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Foreword

Algebra is the offer made by the devil to the mathematician. The
devil says “I will give you this powerful machine, and it will an-
swer any question you like. All you need to do is give me your
soul; give up geometry and you will have this marvelous ma-
chine.”

M. F. Atiyah (2001)

This book arose out of courses in Abstract Algebra, Galois Theory, Al-
gebraic Geometry, and Manifold Theory the author taught at Drexel Uni-
versity.

It is useful for self-study or as a course textbook.
The first four chapters are suitable for the first of a two semester un-

dergraduate course in Abstract Algebra and chapters five through seven
are suitable for the second semester.

Chapter 2 on page 5 covers a few preliminaries on basic set theory (ax-
iomatic set theory is discussed in appendix 14 on page 463).

Chapter 3 on page 13 discusses basic number theory, which is a use-
ful introduction to the theory of groups. It also presents an application of
number theory to cryptography.

Chapter 4 on page 33 discusses the theory of groups and homomorph-
isms of groups.

Chapter 5 on page 107 covers ring-theory with material on computa-
tions in polynomial rings and Gröbner bases. It also discusses some appli-
cations of algebra to motion-planning and robotics.

Chapter 6 on page 163 covers basic linear algebra, determinants, and
discusses modules as generalizations of vector-spaces. We also discuss re-
sultants of polynomials and eigenvalues.

Chapter 7 on page 261 discusses basic field-theory, including algebraic
and transcendental field-extensions, finite fields, and the unsolvability of
some classic problems in geometry. This, section 4.9 on page 84, and chap-
ter 8 on page 297 might be suitable for a topics course in Galois theory.

Chapter 15 on page 467 discusses some more advanced areas of the
theory of rings, like Artinian rings and integral extensions.

Chapter 8 on page 297 covers basic Galois Theory and should be read
in conjunction with chapter 7 on page 261 and section 4.9 on page 84.

Chapter 9 on page 323 discusses division-algebras over the real
numbers and their applications. In particular, it discusses applications
of quaternions to computer graphics and proves the Frobenius Theorem
classifying associative division algebras over the reals. It also develops
octonions and discusses their properties.

vii



Chapter 10 on page 339 gives an introduction to Category Theory and
applies it to concepts like direct and inverse limits and multilinear algebra
(tensor products an exterior algebras).

Chapter 11 on page 387 gives a brief introduction to group representa-
tion theory.

Chapter 12 on page 415 gives a brief introduction to algebraic geometry
and proves Hilbert’s Nullstellensatz.

Chapter 13 on page 433 discusses some 20th century mathematics: ho-
mology and cohomology. It covers chain complexes and chain-homotopy
classes of maps and culminates in a little group-cohomology, including the
classification of abelian extensions of groups.

� Sections marked in this manner are more advanced or specialized and may
be skipped on a first reading.

� �

Sections marked in this manner are even more advanced or specialized
and may be skipped on a first reading (or skipped entirely).

I am grateful to Matthias Ettrich and the many other developers of
the software, LYX — a free front end to LATEX that has the ease of use of
a word processor, with spell-checking, an excellent equation editor, and a
thesaurus. I have used this software for years and the current version is
more polished and bug-free than most commercial software.

I am grateful to Darij Grinberg for his extremely careful reading of the
manuscript. He identified several significant errors. I would also like to
thank Xintong Li for pointing out errors in some of my definitions.

LYX is available from HTTP://www.lyx.org.
Edition 2.7: I have added material on the classification of modules over

a principal ideal domain and the Jordan Canonical Form, as well as an ex-
panded section on quaternions, octonions and sedenions.

Edition 2.71: I have added material on group representation theory.
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CHAPTER 1

Introduction

“L’algèbre n’est qu’une géométrie écrite; la géométrie n’est
qu’une algèbre figurée.” (Algebra is merely geometry in words;
geometry is merely algebra in pictures)
— Sophie Germain, [44]

The history of mathematics is as old as that of human civilization itself.
Ancient Babylon (circa 2300 BCE) used a number-system that was surpris-
ingly modern except that it was based on 60 rather than 10 (and still lacked
the number 0). This is responsible the fact that a circle has 360◦ and for our
time-units, where 60 seconds form a minute and 60 minutes are an hour.
The ancient Babylonians performed arithmetic using pre-calculated tables
of squares and used the fact that

ab =
(a + b)2 − a2 − b2

2

to calculate products. Although they had no algebraic notation, they knew
about completing the square to solve quadratic equations and used tables
of squares in reverse to calculate square roots.

In ancient times, mathematicians almost always studied algebra in its
guise as geometry — apropos of Sophie Germain’s quote. Ancient Greek
mathematicians solved quadratic equations geometrically, and the great
Persian poet-mathematician, Omar Khayyam1, solved cubic equations this
way.

Geometry in the West originated in Egypt, where it began as a kind of
folk-mathematics farmers used to survey their land after the Nile’s annual
flooding (the word geometry means “earth measurement” in Greek). The
more advanced geometry used in building pyramids remained the secret
of the Egyptian priesthood.

The Greek merchant2 and amateur mathematician, Thales, traveled to
Egypt and paid priests to learn about geometry.

Thales gave the first proof of a what was a well-known theorem in
geometry. In general, Greece’s great contribution to mathematics was in
the concept of proving that statements are true. This arose from many of the
early Greek mathematicians being lawyers.

In ancient Greek geometry, there were a number of famous problems
the ancient Greeks couldn’t solve: squaring the circle (finding a square

1The Omar Khayyam who wrote the famous poem, The Rubaiyat — see [39].
2He is credited with the first recorded use of financial arbitrage.

1



2 1. INTRODUCTION

whose area was the same as a given circle), doubling a cube (given a cube,
construct one with double its volume), and trisecting an angle.

It turned out that these problems have no solutions, although prov-
ing that required modern algebra and number theory (see chapter 7 on
page 261).

Ancient India had a sophisticated system of mathematics that remains
largely unknown since it was not written down3. Its most visible mod-
ern manifestation is the universally used decimal number system and es-
pecially, the number zero. Otherwise, Indian mathematics is known for
isolated, deep results given without proof, like the infinite series

π

4
= 1− 1

3
+

1
5
− 1

7
+ · · ·

Arabic mathematicians transmitted Indian numerals to Europe
and originated what we think of as algebra today — i.e. the use of
non-geometric abstract symbols. One of the first Arabic texts describes
completing the square in a quadratic equation in verbal terms4.

There are hints of developments in Chinese mathematics from 1000
B.C.E. — including decimal, binary, and negative numbers. Most of this
work was destroyed by the order of First Emperor of the Qin dynasty, Qin
Shi Huangdi, in his Great Book Burning.

Isolated results like the Chinese Remainder Theorem (see 3.3.5 on
page 24) suggest a rich mathematical tradition in ancient China. The
Jiuzhang suanshu or, the Nine Chapters on the Mathematical Art, from 200
B.C.E., solves systems of three linear equations in three unknowns. This is
the beginning of linear algebra (see chapter 6 on page 163)

The ancient Greeks regarded algebraic functions in purely geometric
terms: a square of a number was a physical square and a numbers’ cube
was a physical cube. Other exponents had no meaning for them.

The early European view of all things as machines changed that: num-
bers became idea-machines, whose properties did not necessarily have any
physical meaning. Nicole Oresme had no hesitation in dealing with pow-
ers other than 2 and 3 or even fractional exponents. This led to entirely new
approaches to algebra.

Nicole Oresme, (1320 – 1382) was a French philosopher, astrologer, and
mathematician. His main mathematical work, Tractatus de configurationibus
qualitatum et motuum, was a study on heat flow. He also proved the diver-
gence of the harmonic series.

After Oresme, Renaissance Europe saw the rise of the concept of virtù
— not to be confused with “virtue”. The hero with virtù was competent
in all things — and notable figures conducted public displays of skills like
swordsmanship, poetry, art, chess, or . . . mathematics. Tartaglia’s solution
of the general cubic equation was originally written in a poem.

3It was passed from teacher to student in an oral tradition.
4This makes one appreciate mathematical notation!
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Bologna University, in particular, was famed for its intense public
mathematics competitions.

People often placed bets on the outcome, rewarding winners with fi-
nancial prizes. These monetary rewards motivated a great deal of mathe-
matical research. Like magicians, mathematicians often kept their research
secret — as part of their “bag of tricks5.”

Renaissance Italy also saw the solution of the general quartic (i.e.,
fourth degree) equation — see section 8.1 on page 297. Attempts to push
this further — to polynomials of degree five and higher — failed. In the
early 1800’s Abel and Galois showed that it is impossible — see chapter 8
on page 297.

The nineteenth and twentieth centuries saw many developments in
algebra, often motivated by algebraic geometry and topology. See chap-
ters 12 on page 415 and 13 on page 433.

5Tartaglia told Cardano his solution to the general cubic equation and swore him to strict
secrecy. When Cardano published this solution, it led to a decade-long rift between the two
men.





CHAPTER 2

Preliminaries

“The number system is like human life. First you have the natural
numbers. The ones that are whole and positive. Like the num-
bers of a small child. But human consciousness expands. The
child discovers longing. Do you know the mathematical expres-
sion for longing? The negative numbers. The formalization of the
feeling that you’re missing something. Then the child discovers
the in-between spaces, between stones, between people, between
numbers and that produces fractions, but it’s like a kind of mad-
ness, because it does not even stop there, it never stops. . . Math-
ematics is a vast open landscape. You head towards the horizon
and it’s always receding. . . ”

— Smilla Qaavigaaq Jaspersen, in the novel Smilla’s Sense of
Snow, by Peter Høeg (see [57]).

2.1. Numbers

The natural numbers, denoted N, date back to prehistoric times. They
are numbers

1, 2, 3, . . .
Now we go one step further. The integers, denoted Z, include the natu-

ral numbers, zero, and negative numbers. Negative numbers first appeared
in China in about 200 BCE.

Zero as a digit (i.e., a place-holder in a string of digits representing a
number) appears to date back to the Babylonian culture, which denoted it
by a space or dot. Zero as a numerical value seems to have originated in In-
dia around 620 AD in a work of Brahmagupta that called positive numbers
fortunes and negative numbers debts. This work also correctly stated the
rules for multiplying and dividing positive and negative numbers, except
that it stated 0/0 = 0.

