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IN THIS paper we will give an algebraic proof of the following result: 

THEOREM. Let f: G+ Q be a surjective homomorphism of groups such that the Kernel is the 
normal closure of a finitely generated perfect group P. Then the homomorphisms 
Tis (f )-*L,"(Q), dejined in Chapter 1 of [2], are isomorphisms for all i. 

Here L:(Q) denotes the Wall surgery obstruction group of Q, defined algebraically in [S], 
and r:(f) is the homology surgery obstruction group of Cappell and Shaneson, defined 
algebraically in [2]. 

This theorem was originally proved by Hausmann in [3] for i even by performing surgery on 
imbedded integral homology spheres. Using a similar technique, Cappell and Shaneson proved 
the theorem in the odd-dimensional case. See [3] for geometric proofs. 

The algebraic methods of the present paper may extend to more general results relating 
homology surgery groups to Wall groups. 

61. ALGJlBRAIc PRELmuNAIuEs 

Throughout this paper I will denote the right ideal of ZG generated by elements of the form 
(p - l), for all p E P, and K will denote the corresponding ideal generated by elements of the form 
(k - 1) for all k in ker f-this will actually be two-sided since ker f is normal in G. Clearly I C K and 
we have: 

LEMMA 1.1. I@ZQ=O. 
ZG 

Proof. I@ZQ = I/I . K. Since 1* C I - K C 1, and since P is perfect, I* = I and the result 

follows. (Selyl], p. Ml-this implies that I* fl ZP = I n ZP.) 

LEMMA 1.2. Let Ig be the right ideal of ZG generated by elements of the form (gpg-’ - 1) for 
all p E P, and let J be a finite sum of ideals of the form IB, . . . I’*, gi E G. Then J is a 
jiniteiy generated right ZG-module such that J @ ZQ = 0. 

ZG 

Proof. First note that 18. K = I&his follows from the fact that Ig is isomorphic, as a 
module, to I, and from Lemma 1.1. It also follows that &, . . .I..” - K = Im . . . IBn and that 
J . K = J so that J @ ZQ = J/J - K = 0. That J is finitely generated follows from the fact that P, 

ZG 
and therefore, I is finitely generated. 

LEMMA 1.3. Let r be an element of K. Then: 

(1) There exists a finitely generated right ideal J(r) such that r E J(r) and J(r)zZQ = 0. 

(2). There exists a kernel (see [5], Lemma 5.3) over ZG, T = (Fe F’, cp, p) with canonical 
subkernel F, and a pre-subkemel B(r) C F (see [2], Section 1.1 for a definition of this term) 
such that the image of B(r) in F” = F @ ZQ is &Z of F” and such that there exist elements 

j E F, k E F’ with the property that ':a) their images are 0 in (F $ F’)zZQ, and @) 

r = cp(j, k) = @(j + k), and (p(t, k) = 0 for all t E B(r). 
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Remarks. The ideals J(r) are used in the even-dimensional case and the pre-subkernels B(r) 
are used in the odd-dimensional case. If we recall the formation-theoretic description of 
homology surgery obstruction groups (see [2], Chapter 1, and [4]) it is not hard to see that the 
triple ((Fe F’, cp, CL), F, B(r)), denoted V(r) throughout the rest of this paper, represents the 
trivial element of an odd-dinensional I-group (see [2], Section 1.2). 

Proof. (1) This is an immediate consequence of 1.2-r is a Z-linear combination of products of 
conjugates of elements in P, and is therefore contained in a finite sum of ideals of the 
form 1,. 

(2). Since J = J(r) is finite generated it follows that there exists a surjective homomorphism 
F+ J, where F is a free ZG-module of finite rank. Call the kernel B(r) and regard the map 
from F to J as defining a linear form p on F. It follows from the fact that J@ZQ = 0 that the 

ZG 
image of B(r) in F” = F@ZQ is all of F”. Let F’ be a free module isomorphic to F and define 

ZG 

a kernel structure on F $ F’ in such a way that F is a canonical subkernel (see [5], Section 
5)--tall the result (F @ F’, cp, p). Since cp is nonsingular, and since HOIY&-(F, ZG) is the image 
of F’ under ad,, it follows that there exists an element k of F’ such that p(x) = 9(x, k) for 
x E F. The nonsingularity of the quadratic form, cp @ 1, on (F $ F’)@ ZQ implies that the 

image of k is 0. The surjectivity of p: F+ J implies that there exists an element j such that 
cp(j, k) = p(j) = r and we may vary j by a suitable element of B(r) to make its image in (F $ F’) @ ZQ 

ZG 

zero, without changing p(j). The remaining statements follow from the properties of kernels. 

$2. THE EVEN-DIMENSIONAL CASE 

In this case we already know that the map ‘y?(f)+ L:(Q) is sujective (see [2], Chapter l), 
and we must show that its kernel vanishes. Let u be an element of IisCf) that maps to a kernel in 
L:(Q). 

Claim. We may assume that the underlying module of v is free and has a basis that maps to 
the standard basis of the kernel in L:(Q). This claim follows from Lemma 1.2 in [2]), i.e., lift 
the standard basis of the kernel to a set of elements of the underlying module of v and map a 
free module to it and pull back the quadratic form. 

