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This paper studies the following question: Given a group n, and a projective Z w-chain complex C, 

does there exist a topological space with a fundamental group rr and with the property that the 

chain-complex of its universal cover is chain-homotopy equivalent to C? This is a generalization 

of the Steenrod Problem. In the Steenrod Problem (proposed by Steenrod in 1960) the chain 

complex was a projective resolution of a Zp-module. The present paper develops an obstruction 

theory for the existence of topological realizations of a chain-complex, algebraically classifies 

these realizations (if the obstructions vanish), and proves that rational chain-complexes are always 

stably realizable. 
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Steenrod problem Equivariant Moore spaces 

Introduction 

The Steenrod Problem was studied by a number of people (including the author 

of the present paper) and a number of different approaches were developed. The 

first example of a module that wasn’t topologically realizable (at least the way the 

problem was stated above) was due to Gunnar Carlsson in [3]. Several obstruction 

theories were also developed to topologically realizing a module-see [13, 14, 1, 10 

and 1 l]-and several other counterexamples were discovered. 

The more general question of the topological realizability of chain complexes is 

interesting in connection with the question of which homotopy types of manifolds 

exist and what group-actions can be imposed on manifolds. In many interesting 

cases one can describe the equivariant chain-complex that a manifold with a 

prescribed group-action would have. At that point the question arises of whether 

there exists a topological space realizing the given chain-complex (if the space exists 

various forms of surgery theory can be used to study the question of the existence 

of the manifold). 
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This more general question has remained open, however. The theories developed 

to study the Steenrod Problem haven’t been much help in resolving this issue, either, 

except in fairly trivial cases. 

The present paper attempts to build a Postnikov tower whose chain complex is 

chain-homotopy equivalent to the given complex. The theory of Wall in [15] can 

then be used to find a CW-complex whose cellular chain complex is isomorphic to 

the complex that we started with. 

The approach in the present paper may be regarded as an extension of a dual to 

the theory in [13]. In [13] the chain complex of a partial Postnikov tower was 

mapped to the projective resolution that was being topologically realized. In the 

present paper the chain complex in question is mapped to that of the partial Postnikov 

tower. 

The main results are as follows: 

Theorem. Given a ZT-chain complex T such that H,(T) = Z and H,(T) = 0 there is 

an obstruction theory for determining whether T is chain-homotopy equivalent to the 

chain-complex of a topological space. The obstructions are elements of H’( T; M,) 

where the M, are Zr-modules computed inductively during the construction of a 

topological realization of T. In particular, if T is finite dimensional, there are only a 

finite number of nontrivial obstructions to realizing T. 

Theorem. Zf T is a finite-dimensional rational chain-complex such that HO( T) = 0 (i.e. 

a projective chain-complex over Qrr) then there exists a positive integer n such that 

Q 0, 1” T is topologically realizable. Here Q is a free Qrr-resolution of Q and 

Q 0, C” T is any twisted direct sum. 

Remark. A twisted direct sum Q 0, C” T is defined to be C-’ B(q), where %(*) is 

the algebraic mapping cone and n : Q -+ 1”” T is a chain-map. This construction 

is introduced here because we want to suspend T without killing the a is dimension 

0 that means it is a connected space. In this theorem T represents the kernel of the 

augmentation and the twisted equivalent to T-the twisting map will represent the 

first k-invariant. See [12] for more information on the twisted direct sum. 

Even in the case of equivariant Moore spaces the present approach seems to 

make computation of the obstructions easier to carry out (although it is shown that 

the present approach is equivalent to the theory in [13] for equivariant Moore spaces). 

The organization of the paper is as follows: 

Section 1 describes the obstruction theory in terms of an algebraic construction 

and a topological one. It also defines the obstructions to carrying out the algebraic 

step and proves the results stated above. 

Section 2 proves that the topological step in the construction of the realization 

of T can always be carried out. 



1. The obstruction theory 

In this section we will develop the main geometric construction that is used to 
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realize equivariant chain-complexes. Throughout this paper T will denote a Zrr- 

chain complex that we want to realize and ( T)k will denote its k-skeleton. We 

assume that HO(T) = Z and H,(T) =O. All spaces will be assumed to be semi- 

simplicial sets and their chain-complexes will be the normalized semi-simplicial 

chain-complexes of their universal cover; equipped with a Zrr-module structure. 