So we have the integers:

Z = {. . . .− 3,−2,−1, 0, 1, 2, 3, . . . }
The next step involves fractions and the rational number system. Fractions
(positive ones, at least) have appeared as early as ancient Egypt with nu-
merators that were always 1. For instance, the fraction

8
3

would be represented in ancient Egypt as

2 +
1
2
+

1
6

5



6 2. PRELIMINARIES

−3 −2 −1 0 1 2 3

FIGURE 2.1.1. The real line, R

So the rational numbers, denoted by Q, are equivalence classes of sym-
bols

p
q

where p ∈ Z and q ∈N, and
p1

q1

is equivalent to
p2

q2

if p1q2 = p2q1.
Next in order of complexity and historical order is the real numbers,

denoted R. Irrational numbers were known in antiquity but the idea of
incorporating them into the regular number system seems to date from the
Italian Renaissance, where they were regarded as points on an infinite line
— see figure 2.1.1. The term real number originated with Rene Descartes,
who drew a distinction between these numbers and imaginary numbers like
i =
√
−1.

The first rigorous definitions of the real numbers (in terms of rational
numbers) came about in the 19th century with the work of Dedekind.

Julius Wilhelm Richard Dedekind (1831 – 1916) was a German mathemati-
cian who worked in abstract algebra, algebraic number theory and analysis
(he gave one of the first rigorous definitions of the real numbers). The con-
cept of an ideal originated in Dedekind’s research on Fermat’s last theorem
— see [29].

The Italian Renaissance also saw the invention of complex numbers in
an effort to be able to write down solutions to algebraic equations. Prior to
this era, an equation like

x2 + 1 = 0

was thought to have no solutions. With complex numbers, we could say
that the solutions to this equation are ±i.

As with the real numbers, the rigorous construction of the complex
number system had to wait until the 19th century.

DEFINITION 2.1.1. Let C denote the set of all expressions of the form
a + bi where a, b ∈ R and we define i2 = −1. Addition is as follows:

(a + bi) + (c + di) = (a + b) + i(c + d)

The identity i2 = −1 and the distributive law imply that it has the
product

(a + bi)(c + di) = ac− bd + i(ad + bc)
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where a + bi, c + di ∈ R2 = C. It is not hard to see that 1 is the identity
element of C. Given z = a + bi ∈ C, define ℜ(z) = a and ℑ(z) = b, the real
and imaginary parts, respectively.

If x = a + bi, the complex conjugate of x, denoted x̄, is a− bi. Then

x · x̄ = a2 + b2 ∈ R

and

(a + bi)
(

a
a2 + b2 −

bi
a2 + b2

)
= 1

so

(2.1.1) (a + bi)−1 =
a

a2 + b2 −
bi

a2 + b2

If x = a + bi, the quantity |x| =
√

x · x̄ =
√

a2 + b2 is called the absolute
value of x. Note that |x| = 0 implies that x = 0.

REMARK. Complex numbers can represent points in the plane and one
can add, subtract, multiply, and divide them (see section 9.1 on page 323).
Note that complex multiplication is associative and commutative (left to the
reader to prove!):

z1(z2z3) = (z1z2)z3

z1z2 = z2z1

for zi ∈ C.

Leonhard Euler (1707 – 1783) was, perhaps, the greatest mathematician all
time. Although he was born in Switzerland, he spent most of his life in St.
Petersburg, Russia and Berlin, Germany. He originated the notation f (x)
for a function and made contributions to mechanics, fluid dynamics, optics,
astronomy, and music theory. His final work, “Treatise on the Construction
and Steering of Ships,” is a classic whose ideas on shipbuilding are still
used to this day.

To do justice to Euler’s life would require a book considerably longer
than the current one — see the article [42]. His collected works fill more
than 70 volumes and, after his death, he left enough manuscripts behind
to provide publications to the Journal of the Imperial Academy of Sciences
(of Russia) for 47 years.

REMARK. One of his many accomplishments is:

THEOREM 2.1.2 (Euler’s Formula). If x ∈ R, then

(2.1.2) eix = cos(x) + i sin(x)

PROOF. Just plug ix into the power series for exponentials

(2.1.3) ey = 1 + y +
y2

2!
+

y3

3!
+ · · ·
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to get

eix = 1 + ix− x2

2!
− i

x3

3!
+ · · ·

=

(
1− x2

2!
+

x4

4!
− · · ·

)
+ i
(

x− x3

3!
+

x5

5!
− · · ·

)
= cos x + i sin x

□

Since x = cos(θ), y = sin(θ) is the parametric equation of a circle, it
follows that all points on the unit circle in C are of the form eiθ for a suitable
θ. If we draw a line from the origin to a point, u, on the unit circle, θ is the
angle it makes with the real axis.

If z ∈ C is an arbitrary nonzero element, u = z/|z| is on the unit circle,
so u = eiθ and

z = |z| · eiθ

— see figure 2.1.2 on the facing page.
For instance, if z = 2 + i, we have |z| =

√
5 and

u =
1√
5
(2 + i) = eiθ

where
θ = arctan(1/2)

If we multiply z by eiϕ, we get

zeiϕ = |z| · ei(θ+ϕ)

which now makes an angle of θ + ϕ with the real axis. It follows that mul-
tiplication has a geometric significance:

Multiplying by eiϕ rotates the entire complex plane in a
counterclockwise direction by ϕ.

The complex numbers transformed entire fields of mathematics, in-
cluding function theory, number theory, and early topology. Doing these
developments justice would fill several books larger than the current vol-
ume.

EXERCISES.

1. If x, y ∈ C, show that x̄ · ȳ = x · y.

2. If x, y ∈ C, show that |x| · |y| = |x · y|.
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ℜ{z}

ℑ{z}

−2

−2

−1

−1

1

1

2

2

z

u
u

θ

FIGURE 2.1.2. The complex plane

2.2. Set theory

In mathematics (and life, for that matter) it is often necessary to discuss
collections of objects, and we formalize this with the concept of a set. For in-
stance there is the set N of natural numbers — integers > 0, or the set, Q, of
rational numbers. Giving a rigorous definition of sets is more complicated,
as the Russell Paradox in section 14.1 on page 463 shows.

The objects in a set are called its elements or members.
If S is a set with an element x, we write

x ∈ S

to represent the fact that x is an element of S. The negation of this is repre-
sented by the symbol /∈— so y /∈ S states that y is not an element of the set
S.

We can define a finite set by listing its elements in curly brackets. For
instance

A = {1, 2, 3}
If a set S is finite, the number of elements of S is denoted |S|.

If all the elements of a set, S are also elements of another set T, we say
that S is a subset of T and write it as

S ⊂ T

to express the fact that every element of S is also an element of T. This
definition could also be written in terms of first order logic as

(2.2.1) S ⊂ T ⇔ ∀x (x ∈ S) =⇒ (x ∈ T)
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where the symbol ∀x means “for all possible values of x”.
Note that every set is a subset of itself, so S ⊂ S.
The empty set is denoted ∅ — it contains no elements. Equation 2.2.1 on

the preceding page implies that for any set, S,

∅ ⊂ S

2.3. Operations on sets

We can perform various operations on sets
Union: If A and B are sets, their union — written A ∪ B — consists of all

elements of A and all elements of B.
Example: If A = {1, 2, 3} and B = {1, 6, 7}, then

A ∪ B = {1, 2, 3, 6, 7}
We could give a first-order logic definition of union via

∀xx ∈ A ∪ B⇔ (x ∈ A) ∨ (x ∈ B)

In some sense, the union operation is a set-version of the logical or
operation.

Intersection: If A and B are sets, their intersection — written A ∩ B — con-
sists of all elements contained in both A and B.

Example: If A = {1, 2, 3} and B = {1, 6, 7}, then

A ∩ B = {1}
We could give a first-order logic definition of union via

∀xx ∈ A ∩ B⇔ (x ∈ A) ∧ (x ∈ B)

In some sense, the intersection operation is a set-version of the log-
ical and operation.

Difference: If A and B are sets, their difference — written A \ B — consists
of all elements of A not also in B.

Example: If A = {1, 2, 3} and B = {1, 6, 7}, then

A \ B = {2, 3}
We could give a first-order logic definition of union via

∀xx ∈ A \ B⇔ (x ∈ A) ∧ (x /∈ B)

Complement: If A is a set Ac or A denotes its complement — all elements
not in A. For this to have any definite meaning, we must define the
universe where A lives. For instance, if A = {1}, then A depends
on whether A is considered a set of integers, real numbers, objects in
the physical universe, etc.

Product: If A and B are sets, their product, A × B is the set of all possible
ordered pairs (a, b) with a ∈ A and b ∈ B. For instance, if A =
{1, 2, 3} and B = {1, 4, 5}, then

A× B ={(1, 2), (1, 4), (1, 5),

(2, 1), (2, 4), (2, 5),

(3, 1), (3, 4), (3, 5)}
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If A and B are finite, then |A× B| = |A| × |B|.

2.4. The Power Set

If S is a set, the powerset of S — denoted P(S) or 2S — is the set of all
subsets of S. For instance, if

S = {1, 2, 3}
then

2S = {∅, S, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}
If S is finite, then |2S| = 2|S|.

PROOF. We do induction on the number of elements in S. To do the
Ground Step, let S = ∅. The 2S = {∅} and the result is true.

For the Induction Step, assume the conclusion is true for all sets of size
k. Given a set, S, of size k + 1, let x ∈ S and let S′ = S \ {x}. Every subset
of S either has x in it or it does not. The subsets of S that do not have x in
them is precisely the set of subsets of S′ and we know that there are 2k of
them. Every subset, T, of S that has x in it can be written as T = T′ ∪ {x}
where T′ ⊂ S′. We know that there are 2kof these subsets. It follows that S
has

2k + 2k = 2k+1

subsets. This completes the induction. □

PROPOSITION 2.4.1. If S is a set, P(S) is strictly larger than S in the sense
that there exists no surjection

(2.4.1) f : S→ P(S)
REMARK. This result is due to Gregor Cantor, and proves that the set

P(Z) is uncountable — i.e. it is impossible to form a “list” of all the ele-
ments of P(Z). Although Z and P(Z) are both infinite, the infinity repre-
sented by P(Z) is “larger” than that of Z.

PROOF. Suppose f is some function as in equation 2.4.1 and let T ⊂ S
be the set of all elements s ∈ S such that s /∈ f (s). If T = f (t) for some
t ∈ S, then the definition of T implies that t /∈ T, but this means that t ∈ T
— a contradiction. It follows that T cannot be in the image of f . □





CHAPTER 3

A glimpse of number theory

“Mathematics is the queen of the sciences and number theory is
the queen of mathematics. She often condescends to render ser-
vice to astronomy and other natural sciences, but in all relations
she is entitled to the first rank.”