Thus, without loss of generality, we may assume that u = (F, cp, p) with F free with basis 
{Xi}, 1 < i I 2k, and with xi @ 1 the canonical basis of u @ ZQ. If q(Xi, Xi) = 0 and p(Xi) = 0 for 
1 5 i, j I k, we could conclude that u was strongly equivalent to zero (see [2], Section 1.1 for a 
definition of this term) in r:(f) and the result would follow. We will define an inductive 
procedure for constructing a sequence of modules with quadratic forms, each equivalent to the 
previous one as elements of r:(f), such that the final element is strongly equivalent to zero. 
Consider x1, x2 the first two basis elements of F (we assume that k 2 2). Since they map to basis 
elements of a standard subkernel over ZQ, it follows that cp(xr, x2) = ri, I. = r2 and p(x2) = r3 
with rl, r2, r2 contained in the ideal K. Let A4 = F $ J(r,) $ J(r2) $ J(r3) and define bilinear 
and quadratic forms on A4 as follows: 

cp’, F’[F = q, p respectively cp’, p’IF(rl)$ F(r2)$ F(r3) = 0 

q’(Xi, 5) = &rj, where rj is contained in J(rj). 

These statements, together with the identities satisfied by the bilinear and quadratic forms of an 
element of If(f) completely define v’ = (M, rp’, CL’) (see [2], Section 1.1). 

Claim. d = v in I’:(f). Form (F, cp, p)$ (M, - t-p’, - p’jthe diagonal image of u is 
clearly a pre-subkernel (see [2], Section 1.1). Now define xi = XI $ - rl $ - r2 and xi = x2$ - r3 
(i.e., distinct ri are contained in orthogonal summands of M). It is easy to verify that 
xi and xi map to the same two basis elements of v @ZQ as XI and x2, respectively, 
and cp’(x;, xi) = p’(x;)= p’(x;)= 0. We may now map the free module on the basis {x:}, 
1 5 i 5 2k, to A4 via a map sending x? to xl, i I 2, and X: to Xi, i > 2, and pull back the quadratic 
form of V’ to obtain an element of r:(f) that is, by Lemma 1.2 of [2], equivalent to V’ and 
therefore to o. 
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We may clearly repeat this procedure a finite number of times so as to obtain a form that is 
strongly equivalent to zero in the sense of Section 1.1 of [2]. 

93. THE ODD-DIMENSIONAL CASE 

In this case we already know that the map Ii”(f)+ L:(Q) is injective (see [2], Section 1.2) 
and we must show that it is also surjective. We will first recall the formation-theoretic 
description of I’groups and Wall groups due to Ranicki in [4]. Let F be a kernel over ZQ; let 
R,, R2 be subkernels, and suppose that R1 is a canonical subkernel. Then the triple (F; RI, R2) 
is called a /onnation over ZQ. If RZ is also a standard subkernel the formation is said to be 
ttivial-note that R2 may be equivalent to R, or its complement (two subkernels are equivalent 
if there is a simple change of basis preserving the quadratic form and carrying one into the 
other). Two formation are simply-isomorphic if their kernels are simply-isomorphic via an 
isomorphism preserving the pair of subkernels. The ‘direct sum of formations is defined by 
(F,; R,, R2)$(Fz; S,, S,) = (F& F2; R,$ S,, R2@ $), and Li”(Q) can be regarded as the 
group of stable simple isomorphism classes of formations over ZQ. Ii”(f) can then be regarded 

as the subgroup generated by formations (F; RI, R,) such that (F; RI, RI) = (F’; RI, T)@$ZQ, 

where F’ is a kernel over ZG with canonical subkernel R; and T is only required to be a 
pre-subkernel (see [2], Section 1.1) over f-we can call (F’; RI, T) a pre-fornation. 

We must show that every formation over ZQ lifts, modulo trivial formations, to a 
pre-formation. Let (F; RI, R2) be a formation over ZQ. Since f: ZG-+ZQ is surjective, it 

follows that (F; R,, R2) = (F’; RI, M)@ZQ, where F’ is a kernel over ZG, RI a standard 
ZG 

subkernel, and M the span of a set of elements of F’ mapping to a basis of R,we will call 
these generators of M{xi]. Note that M is not necessarily a pre-subkernel since the quadratic 
form induced on it by F’ doesn’t necessarily vanish identically. We will give an inductive 
procedure similar to that used in the even-dimensional case to modify M to make it a 

pre-subkernel. Let x1, x2 be two generators of M mapping to basis elements of RZ. Then 
cp(x,, x2) = rlr I = r2, I = r3, where the ri are contained in K. Form the sum. 
(F’: RI, M)$ V(r,)$ V(r,)$ V(r3) (see Lemma 1.3 and the discussion following it), where the 
module M is replaced by M $ B(rJ $ B(rZ)$ B(r3). Let ji, ki be the elements of V(ri) defined 
in Lemma 1.3 and let xi = xl $ jl $ kZ - jz, xi = XZ@ - k, $ k3 $ - j3. It is not difficult to verify 
that cp(xi, xl) = I = I = 0 (using the mutual orthogonality of the B(ri)). Furthermore, we 
have 

where there may be two summands with j’s or k’s paired with B(r,). All such pairings must be 
zero either by orthogonality, the fact that js is contained in the same subkernel as B(r,) in 
V(r,), or the fact that cp(k,, B(r,)) = 0, by Lemma 1.3. It follows that the induced quadratic 
form on M’ C M$B(r1)$B(r2)$ b(r3), where M’ is the span of xi, xi, Xi, i >2, b(r,) must 
vanish everywhere, except perhaps, on the span of Xi, i > 2, and the B - pre-subkernels. We can 
clearly continue this process until we arrive at a pre-subkernel in the direct sum of our original 
kernel F with a finite number of copies of pre-formations of the type V(r). Since these 
pre-formations map to the trivial formation over ZQ, the conclusion of the theorem follows. 
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