
implies the existence of a free resolution of Z over Zw with chain modules generated by

the symbols:

(Rj,-Rj), in dimension 2j, and (R;;..R;X;. }, in dimension 2j+1
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where the R-symbols are in a 1-1 correspondence with a set of free generators
for the relstion swbgroup -- this is the normal/ closure of the relations (r,] in the

free group gemersted by the x,. They may be obtained by compuung

Reidemeister-Schreier system of generators. The X-symbols are in a 1-1 correspondence
with the generators [xi}.

In order to define the boundary of an element it is necessary to recall the notion of a
Forx Derivaiive or free derivalive:

These are symbols (¢/x,} that operate on the words in the (x,} via the following
rules:

1. &i/&i = 6“»
2. Yw W)/ = v, /X, + W oW, /X,

where w, and w, are arbitrary words in the x, -- see [6,82] as a general reference.
The formula

w-1=} gw/xe(x, -1)
was proved in [6, p.551]. We will need another version of this formula though. Let ~

be the anti-involution on the group ring of the free group that maps all group elements to
their inverses. If w is a word in the free group then

w-1 =) gw/x;e(x, -1), and taking ~ of both sides gives
w-1=) ( x;” -1) o(gw™/3x,)", which implies

217:w-1-= ):(xi -1)e a'w, where we have wrjttenalw - -xi“(aw"/&i)’.

The q are similar to the Fox derivatives -- they satisfy the following relations (which
are sufficient to define them):

212: gt =8
a,(wlwz)‘(a,‘" v 2*@“’2'
Statement 2.11 above and the definition of the boundary maps for the Gruenberg

resolution on p.271 of [15] imply that the boundary maps are given by:

1. d(Rl 1 RI’X“ N )= Rl 1 Rllhll Nl 1 ].“;
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2. d Ry, Ry = X Ryp. Ry XyI§ (el

where l‘lﬂ denotes the image in Zw under the homomorphism ZF,—'Zn defined by

the presentation for 7 given above, where F, is the free group on the symbols {xi}.

Theorem 2.10, coupled with the descriptions of the boundary maps in the Gruenberg
Resolution immediately implies:

Corollary Z2.13: Under the Ahypotheses of theorem 2.10, ifn has a
presenlation «,,.X; ry.-f Lhen the [irst homological k-invariant of C®L, is

an element of H"'(ﬂ.ﬂomz(Hn.Hmk)) represented by a cochain on the Gruenberg

Resolution of L corresponding to the presentation above, as follows:
1. if k=2m then the valve of the cocycle on R;.R X s

1m+1
P2 €, (Bilxig, 18 (rig)hy. 1§ (63 My g, 1y
2. ifk=2m-1 then the valve of lhe cocycle on Ry,.R; is p{@n(E;lq l(t'im)]
where pD,, — D, ./d(D, .. )=H . 7is the projection. O

Remarks: 1. In the summations above all of the j, vary independantly so that
they are m-fo/d summations.

2. Note that we have replaced lxii-ll." by hjilw This is permissible because the

c-symbols in question are multilinear and they vanish if any of their arguments is equal
to 1.

We will conclude this section with an example. Suppose 1 is the group Z/2Z®2/21Z

presented by <st; s2, 12, (1s)>. Then the Reidemeister-Schreier theory implies that the
relation subgroup of the free group on s and t is generated by the following words:

2 2 B RO, SO R Jo
£y= 8% rp= 1%, r,=tsts, r=tsts™, ro=t8’t™!, ro=sts™'t

Corollary 2.13 implies that the first homological k-invariant of C,®Z, in the case

where k=2 is a cochain whose value on R,T is p-Cn(B;t,[q szl'.s) (since Qs’ is clearly 0).

The g-symbol, is easliy calculated using 2.12 -- for instance 6‘ s? = 1 +3, and we may drop
the 1-term.
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53 Thoﬂuth.dqhdk hnrhmdnlqdnﬂutwg
Seace.

,.-,:"//’

In this section we will use the results of the preceding section to compute the first
homological k-invariant of an equivariant Eilenberg-MacLane space. This computation,

coupled with the results of section 1 will imply the existence of a triple (M, n; 1) where

M=23 and 7=2/22Z8Z/21, for which the corresponding equivariant Moore space doesn't
exist.