— Carl Friedrich Gauss, in Gauss zum Gedächtniss (1856) by
Wolfgang Sartorius von Waltershausen.

3.1. Prime numbers and unique factorization

We begin by studying the algebraic properties of what would appear to
be the simplest and most basic objects possible: the integers. Study of the
integers is called number theory and some of the deepest and most difficult
problems in mathematics belong to this field.

Most people learned the following result in grade school — long division
with a quotient and remainder:

PROPOSITION 3.1.1. Let n and d be positive integers. Then it is possible to
write

n = q · d + r
where 0 ≤ r < d. If r = 0, we say that d

∣∣ n — stated “d divides n”.

The division algorithm mentioned above gives rise to the concept of
greatest common divisor.

DEFINITION 3.1.2. Let n and m be positive integers. The greatest com-
mon divisor of n and m, denoted gcd(n, m), is the largest integer d such that
d
∣∣ n and d

∣∣m. The least common multiple of n and m, denoted lcm(n, m), is
the smallest positive integer k such that n

∣∣ k and m
∣∣ k.

Since 0 is divisible by any integer, gcd(n, 0) = gcd(0, n) = n.

There is a very fast algorithm for computing the greatest common di-
visor due to Euclid — see [36, 37].

We need a lemma first:

LEMMA 3.1.3. If n > m > 0 are two integers and

n = q ·m + r

with 0 < r < m, then
gcd(n, m) = gcd(m, r)

PROOF. If d
∣∣ n and d

∣∣m, then d
∣∣ r because

r = n− q ·m

13
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On the other hand, if d
∣∣m and d

∣∣ r, then

n = q ·m + r

implies that d
∣∣ n. It follows that the common divisors of n and m are the

same as the common divisors of m and r. The same is true of the greatest
common divisors. □

ALGORITHM 3.1.4. Given positive integers n and m with n > m, use the
division algorithm to set

n = q0 ·m + r0

m = q1 · r0 + r1

r0 = q2 · r1 + r2

...
rk−2 = qk · rk−1 + rk

with m > r0 > r1 > · · · > rk. At some point rN = 0 and we claim that
rN−1 = gcd(n, m).

REMARK. Euclid’s original formulation was geometric, involving line-
segments. Given two line-segments of lengths r1 and r2, it found a real
number r such that

r1

r
,

r2

r
∈ Z

An ancient proof of the irrationality of
√

2 showed that this process
never terminates if one of the line-segments is of unit length and the other
is the diagonal of a unit square.

PROOF. This follows from lemma 3.1.3 on the preceding page, applied
inductively. □

As trivial as proposition 3.1.1 on the previous page appears to be, it
allows us to prove Bézout’s Identity:

LEMMA 3.1.5. Let n and m be positive integers. Then there exist integers u
and v such that

gcd(n, m) = u · n + v ·m
REMARK. Bézout proved this identity for polynomials — see [13].

However, this statement for integers can be found in the earlier work of
Claude Gaspard Bachet de Méziriac (1581–1638) — see [103].

Étienne Bézout (1730–1783) was a French algebraist and geometer credited
with the invention of the determinant (in [14]).

PROOF. Let z be the smallest positive value taken on by the expression

(3.1.1) z = u · n + v ·m
as u and v run over all possible integers. Clearly, gcd(n, m)

∣∣ z since
it divides any possible linear combination of m and n. It follows that
gcd(n, m) ≤ z.
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We claim that z
∣∣ n. If not, then proposition 3.1.1 on page 13 implies

that n = q · z + r, where 0 < r < z, or r = n − q · z. Plugging that into
equation 3.1.1 on the preceding page gives

r = n− q · (u · n + v ·m)

= (1− q · u) · n− q · v ·m
which is a linear combination of n and m smaller than z — a contradiction.
Similar reasoning shows that z

∣∣m so z is a common divisor of m and n
≥ gcd(m, n) so it must equal gcd(m, n). □

DEFINITION 3.1.6. A prime number is an integer that is not divisible by
any integer other than 1 or (±)itself.

Bézout’s Identity immediately implies:

PROPOSITION 3.1.7. Let p be a prime number and let n and m be integers.
Then

p
∣∣m · n =⇒ p

∣∣m or p
∣∣ n

PROOF. Suppose p ∤ m. We will show that p
∣∣ n. Since p is prime and

p ∤ m, we have gcd(p, m) = 1. Lemma 3.1.5 on the facing page implies that
there exist integers u and v such that

1 = u ·m + v · p
Now multiply this by n to get

n = u ·mn + v · n · p
Since p divides each of the terms on the right, we get p

∣∣ n. A similar argu-
ment show that p ∤ n =⇒ p

∣∣m. □

A simple induction shows that:

COROLLARY 3.1.8. If p is a prime number, ki ∈ Z for i = 1, . . . , n and

p
∣∣ n

∏
i=1

ki

then p|k j for at least one value of 1 ≤ j ≤ n. If p and q are both primes and

q
∣∣ p

for some integer i ≥ 1, then p = q.

PROOF. We do induction on n. Proposition 3.1.7 proves the result for
n = 2.

Suppose the result is known for n − 1 factors, and we have n factors.
Write

n

∏
i=1

ki = k1 ·
(

n

∏
i=2

ki

)
Since

p
∣∣ ki ·

(
n

∏
i=2

ki

)
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we either have p|k or

p
∣∣ n

∏
i=2

ki

The inductive hypothesis proves the result. If the k j are all copies of a
prime,p, we must have q

∣∣ p, which only happens if q = p. □

This immediately implies the well-known result:

LEMMA 3.1.9. Let n be a positive integer and let

n = pα1
1 · · · · · p

αk
k

= qβ1
1 · · · · · q

βℓ
ℓ(3.1.2)

be factorizations into powers of distinct primes. Then k = ℓ and there is a reorder-
ing of indices f : {1, . . . , k} → {1, . . . , k} such that qi = p f (i) and βi = α f (i) for
all i from 1 to k.

PROOF. First of all, it is easy to see that a number can be factored into
a product of primes. We do induction on k. If k = 1 we have

pα1
1 = qβ1

1 · · · · · q
βℓ
ℓ

Since q1|pα1
1 , corollary 3.1.8 on the preceding page implies that q1 = p1,

β1 = α1 and that the primes qi ̸= p1 cannot exist in the product. So ℓ = 1
and the conclusion follows.

Assume the result for numbers with k− 1 distinct prime factors. Equa-
tion 3.1.2 implies that

q1
∣∣ pα1

1 · · · · · p
αk
k

and corollary 3.1.8 on the preceding page implies that q1|
∣∣ p for some value

of j. It also implies that pj = q1 and αj = β1. We define f (1) = j and take

the quotient of n by qβ1
1 = p

αj
j to get a number with k − 1 distinct prime

factors. The inductive hypothesis implies the conclusion. □

This allows us to prove the classic result:

COROLLARY 3.1.10 (Euclid). The number of prime numbers is infinite.

PROOF. Suppose there are only a finite number of prime numbers

S = {p1, . . . , pn}
and form the number

K = 1 +
n

∏
i=1

pi

Lemma 3.1.9 implies that K can be uniquely factored into a product of
primes

K = q1 · · · qℓ
Since pi ∤ K for all i = 1, . . . , n, we conclude that qj /∈ S for all j, so the
original set of primes, S, is incomplete. □

Unique factorization also leads to many other results:
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PROPOSITION 3.1.11. Let n and m be positive integers with factorizations

n = pα1
1 · · · p

αk
k

m = pβ1
1 · · · p

βk
k

Then n|m if and only if αi ≤ βi for i = 1, . . . , k and

gcd(n, m) = pmin(α1,β1)
1 · · · pmin(αk ,βk)

k

lcm(n, m) = pmax(α1,β1)
1 · · · pmax(αk ,βk)

k

Consequently

(3.1.3) lcm(n, m) =
nm

gcd(n, m)

PROOF. If n
∣∣m, then pαi

i

∣∣ pβi
i for all i, by corollary 3.1.8 on page 15. If

k = gcd(n, m) with unique factorization

k = pγ1
1 · · · p

γk
k

then γi ≤ αi and γi ≤ βi for all i. In addition, the γi must be as large as pos-
sible and still satisfy these inequalities, which implies that γi = min(αi, βi)
for all i. Similar reasoning implies statement involving lcm(n, m). Equa-
tion 3.1.3 follows from the fact that

max(αi, βi) = αi + βi −min(αi, βi)

for all i. □

The Extended Euclid algorithm explicitly calculates the factors that ap-
pear in the Bézout Identity:

ALGORITHM 3.1.12. Suppose n, m are positive integers with n > n and
we use Euclid’s algorithm ( 3.1.4 on page 14) to compute gcd(n, m). Let qi, ri
for 0 < i ≤ N (in the notation of 3.1.4 on page 14) denote the quotients and
remainders used. Now define

x0 = 0
y0 = 1(3.1.4)
x1 = 1
y1 = −q1

and recursively define

xk = xk−2 − qkxk−1

yk = yk−2 − qkyk−1(3.1.5)

for all 2 ≤ k ≤ N. Then
ri = xi · n + yi ·m

so that, in particular,

gcd(n, m) = xN−1 · n + yN−1 ·m
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PROOF. If ri = xi · n + yi ·m then

rk = rk−2 − qkrk−1

= xk−2 · n + yk−2 ·m− qk(xk−1 · n + yk−1m)

= (xk−2 − qkxk−1) · n + (yk−2 − qkyk−1) ·m
This implies the inductive formula 3.1.5 on the previous page, and to

get the correct values for r1 and r2:

r1 = n−m · q1

r2 = m− r1 · q2

= m− q2 · (n−m · q1)

= −q2 · n + (1 + q1q2) ·m
we must set x0, x1, y0, y1 to the values in equation 3.1.4 on the preceding
page. □

EXERCISES.

1. Find the elements of Zm that have a multiplicative inverse, where
m > 1 is some integer.

2. Find the greatest common divisor of 123 and 27 and find integers a
and b such that

gcd(123, 27) = a · 123 + b · 27

3. If x > 0 is an integer and y is a rational number that is not an integer,
show that xy is either an integer or irrational.

