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Introduction 

(i? 

(2) 

(3) 

(4) 

This paper forms a cont inuat ion of [9]. 
Let n be a group and let M be a right Zn module. A space of type (M, 2; 7r) is 
-,~ological space X that satisfies the following conditions: 

nl  ( X )  = n ,  

Ho(X; = 71, 

Hi(X; 77n)=0, i ~ 2 ,  

H2(X; Zn) = M. 

This paper considers the question of when such spaces exist, given n and M. This 
is a special case of the Steenrod problem that was dealt with in [9], which developed 
an obstruction theory for the existence of such spaces. In the special case studied 
h.: re it turns out that addit ional  obstructions exist to the formation of equivariant 

3 ~  ore spaces that are derived essentially from that  fact that a topological space is 
a limit of multiplicative constructions (stages of a Postnikov tower). This additional 

obstruction is called the multiplicative component of the obstruction to the existence 
of equivariant Moore spaces. Multiplicative components exist in the general case too 
but only in the higher-order obstructions - they only enter into the first obstruction 
in the two dimensional case. 

The multiplicative component  of the obstruction is shown to be non-zero in its 
own right, and in the two-dimensional case it is shown that this obstruction can be 
cancelled by the introduction of  a suitable first k-invariant in the topological spaces, 
in certain cases. As in the general case, the non-realizability results in the present 
.7 net can be phrased in terms of spaces that are not equivariant Moore spaces. A 
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fairly typical result (whose statement doesn't require the use of any of the technical 
terms defined in Section 1) is the following: 

Proposition. Let X be a topological space with the following properties: 
(1) 7tl(X)= 7z, a group with the property that H3(x, 7/)¢0 and has no 2-torsion 

elements, 
(2) Ho(X; 7/rt) = 7/, 
(3) H2(X; 7/70 = 7/, 
(4) H3(X; 7/n)=H.(X; 

Then the first k-invariant o f  X (an element o f  H3(~, 7/)) must be zero. [] 

Remarks. (1) This is 1.12 in the present paper. 
(2) In this case the corresponding equivariant Moore space of type (7/; 2; zt) also 

fits the conditions. The obstruction in [9] vanishes in this case - the significant 
obstruction is the multiplicative one. 

(3) The proposition above can be rephrased as: 

Proposition. Let 7t be a group such that H a ( x ; Z ) # : 0  and has no 2-torsion 
elements. Let C ,  be a projective ZTz-chain complex with the following properties: 

(1) Ho(C,) = 7/, 
(2) HI(C,)=O, 
(3) H2(C,) = 7/, 
(4) H3(C,) = H4(C,)  = 0, 
(5) the first homological k-invariant o f  C ,  is non-zero. 

Then C,  is not chain-homotopy equivalent to the chain-complex o f  any topological 
space. [] 

Section 1 of the present paper proves these results (and others whose statements 
are more technical) and develops the theory of the multiplicative component of the 
obstruction to realizing an equivariant Moore space. 

Section 2 proves a technical result that may be of some independent interest. It 
constructs an equivariant left-inverse to the map constructed from their bar con- 
struction to their W-construction, and shows that the reverse composite of the two 
maps is equivariantly homotopic to the identity so the bar and W-constructions are 
equivariantly homotopy equivalent. This implies the corresponding statement about 
the Eilenberg-MacLane model for Eilenberg-MacLane spaces and the model due to 
Milgram. 

1. The multiplicative obstruction 

Definition 1.1. Let M be a ZTt-module a n  let K(M, 2) be the Eilenberg-MacLane 
space on M equipped with the appropriate 7t-action. Then ~M e Ext3~(M, F(M)) is 
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defined to be the first homological k-invariant of  the chain-complex K(M, 2 ) . ®  Z . ,  
where Z .  is a projective resolution of  7/over Zrt. [] 

Remarks. (1) Something related to the class ~M was defined by K. Igusa in [6] in 
the case where M was Z-torsion free and rt was the general linear group over 7 /o f  
a suitable degree. He showed that in the case where M = Z  3 and rc is GL3(Z) acting 
in ~he usual way, that ~M ~: 0. 

~:gusa calls his construction the Grassman invariant of  M and this term will be 
used throughout  the present paper for f~M. 

(2) An algorithm is given for computing the Grassman invariant of M in the case 
where M is Z-torsion free and an explicit formula is given in the case where M =  Z 3. 
The invariant is computed in the case where M = Z  3, rt=Z/2Z(+~Z/27/ with 
generators acting via right multiplication by the respective matrices 

0 - , 1 0 - . 
0 1 -1  

The Grassman invariant of  M is nonzero - in fact its image in Ext3(M, M/2M)  
under the change of coefficients homomorphism induced by the canonical map 
F(M)-- 'M/2M is also nonzero. 

(3) The work of  Peter Kahn implies that ~ ,  = 0 whenever the underlying abelian 
group of M is 7/(~ 7/. 

Recall that F(M) can be regarded as the free abelian group generated by symbols 
{y(m),m ~M} subject to the quadratic identity: 

Y(ml + m2 + m3) - y(ml + m2) - y(ml + m3) - y ( m  2 + m3) 

+ y (m 1) + ~'(m2) + Y(m3) = 0 

for all m~,m2, m 3 e M. Let L ~ : M ® M - , F ( M )  be the map that  sends rn 1 ®m2 to 
~,(m: + m 2 ) - y ( r n l ) -  y(m2) - this map can be shown to be bilinear. 