The equivariant, semi-simplicial chain-complex of X will be denoted CT(X). 

Definition 1.1. A topological realization of T will be defined to be a triple (i, A X), 

where i is an isomorphism i: V+ rl(X) and f: T+ CT(X) is a chain-homotopy 

equivalence. Two such realizations (4, 6, X,), j = 1, 2, will be called equivalent if 

there exists a homotopy equivalence of spaces g : X, + X, such that g”o i, = iz and 

g#of, is chain-homotopic to f2. 

The construction of a topological realization of T will be done in stages and the 

result of the ith stage will be a topological space denoted X,. 

Definition 1.2. If f: C + D is a chain-map of chain-complexes, ‘u(f) will denote the 

algebraic mapping cone off: %(f), = C, 0 D,_l, with boundary maps a, given by: 

Remark 1. We have the well-known exact sequence: 

. ..~Hi(C)~H.(D)~H,(~(f))-,Hi_,(C)~... 

and it is well-known that a(f) measures the extent to which f fads to be a chain 

homotopy equivalence. 

Remark2. Essentially, the procedure for realizing a chain-complex presented in 

this section is a modification of a relative version of that given in [ 131 for constructing 

equivariant Moore spaces. In the present paper we will build a Postnikov tower 

whose chain complex is equivalent to T. This is done by forming fibrations (with 

fiber a suitable Eilenberg-MacLane space) that have the effect of killing homology 

modules of ‘rx(f), where f is a map from T to the chain complex of the space 

constructed so far. 

The construction begins with ( T)2 as the 2-skeleton of T and X0 = X, = K( 7~, 1). 

Let C”(X,) =Z+, which is a Zr-resolution of Z and let f2: ( T)2+ C”(X,) be the 

unique chain-homotopy class of chain maps that induces an isomorphism of Ho- 

such a map exists because H,,(T) = 72. Then X2 = K( r, 1) is the 2-dimensional 

approximation to a topological realization X of T and f2 is the 2-dimensional 
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approximation to a mapffrom T to the chain complex of X that is a chain-homotopy 

equivalence. In general fk : ( T)k + Cm(Xk) is a chain-map such that %(fk) is acyclic 

in dimensions <k. The construction of Xk+i from Xk proceeds as follows: 

Step Ak. Extend_& to ( T)ki’ forming gk+i. Strictly speaking, this is not an extension 

since fk may be modified in dimension k in the process. We require that gk+l I( T)k+’ = 

hi(T)“-‘. 
Step &. Form a fibration over Xk in such ‘a way that &(a(gk+l)) is killed. The 

fiber of this fibration is a K(Hk(%(gk+i)), k- 1) and the total space is Xk+i) and 

this lift is the map fk+,. 

Remark. The remainder of this section will be spent giving the details of these steps, 

showing that they result in a topological realization of T and showing that the 

obstructions to carrying out these steps vanish identically if T is topologically 

realizable. 

Definition 1.3. Let fk, ( T) kt’ be as in step k described above. Define a class (which 

will be called the kth obstruction to realizing T) ck E Hkt’( T; Hk( Cw(Xk))) as 

follows: 

(a) Note that, since fk is a chain map, the cycle submodule of Tk is mapped into 

the cycle submodule of Cm(Xk)k so that we get a map from the cycle submodule 

of Tk to &(Cr(Xk)). 

(b) Consider the composite Tk+l + Z( Tk)+ Hk(CB(Xk)), where the map on the 

left is the boundary map of T and that on the right is induced by fk. This composite 

defines a cocycle that gives the class C~ 

Remark 1. It turns out that this is the only place where nontrivial obstructions to 

realizing t will be encountered. 

Remark 2. Suppose T is of the form Z+OC” P, where 2, is a Zrr-projective resol- 

ution of Z and P is a projective resolution of a module M. A topological realization 

of this complex constitutes an equivalent Moore space of type (M, n, r). 