3.2. Modular arithmetic

We begin with an equivalence relation on integers

DEFINITION 3.2.1. If n > 0 is an integer, two integers r and s are con-
gruent modulo n, written

r ≡ s (mod n)

if
n
∣∣ (r− s)

REMARK. It is also common to say that r and s are equal modulo n.
The first systematic study of these type of equations was made by Gauss
in his Disquistiones Arithmeticae ([41]). Gauss wanted to find solutions to
equations like

anxn + · · ·+ a1x + a0 ≡ 0 (mod p)
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PROPOSITION 3.2.2. Equality modulo n respects addition and multiplica-
tion, i.e. if r, s, u, v ∈ Z and n ∈ Z with n > 0, and

r ≡ s (mod n)

u ≡ v (mod n)(3.2.1)

then

r + u ≡ s + v (mod n)

r · u ≡ s · v (mod n)(3.2.2)

PROOF. The hypotheses imply the existence of integers k and ℓ such
that

r− s = k · n
u− v = ℓ · n

If we simply add these equations, we get

(r + u)− (s + v) = (k + ℓ) · n
which proves the first statement. To prove the second, note that

ru− sv = ru− rv + rv− sv

= r(u− v) + (r− s)v
= rℓn + kvn

= n(rℓ+ kv)

□

This elementary result has some immediate implications:

EXAMPLE. Show that 5|7k − 2k for all k ≥ 1. First note, that 7 ≡ 2
(mod 5). Equation 3.2.2, applied inductively, implies that 7k ≡ 2k (mod 5)
for all k > 1.

DEFINITION 3.2.3. If n is a positive integer, the set of equivalence
classes of integers modulo n is denoted Zn.

REMARK. It is not hard to see that the size of Zn is n and the equiva-
lence classes are represented by integers

{0, 1, 2, . . . , n− 1}
Proposition 3.2.2 implies that addition and multiplication is well-defined
in Zn. For instance, we could have an addition table for Z4 in table 3.2.1
and a multiplication table in table 3.2.2 on the following page

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

TABLE 3.2.1. Addition table for Z4
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+ 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

TABLE 3.2.2. Multiplication table for Z4

Note from table 3.2.2 that 2 · 2 ≡ 0 (mod 4) and 3 · 3 ≡ 1 (mod 4). It
is interesting to speculate on when a number has a multiplicative inverse
modulo n.

We can use lemma 3.1.5 on page 14 for this:

PROPOSITION 3.2.4. If n > 1 is an integer and x ∈ Zn, then there exists
y ∈ Zn with

x · y ≡ 1 (mod n)
if and only if gcd(x, n) = 1.

PROOF. If gcd(x, n) = 1, then lemma 3.1.5 on page 14 implies that there
exist a, b ∈ Z such that

ax + bn = 1
and reduction modulo n gives

ax ≡ 1 (mod n)

On the other hand, suppose there exists y ∈ Zn such that xy = 1 ∈ Zn.
Then we have

xy = 1 + k · n
or

(3.2.3) xy− kn = 1

and the conclusion follows from the proof of lemma 3.1.5 on page 14 which
shows that gcd(x, n) is the smallest positive value taken on by an expression
like equation 3.2.3. □

DEFINITION 3.2.5. If n > 1 is an integer, Z×n — the multiplicative group of
Zn — is defined to be the set of elements x ∈ Zn with x ̸= 0 and gcd(x, n) =
1. The operation we perform on these elements is multiplication.

EXAMPLE 3.2.6. Crossing out numbers in Z10 that have factors in com-
mon with 10 gives

{1, �2, 3, �4, �5, �6, 7, �8, 9}
so

Z×10 = {1, 3, 7, 9}
The multiplication-table is

× 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1
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Suppose we consider Z×p for p a prime number:

EXAMPLE 3.2.7. Let p = 5. Then

Z×5 = {1, 2, 3, 4}

— with no numbers crossed out because 5 is a prime number. In this case,
the multiplication-table is

× 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

and all of the elements are powers of 2:

21 = 2

22 = 4

23 = 3

24 = 1

EXERCISES.

1. Show that 5
∣∣ (7k − 2k)for all k ≥ 1.

2. Show that 7
∣∣ (93k − 86k)for all k ≥ 1.

3. Suppose n is a positive integer and 0 < d < n is an integer such that
d
∣∣ n. Show that all solutions of the equation

d · x ≡ 0 (mod n)

are multiples of
n
d

Hint: If there is a number x ∈ Z such that dx ≡ 0 (mod n) and x is not a
multiple of n/d use proposition 3.1.1 on page 13 to get a contradiction.

4. Let p be an odd prime and let z = p−1
2 . Show that

(z!)2 ≡ (−1)z(p− 1)! (mod p)
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3.3. The Euler ϕ-function

DEFINITION 3.3.1. If n is a positive integer then

ϕ(n)

is the number of generators of Zn — or
� If n > 1 it is the number of integers, d, with 1 ≤ d < n with

gcd(d, n) = 1.
� If n = 1, it is equal to 1.

This is called the Euler phi-function. Euler also called it the totient.

REMARK. Since an element x, of Zn has a multiplicative inverse if and
only if gcd(x, n) = 1 (see lemma 3.1.5 on page 14), it follows that the mul-
tiplicative group Z×n has ϕ(n) elements, if n > 1.

This ϕ-function has some interesting applications

PROPOSITION 3.3.2. If n and m are integers > 1 with gcd(n, m) = 1, then

(3.3.1) mϕ(n) ≡ 1 (mod n)

It follows that, for any integers a and b

(3.3.2) ma ≡ mb (mod n)

whenever
a ≡ b (mod ϕ(n))

REMARK. Fermat proved this for n a prime number — in that case, it
is called Fermat’s Little Theorem1.

Proposition 3.3.2 is a special case of a much more general result —
corollary 4.4.3 on page 43.

PROOF. Let the elements of Z×n be

S = {n1, . . . , nϕ(n)}
where 1 ≤ ni < n for i = 1, . . . , ϕ(n). Since gcd(n, m) = 1, m is one of
them. Now multiply all of these integers by m and reduce modulo n (so the
results are between 1 and n− 1). We get

T = {mn1, . . . , mnϕ(n)}
These products are all distinct because m has a multiplicative inverse, so

mni ≡ mnj (mod n)

implies

m−1mni ≡ m−1mnj (mod n)

ni ≡ nj (mod n)

The Pigeonhole Principle implies that as sets

Z×n = {n1, . . . , nϕ(n)} = {mn1, . . . , mnϕ(n)}

1Fermat’s Big Theorem is the statement that an + bn = cn has no positive integer solutions
for n an integer > 2. This was only proved in 1993 by Andrew Wiles.
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— in other words, the list T is merely a permutation of S. Now we multiply
everything in S and T together

n1 · · · nϕ(n) ≡ b (mod n)

mn1 · · ·mnϕ(n) ≡ mϕ(n)b (mod n)

≡ b (mod n) since Tis a permutation of S

Multiplication by b−1 proves equation 3.3.1 on the facing page. □

EXAMPLE. What is the low-order digit of 71000? This is clearly 71000

modulo 10. Example 3.2.6 on page 20 shows that ϕ(10) = 4. Since 4|1000,
equation 3.3.2 on the facing page implies that

71000 ≡ 70 ≡ 1 (mod 10)

so the answer to the question is 1.

If p is a prime number, every integer between 1 and p− 1 is relatively
prime to p, so ϕ(p) = p− 1 (see example 3.2.7 on page 21). In fact, it is not
hard to see that

PROPOSITION 3.3.3. If p is a prime number and k ≥ 1 is an integer, then

ϕ(pk) = pk − pk−1

PROOF. The only integers 0 ≤ x < p − 1 that have the property that
gcd(x, pk) ̸= 1 are multiples of p — and there are pk−1 = pk/p of them. □

It turns out to be fairly easy to compute ϕ(n) for all n. To do this, we
need the Chinese Remainder Theorem:

LEMMA 3.3.4. If n and m are positive integers with gcd(n, m) = 1 and

x ≡ a (mod n)

x ≡ b (mod m)(3.3.3)

are two congruences, then they have a unique solution modulo nm.

PROOF. We explicitly construct x. Since gcd(n, m) = 1 , there exist
integers u and v such that

(3.3.4) u · n + v ·m = 1

Now define

(3.3.5) x = b · u · n + a · v ·m (mod nm)

Equation 3.3.4 implies that
� vm ≡ 1 (mod n) so x ≡ a (mod n)
� un ≡ 1 (mod m) so x ≡ b (mod m).

Suppose x′ is another value modulo nm satisfying equation 3.3.3. Then

x′ − x ≡ 0 (mod n)

x′ − x ≡ 0 (mod m)(3.3.6)

which implies that x′ − x is a multiple of both n and m. The conclusion fol-
lows from equation 3.1.3 on page 17, which shows that x′ − x is a multiple
of nm, so x′ ≡ x (mod nm). □
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Using this, we can derive the full theorem

THEOREM 3.3.5 (Chinese Remainder Theorem). If n1, . . . , nk are a set of
positive integers with gcd(ni, nj) = 1 for all 1 ≤ i < j ≤ k, then the equations

x ≡ a1 (mod n1)

...

x ≡ ak (mod nk)

have a unique solution modulo ∏k
i=1 ni.

REMARK. The Chinese Remainder Theorem was first published some-
time between the 3rd and 5th centuries by the Chinese mathematician Sun
Tzu (not to be confused with the author of “The Art of Warfare”).

PROOF. We do induction on k. Lemma 3.3.4 proves it for k = 2. We
assume it is true for k = j− 1 — which means we have equations

x ≡ b (mod n1 · · · nj−1)

x ≡ aj (mod nj)

where b is whatever value the theorem provided for the first j − 1 equa-
tions.

Note that the hypotheses imply that the sets of primes occurring in the
factorizations of the ni are all disjoint. It follows that the primes in the fac-
torization of n1 · · · nj−1 will be disjoint from the primes in the factorization
of nj. It follows that

gcd(n1 · · · nj−1, nj) = 1
and the conclusion follows from an additional application of lemma 3.3.4.

□

COROLLARY 3.3.6. If n and m are integers > 1 such that gcd(n, m) = 1,
then

ϕ(nm) = ϕ(n)ϕ(m)

PROOF. The correspondence in the Chinese Remainder Theorem
(lemma 3.3.4 on the previous page) actually respects products: If

x ≡ a (mod n)

x ≡ b (mod m)(3.3.7)

and

y ≡ a−1 (mod n)

y ≡ b−1 (mod m)(3.3.8)

then
xy ≡ 1 (mod nm)

since the value is unique modulo nm and reduces to 1 modulo n and m. It
follows that there is a 1-1 correspondence between pairs, (a, b) with a ∈ Z×n ,
b ∈ Z×m and elements of Z×nm — i.e., as sets,

Z×nm = Z×n ×Z×m
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proving the conclusion. □

At this point, computing ϕ(n) for any n becomes fairly straightforward.
If

n = pk1
1 · · · p

kt
t

then

ϕ(n) =
(

pk1
1 − pk1−1

1

)
· · ·
(

pkt
t − pkt−1

t

)
(3.3.9)

= pk1−1
1 (p1 − 1) · · · pkt−1

t (pt − 1)

EXERCISES.