Let M be a Zrt-module and let P ,  be a projective resolution of  M. If  Z ,  is a pro- 
jective resolution of  7/over 7/~ the KiJnneth theorem implies that  Z ,  ® P ,  is also a 
projective resolution of M so that there exists a unique chain-homotopy class of  
chain maps h : P ,  ~ Z ,  ® P ,  inducing the identity map of  M. Let e :P , - - ,  M be the 
augmentation. 

Definition 1.2. Under the hypotheses above, let xeHt(rt ,  M)  be a cohomology 
class with i >  1. Define/zM(x ) = Ext/Tn(M,F(M)) to be the class defined by L M o (x® 

Remarks. (1) This is something like an 'external cup product '  with the identity map 
of M. 
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(2) In [3] the following sequence is shown to be exact 

O~ A(M)-- ,M® MLM~ I"(M)-*M/2M--*O; 

where A(M) is the submodule generated by elements {m1@m2-m2@ml ' 
ml,m2~M}. 

Definition 1.3. Let M be a Zn-module and let xeH3(n,  M) be a cohomology class, 
represented by a cocycle ,,Z': Z 3 ~ M ,  where Z .  is a projective Zrt-resolution of Z. 
Define d (x) to be the desuspension of the algebraic mapping cone of the chain map 

Z ,  _ ~ . 3 p ,  

that extends ~, where p ,  is a projective resolution of M. [] 

Remarks. (1) It is not hard to see that the chain-homotopy type of d(x) doesn't 
depend upon any of the choices that have been made. 

(2) It is also clear that the homology of A(x) is as follows: 

Ho(d(x))=7/, H2(A(x))=M, Hi(A(x))=O, i~0 ,  2, 

and that the first homological k-invariant is precisely x. 
The theory of  homological k-invariants in [5] implies that if C ,  is a chain-complex 

with H i ( C . ) =  0, and isomorphisms ct: H(C, )~7 / ,  f l :  H2(C,)~M, then there exists 
a chain map h : C .  ~ d (x) inducing t~ and/~ in the appropriate dimensions if and only 
if the first homological k-invariant of C, eExt~n(Ho(C,),H2(C,)) is precisely 
(ct*)-lx(fl*). If  this map h exists it is unique up to a chain-homotopy. 

(3) If  Hi(C.)= O, 2 < i< n, then the second non-trivial homological k-invariant of 
C ,  lies in H'+I(A(x); H.(C,)) and is the pullback of the class 1 :Hn(C,)~H.(C,  ) 
in Hn+1(~/(h);H~(C.))=Homz~(Hn(C,),H~(C.)) over the standard inclusion 
i :A(x)~d(h).  Here ~'(h) is the algebraic mapping cone of h:C .~A(x )  and the 
statement about H'+I(~(h);H~(C,)) follows from the fact that Hi(sC(h))=O, 
i<n+ 1. If C ,  is the chain complex of a K(M,2)-fibration over a K(n, 1) with 
characteristic class x, then n =4  and the second homological k-invariant lies in 
HS(A(x);F(M)) (where F(M)=H4(K(M,2)) - see [3]). This homological k-in- 
variant was shown in [9] to be precisely the obstruction to killing H4(C,) by taking 
a fibration over its space or the first obstruction to forming an equivariant Moore 
space of type (M, 2; z0. 

Definition 1.4. Let Ci, i--- 1, 2 be chain complexes. A contraction of  C l onto C2 is 
a triple (p, q, 3 )  where p : C1 -~C2 and q" (?2 ~C1 are chain-maps such that p-  q = 
1 • C1 ~ C~ and 3 is a chain-homotopy from the identity map of C2 to q.p.  These 
maps are required to satisfy the additional condition that = o q = 0, p o.~= 0 and 
3 2 = 0 .  [] 
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Remark. The condition that ,.~'~2=0 didn ' t  appear in the original definition of  
Eilenberg and MacLane in [2] but is necessary for the applications in the present 
paper. 

Lemma 1.5 (Perturbation Lemma). Let ( f ,g,~) '(Cl,dl)--*(C2,d2) be a contrac- 
tion o f  chain complexes and let d~ be a second differential on C1 with t = d ( -  dl. 
S,.:p~ose there exists a fibration on CI bounded f rom below and such that 

• :~, t lowers fibration degree; 
-" q~ and dl preserve it. 

Then there exists a second differential d~ on C2 and a contraction 

where 

(I) 

(2) 

(if, g; ~ ' )  " (C1,d()"~(C2,d~) 

Z~ - 1 + ~ (~t) ' ,  
t = l  

f ' = f o ( 1  + t o  T~o ~) ,  

g'= T~og, 

d2=d2+ f o t o  T~og, 

g, '=  T~ o qb. [] 

Remarks. (1) Note that, on account of the filtration on C1, all of  the ' infinite 
series' above reduce to a finite number of  terms when evaluated on any element 
of C1. 

(2) This lemma first appeared in [4] though it was used implicitly in [8]. 