The problem of realizing such complexes was studied in [13] and an obstruction 

theory was developed with obstructions that were essentially homological k- 

invariants of the complexes C”(Xk). The obstructions in the present paper turn out 

to also be homological k-invariants, in this case. If the first homological k-invariant 

of Cw(Xk) is some class (YE Extiy (M, H,,+k) then Cx(X,) is chain-homotopy 

equivalent (at least up to dimension n + k + 1) to a twisted direct sum Z+O 

(C” P 0, xntk H) where a cocycle representative for (Y is used to define a chain 

map cy: CnP+Cn+k+l H and a twisted direct sum is a desuspension of an algebraic 

mapping cone (see [9] for details). If we define fk : (Z+OC” P)ntk + Z+ 0, Cn+k H) 

to be the inclusion it is not hard to see that the obstruction, in the sense of the 

present paper, is precisely (Y. 
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In general we will have to take into account the maps in homology induced by 

the homotopy equivalence with the twisted direct sum. It is clear, however, that the 

theory presented in the present paper is equivalent to that in [13] in the case of 

equivariant Moore spaces. 

Proposition 1.4. Step Ak can be carried out if and only if the class ck E 

Hkf’( T; Hk(Cr(Xk))), dejined above, vanishes. 

Proof. (1) Suppose the class vanishes. Then the cocycle defined by the composite 

dk+lofk is the pullback over d k+, of a map g: Tk + Hk( C”(&))-i.e. the map from 

dk+,( Tk+,) to the Cycle submodule Of Cn(&)k defining ck extends to all Of Tk. Call 

the extension g: Tk -3 (cycle submodule of r(Xk)k). Now replace fk by gk+l = fk -g: 

( T)k + C”(X,) (where we only alter fk in dimension k). The result is still a chain 

map since the image of g is the cycle submodule of CT(&),, and it agrees with fk 

on (T)kf’. The result is a map gk+i: ( T)k + Hk(Cm(Xk)) whose restriction to 

dk+l( Tk+l) vanishes. This vanishing implies that gk+, lifts to a map Tk + (cycle 

submodule of cx(xk)k) with the property that the image of dk+,(Tk+,) iS in the 

boundary submodule. Since Tk+, is projective we can clearly lift gk+l o dk+, : Tk+, + 

cT(xk)k t0 get a map gk+l : Tk+l+ c”(xk)k+l and the result is clearly a chain-map. 

(2) Suppose the map fk extends to a map gk+l : ( T)ktl + C”(Xk). Notice that the 

ChSS ck iS hear with RSpeCt t0 fk iI3 the following sense: iff; and f i are tW0 IIMpS 

from (T)k+C”(X,J then ck(f;+f;l)=ck(f;)+ck(f;). Now note that c&k+,) 

vanishes identically (since gk+i is a chain map in dimension k+ 1 so that the image 

of dk+,( Tk+,) is in the boundary submodule of cm(&),). Also note that gk+l-fk 1 Tk 

must have its image in the cycle submodule of c=(xk)k since it is part of a chain 

map that vanishes in lower dimensions (because the extension must agree with the 

original map in lower dimensions). It follows that ck(gk+i -fk) = O-in this case the 

cocyle doesn’t vanish identically but it is a coboundary. The conclusions follows. q 

Remark 1. Varying gk+* by a coboundary amounts to a chain homotopy and so 

replaces %(gk+l) by an isomorphic complex. Adding an element of 

Hk( T; Hk(C-(Xk))) does alter ‘%(gk+l) but only in dimensions 2 k. In particular 

it doesn’t change the fact that gk+i is k - 1 -connected. 

Remark 2. Note that in argument (1) we could have added any cocycle yk E 

Hk( T; &(CB(Xk))) to g to get the map gk+l. Furthermore, if g’ is any other 

extension of fk the difference between g k+i and g’ (in dimension k) is a cocycle in 

Hk(T; &(Cr(X,))). If e:Hk(T; Hk(CB(Xk)))-,HOmz,(Hk(T), &(c*(xk))) iS 

the evaluation map then adding yk to g alters the resulting map of homology modules 

by e(yk). They also determine higher ck’s so that the obstructions to realizing T 

might vanish for some choices of yk but not for others. 

Remark3. In general fk defines an element sk E Hk( T; Hk(Cw(Xk))) that will be 

called the kth s-invariant of the realization. These invariants classify the realizations 

up to equivalence-see Definition 1.1. 
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Section 2 of this paper will be spent proving the following: 

Proposition 1.5. Step Bk can always be carried out. 