The methods of this section will be generally applicable to any triple (l"’, n; ),
where 7 is any group acting on 23, although the final calculation at the end of the section

will be performed with 1=2/22@®2/217 using the presentation given at the end of section
2 with s and t acting via right multiplication by:

0 1 1 -1 0 0
| 0 1 and -100 -1 | respectively.
6 o0 -1 1 -1 o

We begin by constructing a contraction of DGA-algebras (a,b,G):A(ZS.Z)—'P(x,y.z),
where P(xy.2) is the divided polynomial algebra -- the I-subalgebra of ©lxy,z]
generated by the elements (¥ (x)-x‘/ﬂ 4 (y)-=y'/1! ¥ (z)-z"/kl} for all values of i, j, and
k, and A(Z’ n) is the n-fold bar construcuon B(2I2 l) -- see |4, §14].

The DGA-algebra P(x,y,z) is the chain-complex that will be used for D, in the
application of 2.11. The n-action on P(x,y,z) can be regarded as being induced by that on
Olx.y.z] (where x,y, and z are regarded as generating the module Z3 and the action on the

powers of these elements is defined so that the group w acts via &g/lgedra
homomorphisms).

We begin with the following application of the Perturbation Lemma in the preceding
section:

Corollary 3.1: Let (t89)C—D be & coniraction of DGA -glgebras. Then
(B(f), B(g)9): BIC)— BWD) ss 2 contraction of DGA-Hopf algebras, where § =
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(1-+d,)"1p 2nd  is defined by lalu)) - -lp(alu] + (-1)8m® [gor(a)p(w). O

Remarks: This is a straightforward consequence of the Perturbation Lemma, where
¢ is the homotopy for B(C) defined using only the Zensor boundaryand the simplicial

boundary is regarded as a periurbation -- see [4].

The constrhction of the contraction (a,b,G) will involve several steps. We will
initially construct a contraction from A(Z?',l) onto A(x,y.z) (the exterior algebra).

We begin with the contraction

(p,a,0): A(Z,1)—A (x)

where A (x) is the exterior algebra over Z on one generator x. The maps are defined
by:

1. pllnl..In.) = 0 is k>1;
p([n]) = nx;

2. q(x) =11}

3. AlnlnD=0ifn =1
& inl.In)) - Z[llilnzl...lntl if n>1, where the summation has j
going from 1 to n, -1
& nl.nD)-- Z[ll-ilnzl...lnkl if n, <0, where the summation

has j going from 1 to[n|.
(See [S, p.95)

We now take the bar construction of this and use 3.1 to get the contraction:

3.3 (p.q.0)A(Z,2)— P(x)=B(A (1)),

where, by abuse of notation we are denoting B(p) and B(q) by p and q, respectively
(we won't be using the original definitions of p and q any longer). The chain-homotopy ©®
is defined by ©=(1-@-d.)!+@" (by 2.3) where @ is defined by ©lal,ul=-[a)l,u] +
(1)@ q. p(a)l, @'(u)].

Remark: The perturbation term (1-@' ds)‘l will not be significant here because we

will only apply ©' to elements of dimension ¢ 3. In fact we can just assume that ©([a]) =
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' -[6(a)] because the elements we will work with won't even have a Iz.
In the case of Z‘,’ we have
(@, 9.4 ):®t3A(Zi,2)—-' P(xy,z)

(iruns from 1 to 3 in the tensor product), where P(x,y,z) = P(x)®P(y)®P(z) and we

have numbered the copies of Z for the sake of definiteness.

The maps are defined by: ﬁ-pl®p2®p3 and ﬁ-q‘®q2®q3, where
(pi.qi.ei):A(Zi,Z)—'P(‘). with *=x if i=1, y if i=2, and z if i=3, and the contractions are as
defined in the statements following 3.3.

39 @":®13A(Zi.2)—+ ®13A(li,2) is defined by
@' (UBVEW)-0 (U)RVEW - (-1)inllg .p (1RO (V)OW -

(-1)tin(@)dinV) g .p (U)® q,°p,(VIBO,(W).
Now we will develop a contraction

(3 ,ﬁ):'é(@lmzi,n N—® PA(Z.2)

This will be done in two stages using the results of chapter I of [S]. First we will
construct a contraction

(1,8,.¥ % B(® 3A(Z 1))~ A(Z 2)OB(A(Z,1)BA(Z,.1))

The maps involved will oaly be discussed in the dimension range of interest (ie.
dimensions ¢ 3):
f,(IA®B]) = O unless A or Bis 1;
f,(11®B]) = 1®IB], f,(A®1]) = [AI®1;
g,(1®[B]) - [1®B], g, ([AI®1) = [A®1];
'l"([A@B]) = 0 if either A or B are 1;
¥ '( [A®B)) = [1®BIA®1], otherwise;
where A€A(Z ol ), BEA(Z 21 J®A(Z 3’,1 ).