We will recall the concept of an F-extension of  a map from [9]" 

Definition 1.6. Let M and N be Zn-modules, let F be a free Zn-module with pre- 
fe :ed basis {Yt} and let f :  M ~ N  be a homomorphism of  abelian groups that 
doesn't necessarily preserve the action of n. Then the F-extension. of  f ,  denoted 
f ~ : M ® ~  F ~ N ® z F  (equipped with the diagonal re-action) is defined by 

fF (m®(Y i ,  o))=f(m,  o-1) • o®(Yi" o) 

for a l l m ~ M a n d  oerr .  [] 

Remarks. (1) It is clearly possible to extend j~. to all of  M ® F ,  Z-linearly. The 
resulting map is a Zn-module homomorphisms.  

(2) The F-extension of f defined above clearly depends upon the basis for F used. 
If r ~ is already a module homomorphism,  then fF = f ®  1. 

3) The above definition clearly extends to chain-complexes. In this case bases for 
the chain modules of  F must be defined in each dimension. If  f is initially a chain- 
map its F-extension will also be a chain-map if the differential on F is 0. 
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Let ~eH3(rt, M)  be a cohomology class, where M is a Zrt-module and let X be 
the total space of the fibration with base a K(n, 1), fiber a K(M, 2) and with char. 
acteristic class ~. As a semi-simplicial complex this is just a twisted cartesian product 
K(n, 1)x(K(M, 2) where ( i s  the composite of the map of spaces K(n, 1)~K(M,3) 
induced by ~ (this can be explicitly constructed semi-simplically) and the canonical 
annihilating twisting-function K(M, 3)--*K(M,2) - see [1, expos6s 12 and 18]. 

The results of [4] imply that the chain complex of X is chain-homotopy equivalent 
to a suitable twisted tensor product K(rt, I )®,K(M, 2), where ( agrees with ~ in 
dimension 3. We will now carry out a procedure similar to that used in the proofs 
of  2.5 and 2.6 in [9]. 

At this point we will make the simplifying assumption that the module M is Zo 

torsion free. 

Definition 1.7. If M is a 2Dr-module U(M) is a DGA-algebra concentrated in even 
degrees and generated by symbols Yi(x), in dimension 2i where i is an integer >--0 
and xeM. These symbols are subject to the relations: 

(1) 

(2) 

(3) 

(4) 

y0(x) = 1 for all xeM,  

yi(kx)=kiyi(x), keE  for all i and x~M, 
i 

Yi(x+ y)= ~ yi(x)yi_j(y) 
j = 0  

Yi(X)~'j(x)=(i+J)Yi+j(X, 

for all x, y E M and all i, 

for all i,j and all s e M. [] 

Remarks. (1) This definition first appeared in [3] except that U(M) was denoted 
F(M). Our terminology follows that of  Cartan in [1]. 

(2) It is not difficult to see that U(M) 2, generated by symbols yl(x),xeM, may 
be identified with M itself and U(M)4 can be identified with the Whitehead functor 
F(M). It is also not difficult to see that the g-action on M extends in a natural way 

to U(M). 
(3) Note that the product of two elements x, yeM,  as defined in U(M) is 

y2(x+Y)-y2(x) -  ~'2(Y), due to relation (3) in the definition. 
(4) Due to our assumption that M is Z-torsion free the DGA-algebra U(M) is 

precisely the homology algebra of K(M, 2) - see Section 21 of [3]. 

In fact there exists a contraction 

(/7, q, ~)  : A(M, 2)-,  U(M). 

This is a composite of several contractions: 
(1) The contraction in the Direct Product Theorem in Section 6 of [3] (here we 

regard M as a direct sum of copies of Z). 
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(2) A tensor product of contractions from A(Z, 1) to A(x) defined in Section 14 
of [3], after the bar construction has been taken. 

Note that since the decomposition of M into a direct sum of copies of g depends 
upon a choice of basis, it isn't clear that the maps in (p, q, ~u) are module homomor- 
phisms; and in most cases they aren't.  

The maps p and q are, respectively, the maps a and b in [9]. In that paper the maps 
were explicitely computed in low dimensions. 

' e  will perform a procedure similar to that used to prove 2.6 in [9] to compute 
the 3econd homological k-invariant of K(zt, 1)®(K(M, 2) - see Remark (2) follow- 
ing 1.3. 

Let Z ,  denote the bar resolution of 7/over 7?ft. Since M is Z-free it follows that 
M® Z, ,  equipped with the diagonal n-action is a free Zn-resolution of M. In the 
definition of A(()  assume the free resolution P ,  of M used is M ® Z ,  (see 1.3). 

Our main result is: 

Theorem 1.8. Under the hypotheses above the second homological k-invariant o f  
K(~, 1)®(K(M,2)  (and, here, that o f  the space X)  is an element xeHS(A( ( ) ;  
F(M)) represented as follows: 

, .  x I M Q Z 3  = fqMq-] , IM( ( ) :M(~Z3~I - ' (M) ;  

(2) xlZs=pzO(h®l)o 5o(g2®l)O4z 
+/~z o {(1 ®dz)O ~z}2O(~2(~) 1)or/3o(g2@ 1)O4z 

l®e 
: Z 5 --~ K4 ~ Zo ' F (M) .  

Here (f2, g2, ~E) : K( M, 2 )~A(M,  2) is the 7/r~-contraction developed in Section 2 o f  
the present paper, e : Z o ~ 7? is the augmentation, and tl3 is the composite. 

