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1. Introduction 

This paper will describe a relation between the homology and cohomology groups 
of a group rt and the Tor- and Ext-functors of modules over the integral group 
ring Zn. This relation will be applied to reformulate the obstruction theory to the 
existence of equivariant Moore spaces developed in [3] in a manner that may facili- 
tate computation of the obstructions. Although the main theorem of this paper is a 
consequence of well-known results, I have never seen it explicitly stated before. I am 
indebted to Henri Cartan and Alex Heller for several important improvements in 
the statement and proof of the main result. 

All modules in this paper will be assumed to be left &-modules unless they 
appear in functors that require Zn to act on the right in which case they will be 
regarded as right &r-modules via the involution of Zn that maps group elements to 
their inverses. 

Theorem 1.1. Let A4 and N be Zn-modules. Then there exist natural homo- 
morphisms 

(1) tt*:Toria”(M,N)-rHi(n,MON); 
(2) ~*:H’(n,Hom(M,N))+Ext&(Zt4,N)for all i. 

If To&M, N) = 0, then q* is an isomorphism and if Ext&, N) = 0, then <* is an 
isomorphism. Furthermore, if y denotes Yoneda products the following diagram 
commutes: 

HiOr, Hom(N, T))CWfj(n, Hom(M, N)) x Ext$,(N, T)@E&(M, N) 

I 
U 

H’+j(x, Hom(N, T)@ Hom(M, N)) Y 

I 
C. 

Hi +j(n, Hom(M, T)) 7 Ext&j(M, T) 

*Partially supported by National Science Foundation Grant No. MCS-79-0()29fj. 

0022-4049/82/0000-0000/$02.75 0 1982 North-Holland 



14 J.R.Smith 

where U denotes the cup product and c* is the map induced in cohomology by the 
composition homomorphism 

c : Hom(N, T)& Hom(M, N) -* Hom(M, T). 

Remarks. 1. The proof will be deferred to Section 2. 
2. In (1) above the Z-tensor product M@N is equipped with the diagonal n- 

action. In (2) the n-action on Hom(M, N) is defined by (go)(c) =g(ly(g-‘c)) where 
gErr, aEHom(M,N) and ccM. 

3. If Ext’(M, N), Extt(N, T) and Ext*(M, T) are all 0, the diagram above may be 
used to compute Yoneda products. 

4. The maps q+ and {* are, respectively, the maps Uj and flj in the statement of 
Proposition 9.3 on p. 227 of [I]. 

Corollary 1.2. If A4 is a Z-free &t-module its (projective) homological dimension is 
s the cohomological dimension of n. 0 

Corollary 1.3. The global homological dimension of the ring 2~ is s 1 + the coho- 
mological dimension of n. If the cohomological dimension of R is n then equality 
occurs if there exists a &-module Msuch that H’(R,M) is a nonzero, non-divisible 
abelian group. 

Remarks. Although the condition on R in the second statement seems rather tech- 
nical it is not hard to describe a class of groups that satisfy it: 

Proposition 1.4. If R is a finite extension of a polycyclic group and has cohomo- 
logical dimension n, then H”(R, ER) is a nontrivial finitely generated abelian group, 
hence non-divisible. 

Remark. The Mayer-Vietoris sequence implies that any free-product of groups 
that are finite extensions of polycyclic groups will have top cohomology groups 
(with coefficients in the group-ring) that are non-divisible, although they may be 
infinitely generated. 

Proof of Proposition 1.4. The statement that H”(R,ER) is a finitely generated 
abelian group follows from a repeated application of the Lyndon spectral sequence 
and the fact that H*(R,A) is a finitely generated abelian group whenever A is a 
finitely generated abelian group (with, possibly nontrivial R-action) or Zn and R is 
finite or Z. The statement that H”(R, ZR) # 0 follows from the fact that R is an (E)- 
group in the sense of [4] so the trivial &r-module Z has a finitely generated projec- 
tive resolution, say 

O+P, 4 . ..-+PO--+h+O 
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and H”(rr,P,) must be nonzero or the resolution would be reducible. The conclusion 
follows from the additivity of the functor H”(n,*) for finitely generated 
modules. 0 

Proof of Corollary 1.3. To prove the first statement note that if B is any left Zn- 
module there exists a short exact sequence O+K+F+B+O, where F is free and K is 
Z-free. The conclusion follows from the fact that the homological dimension of K is 
one less than that of B and from Corollary 1.2 above. 

To prove the second statement of Corollary 1.3 we need only exhibit a En-module 
whose homological dimension is n + 1. Let A =N”(n,M) be as in the second state- 
ment of Corollary 1.3 and let p be an integer such that A/pA # 0 - such an integer 
exists by hypothesis. 