Remarks: The statement about \Ifl follows directly from the formula given at the
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bottom of p. 53 of [5] for ¢ and the definitions of the face and degeneracy opét:atatf'éidnﬂ

the bar construction of [4]. Recall that the formuia for ¢ in [5] is only sensitive to the

simplicial dimension of an element of the bar construction -- and A®B has simplicial
dimension | ( whazeverthe dimensions of A and B might be).

Now we define

(28, ¥, BI®SA(Z, 1)~ A(Z, 2)®A(Z, 2)

in exactly the same way (let ACA(Z 2.l). BEA(Z 3.1) in the formula above). The
two contractions are combined to give (f3.¥) where f=(l®f2)'f " §=g|-(l®32), and
Y=y 8 (10¥ )°1,:

25 L f([A‘®A2®A3]) = 0 unless two out of the three terms are | in which
case f([...®A1®...l)=lAil. i=1,2,0r3;
2. §(AD=1ALi= 1,2, or3;
3. ¥(A {®A,®A,1)= 0 if two out of the three lerms are I; otherwise
(A, ®A,®A,)= [1®A,®A,| A, ®1®1] if 4/l three terms are= 1;

¥(18A,8A,D)- [1®1@Al 18A,81), where AEAL 1),i=1,2,0r3. O

In the last step we will define a contraction (R 42 ):A(l"'.Z)—'E (023A(1‘,l)), and we
will compose the three contractions to get (a,b,G). The contraction (ﬁ,§,§) will be defined

by applying 3.1 to the contraction (-,§,E): A(Z"',l )-® 13A(2i,1 ). As with the contractions
above, 7475 contraction will be built in two steps:

(r3,.8, ) A(Z ©Z.OZ ,1)— AZ ,1)® A(Z,82,1)
(£8,8,): A(Z,0Z,.1)— A(Z,1)® A(Z 1)

We will use triples (u,v,w) to denote elements of 13 and, abusing the notation a little,

triples with the first term equal to 0 will denote elements of Zz.

Delinition 3.6: A < 4-dimensional element of A(Z"’.Z) that is a linear combination of

basis elements, each of which contains at least /wo adjacent |,-symbols, will be called
special.
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Remarks: For instance, [(1,0,0)1,(1,2,3)1,(0,1,1)] is special and [(1,0,0),(1 2,3 isn't,
In fact it isn't hard to see that the only non-special 4-dimensional canonical basis
elements of A(Z22) are of the form [ul,v], with u, v€ 7°.

The following resuit will enable us to eliminate some terms in the final formula:

Proposition 3.7: The map, a, in the contr:ction(a,b,G):A('ls,z)—*P(x.y,z) maps all
special elements to 0.

Proof- The map a is the composite of:
R:A(Z°2)-B (® 3A(Z 1))
[B(® 3A(Z,1) —® A .2)
p:® 3A(Z,2)— P(x,y.2)

The composite f-R is already described in theorem 6.1 of [S]. Using the formula

presented in the statement of that theorem we get.
BR (U, v, W)y (0, 9)D) = (0,.0,0),(u;0,0)1@181 + 1810 0}l (0., 0®T +

®1 ®1(0,0,w)I,(0,0.w,)]
This is mapped to 0 by p since p, maps all terms of A(2 l,2) of the form [xi,y] to zero,

with x.yﬁll (the point is that such elements are suspensions of elements of A(Zi.l) of
dimension >1). A similar argument is used in the higher dimensional cases. []

Remarks: Special elements may be ignored in the for mula for a chain homotopy, G,
since they will have at /eas? onel-term in them even after the boundary is taken(in a

bar construction).