A ~ ~®1 
K ( M , 2 ) @ Z s = Z s - - - - * t Z , ( ~ Z , ) 5  ' Z 3 @ Z  2 *K(M,  2 ) 2 Q Z  2 

w?zre A is the coproduct on Z ,  and I~ is the projection onto the direct summand. 

Remarks. (1) Strictly speaking :4M and PM(~) are classes in Ext3~(M,F(M)). 
In the statement of this theorem we are using those terms to denote the following 

cochains: 
(A) PM(~) as defined in 1.2. 
(B) f¢M =/~z o (1 ®dz)  o { ~z o (1 ~ ) d 2 }  2 o t~ Z where /~z, qz are Z,-extensions of 

maps, as defined in 1.6 and d z is the boundary homomorphism of Z ,  - this for- 
muia for the first k-invariant of K(M, 2 ) ® Z ,  was derived in [9]. 

(2) Consider the natural inclusion Z2M®Z,- - ,A(~) .  This induces a homomor- 
p:  sm Hs(A(~); F(M))-,Exta~(M, F(M)) and statement (1) implies that the image 
of:c under this map is precisely fgM +pM(~ ). This is different from the results in the 
higher-dimensional case in [9] and shows that it is possible (in principal, at least) 
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for the homological k-invariant of  K(M,2),@Z, to be cancelled by the first k- 
invariant of  the topological space X. The term ttm(O will be called the 
multiplicative component of the obstruction to killing the 4-dimensional homology 
of X. 

Proof. Consider the contraction 

(p o J:2 ® 1, f12 ° q ®  1, 4 ®  1 + {]2 o ~r/o f2® 1) :K(M, 2) ®K0r,  1)---* U(M)®z, 

where K(n, 1) ,= Z, .  The maps in this contraction don't  preserve the action of n, 
except for f2, g2, and ¢~. If we take Z ,  extensions of all maps (see 1.6) we get maps 
that preserve the action of n but are no longer chain maps, unless the boundary 
maps of Z ,  vanish in all dimensions. Thus we get a ZTr-contraction 

(/gZ ° [2, {]2 ° ¢ Z ,  ~[J + g2 o ~pZ o [2) ® I:K(M,2)®(Z,,O)~U(M)®(Z,,O). 

where (Z,, 0) denotes a chain-complex whose chain-modules are the same as Z ,  but 
whose boundary homomorphisms are zero and 6z ® 1 denotes 6z where o =p ,  q, or 

Now we apply the Perturbation Lemma to this with the purturbation t= 
1 ® dz + r/, where e is the twisted portion of the boundary of the twisted tensor pro- 
duct K(M, 2) ®~ Z ,  (which we have written as fiber x base rather than base x fiber) - 
this is equal to the composite ( m ® 1 ) o ( 1 ® ( ® 1 ) o ( 1 ® c ) ,  with m:K(M,2),X 
K(M, 2),-*K(M, 2), the multiplication and c: Z,-,Z,® Z, is the coproduct. 

The result is a contraction 

with 

(1) 

(f, g, 0 )  : K(M, 2)®~ Z.~(U(M)QZ., d') 

d'=Pz°(f2® l)°(l ®dz)° ( 1+ j:~, TJ) °(g2® l)°qz, 

T= { ~ ®  1 + (f12~) 1)o ~Z([2® 1)} o {1 ®dz+ r/}, 

(2) g=(l+ ~" T;) 

(3) 0=( l+ j= ,~  TJ)o(#® l+(f12®l)o  ~zO(f2®l)) .  

We will be mainly concerned with d'. Making use of the fact that U(M) is concen- 
trated in even degrees, and the fact that (vanishes below dimension 3 (so r/lowers 
the dimension of the Z ,  factor by at least 3) we find (from a tedious but straightfor- 
ward computation) that d'= 1 @d2 except in the following cases: 

1.9. (1) 

(2) 

/Szo(f2®l)°r/3o(fl2®l)OOz: U(M)o ® Zf° U(M)2 ® Z~_ 3, i _ 3 ,  

Pz ° (rE ® 1) o e3 o (fie ® 1) o #z : U(M)2 ®Z3 -* U(Mh ® Z~, 

(3) ~M: U(M)2 ® Z3 -~ U(M)4 ® Zo, 
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(4) 

(5) 

where 

/gz o (f2 @ 1) o r/5 o (g2 ® 1) o #z : U(M)o ® Z5 ~ U(M)4 ® Zo, 

/~z o {(1 ® dz) o ~z o (1 ® dz) o ~z} o (f2 @ 1) o//3 o (g2 ® 1) o qz 

: U(M) o ® Z5 --, U(M)4 ~) Z0, 

(A) Terms (2) and (3) are to be added together; 
(B) Y;M =/)z o (1 @dz) o { ~z o (1 ®dz)}24z (see [9]); 
Y) r/3 is the term in r / tha t  lowers the dimension of the Z ,  factor by 3 (i.e., in 

the formula for r /only the term in the coproduct of  Z ,  that lowers the right factor 
by 3 is used); 

(D) /75 is the term in r / tha t  lowers the dimension of the Z ,  factor by 5 (defined 

like r/3). 
Since U(M) o = Z, term 1 implies the existence of a copy of  A ( ~ )  (not necessarily 

a subcomplex) in (U(M)®Z, ,d ' ) ,  where ~=/~z o (f2® 1) o/7 3 0 (g2~) 1) o qz. Since 
q and g2 are the identity map in dimension 0 and since /~zO(fz®l)  sends 
([M] ® 1 ® 1 ) ® Z  in K(M,2)®Z,  to y~(rn)®Z in U(M)2®Z, it follows that 7 ~ 
can be identified with the original cocycle (,  so (U(M)® Z,,  d') contains a copy of  