1. Compute ϕ(52).

2. Compute the low-order two digits of 71000.

3.4. Applications to cryptography

In this section, we will describe a cryptographic system that everyone
reading this book has used — probably without being aware of it.

A regular cryptographic system is like a locked box with a key — and
one cannot open the box without the key. The cryptographic system we
discuss here is like a magic box with two keys — if one key is used to lock the
box only the other key can open it. It is called a public-key system and was
first publicly described by Ron Rivest, Adi Shamir and Leonard Adleman
in 1977.

One application of this system is to make one of the keys public — so
anyone who wants to communicate with you can use it to encrypt the mes-
sage. Your evil enemies (!) cannot read the message because the other key
(the one you keep private) is the only one that can decrypt it.

Another application involves digital signatures:

How do you sign a document (like an email) in the digital
age?

Typing your name at the bottom is clearly inadequate — anyone can type
your name. Even an ink signature on a paper document is highly flawed
since robotic signing machines can mimic a person’s handwriting perfectly.

The answer: encrypt the document with your private key. In this case,
the goal is not to hide the message. If your public key can decrypt it, the
message must have come from you.

So here is the RSA system, the first public key system ever devised (and
the one most widely used to this day):
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We start with two large primes (large=50 digits or so), p and q, and
integers m and n that satisfy

gcd(n, ϕ(pq)) = 1

n ·m ≡ 1 (mod ϕ(pq))

Proposition 3.3.2 implies that

xnm ≡ x (mod pq)

whenever gcd(x, pq) = 1.
Our public key is the pair (pq, n) and the encryption of a number k in-

volves

k 7→ e = kn (mod pq)

where e is the encrypted message. The private key is m and decryption in-
volves

e = kn 7→ em = knm ≡ k (mod pq)

One may wonder how secure this system is. We know that

ϕ(pq) = (p− 1)(q− 1)

(from proposition 3.3.3 on page 23 and lemma 3.3.4 on page 23), so if your
evil enemies know (p− 1)(q− 1), they can easily2 compute m, given n. The
problem boils down to computing (p− 1)(q− 1) when one only knows pq.

Oddly enough, this can be very hard to do. The only known way of
finding (p− 1)(q− 1) from pq involves factoring pq into p and q.

Recall how we factor numbers: try primes like 2, 3, 5, . . . until we find
one that divides the number. If the smallest prime that divides pq is 50 digits
long, even a computer will have major problems factoring it.

Now we return to the statement made at the beginning of the section:
every reader has used this system. That is because secure web transactions use
it: A web server sends its public key to your web browser which encrypts
your credit-card number (for instance) and sends it back to the server.

EXERCISES.

1. Suppose p = 11 and q = 13. Compute public and private keys for
an RSA cryptosystem using these.

� �

2OK, maybe not easily, but there are well-known methods for this, using Algorithm 3.1.12
on page 17.
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3.5. Quadratic Residues

If p is a prime, consider the multiplicative group Z×p — see definition 3.2.5 on
page 20. If we write X2 = 1 or X2 − 1 = 0, we can factor it as

(X− 1)(X + 1) = 0

which implies that the only elements of Z×p that are their own inverses are ±1. It
follows that in the list

2, 3, . . . , p− 3, p− 2

every element will be paired with its multiplicative inverse. This implies that

(p− 2)! ≡ 1 (mod p)

and
(p− 1)! ≡ p− 1 ≡ −1 (mod p)

or
(p− 1)! + 1 ≡ 0 (mod p)

This leads into

THEOREM 3.5.1 (Wilson’s Theorem). If n > 1 is an integer, then n is a prime if and
only if

(3.5.1) (n− 1)! + 1 ≡ 0 (mod n)

REMARK. In principle, this could be used as a test for primality. In practice,
computing (n− 1)! is too computationally expensive.

This theorem was stated by Ibn al-Haytham (c. 1000 AD), and, in the 18th
century, by John Wilson. In [105], Edward Waring announced the theorem in 1770,
although neither he nor his student Wilson could prove it. Lagrange gave the first
proof in 1771 (see [67]). There is evidence that Leibniz was also aware of the result
a century earlier, but he never published it.

PROOF. We have already proved it in the case where n is a prime. If n = kℓ
with k, ℓ > 1 then

(n− 1)! + 1 ≡ 0 (mod n)

implies that
(n− 1)! + 1 ≡ 0 (mod k)

which is a contradiction since k occurs as a factor in (n− 1)! so that

(n− 1)! ≡ 0 (mod k)

□

The reasoning in Wilson’s Theorem allows us to explore the question of qua-
dratic residues — squares of elements modulo a prime.

DEFINITION 3.5.2. Let p be a prime number and let n > 0 be an integer. Define
the Legendre symbol

(
n
p

)
=


1 if p ∤ n and ∃x with n ≡ x2 (mod p)
−1 if p ∤ n and ∄x with n ≡ x2 (mod p)
0 if p

∣∣ n

REMARK. Legendre symbols are used to solve quadratic equations in Zp.

We can get a useful computational formulation of the Legendre symbol
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THEOREM 3.5.3 (Euler’s Criterion). If p is an odd prime number and n > 0 is an
integer, then (

n
p

)
≡ n

p−1
2 (mod p)

PROOF. Clearly true if p
∣∣ n. If n ≡ x2 (mod p) then

n
p−1

2 ≡ xp−1 ≡ 1 (mod p)

by proposition 3.3.2 on page 22. If n is not the square of any element of Z×p , define
two elements x, y ∈ {1, . . . , p− 1} to be associates if

x · y ≡ n (mod p)

Every element of {1, . . . , p − 1} has a unique associate distinct from itself. If m =
(p− 1)/2, the list

{x1, y1, x2, y2, . . . , xm, ym}
where xi is associated to yi, is just a permutation of the list

{1, . . . , p− 1}
so that

x1 · y1 · x2 · y2 · · · xm · ym ≡ nm (mod p)

≡ 1 · 2 · 3 · · · (p− 1) ≡ −1 (mod p)

by theorem 3.5.1 on the previous page. The conclusion follows. □

This immediately implies

COROLLARY 3.5.4. If p > 1 is a prime and n, m > 0 are integers, then(
n
p

)(
m
p

)
=

(
nm
p

)
REMARK. This facilitates computation of Legendre symbols: if

n = pα1
1 · · · p

αk
k

is the prime factorization of n and i1, . . . , it are the subscripts for which the corre-
sponding exponents αij are odd, then(

n
p

)
=

(
pi1

p

)
· · ·
(

pit

p

)
so the computation of

(
n
p

)
is reduced to computing

(
q
p

)
for prime values of q.

One of the most important tools for computing these is

THEOREM 3.5.5 (Law of Quadratic Reciprocity). If p and q are distinct odd primes,
then (

p
q

)(
q
p

)
= (−1)

p−1
2 ·

q−1
2

REMARK. This beautiful theorem was conjectured by Euler and Legendre and
first proved by Gauss in 1796 in [41]. He called it his “golden theorem,” and pub-
lished six proofs of it in his lifetime. Two more were found in his posthumous
papers.

There are now over 240 published proofs of this result.
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PROOF. The proof given here is due to George Rousseau — see [95].
The Chinese Remainder Theorem (see lemma 3.3.4 on page 23) implies that the

map

τ: Z×pq →Z×p ×Z×q
n 7→(n mod p, n mod q)

is a bijection that preserves products, where multiplication in Z×p ×Z×q is defined
by (a, b) · (c, d) = (a · c, b · d). Define

L =
{

k ∈ Z×pq|1 ≤ k <
pq
2

}
and

R =
{
(a, b) ∈ Z×p ×Z×q |1 ≤ b <

q
2

}
They are chosen so for all x ∈ Z×pq either x or −x ∈ L but not both, and for any
(a, b) ∈ Z×p ×Z×q either (a, b) ∈ R or −(a, b) ∈ R but not both. For any (a, b) ∈ R,
there exists a unique k ∈ Z×pq such that τ(k) = (a, b), and either k or −k is in L. We
have

(3.5.2) ∏
(a,b)∈R

(a, b) = ϵ ∏
k∈L

(k mod p, k mod q)

where ϵ = ±1.
Set P = (p− 1)/2 and Q = (q− 1)/2. Then we can evaluate the left side of

equation 3.5.2 via

∏
(a,b)∈R

(a, b) = ∏
a<p

b<q/2

(a, b) =
(
(p− 1)!Q, Q!2P

)

=

(
(−1)Q,

(
(q− 1)!(−1)Q

)P
)

=
(
(−1)Q, (−1)P(−1)PQ

)
The middle step follows from exercise 4 on page 21.

Now we analyze the right side of equation 3.5.2. We start with the left factor:

∏
k∈L

k mod p = ∏
k<pq/2

gcd(k,pq)=1

k mod p

=

(
∏

k<pq/2
p∤k

k mod p
)(

∏
k<pq/2

q
∣∣ k

k mod p
)−1

=

Q−1

∏
j=0

(
∏

jp<k<(j+1)p
k mod p

)( ∏
Qp<k<pq/2

k mod p
)

·
(

∏
k<pq/2

q
∣∣ k

k mod p
)−1

=
(p− 1)!QP!

(q)(2q) · · · (Pq)
=

(−1)Q

qP

= (−1)Q
(

q
p

)
(see Euler’s Criterion, theorem 3.5.3)
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By symmetry, the right factor must satisfy

∏
k∈L

k mod q = (−1)P
(

p
q

)
so that equation 3.5.2 on the preceding page becomes(

(−1)Q, (−1)P(−1)PQ
)
= ϵ

(
(−1)Q

(
q
p

)
, (−1)P

(
p
q

))
Equating the left factors shows that

ϵ =

(
q
p

)
and equating the right factors implies that

(−1)PQ =

(
q
p

)(
p
q

)
which is the theorem’s statement. □

Now we can compute!

EXAMPLE 3.5.6. Is 11 a square modulo 53? We must compute
(

11
53

)
. Quadratic

Reciprocity show that (
11
53

)(
53
11

)
= (−1)5·26 = 1

but (
53
11

)
=

(
53 mod 11

11

)
=

(
9

11

)
=

(
3

11

)2
= 1

so we conclude that 11 is a square modulo 53.

