HOMOLOGY SURGERY THEORY AND PERFECT GROUPS

JUSTIN R. SMITH

(Received 8 December 1976)

IN THIS paper we will give an algebraic proof of the following result:

THEOREM. Let $f: G \to Q$ be a surjective homomorphism of groups such that the Kernel is the normal closure of a finitely generated perfect group P. Then the homomorphisms $\Gamma_i^s(f) \to L_i^s(Q)$, defined in Chapter 1 of [2], are isomorphisms for all i.

Here $L_i^s(Q)$ denotes the Wall surgery obstruction group of Q, defined algebraically in [5], and $\Gamma_i^s(f)$ is the homology surgery obstruction group of Cappell and Shaneson, defined algebraically in [2].

This theorem was originally proved by Hausmann in [3] for i even by performing surgery on imbedded integral homology spheres. Using a similar technique, Cappell and Shaneson proved the theorem in the odd-dimensional case. See [3] for geometric proofs.

The algebraic methods of the present paper may extend to more general results relating homology surgery groups to Wall groups.

§1. ALGEBRAIC PRELIMINARIES

Throughout this paper I will denote the right ideal of ZG generated by elements of the form (p-1), for all $p \in P$, and K will denote the corresponding ideal generated by elements of the form (k-1) for all k in ker f—this will actually be two-sided since ker f is normal in G. Clearly $I \subset K$ and we have:

Lemma 1.1. $I \bigotimes_{\mathbf{Z}G} \mathbf{Z}Q = 0.$

Proof. $I \bigotimes_{\mathbf{Z}G} \mathbf{Z}Q = I/I \cdot K$. Since $I^2 \subset I \cdot K \subset I$, and since P is perfect, $I^2 = I$ and the result follows. (See [1], p. 190—this implies that $I^2 \cap \mathbf{Z}P = I \cap \mathbf{Z}P$.)

LEMMA 1.2. Let I_g be the right ideal of ZG generated by elements of the form $(gpg^{-1}-1)$ for all $p \in P$, and let J be a finite sum of ideals of the form $I_{g_1} \dots I_{g_n}$, $g_i \in G$. Then J is a finitely generated right ZG-module such that $J \bigotimes_{TG} ZQ = 0$.

Proof. First note that $I_g \cdot K = I_g$ —this follows from the fact that I_g is isomorphic, as a module, to *I*, and from Lemma 1.1. It also follows that $I_{g_1} \ldots I_{g_n} \cdot K = I_{g_1} \ldots I_{g_n}$ and that $J \cdot K = J$ so that $J \bigotimes_{ZG} ZQ = J/J \cdot K = 0$. That *J* is finitely generated follows from the fact that *P*, and therefore, *I* is finitely generated.

and mererore, i is initely generated.

LEMMA 1.3. Let r be an element of K. Then:

(1) There exists a finitely generated right ideal J(r) such that $r \in J(r)$ and $J(r) \bigotimes_{ZG} ZQ = 0$.

(2). There exists a kernel (see [5], Lemma 5.3) over ZG, $T = (F \bigoplus F', \varphi, \mu)$ with canonical subkernel F, and a pre-subkernel $B(r) \subset F$ (see [2], Section 1.1 for a definition of this term) such that the image of B(r) in $F'' = F \bigotimes_{ZG} ZQ$ is all of F'' and such that there exist elements $j \in F$, $k \in F'$ with the property that (a) their images are 0 in $(F \bigoplus F') \bigotimes_{ZG} ZQ$, and (b) $r = \varphi(j, k) = \mu(j+k)$, and $\varphi(t, k) = 0$ for all $t \in B(r)$.

Remarks. The ideals J(r) are used in the even-dimensional case and the pre-subkernels B(r) are used in the odd-dimensional case. If we recall the formation-theoretic description of homology surgery obstruction groups (see [2], Chapter 1, and [4]) it is not hard to see that the triple $((F \bigoplus F', \varphi, \mu), F, B(r))$, denoted V(r) throughout the rest of this paper, represents the trivial element of an odd-dimensional Γ -group (see [2], Section 1.2).

Proof. (1) This is an immediate consequence of 1.2-r is a Z-linear combination of products of conjugates of elements in *P*, and is therefore contained in a finite sum of ideals of the form I_g .