A ,O. 
~-_= order to 

(U(M) ® Z , ,  d ' )  
1.3) we map D ,  

compute the 5-dimensional homological k-invariant of D , =  
(i.e., the second nontrivial k-invariant - see Remark (3) following 
to A(~) via the map that is the identity on A(~) and the zero map 

on U ( M ) 4 Q Z , .  The algebraic mapping cone, o~', of  this map clearly has vanishing 
homology below dimension 5. It contains a subcomplex ,~'U(M)4 (~) Z ,  whose inclu- 
sion induces an isomorphism in homology (at least in dimension ___ 5). It follows 
that the cocycle lz45(./)~HS(z/;Hs(,zO) has the property that its restriction to 
£'U(M)4 ® Z ,  is precisely Z'(1 ® e )  where e is the augmentation of  Z , .  In order for 
this map to be a cocycle though, its composite with the boundary from the next 
higher dimension must be 0. This boundary is 

Io A q / o 1 1  {,S(A(~)(~)U(M)4@Z.)OA(~)}6 d U 

o 

{,S(A (¢) (~) U(M)4 (~) Z,)  (~) A (¢)} 5 

where d~ is the boundary of  A(¢), du that of U(M)a(~Z, and q/represents the 
maps defined in terms (2 + 3), (4), (5) in 1.9 above. It is not difficult to see that we 
can define a cocycle on ~ / i f  we define it to vanish on 27A(~) and to equal q/on A(¢). 
It follows that the homological k-invariant in question is the cocycle on A (¢) equal 
to (1 ® ¢ ) o  ~. 

The proof  of  the theorem is almost complete: it only remains to be shown that 
term (2) in 1.9 is equal to/tM(~), after being composed with 1 ®the  equation of  Z , .  

-':'_rst of all, note that in dimension 2 the map p preserves the action of  re, i.e., 
if m = Z A,x,, where the A, are integers and the x, are preferred Z-basis elements 
of M, then p maps [m] to Z A,?i(xi)e U(M)2 (see 6.1 in [3], where p corresponds 
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to f in that theorem). Since p also preserves products it follows that it preserves the 
action of rc on the submodule ~ of A(M,2)  4 generated by products of 
2-dimensional elements. Thus, fiz[ ~ =P l  ~,- 

Now suppose we apply term (2) in 1.9: 

/TZ o (~2~) 1) o//3 o (f12~) 1) o qz  

to an element u ® z, where u e U(M)2 and z is a preferred basis element of  Z .  (i.e., 
one used in the construction of  Z,-extensions of  maps - see 1.6). Then ~z(U ®z)= 
q(u)®z and g2® 1 gives us g2 o q(U)@Z. In dimension 2 g2 is essentially the 
identity map, i.e., it sends [m] to [ m ] ® l  ® l e K ( M , 2 ) 2 .  The term //3 gives 
(g2 o q(u))o ( ( z )®a where tt is an element of  n (this is due to the nature of the 
coproduct on the bar  resolution Z , ) .  

Now I2 preserves products in dimension 4 since it is an inverse to fiE, f12 preserves 
products and since all of  K(M, 2)2 is in the image of  g2. It follows that the applica- 
t ion of fz gives 

q(u) o f2(~(Z)) ~) O~ E A(M,  2)4(~ Z o 

(we have cancelled {]2)" Now, because of  the remark above about p preserving the 
action of rt on products we get 

U o ( p  o [2 o ~(Z)) (~) t~ 6 U(M)4  ~) Z 0. 

But, as was remarked earlier in the proof  of  this theorem, p o ~2 in dimension 2 
can be regarded as the identity map since, if m = ~ AixiM, it sends [m] ® 1 ® 1 
K(M,2)2 to ~A,Yi(xt)E U(M) 2. So we can identify p o f 2 o  ~ with ~ (by abuse of 
notation). After  composing all this with 1 ® t h e  augmentat ion of  Z .  we get ~M(O 
(since tz gets mapped to 1). []  

Corollary 1.10. I f  X is a topological space with the following properties: 
(1)  i(x) = rr, 
(2) H0(X; Zn)=77, 
(3) H2(X; 7/r0 = M, a Y_-free Zn-module, 
(4) H3(X; 7/rt)= H4(X; 7]rr)=0. 

Then the first k-invariant of  X, ~ ~ H3(n, M) has the property that 

/~M (~) = -- ~M ~ Ext~.(M, F(M)). [] 

Remarks. (1) This follows from the fact that the first two steps in constructing a 
Postnikov tower for X are the same as those required to construct an equivariant 
Moore space of  type (M, 2; n). 

(2) It would seem that there is an indeterminacy in the definitions of  ~ and ~¢~ 
that  should be taken into account. This indeterminacy is only apparent  - in a 
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manner of speaking ~¢M is defined in terms of (. Pick a projective resolution Z .  of  
Z and a representative ~ of the first k-invariant - this is a cocycle 

~" Zs-*M. 