One possible difficulty might involve computing(
2
p

)
In this case, we use the fact that Legendre symbols only depend on the equivalence
class modulo p so that(

2
p

)
=

(
2− p

p

)
=

(−1
p

)(
p− 2

p

)
= (−1)

p−1
2

(
p− 2

p

)
EXAMPLE 3.5.7. Compute (

102
113

)
Since 102 = 2 · 3 · 17, we have(

102
113

)
=

(
2

113

)
·
(

3
113

)
·
(

17
113

)
Now

(
2

113

)
= (−1)56

(
111
113

)
=
(

3
113

) (
37

113

)
, so

(
102
113

)
=
(

3
113

)2
·
(

17
113

)
·
(

37
113

)
=(

17
113

)
·
(

37
113

)
. Now we use Quadratic Reciprocity to conclude that(

17
113

)(
113
17

)
= (−1)8·56 = 1

and
(

113
17

)
=
(

11
17

)
and Quadratic Reciprocity implies that(

11
17

)(
17
11

)
= (−1)5·8 = 1
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But
(

17
11

)
=
(

6
11

)
=
(

2
11

)
·
(

3
11

)
. We conclude that

(
2
11

)
= −

(
9
11

)
= −1. The

factor (
3

11

)(
11
3

)
= (−1)1·5 = −1

We get
(

11
3

)
=
(

2
3

)
= −1 (by direct computation), so

(
3

11

)
=
(

17
11

)
=
(

11
17

)
=(

113
17

)
=
(

17
113

)
= −1.

The factor
(

37
113

)
satisfies(

37
113

)(
113
37

)
= (−1)18·56 = 1

and
(

113
37

)
=
(

2
37

)
= (−1)18

(
35
37

)
=
(

5
37

) (
7
37

)
. For the first factor(

5
37

)(
37
5

)
= (−1)2·18 = 1

and
(

37
5

)
=
(

2
5

)
= −1 (by direct computation). For the second factor(

7
37

)(
37
7

)
= (−1)3·18 = 1

and
(

37
7

)
=
(

2
7

)
= 1, since 32 ≡ 2 (mod 7).

We finally conclude that
(

113
37

)
=
(

37
113

)
= −1 and(

102
113

)
= (−1)(−1) = 1

so that 102 is a square modulo 113.





CHAPTER 4

Group Theory

“The introduction of the digit 0 or the group concept was gen-
eral nonsense too, and mathematics was more or less stagnating
for thousands of years because nobody was around to take such
childish steps. . . ”

— Alexander Grothendieck, writing to Ronald Brown.

4.1. Introduction

One of the simplest abstract algebraic structures is that of the group. In
historical terms its development is relatively recent, dating from the early
1800’s. The official definition of a group is due to Évariste Galois, used in
developing Galois Theory (see chapter 8 on page 297).

Initially, Galois and others studied permutations of objects. If the set has
a finite number of elements — 5, for instance — we can regard S as the
set of natural numbers from 1 to 5 and write permutations as little arrays,
where

a =

(
1 2 3 4 5
2 1 5 3 4

)
represents the permutation

1→2
2→1
3→5
4→3
5→4

The set of all such permutations has several properties that are important:

(1) One can compose (i.e. multiply) permutations to get another per-
mutation. Here, we regard them as functions, so the second oper-
ation is written to the left of the first. If

b =

(
1 2 3 4 5
4 5 1 2 3

)

33
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than a ◦ b = ab means “perform b first and follow it with a” to get

1→4→ 3
2→5→ 4
3→1→ 2
4→2→ 1
5→3→ 5

or

ab =

(
1 2 3 4 5
3 4 2 1 5

)
of strings

Note that

ba =

(
1 2 3 4 5
5 4 3 1 2

)
so that ab ̸= ba, in general.

(2) Since multiplication of permutations is composition of functions,
we have a(bc) = (ab)c.

(3) There exists an identity permutation that does nothing at all

1 =

(
1 2 3 4 5
1 2 3 4 5

)
(4) Every permutation has an inverse gotten by flipping the rows of

the array defining it. For instance

a−1 =

(
2 1 5 3 4
1 2 3 4 5

)
or, if we sort the upper row into ascending order, we get

a−1 =

(
1 2 3 4 5
2 1 4 5 3

)
and it is easy to see that a−1a = aa−1 = 1.

We are in a position to define groups of permutations:

DEFINITION 4.1.1. If n > 0 is an integer, the group Sn is the set of all
permutations of the set

{1, . . . , n}
and is called the symmetric group of degree n.

Note that this will have n! elements.
The properties of the symmetric group motivate us to define groups in

the abstract:

DEFINITION 4.1.2. A group is a set, G, equipped with a two maps

µ: G× G → G
ι: G → G

called, respectively, the multiplication and inversion maps. We write
µ(g1, g2) as g1g2 and ι(g) as g−1 for all g1, g2, g ∈ G, and these operations
satisfy
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(1) there exists an element 1 ∈ G such that 1g = g1 = g for all g ∈ G
(2) for all g ∈ G, gg−1 = g−1g = 1
(3) for all g1, g2, g3 ∈ G, g1(g2g3) = (g1g2)g3

If the group G is finite, the number of elements of G is denoted |G| and
called the order of G. If for any elements a, b ∈ G, ab = ba, we say that G is
abelian.

REMARK. Rather confusingly, the group-operation for an abelian
group is often written as addition rather than multiplication.

In the beginning all groups were groups of permutations, many of
which were used for geometric purposes.

We have already seen a few examples of groups:

EXAMPLE 4.1.3. for any positive integer, Zn is a group under the oper-
ation of addition. We can indicate this by writing it as (Zn,+).

We can take a similar set of numbers and give it a group-structure in a
different way:

EXAMPLE 4.1.4. Z×n is a group under the operation of
integer-multiplication1, or (Z×n ,×) — although multiplication is generally
implied by the ×-superscript.

Here are some others:

EXAMPLE 4.1.5. The set of real numbers, R, forms a group under addi-
tion: (R,+).

We can do to R something similar to what we did with Zn in exam-
ple 4.1.4:

EXAMPLE 4.1.6. The set of nonzero reals, R× = R \ {0}, forms a
group under multiplication, Again, the group-operation is implied by the
×-superscript.

We can roll the real numbers up into a circle and make that a group:

EXAMPLE 4.1.7. S1 ⊂ C — the complex unit circle, where the group-
operation is multiplication of complex numbers.

Let us consider a group defined geometrically. Consider the unit square
in the plane in figure 4.1.1 on the next page. If we consider all possible rigid
motions of the plane that leave it fixed, we can represent these by the in-
duced permutations of the vertices. For instance the 90◦ counterclockwise

rotation is represented by R =

(
1 2 3 4
2 3 4 1

)
. Composing this with it-

self gives

R2 =

(
1 2 3 4
3 4 1 2

)
and

R3 =

(
1 2 3 4
4 1 2 3

)
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1 2

34

FIGURE 4.1.1. The unit square

1 2

34

FIGURE 4.1.2. Symmetries of the unit square

We have two additional symmetries of the unit square, namely reflec-
tion through diagonals (dotted lines) through the square and reflection
though axes going though the center (dashed lines) — see figure 4.1.2.

This gives additional symmetries

d1 =

(
1 2 3 4
3 2 1 4

)
d2 =

(
1 2 3 4
1 4 3 2

)
c1 =

(
1 2 3 4
4 3 2 1

)
c2 =

(
1 2 3 4
2 1 4 3

)
So, now we have 7 elements (8 if we include the identity element) in

our set of motions. It we compose them, we get

c2c1 =

(
1 2 3 4
3 4 1 2

)
= R2

c1c2 =

(
1 2 3 4
3 4 1 2

)
= R2

c1d1 =

(
1 2 3 4
2 3 4 1

)
= R

c2d1 =

(
1 2 3 4
4 1 2 3

)
= R3

1In spite of the remark above!
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∗ 1 R R2 R3 c1 c2 d1 d2

1 1 R R2 R3 c1 c2 d1 d2
R R R2 R3 1 d2 d1 c1 c2
R2 R2 R3 1 R c2 c1 d2 d1
R3 R3 1 R R2 d1 d2 c2 c1
c1 c1 d1 c2 d2 1 R2 R3 R
c2 c2 d2 c1 d1 R2 1 R R3

d1 d1 c2 d2 c1 R3 R 1 R2

d2 d2 c1 d1 c2 R R3 R2 1
TABLE 4.1.1. Multiplication table for D4

and further analysis shows that we cannot generate any additional ele-
ments by composition. We get a multiplication table, as in figure 4.1.1. This
is, incidentally, called the dihedral group, D8

Since this defines a subset of S4 (S4 has 4! = 24 elements) that is also a
group, we had better augment our abstract definition of a group with:

DEFINITION 4.1.8. If G is a group and H ⊂ G is a subset of its elements,
H is called a subgroup of G if

(1) x ∈ H =⇒ x−1 ∈ H
(2) x, y ∈ H =⇒ xy ∈ H

REMARK. In other words, H is a subset of G that forms a group in its
own right.

Note that these conditions imply that 1 ∈ H.

Notice that, in D8 the powers of the element R form a subgroup

Z4 = {1, R, R2, R3} ⊂ D4

Since Ri · Rj = Ri+j = Rj · Ri, Z4 is a group where multiplication is com-
mutative — i.e., Z4 is abelian.

We say that Z4 is generated by R and this prompts us to define:

DEFINITION 4.1.9. If G is a group and {g1, . . . , gn} ⊂ G is a set of ele-
ments, define

⟨g1, . . . , gn⟩ ⊂ G

to be the set containing 1 and all possible products of strings gα1
i1
· · · gαik

ik
.

where the αi are integers. Since the products of any two elements of
⟨g1, . . . , gn⟩ is also in ⟨g1, . . . , gn⟩, this is a subgroup of G, called the
subgroup generated by {g1, . . . , gn}. If G = ⟨g1, . . . , gn⟩, we say that the
group G is generated by g1, . . . , gn. A group that is generated by a single
element is called cyclic.

We can define an interesting subgroup of the group in example 4.1.7 on
page 35:
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EXAMPLE 4.1.10. If p is a prime, define Z/p∞ to be the multiplicative
subgroup of the unit circle in C generated by elements of the form e2πi/pk

for all integers k > 0. This is called a Prüfer group.

Every element of a group generates a cyclic subgroup:

DEFINITION 4.1.11. If G is a group and g ∈ G is an element, the set of
all powers of g forms a subgroup of G denoted ⟨g⟩ ⊂ G. If G is finite, the
order of this subgroup is called the order of g, denoted ord(g).