(2). Since J = J(r) is finite generated it follows that there exists a surjective homomorphism $F \to J$, where F is a free ZG-module of finite rank. Call the kernel B(r) and regard the map from F to J as defining a linear form ρ on F. It follows from the fact that $J \bigotimes_{ZG} ZQ = 0$ that the image of B(r) in $F'' = F \bigotimes_{ZG} ZQ$ is all of F''. Let F' be a free module isomorphic to F and define a kernel structure on $F \oplus F'$ in such a way that F is a canonical subkernel (see [5], Section 5)—call the result $(F \otimes F', \varphi, \mu)$. Since φ is nonsingular, and since $\operatorname{Hom}_{ZG}(F, ZG)$ is the image of F' under $\operatorname{ad}_{\varphi}$, it follows that there exists an element k of F' such that $\rho(x) = \varphi(x, k)$ for $x \in F$. The nonsingularity of the quadratic form, $\varphi \otimes 1$, on $(F \oplus F') \bigotimes_{ZG} ZQ$ implies that the image of k is 0. The surjectivity of $\rho: F \to J$ implies that there exists an element j such that $\varphi(j, k) = \rho(j) = r$ and we may vary j by a suitable element of B(r) to make its image in $(F \oplus F') \bigotimes_{ZG} ZQ$

zero, without changing $\rho(j)$. The remaining statements follow from the properties of kernels.

§2. THE EVEN-DIMENSIONAL CASE

In this case we already know that the map $\gamma_i^s(f) \to L_i^s(Q)$ is surjective (see [2], Chapter 1), and we must show that its kernel vanishes. Let v be an element of $\Gamma_i^s(f)$ that maps to a kernel in $L_i^s(Q)$.

Claim. We may assume that the underlying module of v is free and has a basis that maps to the standard basis of the kernel in $L_i^s(Q)$. This claim follows from Lemma 1.2 in [2]), i.e., lift the standard basis of the kernel to a set of elements of the underlying module of v and map a free module to it and pull back the quadratic form.

Thus, without loss of generality, we may assume that $v = (F, \varphi, \mu)$ with F free with basis $\{x_i\}, 1 < i \le 2k$, and with $x_i \otimes 1$ the canonical basis of $v \otimes \mathbb{Z}Q$. If $\varphi(x_i, x_i) = 0$ and $\mu(x_i) = 0$ for $1 \le i, j \le k$, we could conclude that v was strongly equivalent to zero (see [2], Section 1.1 for a definition of this term) in $\Gamma_i^s(f)$ and the result would follow. We will define an inductive procedure for constructing a sequence of modules with quadratic forms, each equivalent to zero. Consider x_1, x_2 the first two basis elements of F (we assume that $k \ge 2$). Since they map to basis elements of a standard subkernel over $\mathbb{Z}Q$, it follows that $\varphi(x_1, x_2) = r_1$, $\mu(x_1) = r_2$ and $\mu(x_2) = r_3$ with r_1, r_2, r_2 contained in the ideal K. Let $M = F \oplus J(r_1) \oplus J(r_2) \oplus J(r_3)$ and define bilinear and quadratic forms on M as follows:

$$\varphi', \ \mu'|F = \varphi, \mu$$
 respectively $\varphi', \mu'|F(r_1) \oplus F(r_2) \oplus F(r_3) = 0$

 $\varphi'(x_i, r_j) = \delta_{ij}r_j$, where r_j is contained in $J(r_j)$.

These statements, together with the identities satisfied by the bilinear and quadratic forms of an element of $\Gamma_i^s(f)$ completely define $v' = (M, \varphi', \mu')$ (see [2], Section 1.1).

Claim. v' = v in $\Gamma_i^s(f)$. Form $(F, \varphi, \mu) \oplus (M, -\varphi', -\mu')$ —the diagonal image of v is clearly a pre-subkernel (see [2], Section 1.1). Now define $x'_1 = x_1 \oplus -r_1 \oplus -r_2$ and $x'_2 = x_2 \oplus -r_3$ (i.e., distinct r_i are contained in orthogonal summands of M). It is easy to verify that x'_1 and x'_2 map to the same two basis elements of $v \otimes \mathbb{Z}Q$ as x_1 and x_2 , respectively, and $\varphi'(x'_1, x'_2) = \mu'(x'_1) = \mu'(x'_2) = 0$. We may now map the free module on the basis $\{x''_i\}$, $1 \le i \le 2k$, to M via a map sending x''_i to x'_i , $i \le 2$, and x''_i to x_i , i > 2, and pull back the quadratic form of v' to obtain an element of $\Gamma_i^s(f)$ that is, by Lemma 1.2 of [2], equivalent to v' and therefore to v.

We may clearly repeat this procedure a finite number of times so as to obtain a form that is strongly equivalent to zero in the sense of Section 1.1 of [2].