If we take the 7/-tensor product with M we get a representative of  PM(¢): 

1®¢ 
M @ Z  3 , M ® M ~ F ( M )  

Th:" ;.etzing can also be used to define ~M, however: 

qz 1 ®dz 
M @ Z 3  ~A(M, 2)2@Z 3 'A(M,2)z@Z2 

 ®az 
~A(M,  2)3@Z2 'A(M, 2)3@Z 1 

1 @ d  z /)Z 1 @ e  
, A (M, 2)4 @ Z o ~ F ( M )  @ Z o 

, A (M, 2)4 @ Z, 

> F ( M ) .  

An automorphism of M or a change in Z .  by a chain homotopy  equivalence will 
produce compensating changes in :qM, if it is computed as indicated above. 

(3) Since the image of PM(O under the homomorphism induced by a change of  
coe -:.,:ients 

b" Ext~(M,/- ' (M)) ~Ext~_, (M, M / 2 M )  

is zero it follows that the only modules M that can occur in the setting of I. l0 are 
those modules for which b(:gM)=O. Since that isn't true for the module described 
in Remark (2) following 1.1 we get: 

Corollary 1.11. There doesn't exist a topological space X with the following 
properties: 

(1) ~ I (X) =  the group (7//2Z)@(7//27/) with generators s and t, 
(2, H0(X; 7/n)=7/, 
(7 H2(X; 7/n)= the module with underlying abelian group 7/3 and with s acting 

via <ght multiplication by 

1 0 - 

1 - 1  

and t acting via multiplication by 

0 -1  , 
0 -1  

• H3(x; YJr)=H4(X; Zrr)=0. [] 

It isn't difficult to see that, if M is the module 7/ with trivial n-action then 



198 J.R. Smtth 

'gM=O. Coupled with the fact that flM(~):H3(Tz; 7/)--,Ext~M(g,Z)=Ha(rq Z)is  
just multiplication by 2, we get 

Corollary 1.12. I f  X & a topological space with 
(1) ~Zl(X)=n, a group with the property that H3(zt, 7/)=/=0 and 
(2) Ho(X; 7/~z)=7/, 
(3) Hz(X; 7/70 =7/, 
(4) H3(X; 7/zO=H4(X; Zz0=0, 

then the first k-invariant o f  X is O. [] 

Since the first k-invariant of a space is the same as the first homological k- 
invariant of its chain complex, this statement is equivalent to" 

Corollary 1.13. l f  n & a group such that H30z, 7/) ¢0  and has no 2-torsion elements 
and C, is a projective 7~1r-chain complex with the following properties: 

(1) Ho(C,)=H2(C,)=Z, 
(2) Hi(C,) =H3(C,) =H4(C,) = O, 
(3) the first homological k-invariant of  C, is non-zero, 

then C, is not chain-homotopy equivalent to the chain complex of  any topological 
space. [] 

2. The bar and W-constructions 

In this section we will develop an equivariant contraction from the g/- 
construction developed by Eilenberg and MacLane in [2] and their bar construction. 
We will make extensive use of the Eilenberg-Zilber theorem as presented in [3]: 

Theorem 2.1. Let V and V be FD-complexes and let f :  U× V ~  U® V; g: U® V-~ 
U x V be defined by 

n 

f : (Un×On)  = Z F " - i u ® F o  O, 
I = I  

g: (ui®oj)= Z (-1)P~"~)D~'" DvlU, XDu,'" Du, °" 
(u, o) 

Then the triple (f,g, F) induces a contraction of  (U× V)u onto UN® VN, where c~ 
is defined by 

¢ = 0 in dimension O, 

Cn = -(On_ i) '+ (~ ° f ) '  ° D0 . [] 

Remarks. (1) We have quoted the theorem here because we will be using the explicit 
formulas above for f ,  ~, and q3. 
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(2) See [2, §6] for a definition of  the derived operators. 
(3) The proof  that q32= 0 is due to Weishu Shih in [8]. 
(4) The symbols F~, F " - '  denote the 'first '  and 'last '  face operators given by 

Fg =F0... F,, P"-'=F,+I .--F,. 

(5) The symbol ~(u,.) denotes the sum over all 'shuffels '  of  length ( i , j ) ,  and 
p(#. v) denotes the parity of  a shuffel - see Section 5 of [2]. 

~'51 The subscript N denotes the normalized chain complex - the quotient by the 
su~c.~mplex generated by the degenerate elements. 

Throughout the remainder of  this section R will denote a fixed R-complex. Recall 
that the W-construction of  R is defined to have chain rings 

Wn(R ) = R ._  1 @ R n -  2 @ "'" (~ Ro 

and it has the important  property that  its twisted cartesian product R ×~ W(R)  is 
contractible, where a :  ITV(R)n ~ R  n_ 1 is the twisting function given by 

a(rn - l@ "'" ®r0)  = r , _  len_ 2(rn_ 2) ...  eo(ro) 

where e~ =e0 o (F0)'" Note that we are using the notation of  Moore in expos6s 12 
and ;8 of  [1] for the W-construction and twisted cartesian products. Although this 
notation is not standard today, it has certain advantages in discussion to follow. 