When we have two groups, G and H, we can build a new group from
them:

DEFINITION 4.1.12. If G and H are groups, their direct sum, G ⊕ H, is
the set of all possible pairs (g, h) with g ∈ G, h ∈ H and group-operation

(g1, h1)(g2, h2) = (g1g2, h1h2)

The group
K = Z2 ⊕Z2

is called the Klein 4-group.

EXERCISES.

1. If G is a group and 11 and 12 are two identity elements, show that

11 = 12

so that a group’s identity element is unique.

2. If G is a group and a, b, c ∈ G show that ab = ac implies that b = c.

3. Find elements a, b ∈ D4 such that (ab)−1 ̸= a−1b−1.

4. If G is a group and a, b ∈ G have the property that ab = 1, show that
ba = 1.

5. If G is a group and a, b ∈ G, show that (ab)−1 = b−1a−1 — so we
must reverse the order of elements in a product when taking an inverse.

6. List all of the generators of the cyclic group, Z10.

7. Show that the set

{±3k|k ∈ Z} ⊂ R×

is a subgroup.

8. Show that the set{(
1 2 3
1 2 3

)
,
(

1 2 3
1 3 2

)}
is a subgroup of S3.

9. Show that D4 = ⟨R, d1⟩.
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10. If G = Z×p for a prime number p, define

G2 =

{
x2
∣∣∣∣x ∈ G

}
Show that G2 ⊂ G is a subgroup of order (p− 1)/2 if p is odd, and order 1
if p = 2.

11. If g ∈ G is an element of a finite group, show that there exists an
integer n > 0 such that gn = 1.

12. Prove that the operation x ∗ y = x + y + xy on the set x ∈ R,
x ̸= −1, defines an abelian group.

13. List all of the subgroups of a Klein 4-group.

4.2. Homomorphisms

Now we consider functions from one group to another, and the ques-
tion of when two groups are mathematically equivalent (even when they
are defined in very different ways).

We start with a pointlessly abstract definition of a function:

DEFINITION 4.2.1. If S and T are sets, a function

f : S→ T

is a set of pairs
f ⊂ S× T

– i.e., {(s1, t1), . . . , (sj, tj)} with the property that
(1) every element of S occurs as the first member of some pair
(2) for any two pairs (s1, t1) and (s2, t2), s1 = s2 implies that t1 = t2.

If (s, t) ∈ f ⊂ S× T, we write f (s) = t. The set S is called the domain of f
and T is called the range. The set of t ∈ T such f (s) = t for some s ∈ S is
called the image or codomain of f .

REMARK. In other words, f just associates a unique element of T to
every element of S.

For instance, f (x) = x2 defines a function whose domain and range is
R. The equation f (x) =

√
x defines a function whose domain and range

are R+ — real numbers ≥ 0.
Having defined functions, we also distinguish various types of func-

tions:

DEFINITION 4.2.2. A function, f : S → T, is injective if f (s1) = f (s2)
implies s1 = s2. It is surjective if for every t ∈ T, there exists an s ∈ S such
that f (s) = t — so the image of f is all of T. It is bijective if it is injective and
surjective.

The reader may wonder what all of this has to do with groups.
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DEFINITION 4.2.3. If G and H are groups and

f : G → H

is a function, f is called a homomorphism if it preserves group-operations,
i.e. for all g1, g2 ∈ G

f (g1g2) = f (g1) f (g2) ∈ H

The set of all elements g ∈ G such that f (g) = 1 ∈ H is called the kernel of
f , denoted ker f . If f is bijective, it is called an isomorphism and the groups
G and H are said to be isomorphic. An isomorphism from a group to itself
is called an automorphism.

A homomorphism f : G → H has certain elementary properties that we
leave as exercises to the reader:

EXERCISES.

1. Show that f (1) = 1 ∈ H

2. Show that f (g−1) = f (g)−1

3. Show that ker f ⊂ G is a subgroup

4. Show that im f ⊂ H is a subgroup

5. If S1 is the complex unit circle (see example 4.1.7 on page 35), show
that the function

f : R→ S1

mapping x ∈ R to eix ∈ S1 is a homomorphism. What is its kernel?

6. Show that the map

f : Z → Zn

i 7→ i (mod n)

is a homomorphism.

7. If m and n are positive integers with gcd(m, n) = 1, show that

Zm ⊕Zn ∼= Zmn

Z×m ⊕Z×n ∼= Z×mn

4.3. Cyclic groups

Cyclic groups are particularly easy to understand since they only have
a single generator. In fact, we have already studied such groups because:

PROPOSITION 4.3.1. Let G be a cyclic group
(1) If |G| = n, then G is isomorphic to Zn.



4.3. CYCLIC GROUPS 41

(2) If |G| = ∞, then G is isomorphic to Z.

REMARK. When |G| ∼= Z, it is called an infinite cyclic group.

PROOF. Since G is cyclic it consists of powers of a single element G

{1, g, . . . , gk, . . . }
and the isomorphism maps gk to k in Zn or Z, respectively. □

PROPOSITION 4.3.2. If G is a cyclic group and H ⊂ G is a subgroup, then
H is cyclic.

PROOF. Suppose G is generated by an element g and
H = {1, gn1 , gn2 , . . . }. If α = min{|n1|, . . . }, we claim that gα generates H.
If not, there exists a gn ∈ H such that α ∤ n. In this case

n = α · q + r

with 0 < r < α and gr = gn · (gα)−q ∈ H with r < α. This is a contradiction.
□

EXERCISE 4.3.3. If n and d are a positive integers such that d
∣∣ n, show

that there exists a unique subgroup, S ⊂ Zn, with d elements Hint: propo-
sition 4.3.2 implies that S is cyclic, so every element is a multiple of a gener-
ator g ∈ S with d · g ≡ 0 (mod d) If x = k · g ∈ S, this means that d · x ≡ 0
(mod n). Now look at exercise 3 on page 21.

If G = Zn, and d
∣∣ n, then the set

(4.3.1)
{

0,
n
d

, 2
n
d

, . . . , (d− 1)
n
d

}
forms this unique subgroup isomorphic to Zd.

REMARK. In Zn, the group-operation is written additively, so the order
of m ∈ Zn (see definition 4.1.11 on page 38) 4.1.11 on page 38is the smallest
k > 0 such that

k ·m ≡ 0 (mod n)

PROPOSITION 4.3.4. If m ∈ Zn is a nonzero element, then

ord(m) =
n

gcd(n, m)

It follows that m ̸= 0 is a generator of Zn if and only if gcd(n, m) = 1.

REMARK. It follows that Zn has precisely ϕ(n) distinct generators.

PROOF. The order of m is the smallest k such that k ·m = 0 ∈ Zn, i.e.,

k ·m = ℓ · n
for some integer ℓ. It follows that k · m is the least common multiple of m
and n. Since

lcm(n, m) =
nm

gcd(n, m)

— see proposition 3.1.11 on page 17, we get
nm

gcd(n, m)
= k ·m
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and
k =

n
gcd(n, m)

The number m is a generator of Zn if and only if ord(m) = n — be-
cause it has n distinct multiples in this case — which happens if and only if
gcd(n, m) = 1. □

As basic as this result is, it implies something interesting about the Eu-
ler ϕ-function:

LEMMA 4.3.5. If n is a positive integer, then

(4.3.2) n = ∑
d|n

ϕ(d)

where the sum is taken over all positive divisors, d, of n.

PROOF. If d
∣∣ n, let Φd ⊂ Zn be the set of generators of the unique

cyclic subgroup of order d (generated by n/d). Since every element of Zn
generates one of the Zd, it follows that Zn is the disjoint union of all of the
Φd for all divisors d

∣∣ n. This implies that

|Zn| = n = ∑
d|n
|Φd| = ∑

d|n
ϕ(d)

□

For instance

ϕ(20) = ϕ(4) · ϕ(5)
= (22 − 2)(5− 1)
= 8

ϕ(10) = ϕ(5)ϕ(2)
= 4

and

20 = ϕ(20) + ϕ(10) + ϕ(5) + ϕ(4) + ϕ(2) + ϕ(1)
= 8 + 4 + 4 + 2 + 1 + 1

EXERCISES.

1. If G is a group of order n, show that it is cyclic if and only if it has
an element of order n.

2. If G is an abelian group of order nm with gcd(n, m) = 1 and it has
an element of order n and one of order m, show that G is cyclic.

3. If G is a cyclic group of order n and k is a positive integer with
gcd(n, k) = 1, show that the function

f : G → G

g 7→ gk
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is an isomorphism from G to itself.

4.4. Subgroups and cosets

We being by considering the relationship between a group and its sub-
groups.

DEFINITION 4.4.1. If G is a group with a subgroup, H, we can define
an equivalence relation on elements of G.

x ≡ y (mod H)

if there exists an element h ∈ H such that x = y · h. The equivalence classes
in G of elements under this relation are called left-cosets of H. The number
of left-cosets of H in G is denoted [G: H] and is called the index of H in G.

REMARK. It is not hard to see that the left cosets are sets of the form
g · H for g ∈ G. Since these are equivalence classes, it follows that

g1 · H ∩ g2 · H ̸= ∅

if and only if g1 · H = g2 · H.

Since each of these cosets has a size of |H| and are disjoint, we conclude
that

THEOREM 4.4.2 (Lagrange’s Theorem). If H ⊂ G is a subgroup of a finite
group, then |G| = |H| · [G: H].

Joseph-Louis Lagrange (born Giuseppe Lodovico Lagrangia) 1736 – 1813
was an Italian mathematician and astronomer. He made significant con-
tributions to the fields of analysis, number theory, and celestial mechanics.
His treatise, [68], laid some of the foundations of group theory — including
a limited form of his theorem listed above.

Lagrange’s theorem immediately implies that

COROLLARY 4.4.3. If G is a finite group and g ∈ G is any element, then

g|G| = 1

PROOF. The element g generates a cyclic subgroup of G of order
ord(g). In particular

gord(g) = 1
and the conclusion follows from theorem 4.4.2, which implies that
ord(g)

∣∣ |G|. □

Sometimes, we can deduce properties of a group just by the number of
elements in it:

PROPOSITION 4.4.4. If the group G has p elements, where p is a prime num-
ber, then G is cyclic generated by any x ∈ G such that x ̸= 1.
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PROOF. In x ∈ G, then ord(x) = 1 or p. If x ̸= 1, ord(x) = p and the
distinct powers of x are all of the elements of G. □

The equivalence relation in definition 4.4.1 on the preceding page looks
very similar to that of definition 3.2.1 on page 18 so proposition 3.2.2 on
page 19 leads to the natural question

Does equivalence modulo a subgroup respect multiplication (i.e.,
the group-operation)?