The main result of this paper is: 

Theorem 1.6. If T is a finite-dimensional chain-complex with top dimension n then T 

can be topologically realized if and only if there exists a sequence of choices of 

yk E Hk( T; Hk( Cm(Xk))) for k < n such that for each k, ck+* vanishes. If T is infinite- 

dimensional the same result is true but the ck must vanish for all values of k. 

Remark 1. The results of Wall in [ 151 imply that if T is realizable in the sense of 

this paper then we can even find a CW complex realizing T whose cellular chain 

complex is isomorphic to T. 

Remark 2. Not all elements of Hk( T; Hk( CV(Xk))) can occur as obstructions to 

some realization problem. The following example (which I studied in detail in [ 141) 

demonstrates this: In that example I constructed a twisted direct sum Z O5 C’Z, 

where the fundamental group was z5 and [E H3(Z5, Z). It turned out that the first 

obstruction to realizing the twisted direct sum was precisely 25 so that obstruction 

elements are multiples of 2. This must be true whenever n = 2’ and H2( T) =Z, 

since the 3-skeleton of T will be equivalent to a twisted direct sum like the one in 

the example. 

Proof. (1) Suppose that the hypothesis is satisfied. 

Claim. There exists a chain-map wk. . T + CV(Xk) for all k, and this map commutes 

with the chain-maps pk+i: Cr(Xk+l)+ C”(Xk) induced by the projections of the 

fibrations, for all k. 

This is an immediate consequence of the way the maps fk : ( T)k + C”(Xk) were 

defined. Since gk+, I( T)kpl = fk I( T)k-’ and fk+, is a lift of gk+r we can define 

wk: T,+ Cr(Xk), to be the composite Pko. . . ~P,,+~of~+~ when n> k-2 and fk 

otherwise. So we have a tower of fibrations . . .Xk + X&r + . . . + X, + X0 such that 

there exists a chain map from T to each term of the induced inverse system of 

chain-complexes. This gives rise to a chain map from T to the chain complex of 

the inverse limit X, that is a chain homotopy equivalence. 

(2) Conversely, if T is topologically realizable by a space X then there clearly 

exists a chain map from T to the chain-complexes of all the partial Postnikov towers . 
of X so that Proposition 1.4 implies the conclusion. 0 

The remainder of this section will be spent exploring consequences of this result. 

Note that, since the first nontrivial obstruction is c2 and since ck E 

Hk+‘( T; Hk( CV(X,))): 
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Proposition 1.7. If the top dimension of T is n there are at most n -2 nontrivial 

obstructions to realizing T topographically. 

Now we will consider rational chain-complexes. These are projective chain com- 

plexes over Qrr rather than j2~. 

Definnition 1.8. A stable realization of a chain complex T, with H,,(T) = 0 is a 

realization of Z 0, C”’ T, for some value of m and some twisting map n : Z + Cm+’ T, 

where 2 is a free Zr-resolution of Z. 

Lemma 1.9. If T is a Jinite-dimensional rational chain-complex, then T is stably real- 

izable. 

Remark 1. A similar result is true for infinite-dimensional rational chain-complexes 

if we work in categories of stable chain-complexes and spaces. Roughly speaking 

a topological realization of a chain-complex in such a category is a sequence of 

stable realizations of all finite skeleta. 

Remark 2. The corresponding unstable result is not true-the example given in 

[14] is also a rational non-realizable chain-complex. 

Proof. Suppose T is n-dimensional. We will find a realization of C”” T. We will 

use the fact that the homology of a rational Eilenberg-MacLane space vanishes in 

the stable range-i.e. K(M, n + 1) has vanishing homology in dimensions > n + 1 

and <2n+2-see [6]. 

A simple inductive argument (using the Serre exact sequence of a fibration, for 

instance) shows that H,(X,) =0 for n+ 1 < k < 2n +2. In other words, whenever 

we want to adjoin a new term to the partial Postnikov tower the homology module 

in the dimension that concerns us starts out being zero. But this immediately implies 

that the obstruction to adjoining the new term vanishes identically. 