§3. THE ODD-DIMENSIONAL CASE

In this case we already know that the map $\Gamma_i^s(f) \rightarrow L_i^s(Q)$ is injective (see [2], Section 1.2) and we must show that it is also surjective. We will first recall the formation-theoretic description of Γ -groups and Wall groups due to Ranicki in [4]. Let F be a kernel over ZQ; let R_1, R_2 be subkernels, and suppose that R_1 is a cononical subkernel. Then the triple $(F; R_1, R_2)$ is called a *formation* over ZQ. If R_2 is also a standard subkernel the formation is said to be *trivial*—note that R_2 may be equivalent to R_1 or its complement (two subkernels are equivalent if there is a simple change of basis preserving the quadratic form and carrying one into the other). Two formation are simply-isomorphic if their kernels are simply-isomorphic via an isomorphism preserving the pair of subkernels. The direct sum of formations is defined by $(F_1; R_1, R_2) \oplus (F_2; S_1, S_2) = (F_1 \oplus F_2; R_1 \oplus S_1, R_2 \oplus S_2)$, and $L_i^s(Q)$ can be regarded as the group of stable simple isomorphism classes of formations over ZQ. $\Gamma_i^s(f)$ can then be regarded

as the subgroup generated by formations $(F; R_1, R_2)$ such that $(F; R_1, R_2) = (F'; R'_1, T) \bigotimes_{ZG} ZQ$,

where F' is a kernel over ZG with canonical subkernel R'_1 and T is only required to be a *pre-subkernel* (see [2], Section 1.1) over f—we can call $(F'; R_1, T)$ a *pre-formation*.

We must show that every formation over ZQ lifts, modulo trivial formations, to a pre-formation. Let $(F; R_1, R_2)$ be a formation over ZQ. Since $f: ZG \rightarrow ZQ$ is surjective, it follows that $(F; R_1, R_2) = (F'; R'_1, M) \bigotimes_{ZG} ZQ$, where F' is a kernel over ZG, R'_1 a standard subkernel, and M the span of a set of elements of F' mapping to a basis of R_2 —we will call these generators of $M\{x_i\}$. Note that M is not necessarily a pre-subkernel since the quadratic form induced on it by F' doesn't necessarily vanish identically. We will give an inductive procedure similar to that used in the even-dimensional case to modify M to make it a pre-subkernel. Let x_1, x_2 be two generators of M mapping to basis elements of R_2 . Then $\varphi(x_1, x_2) = r_1$, $\mu(x_1) = r_2$, $\mu(x_2) = r_3$, where the r_i are contained in K. Form the sum $(F': R'_1, M) \oplus V(r_1) \oplus V(r_2) \oplus V(r_3)$ (see Lemma 1.3 and the discussion following it), where the module M is replaced by $M \oplus B(r_1) \oplus B(r_2) \oplus B(r_3)$. Let j_i, k_i be the elements of $V(r_i)$ defined in Lemma 1.3 and let $x'_1 = x_1 \oplus j_1 \oplus k_2 - j_2$, $x'_2 = x_2 \oplus -k_1 \oplus k_3 \oplus -j_3$. It is not difficult to verify that $\varphi(x'_1, x'_2) = \mu(x'_1) = \mu(x'_2) = 0$ (using the mutual orthogonality of the $B(r_i)$). Furthermore, we have

$$\varphi(x_i', B(r_t)) = \varphi(x_i, B(r_t)) \pm \varphi(j_s, B(r_t)) \pm \varphi(k_n, B(r_t))$$

where there may be two summands with j's or k's paired with $B(r_i)$. All such pairings must be zero either by orthogonality, the fact that j_s is contained in the same subkernel as $B(r_s)$ in $V(r_s)$, or the fact that $\varphi(k_n, B(r_n)) = 0$, by Lemma 1.3. It follows that the induced quadratic form on $M' \subset M \bigoplus B(r_1) \bigoplus B(r_2) \bigoplus b(r_3)$, where M' is the span of $x'_1, x'_2, x_i, i > 2$, $b(r_i)$ must vanish everywhere, except perhaps, on the span of $x_i, i > 2$, and the B - pre-subkernels. We can clearly continue this process until we arrive at a pre-subkernel in the direct sum of our original kernel F with a finite number of copies of pre-formations of the type V(r). Since these pre-formations map to the trivial formation over $\mathbb{Z}Q$, the conclusion of the theorem follows.

REFERENCES

- 1. HENRI CARTAN and SAMUEL EILENBERG, Homological Algebra. Princeton University Press (1956).
- 2. SYLVAIN CAPPELL and JULIUS SHANESON, The codimension-two placement problem and homology-equivalent manifolds,
- Ann. Math. 99 (1974), 227-348.
- 3. JEAN-CLAUDE HAUSMANN, Homological surgery, Ann. Math. 104 (1976), 585-609.
- 4. A. RANICKI, Algebraic L-theory, I: Foundations, Proc. London Math. Soc. 3 (1973), 101-125.
- 5. C. T. C. WALL, Surgery on Compact Manifolds. Academic Press (1970).

Herman Brown Hall Rice University Houston, Texas 77001