Claim. The trivial En-module Z/pZ has homological dimension n + 1. 
This follows from the exact sequence 

induced by O+H~E-+B/ph+O. The map induced in Ext by multiplication by p is 
also multiplication by p because multiplication of an entire projective resolution of 
Z by p is a chain-map. This proves the corollary. Cl 

We will now apply these results to the problem of the existence of equivariant 
Moore spaces. If M is a hn-module and n is an integer greater than 1, a connected 
CW-complex, X, is called a Moore space of type (M, n; n) if: 

(1) its fundamental group is n; 
(2) Hi(X; Zrc) = 0 for i # 0, n; 

(3) H,(x; hn) = h; 
(4) H,(X,Zn) = M. 
Steenrod raised the question: For which triples (M,n; rr) do such spaces exist? 
In [3] an obstruction theory was developed for the existence of Moore spaces. The 

obstructions to the existence of a Moore space of type (A&n; rr) are elements 
C;E Ext$:t(M, *), ir2 - in fact the first nontrivial obstruction lies in the group 
Ext:,(M,A4/2M) if n > 2. Corollaries 1.2 and 1.3 imply: 

Corollary 1.5. If R is a group of cohomological dimension 52 and M is a Z-torsion 
free En-module then there exist Moore spaces of type (M, n; II) if n > 1 and if M is Z- 
torsion with M/2M= 0 there exist Moore spaces of type (M, n; R) if n > 2. 0 

Remarks. 1. The corollaries cited above imply that the first obstruction is the only 
obstruction. 

2. In [6] Carlsson has given an example of a group 1c and a &r-module M such 
that no corresponding Moore spaces exist. 

3. It is well known that all low-dimensional knot groups have cohomological 
dimension 52 - see [5]. 
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4. I understand that Peter Kahn has proved a similar result using different 
methods. 

2. Proof of Theorem 1.1 

The following is an extensive revision of my original argument incorporating 
suggestions of Alex Heller. 

Let d be an abelian category and let Ce be the full subcategory of the category 
DGd of chain complexes in d containing those complexes whose homology is 
nonzero in finitely many degrees. V is a graded additive category whose underlying 
additive category is denoted %‘e. d imbeds as a full subcategory of ye by mapping 
an object to the corresponding complex concentrated in degree 0. Let the quotient 
of +7 by the homotopy congruence be denoted by Q; d + @e is, then, still a full 
imbedding. The homology functor H: g + GI factors through Q. A morphism f in 
v or J is a weak equivalence if Hf is an isomorphism. 

An object X in % is called P-cofibrant if each X, is projective and, for some 
n, X,=0, q<n; the dual notion is I-fibranf. A projective resolution of an object Y 
in C5 is a weak equivalence X+ Y with X P-cofibrant; injective resolutions are 
defined dually. If & has enough projectives (injectives) then any Y has a projective 
(injective) resolution. It follows that J admits a calculus of right (left) fractions 
with respect to the weak equivalences and thus a category of fractions 9 = 
Q[w.e.-*I= V[w.e.-‘1, with @X, Y)- 9(X, Y) bijective if Xis P-cofibrant or Yis I- 
fibrant. 

3 is essentially Verdier’s ‘derived category’. Inspection shows that g(M,N) = 
Ext(A4,N) for A4 and N in d and that the Yonedaproduct is just composition in 9. 

Throughout the remainder of this section d will be the category of left Zn- 
modules where II is a group as in the statement of Theorem 1.1. Note that d is 
symmetric monoidal closed with respect to the tensor product M, N+M@N over Z, 
provided with the diagonal action, and the ‘internal horn’ M, N+Hom(M,N) over 
Z, with the ‘conjugation’ action - the unit is Z with the trivial action. Both of these 
functors extend in the usual way to DG&‘. 

The category 9 is also symmetric monoidal closed, with tensor product X, Y+ 
X@ Y and ‘internal horn’ X, Y-tHom(X, Y) characterized by: 

(1) X0 Y= X@ Y if X or Y is P-cofibrant; 
(2) Hom(X, Y) = Hom(X, Y) if X is P-cofibrunt or Y is I-fibrant. 
The unit is still E. The symmetric monoidal character provides a canonical 

morphism Hom(Y, W)@Hom(X, Y)-rHom(X, W), called composition and given, 
in fact, by composition if X is P-cofibrant and W is I-fibrant. Furthermore there are 
canonical isomorphisms 

9(Z, Hom(X, Y)) = P(Z@ X, Y) = 9(X, Y) 

such that if f :h*Hom(X, Y), g:h+Hom(Y, W), then the composition in fir 
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Z=E@E-S Hom( Y, IV)@ Hom(X, Y)- Hom(X, W) 

is the Yoneda product g yf. 
The cohomology of n with coefficients in M is, by definition, H*(n,M)= 

%(Z,M). If P: M’@M”-+M in =Y’ the cup-product relative to p of f :Z+M’, 
g: Z+M” is the composition in 9 

If M and N are in d there is a canonical morphism 

c:Hom(M,N)+Hom(M,N) natural in =-J with He{ the identity. 

Composition with this induces 

<*: H*(n, Hom(M, NN = L&Z, Hom(M, IV))+ C&T?, Hom(M, N)) 

= Ext(M, N) 

and this defines the corresponding map in the statement of Theorem 1.1. For M, N, T 

in d the commutativity of the diagram 

Hom(N, T)@ Hom(M, N) - Hom(M, T) 

Hom(N, T) @ Hom(M, N) - Hom(M, T) 

and the discussion above relating cup- and Yoneda-products with composition in 9 
implies the commutativity of the diagram in Theorem 1.1. 

Since Hom(M, N) (with M and N in .&) has homology Hom(M, N) in degree 0 and 
Extz(M, N) in degree -1, it follows that < is an isomorphism (in L?) if and only if 
ExtZ(M, N) = 0. Dually there is a canonical morphism M@N+M@N, giving rise to 
Tor(M, N)+H*(rr, M@N) with isomorphism when Tor”(M, N) = 0. 
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