Furthermore, above dimension 2n + 1 the chain-modules of T vanish so all 

obstructions vanish. 0 

2. Proof of Proposition 1.4 

We will begin by developing some of the algebraic machinery needed to do 

computations with DGA-algebras. We will also present some of the relevant results 

of Gugenheim on computing chain complexes of fibrations (see [8]). 
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Definition 2.1. Let f: C + 0, g : D + C be maps of chain-complexes. Then: 

(1) if f maps each Ci to Ditk then f will be called a map of degree k; 

(2) if f is a map of degree k then df is defined to be d,of+ (-l)kt’fod,. The 

map f is defined to be a chain map if it is of degree 0 and df = 0. 

(3) if f and g, above, are both chain maps and: 

(a) fog = lD, and gof = dp, where cp is some map of degree+ 1; and 

(b) foq=O, rpog=O, and cp’=O; 

then the triple (f, g, ~0) is called a contraction of C onto D. The map f is 

called the projection of the contraction, and g is called the injection. 

Remark 1. Since df has the special meaning given above, we will follow Gugenheim 

in [7] in using d of to denote the composite. 

Remark 2. We will also use the convention that if f: C, + D, , g : C2 + O2 are maps, 

and a 0 b E C,O C2 (where a is a homogeneous element), then (f Og)( a 0 b) = 

(-1) deg(g)deg(a)f (a) 0 g(b). This convention simplifies some of the common 

expressions in homological algebra. For instance the differential, do, of the tensor 

product C 0 D is just d, 0 1 + 10 dD. 

Remark 3. It is not difficult to see that the definition of a chain-map given above 

coincides with the usual definition. 

Remark 4. The definition of a contraction of chain complexes given here is slightly 

stronger than the original definition due to Eilenberg and MacLane in [5], since 

they don’t require the chain-homotopy to be self-annihilating. 

The present definition is due to Weishu Shih in [12]. 

Definition 2.2. (1) A triple (A, cp, 7) will be called a DGA-algebra if A is a Zr-chain 

complex and cp and r) are Zm-chain maps: q:A@A+ A, 77 :Z-+A such that 

(po(~Ol,) = (p~(l~Oq)= lA and cp~(l~O~); 
(2) A triple (B, I+!J, E) will be called a DGA-algebra if B is a Z7r-chain complex 

and $I and E are Z7r-chain maps: $: B + BOB, E: B+Z such that (.z@l,)o$= 

(lBO~)o+ = lB and ($Ole)o+ = (leO~)~~l; 

Remark 1. The chain complex of any topological space X can be regarded as a 

DGA coalgebra via the Eilenberg-Zilber theorem applied to the diagonal map of 

the space. 

Remark 2. Using the definition of Eilenberg-MacLane spaces given in [5], the chain 

complex of any Eilenberg-MacLane space is a DGA algebra. 

Definition 2.3. Let B be a DGA-coalgebra and A be a DGA-algebra. Let x and y 

be chain maps from B to A. Then: 
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(1) the cap product with respect to x, denoted x n , is defined to be the composite 

(~.O~~)~(~~OX~~A)O(~C~~~A):BOA~BOA; 

(2) the cupproduct ofx andy, denoted x u y, is the composite cpo(xOy)~$ : B + A; 

(3) if x is a map of degree - 1 that has the property that dx + x u x = 0 then the 

twisted tensor product B 0, A is defined to be the chain-complex BOA, equipped 

with the differential d, = dsoa + x n . 

Remark 1. The condition on x in statement 3 implies that the differential for the 

twisted tensor product is self-annihilating-see [7]. In this case the map x is called 

the twisting cochain of the twisted tensor product. 

Remark 2. Twisted tensor products were originally defined to study the chain com- 

plex of a fibration. Fibrations can be described as semi-simplicial complexes as 

‘twisted Cartesian products’-see [8, p. 4051 or [12, Chapter 21. The main result 

(see [8] for details) in this direction is that there exists a contraction (f,, gg, cps): 

C( B xg F) + C(B) O5 C(F) from the chain complex of the total space of a fibration 

to the twisted tensor product of that of the base and that of the fiber. 

Since all maps involved are natural the corresponding statement is also true for 

the equivariant chain-complexes. This is significant for the chain-complex of the 

fiber even though it will be simply-connected because it will be equipped with an 

action of rrr( B). The twisted tensor product is equipped with the diagonal n-action. 