Definition 2.2. t" R~ × ITV(R~)~R 1_ x x I~(R) ,  i is defined by 

t(r, x w,)= Fo(r,) . (a(w,) - 1,_ 1)x Fo(w ,) 

or (using the definition of a and of  F0 on W(R)), 

t(r; × r,_ 1 ® " "  ® r0) = Fo(r;) . (r,_ 1 - 1,_ l) × r,_ : ® . . .  ® ro 

i f e ~ r ) = l  for a l l j .  [] 

Tke Eilenberg-Zilber theorem gives rise to a contraction (f, g, ~ ) "  (R x~ W(R))N--" 
RN~,,  WN(R) and the Perturbat ion Lemma immediately implies that: 

Proposition 2.3. Let K be the complex RN@ WN(R) equipped with the differential 
defined by d ® + f o t o  f ~ o ~ ,  where d® is the usual differential and .¢~= 
1 + ~ , ~  (~ t )  1. Then (R N, I~N(R), K) is an acyclic constuction in the sense o f  expos4 
4 o f  [1] with contracting chain-homotopy 

= (a × Fo)-1 o )~o~ o g .  R N  ® WN(R) ~ ffVN(R) = 1 ® WN(R ). 

Re~urks. (1) The proof  of  this result is similar to that of the twisted Eilenberg- 
Zilber theorem of [8] and [4] except that, in accordance with [1], we have written 
the product as fiber x base rather than base x fiber. 
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(2) The map (axFo)-I"(RxtZV(R))N-*WN(R) carries r£xrn_ l@. . .®r  o to 

Proof .  We begin by defining an element r x  w of R x I~(R) to be of  filtration degree 
_<n if w is a degeneration of  an element of  dimension _<n. It is clear that  t lowers 
filtration degree by at least 1 and d(R× rV×(R)) and ~ do not raise it. The Purtur. 
bation Lemma then gives rise to a contraction (j~ g, ~ )  : K ~ ( R  ×a W(R))N = WN(R ) 
where: 

(1) f=fo(1 + t o J ~  o ~ ) ,  

(2) g =  ~/-~ og, 

(3) ~ = , ~  o ~.  

Since (see expos6 13 of  [1]) (a × Fo)-l is the chain contraction of WN(R), it follows 
that  f o ( a × F o ) - l o g  is a chain contraction of  K. But f ( l × w ) = l ® w  since 
q~(1 × w) is degenerate and .f= and t maps norms to norms. This completes the 
proof.  [] 

We will use this result to connect the W-construction with the bar construction. 
Our  notation for the bar construction will coincide with that of  [1]. Recall that the 
unreduced bar construction .~(R)= R ® .~(R) is contractible via the chain contrac- 
tion s:R®,~(R)-- , I®,[e(R)  that maps r®[vll . . . Iok] to l®[rlv~.. . lvk].  Note 
that the inverse s - l :  1 ®,#(R)--*R ® ~ ( R )  is well defined. By abuse of notation we 
will often want to regard it as a map s - l :  ~(R)--,R®.~(R). 

In [2] Eilenberg and MacLane defined a homomorphism of  DGA-algebras 
g : .~(RN)--* WN(R) via 

g = ( a x F 0 )  -1 ogo(1  @g) o s - I  

(see Lemma 19.2 in [2]) - note that this definition is inductive. It is completed by 
defining g(r) to be r ®  1--. ® 1 (the number of  l ' s  equals the dimension of  r). Our 
main result is: 

Theorem 2.4. There exists a chain map f : IT~N(R)~ 7~N(RN) and a chain-homotopy 
q/ : WN(R)~ 17VN(R ) such that (f, g, ~) : 17VN(R)~ .7~N(R N) is a contraction. The maps 
are defined inductively by 

(1) f ( r ® l ® . - - @ l ) = [ r ]  for  r e R ,  
(2) f = s  o (l ® f) o f o t o .~ro t, where 1 : 17VN(R)~(R x W(R)) N maps w e WN(R) tO 

l × w ,  
(3) ~ = 0  in dimension 0 and, in higher dimensions ~ ( w ) = - ~ o ( w + ~ ( d w ) ) .  

Remarks. (1) Recall that ~ is defined in 2.3. 
(2) Note that, in general, the map f doesn't  preserve products. In [2] Eilenberg 

and Maclane proved that .q preserves products. 
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(3) Note that if R has a group action on it, then the maps [, g, qJ preserve that 
action. This implies that the bar and W-construction are equivariantly chain- 
homotopy equivalent. It also implies that the Eilenberg-MacLane model of 
Eilenberg-MacLane spaces (defined in [2] semi-simplically) is equivariantly 
homotopy equivalent to the model due to Milgram in [7]. 

Pr:~ef. The proof  is divided into several parts: 
{ is a chain-map and q,,, as defined inductively above, is a chain-homotopy 

fr,.-::- g°  f to 1. First, suppose that the inductive definition of ~ was 

w) = o t (g  o f ( w )  - w -  q / ( d w ) ) .  

Then the statement would follow immediately from 2.3 in the present paper and the 
proof of theorem 1 in expos6 2 of [1]. We must show that 6 o t o  g=0.  But 

= ( a x F 0 )  -t o .>-  ° ~ o z o  ( a×F0)  -1 o~o(1 @g) os -1 

= "axFo)U °.Y-=°(axFo)-l °g°" '+(axFo) - l  ° ( 1+,=,~. (~t)') °(axFo)-'  ° g '"  

=(axFo)-l°(a×Fo) log '"+(axFo)  - '°  II +,=,~ (t~)' l ° ( a x F ° ) - l ° g  ... 