Recall that triples (u,v,w) with u=0 denote elements of 226923. The results of the

first chapter of [5] imply that:
3.& 1. -([(uv,w)]) =1(u,0,0)1®1O1+ 19[(0,v,0))®1+1®1® [(0,0,w));

([(u,v . W W, v, w00 = [(u,,0,0))(u,,0,0)101 81 +
[(u,,0,0)1®1(0,v,,0)I®1 + [(u,.0,0I@1R[(00w,)]  +
18®[(0,v,,0)I(0,v,,0)1®1 + 1®[(0,v,,0)1®((0,0,w,)] +

1®1®I(0,0,w)I(0,0.w,)l (see theorem 6.1 in [5/);

2. §([(u,0,0)®181) = [(u,0,0)};
5(1® [(0,v,0)1®1) = {(0,v,0)};
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$(1®1®I(0,0,w)}) = [(0,0,w)];

§([(u,0,0)101(0,v,0)1R1(0,0,w)])=
§(1(u,0,0)10181)*3(181(0,v,0)1®1)*3(18181(0,0,w))), where
lhe * denoles lhe shuffel prodvet in AZ1)
(see [4, p.74/);

3. ﬁ - {I + sl-(l®$1)°rl. Note that since s, involves shuffel

products it will map special elements to special
elements 0O

Since £| always increases the number of bars in a canonical basis element of A(l‘,',l)

it follows that £: can be disregarded in dimension 2 (since this gives rise to Zin
dimension 3 and that is going to be plugged into a, which annihilates special elements).

In dimension 1

{ (wy. W)= [(0v,W,(u,0,0)]

LUy wID- 10,0.w),(0,v,0)]

and, using the expression r ([(u,v,w))= [(u,0,0)]®1+1®[(0,v,w)], we get El(uv,w))=
[(0,v,w),(u,0,0)] + [(0,0,w)I,(0,v,0)] in dimension 1. All of this implies that (R§%) is
defined by:

39 1. R s given by 3.8 (except i(bat the terms in the
right-hand side are enclosed in brackets);
2.8 /s as given in 3.8;
3. $ in dimension 2 maps l(uvw)]l o [(0v,w)l,(u00)] -
[(0,0,w)i,(0,v,0)};
4. /n dimension 3, S s special. 0O

Now we are in a position to combine 3.9, 3.5, and 3.3 to get a formula for (a,b,G),
where a~p-f-R , b-8-8+§, and G-2+8-§-R+ §.§-0" 1.8 -

F.710: 1. a([(uv,w)]) = uex + vey + wez € P(x,y,z);
all(uy,v, . w)l (u,v,w,)]) = 0;
a(l(uy,v,.wl (U v, W)l (ugv,w,)l) = 0;
all(uy,v, . w )Lu,v,w,)l) = Ut (1) 4 vvetly) v wwyet (2)
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UV, 0T + U W,0XZ + V,W,0VZ;

2. b(uex+vey+wez) = uel(1,0,0)] + ve[(0,1,0)] + we[(0,0,1);

3. Gl(uvw)) = - Ovw),(u00)] - [(0,0w) (0V0)] + @l(l(u,0,0)l) +
®z(l(o,v,0)l) + ®3([(0,0,w)]);

4. G(i(u v, Wl (U, v wo)) = [(0vy,0)l(v,0,00]  +[(0,0,w,)I,(u,,0,0)]

+[(0,0,w,)1,(0,v,,0)] + special terms. O

Remarks: Note that a is Zn-linear in dimension 2 so that the differential on the

resolution of M®Z, is uniwisted-- see remark 4 folowing 2.6. Since a is nor ZInu-linear
in dimension 4, the obstruction isn't 2r/vially0.

We will conclude this section by performing a concrete calculation in the case where
7=2/21®L/21Z using the presentation s, t; s2, t2, (1s)% given at the end of section 2 with

s and t identified with:

fo 1 1] -1 0 0
1 0 1 and -1 0 -1| respectively.
L0 0 -1 | 1 -1 0/

The example at the end of section 2 implies that the first homological k-invariant of
A(23,3)®Z., where Z, is the Gruenberg resolution of Z over Zmu corresponding to the

presentation given above, is a cocycle whose value on the preferred basis element R,T
(where rl=sz) is GS(B;t,s,s) € Homz(zs, 2%/27°), where E=§(a,b,G):A(23,3)—'§ (P(x,y,2)).