The twisting cochain in the twisted tensor product is related to the twisting function 

by a formula given in [8]-essentially, if w is the twisting function the twisting 

cochain is a polynomial function of w - 1 (where F is regarded as a topological 

ring so its simplices can be multiplied). 

Furthermore, we can assume that all chain-complexes are normalized-see [5, 

sections 4, 51, which defines normalization and proves the Eilenberg-Zilber theorem 

for such complexes. 

This assumption will be in effect throughout the remainder of this section. 

Remark3. Suppose that the normalized chain complex of F vanishes below 

dimension n (except for a copy of Z in dimension 0) and that the 2-skeleton of B 

is the same as that of Z+, a Zr-free resolution of Z. Then the twisted tensor product 

will consist of a (twisted) direct sum of: 

(a) a copy of (Z+)‘@C(F)+= C”(F)“; 

(b) a copy of C”(B)OZ = C”(B); 

(c) a copy of C” CT( B)‘O(C2 Cv( F)+); 

Here the + denotes the kernel of the augmentation map and we have identified 

the 2-skeleton of C”(B) with that of Z+. Thus, below dimension n + 2 the twisted 

tensor product is essentially a twisted direct sum or Z-’ of the algebraic mapping 

cone of the map 5: C=(B) + C C”(F)“. In this dimension range (<n + 3) the identity 

that the twisting cochain must satisfy is essentially that of a chain-map to the 

suspension. 
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Here the differential on the twisted tensor product is such that C(F) (inclusion 

of the fiber) and the twisted direct sum Cr( B) O5 C”(F)” are subcomplexes of 

C”p(B) 0, C(F). 

Remark 4. Suppose X is a topological space acted upon by a group rr and f: X + 

K(M, n) is a n-equivariant map, where M is a Zrr-module. Then it is possible to 

pull back the universal fibration over K( A4, n) which has fiber a K( A4, n - l), a 

contractible total space, and is also acted upon by r. The result is a K((A4, n - l)- 

fibration over X with rr acting on X, the total space, and the fiber and such that 

the projection is r-equivalent. 

Now we are in a position to describe the fibration that must be used to construct 

X k+l. We assume given a map gk+, : ( T)k+’ + cw(&) such that H,(%(gk+,)) = 0 for 

i< k. Consider the homomorphism 

induced by the inclusion h: C=(Xk)+%(gk+,). Since (a(&+,) is a projective Zrr- 

chain complex that is bounded from below it follows that the evaluation map 

e: Hk(gU(gk+l); Hk(%?k+l))) + HO%,(&(%Tk+,)), Hk(sx(gk+,))) 

is an isomorphism. Select a class cE Hk(‘ZX(gk+,); Hk(%(gk+,))) that maps to the 

identity map of Hk(%(&+,)) and form the fibration over Xk classified by h*(c)-this 

will have fiber a X(Hk(%(gk+,)), k - 1). 

This is done by regarding h*(c) as a map Xk + K(ffk(%?k+,)), k) and pulling 

back the universaal fibration of the target over this map. If we use the semi-simplicial 

complex for K(Hk(%(gk+,)), k) given in [5, section 171 this map can be described 

very explicitly. 

Simply map a k-dimensional simplex, s, of Xk to the unique simplex of the 

Eilenberg-MacLane space whose symbol is [a(s)]@ 10. . *O 1 (see [5] or 

[4, p. 131) where U: cm(xk)k + ffk(%(gk+,)) iS a COCyCle repreSenting the ClaSS C; 

and then extend the (geometric) map to all of Xk. The extension will be unique-see 

[4, P. 141. 
Let T:_&+,+& be the pullback of the universal fibration over 

K(Hk(a(gk+,)), k). 

Proposition 2.4. The chain map gk+, : ( T)k+’ + Cm-( Xk) can be lifted to a chain map 

fkt, : ( T)k+’ + C”(X,+,). This lift is unique, up to a chain-homotopy. 

Proof. We will make use of the contraction mentioned above: 

(r,, s,, %): c-(x,+,)+ c?r(xk) 0, CT(K(Hk(~(gk+l)), k-1)). 