= 0 + ( a x F ) - ' o q 3 o { l + , = , ~  ( tq3 ) ' l o~o . . -  

(because ((a x F0)- l )2 is degenerate and because t o (a x F0) n (a x b) = a x b - 1 × b 
and ~ maps all elements of the form 1 x b into degenerates), = 0 (because q~ o ~ = 0). 

(2) i o g = 1 • ~(R)-+ ,'~(R). This follows by induction on the simplical dimension 
of ..'~ • .:~ments of ~(R)  and direct computation. Clearly, it is true for elements of 
sirc2iical dimension 1. In general 

{og=so( l®{)ofo to . f=oto(a×Fo)  l o ~ o ( l ® g ) o s  J 

=so(l®i)ofo II+ 

=so(1 @f)ofo I1 + 

( t~) '  1 oto ( axF0 )  -I o~o(1 ® 0 ) o s  -1 
/=1  

( I~) '  1 °~q°(l ® g ) ° s  -1 
/ = I  

(because t o (a x Fo)-l(a x b) = a x b -  1 × b and ~(1 x b) is degenerate and (1 @ f) o 
f(!  x b) = 1 @ ~(b), which is mapped to 0 by s) 

=so(l@~)o f o ~ o ( l @ g ) o s  -1 (because , ~ o ~ = 0 )  

= s o ( l ® D o ( l ® g ) o s  -1 (because f o ~  = 1) 

= s o s -  l = 1 (by the inductive hypothesis). 
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(3) ~U o g = 0. This follows by induction on the dimension. It is clearly true in 
dimension 0 because W = 0. In higher dimensions 

¢/( g (w) )  = - 8 o t( g (w)  + ~ ( d g ( w ) ) )  

= _ ~ o t(g(w) + ~u(g(dw))) (because g is a chain-map) 

=-4  o t(g(w)) (by the inductive hypothes;~) 

= 0 (because ~ o to g = 0 by part (1) of the proof of this theorem). 

(4) f o ~ = s o (1 ® D. This follows by direct computation: 

fo~=so(1 ®f)of®t o ~o~Olo(aXFo)-lo y o~ 

=so(1 @f) ofo (1 + ,:,~ (tc~)')oto(axFo)-'o//~o , 

=so(1  ® f ) o f o  (1 + ,=,~ (t~)i) o J=  o ,  (see the proof of (2)) 

=so  (1 ®f) o fo  (1 + ,:,~" (t#3)'+ (~t)i) o~ 

(because q 32= 0, so all cross-terms in the composite vanish) 

=so(1 ® [ ) o f o ~  (because #3o~=0 and f o  #3=0) 

= s o (1 ® f) (because f o ~ = 1). 

(5) [ o ~,= 0. This follows from statement (4) above. 

fO ~//(W) =fO ~3 0 l(*) 

=so(1 ®f)ot(,)=O 
because s(1 ® , )  is degenerate. [] 

Lemma 2.7. There exists a contraction (f2, g2, gt2) : :~(WN(R))-~ ~2(RN) where: 

(1) g2 = ~(~t), 

(2) f2=:g(f)°(l+ ~ (dsfft)') 

(3) qJ2-- (1 + ,=,~ (Ods)t)°~ t. 

ds is the simplical component of the boundary operator in ~(WN(R)) and ~ is 
defined inductively by: 

(A) ~[ ]=0,  
(B) ¢[a I u] = -[tu(a) ] u] + ( -  1) dlm[a] [g o f(a)] ~(U)]. 
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Proof. First, note that 

(.YA({), 7~(g), ~) : ~(WN(R)) -+ ~2(RN) 

wouM be a contraction if the boundary operators in .~(WN(R)) and .~2(RN) con- 
sisted only of their residual components (see the proof of Theorem 12.1 in [2]). 

Unfortunately, the map f doesn't generally preserve products so that .'~(f) is 
us,:a[ly not a chain-map with the full boundary operator in the bar construction. 
V,/~. will remedy this situation by using the Perturbation Lemma with t set equal to 
d~ - ~.he simplical component of the boundary of "2(WN(R)). We filter the elements 
of ~(IYVN(R)) by their simplical dimension. 

We get 

g ' =  (1 + ,=,~ (girls)')o .~(,), 

(, + e 
• l - - 1  

Sin:z the map g was proved in [2] to preserve products, it follows that .~(g) com- 
mutes with d s so that the formula for g' becomes .~(g) since it is not hard to see 
that @ o .~(g) = 0. The only thing wrong with this procedure is that the Purturbation 
lemma induces a second boundary operator on '~2(R) and this might not agree 
with its true boundary. The second boundary is given by 

d'=dr+/~(f)  ° ds ° ( 1 +  ,=,~ (~,<),)o .,~(g) 

where dr is the residual boundary (see [2]). By the same argument as was used for 
g': 

7A(f) Ods o (1+ ,=1 ~ (@ds)') ° "'~(g) ="~(f) ° ds ° #(g) 

= ° ° G = d ;  

so that d '=dr=d  s which is the true boundary operator in .~2(RN). [] 

An inductive application of 2.6 and 2.7 gives: 

Corollary 2.8. For any R-complex, R, and any positive integer k, there exists a 
co~ ~raction 

(fk, gk, ~k)" g"~(R) -~ ~:(RN). [] 
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