Since we will be in the stable range (i.e. the top dimension is 5, which is < 2xthe bottom

dimension of 3), we can assume B(G)=-G and we get:

3.11: c(R;T) = p°(G(G(b(x)es)es)et}et. O

This lends itself to a straightforward computation:

0 1 O0f -es—f-1 0 -l G—
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| ® (I-10.0D - [(100)(-100))
10.0,-1)i-1,0.0)] + © ((-1,0,0)) + ©,(I0.0.-)D),
1(0,-1,00(1,0,0)1 + © (1(0,-1,0)D)

-

Remark: We have deleted all terms containing (0,0,0) and written the main terms
in a form suggestive of matrix notation. The itP row of the formula is derived from the ith
row of the identity matrix and will give rise to the i" row of the result (i=1,2,3).
Continuing, we get:

1(-1,0,0)(1,0,0)],

-s— | -[(-1,1,0)1(1,0,0)}+1(-1,0,0)1(1,0,0)}+[(1,-1,0)(-1,1,0)],

| -1(1,0,1)(-1,0,0)}+[(-1,0,-1)I(1,0,1)]

”

0, 0,
-G— | (0,1,0)1,(1,0,0)] -t— 1(1,0,1)1,(0,1,1)]
| [(0,0,1)1(-1,0,0)] [(0,0.-1)1,(0.-1,-1)] )
—a—
0 0 0] 0 0 O 0 0 0
0 0 1 1— 0 0 -1|-p— |0 0 1
0 0 1| [0 0 -1 0 0 1]

Remarks: 1. Note that the first application of G makes use of the formula in line 3
of 3.10 and the second makes use of the formula in line 4.

2. The map p is just reduction mod 2.

Our computations show that:

dRT= [0 0  1|eHomy(z} 2%/27})
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A straightforward calculation shows that this is #o7 a coboundary, ie.
1. the boundary of R,T is R,(t-1), so the value of any coboundary on R,T is

(t-1)esome cochain on R, €Z,.

2. If a cochain takes the value

(A B C
M= D E F
G H ]

on R, (here all the letters are 0 or 1 and we are working mod 2), then the

oolboundary is teMet-M (recall that t acts upon the Hom-group by conjugation and
t"'=t). Thisis

A+E+H A+B+D A+B+D+E+F

B+D+H A+E+«G A+B+C+G+H+J+F

G+H G+H G+H

so that all entries on the third row must be the same.

- : References

Do

. H. Baues, Obstruction Theory, Springer-Verlag Lecture Notes in Mathematics 628
(1977).

2. G.Carlsson, "A counterexample to a conjecture of Steenrod,” /nvent. Math. vol. 64
(1981), 171-174.

3. H. Cartan, "Algebras DEilenberg-MacLane et Homotopie,” Seminaire Henri Cartan
1954755, ENS, Paris.

4. S. Eilenberg and S. MacLane, "On the groups H(un). 1" Ann. of Math., vol58
(1954), 55-106.

S. S. Eilenberg and S. MacLane, "On the groups H(w,n). 11" Ann. of Math., vol.60
(1954), 49-139.

6. R. Fox, "Free differential calculus,” Ann. of Math.,vol.57 (1954), 547-560.

7. VK.AM. Gugenheim, "On the chain-complex of a fibration,” ///inois J. of Malh.
vol. 16 (1972), 398-414.



270

8. A. Heller, "Homological resolutions of complexes with operators,” Ann. of Mazh.,
vol.60 (1954), 283-303.

9. P. Hilton and S. Wylie, Homology theory, Cambridge University Press, 1965.

10. K. Igusa, "The generalized Grassman invariant K3(Z[1l])—*H0('ll;Zzhﬂ)." to appear in
Springer-Ver/ag Lecture Notes in Mathemalics.

11. "On the algebraic theory of A, -ring spaces,” Springer-Verlag Lecture Notes

in Mathematics, no. 967, 146-194.

12. P. Kahn, “"Steenrod's problem and k-invariants of certain classifying spaces,”
Springer-Verlag Lecture Notes in Mathematics, no. 967, 195-214

13. ). Milgram, "The bar construction and sbelian H-spaces,” ///inois /. of Math., vol.
11 (1967), 234-241.

14. F. Quinn, "Finite abelian group-actions on finite complexes," Springer-Ver/ag
Lecture Notes in Mathemaltics 658 .

15 ). Rotman, An /ntroduction to Homological Algebra, Academic Press, 1979.

16. Shih Weishu, "Homologie des Espaces Fibrés," /7 H. £ S Publ Math., vol. 13
(1962), 93-176.

17. J. Smith, "Group cohomology and equivariant Moore spaces,” / of Pure and Appl.
Alg., vol. 24 (1982), 73-77.

18 “Bquivariant Moore spaces. 11 -- The low-dimensional case," Zfo appear in

the J of Pure and Appl. Alg.

19. J. Arnold, "Homological algebra based upon permutation modules,” /[ of Algebra,
vol. 70 (1981), 250-260.

Department of Mathematics and Computer
Science

Drexel University

Philadelphia, PA 19104