We will really map ( T)k+’ to the twisted tensor product via a mapfk+, and compose 

this map with s, to get the map fk+l to c”(-&+,). 

Claim. It is enough to lift gk+, to the twisted direct sum 

Cr(Xk) 0, C=(K(Hk(%(gk+,)), k- 1))“. This follows from Remark 3 following 2.3, 
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which implies that this twisted direct sum is a subcomplex of the twisted tensor 

product. 

Since Cr( K(Hk(‘8(gkfl)), k - 1)” vanishes below dimension k - 1 we can define 

f:+, to equal gk+r in this range-i.e. to have its target in the C”(X,)-summand. It 

is, therefore, only necessary to define f k+, in dimensions k and k+ 1. Consider the 

map rOgktl : Tk + Cm-( K( Hk(‘u(gk+I)), k - 1)):. Since it vanishes identically below 

dimension k, and since it induces the zero map in homology, it follows that there 

exists some map p: Tk+ C”(K(H,(%(g,+,)), k- l))E+r such that Togk+, = dep. So, 

define fk+,=gk+,@p: Tk+C”(Xk)O,C=(K(Hk(%(gk+,)), k-l))“. We can also 

extendf;,, to dimension k+ 1 since Hk(K(H,(‘IX(g,+r)), k- 1)) =0 (see [6, section 

201). 
Now we will show that the map fi+, : T-, cm(xk) 0, C(K(Hk(gxl(gk+l)), k- 1))” 

actually lifts gk+r. It is not hard to see that the composite off;+, with the projection 

to the first factor coincides with gk+r. It follows that the corresponding map 

fk+l: T+ cm(xk) 0, C(K(Hk(~(gk+d), k- 1) composed with 10~ also coincides 

with gk+r, where F: C(K(ffk(%(gk+,)), k- l))+Z is the augmentation (a 

homomorphism of DGA-algebras that is a left inverse for the unit). That the 

composite fk+r = g7’fji+r : T+ C”(X,+,) is also a lift of gk+r now follows from the 

naturality of the contraction (I,, s,, Cp,): cii(xk+,)+ CT(&) 0, C(K(f&(%(&+,)), 

k - 1)) with respect to maps of the fiber-i.e. map the fibration to a trivial fibration 

over Xk that has fiber a point-that map (of spaces) coincides with the projection 

of the original fibration to the base space. 0 

Proposition 2.5. The kj? constructed above has the property that Hi(%(fk+l)) = 0, i G k. 

Proof. First note that Hi(%(fk+l)) = 0, is k - 1-i.e. we haven’t lost anything by 

lifting the map. This follows immediately from considering the map of the exact 

sequence of fktl to the exact sequence of g k+r induced by the projection of the 

fibration Xk+r + Xk and the fact that the fiber is acyclic below dimension k - 1. 

Now note that, in computing Hk(%(fk+,)) we can substitute f;+r for fk+r because 

of the existence of a contraction from CT(Xk+r) onto CV(Xk) 0, C( K( Hk(%(gk+,)), 

k - l))-see [ 121. Since the homology module we are interested in is in dimension 

k we are also free to substitute Hk(()l(flLtl)) where f” k+r is just fk+r, regarded as a 

map to the subcomplex Cw(Xk) 0, C”(K(Hk(‘%(gk+,)), k- 1))“-i.e. the rest of the 

twisted tensor product will have boundaries in the kth chain module so the kth 

homology of the whole twisted tensor product will be a quotient of the kth homology 

module of the twisted direct sum. We will prove that Hk(%(f;j-+,)) = 0 and that will 

imply the conclusion. 

Note that, in the dimension range that interests us (i.e. dimensions Sk+ l), 

Cr(K(Hk(%(gk+,)), k- 1))” is just the k- 1 fold suspension of a projective resol- 

UtiOn of Hk(%(gk+r)). Now define ?I” to be the same as 1-r %(gk+r) in dimensions 

s k+ 1 and acyclic in dimensions >k. 
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Now consider the map T: Cr(Xk)+ C(K(Hk(?l(gk+,)), k-1))-this map is of 

degree -1 but otherwise behaves like a chain-map in dimensions G k+ 1. It is the 

pullback of the k-dimensional cohomology class of %(gk+,) that evaluated to an 

isomorphism in homology (with coefficients in the homology module in dimension 

k). In other words, it is the pullback of a cochain on %(gk+l)k that maps each 

element in the cycle submodule (which is a direct summand) to its image in the 

homology module. This argument implies that the following diagram commutes: 

cT(xk)i + T-10 cr(xk)i = a?L(gk+l)i 

r L i=k, k+l 

C9(Xk)i+ C?i(K(Hk(a(gk+l)), k-I)):-1 

where the upper row is the inclusion, the lower row is T, the map 21(gk+,)i+ 

CW(K(Hk(%(gktl)), k-l)):‘-, is the (unique, up to a chain-homotopy) chain map 

(of degree -1) that maps elements of the cycle submodule of %(gk+l)k to [image-in- 

homology] 0 10. ..@l in C”(K(H,(%(gk+,)), k-l)):_, and sends elements of 

the projective complement to 0. That map is well-defined up to dimension k + 1, 

and is a chain-homotopy equivalence up to that dimension. This implies that the 

twisted direct sum can be replaced by (i.e. there exists a chain map from the second 

complex to the first that is an equivalence up to dimension k + 1) the twisted direct 

sum CTI(Xk) @,%?I; where L : Cn(Xk) + 1 a is the chain map defined by the inclusion 

of C=(X,) in the algebraic mapping cone. Consideration of the boundary maps of 

the twisted direct sum and the algebraic mapping cone shows immediately that this 

complex is essentially a twisted direct sum with respect to a map z : T + A, where 

A is the algebraic mapping cone of z : Cr(Xk) + C; and this map is an isomorphism 

below dimension k+ 1. Thus there exists a map C”(X,) 0, 2I’+ T @,A+ T in 

dimensions Sk+ 1 that is an equivalence. The conclusion that H,(%(f’L+,)) =0 

follows immediately, and this implies that Hk(%(fk+,)) = 0. 0 

Acknowledgment 

I am indebted to Sylvain Cappell and Andrew Ranick for their encouragement, 

and to Drexel University for providing me with a research grant and other support 

for this work. I am also indebted to the referee for a careful reading of this paper 

and many helpful suggestions. 

References 

[l] .I. Arnold, Homological algebra based upon permutation modules, J. Algebra 70 (1981) 250-260. 

[2] H. Baues, Obstruction Theory, Lecture Notes in Mathematics 628 (Springer, Berlin, 1977). 

[3] G. Carlsson, A counterexample to a conjecture of Steenrod, Invent. Math. 64 (1981) 171-174. 



J. R. Smith/ Topological realizations 313 

[4] H. Cartan, Algtbres d’Eilenberg-MacLane et homotopie, Seminaire Henri Cartan 1954/55, ENS, 
Paris. 

[5] S. Eilenberg and S. MacLane, On the groups H(fl, n). I, Ann. of Math., 58 (1954) 55-106. 
[6] S. Eilenberg and S. MacLane, On the groups H(fl, n). II, Ann. of Math., 60 (1954) 49-139. 

[7] V. K. A. M. Gugenheim, On a theorem of E. H. Brown, Illinois J. Math 4 (1960) 292-311. 
[8] V. K. A. M. Gugenheim, On the chain-complex of a fibration, Illinois J. Math. 16 (1972) 398-414. 

[9] Al Heller, Homological resolutions of complexes with operators, Ann. Math. 4 (1960) 292-311. 

[lo] P. Kahn, Steenrod’s problem and k-invariants of certain classifying spaces, preprint. 

[ll] F. Quinn, Finite abelian group-actions on finite complexes, Lecture Notes in Mathematics 658 
(Springer, Berlin). 

[12] Shih Weishu, Homologie des &spaces lib&, 1. H. E. S. Publ. Math. 13 (1962) 93-176. 

[ 131 J. Smith, Equivariant Moore spaces. I, Lecture Notes in Mathematics (Springer, Berlin, to appear). 

[14] J. Smith, Equivariant Moore spaces. II-The low-dimensional case, J. of Pure and Appl. Alg. 36 

(1985) 187-204. 

[15] C. T. C. Wall, Finiteness conditions for CW-complexes II, Proc. Roy. Sot. A, 295 (1960) 129-139. 