Consider what happens when we multiply sets of group-elements together.
If H ⊂ G is a subgroup, then

H · H = H

— multiplying every element of H by every other element just gives us
H back. This follows from the fact that 1 ∈ H and H is closed under the
group-operation. If we multiply two cosets together

g1 · H · g2 · H
we get a set of group-elements that may or may not be a coset. Note that

g1 · H · g2 · H = g1g2 · g−1
2 Hg2H

If g−1
2 Hg2 = H as a set, then

(4.4.1) g1H · g2H = g1g2H

This suggests making a few definitions

DEFINITION 4.4.5. If G is a group with a subgroup H ⊂ G and g ∈ G,
then the conjugate of H by g is defined to be g · H · g−1, and denoted Hg.

A subgroup H ⊂ G of a group is said to be normal if H = Hg for all
g ∈ G. This fact is represented by the notation H ◁ G.

REMARK. For H to be a normal subgroup of G, we do not require
ghg−1 = h for h ∈ H and every g ∈ G — we only require ghg−1 ∈ H
whenever h ∈ H.

If G is abelian, all of its subgroups are normal because
ghg−1 = gg−1h = h.

Here’s an example of a non-normal subgroup:
Let

S =

{
1, a =

(
1 2 3
2 1 3

)}
⊂ S3

and let

g =

(
1 2 3
1 3 2

)
so that g2 = 1 which means g−1 = g. When we conjugate a by this, we get(

1 2 3
1 3 2

)(
1 2 3
2 1 3

)(
1 2 3
1 3 2

)
=

(
1 2 3
3 2 1

)
/∈ S

PROPOSITION 4.4.6. If H ◁ G is a normal subgroup of a group, then the set
of left cosets forms a group.
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PROOF. Equation 4.4.1 on the preceding page implies that

g1H · g2H = g1g2H

so the group identities for cosets follow from the identities in G:
� the identity element is

1 · H
the inverse of g · H is

g−1 · H
� and

g1H(g2Hg3) = g1(g2g3)H

= (g1g2)g3H

= (g1Hg2H)g3H

□

This group of cosets has a name:

DEFINITION 4.4.7. If H ◁ G is a normal subgroup, the quotient group,
G/H, is well-defined and equal to the group of left cosets of H in G. The

map
p: G → G/H

that sends an element g ∈ G to its coset is a homomorphism — the projection
to the quotient.

If G = Z then G is abelian and all of its subgroups are normal. If H is
the subgroup n ·Z, for some integer n, we get

Z

n ·Z
∼= Zn

In fact, a common notation for Zn is Z/nZ.
If G = Zn and d

∣∣ n, we know that G has a subgroup isomorphic to Zd
(see exercise 4.3.3 on page 41) and the quotient

Zn

Zd
∼= Zn/d

Quotient groups arise naturally whenever we have a homomorphism:

THEOREM 4.4.8 (First Isomorphism Theorem). If f : G → H is a homo-
morphism of groups with kernel K, then

(1) K ⊂ G is a normal subgroup, and
(2) there exists an isomorphism i: G/K → f (G) that makes the diagram

G

p
��

f

##

G/K
i
// f (G) �

�
// H

commute, where p: G → G/K is projection to the quotient.
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REMARK. The phrase “diagram commutes” just means that, as maps,
f = i ◦ p.

If f is surjective, then H is isomorphic to G/K.

PROOF. We prove the statements in order. If k ∈ K and g ∈ G,

f (g · k · g−1) = f (g) · f (k) · f (g−1)

= f (g) · 1 · f (g)−1

= 1

so g · k · g−1 ∈ K and K is normal.
Now we define i to send a coset K · g ⊂ G to f (g) ∈ H. First, we

have to show that this is even well-defined. If g′ ∈ g · K, we must show that
f (g′) = f (g). the fact that g′ ∈ K · g implies that g′ = g · k, for some k ∈ K
so

f (g′) = f (k) · f (g)

= 1 · f (g) = f (g)

Since (g1 · K)(g2 · K) = g1g2 · K , it is not hard to see that i is a hom-
omorphism. It is also clearly surjective onto f (G). If i(K · g) = 1 ∈ H, it
follows that g ∈ K and g · K = 1 · K so that i is also injective. □

Now we consider some special subgroups of a group:

DEFINITION 4.4.9. If G is a group, define Z(G) — the center of G — to
be the set of all elements x ∈ G such that xg = gx for all g ∈ G.

REMARK. Note that |Z(G)| ≥ 1 since 1 commutes with everything in
G.

Since the elements of Z(G) commute with all of the elements of G, Z(G)
is always a normal subgroup of G.

If H ⊂ G is a subgroup of a group, H is frequently not a normal sub-
group. The normalizer of H is the largest subgroup of G containing H in
which H is normal:

DEFINITION 4.4.10. If H ⊂ G is a subgroup of a group, the normalizer
NG(H) is defined by

NG(H) =
{

g ∈ G
∣∣∀h ∈ H, ghg−1 ∈ H

}
REMARK. In other words, gHg−1 = H, as sets.
If g ∈ G is actually an element of H, we always have gHg−1 = H. This

means that H ⊂ NG(H) ⊂ G.

We can also define the normal closure or conjugate closure of a sub-
group.

DEFINITION 4.4.11. If S ⊂ G is a subgroup of a group, its normal closure
(or conjugate closure), SG, is defined to be the smallest normal subgroup of
G containing S. It is given by

SG = ⟨sg for all s ∈ S and g ∈ G⟩
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REMARK. The normal closure is the smallest normal subgroup of G that
contains S.

We also have

DEFINITION 4.4.12. If g1, g2 ∈ G are elements of a group, their commu-
tator [g1, g2] is defined by

[g1, g2] = g1g2g−1
1 g−1

2

and the commutator subgroup, [G, G], is defined by

[G, G] = ⟨[g1, g2] for all g1, g2 ∈ G⟩
Some subgroups of a group are “more than normal:”

DEFINITION 4.4.13. If G is a group with subgroup, H, then H is said to
be a characteristic subgroup if, for any automorphism

f : G → G

f (H) = H.

REMARK. Characteristic subgroups are always normal, but not all nor-
mal subgroups are characteristic. Usually characteristic subgroups are de-
fined by some structural property that is preserved by all automorphisms.
For instance, the center of a group (see definition 4.4.9 on the preceding
page) is characteristic.

We also have the interesting concept of the socle of a group:

DEFINITION 4.4.14. If G is a group, its socle, denoted Soc(G) is the sub-
group generated by all minimal subgroups of G. If a group has no minimal
subgroups, its socle is the identity, {1}.

REMARK. If G = Z12, generated by 1, then it has two minimal sub-
groups, namely the one generated by 6 and isomorphic to Z2 and the one
generated by 4, isomorphic to Z3. The socle is the subgroup generated by
{4, 6}, which is the one generated by 2.

It is not hard to see that minimal subgroups and the socle are charac-
teristic.

There are more isomorphism theorems that are proved in the exercises.

EXERCISES.

1. If H, K ⊂ G are subgroups of a group, HK stands for all products of
the form h · k with h ∈ H and k ∈ K. This is not usually a subgroup of G. If
K is a normal subgroup of G, show that HK is a subgroup of G.

2. If H, K ⊂ G are subgroups of a group, where K is a normal subgroup,
show that K is a normal subgroup of HK.

3. If H, K ⊂ G are subgroups of a group, where K is a normal subgroup,
show that H ∩ K is a normal subgroup of H.
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4. If H, K ⊂ G are subgroups of a group, where K is a normal subgroup,
show that

HK
K
∼= H

H ∩ K
This is called The Second Isomorphism Theorem.

5. If K ◁ G is a normal subgroup and

p: G → G/K

is the projection to the quotient, show that there is a 1-1 correspondence be-
tween subgroups of G/K and subgroups of G that contain K, with normal
subgroups of G/K corresponding to normal subgroups of G. This is called
the Correspondence Theorem for groups.

6. If G is a group with normal subgroups H and K with K ⊂ H, then
H/K ◁ G/K and

G
H
∼= G/K

H/K
This is called the Third Isomorphism Theorem.

7. Show that the set

S =

{(
1 2 3
1 2 3

)
,
(

1 2 3
2 3 1

)
,
(

1 2 3
3 1 2

)}
is a normal subgroup of S3. What is the quotient, S3/S?

8. Show that Z(G) ⊂ G is a subgroup.

9. If Z(G) is the center of a group G, show that Z(G) is abelian.

10. Suppose G is a group with normal subgroups H, K such that H ∩
K = 0 and G = HK. Show that

G ∼= H ⊕ K

11. If G is a group with 4 elements, show that G is abelian.

12. If H ⊂ G is a subgroup of a group and g ∈ G is any element, show
that Hg is a subgroup of G.

13. If G is a group, show that conjugation by any g ∈ G defines an au-
tomorphism of G. Such automorphisms (given by conjugation by elements
of the group) are called inner automorphisms.

14. Show that the automorphisms of a group, G, form a group them-
selves, denoted Aut(G)

15. If m is an integer, show that Aut(Zm) = Z×m .

16. If G is a group show that the inner automorphisms of G form a
group, Inn(G) — a subgroup of all automorphisms.

17. If G is a group show that Inn(G) ◁ Aut(G), i.e., the subgroup of
inner automorphisms is a normal subgroup of the group of all automor-
phisms. The quotient is called the group of outer automorphisms.

Out(G) =
Aut(G)

Inn(G)
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18. If G is a group, show that the commutator subgroup, [G, G], is a
normal subgroup.

19. If G is a group, show that the quotient

G
[G, G]

is abelian. This is often called the abelianization of G.

20. If G is a group and
p: G → A

is a homomorphism with A abelian and kernel K, then

[G, G] ⊂ K

so [G, G] is the smallest normal subgroup of G giving an abelian quotient.

4.5. Symmetric Groups

In the beginning of group theory, the word “group” meant a group of
permutations of some set — i.e., a subgroup of a symmetric group. In some
sense, this is accurate because:

THEOREM 4.5.1 (Cayley). If G is a group, there exists a symmetric group
SG and an injective homomorphism

f : G → SG

where SG is the group of all possible permutations of the elements of G.

Arthur Cayley (1821 – 1895) was a British mathematician noted for his con-
tributions to group theory, linear algebra and algebraic geometry. His in-
fluence on group theory was such that group multiplication tables (like that
in 4.1.1 on page 37) were originally called Cayley tables.

PROOF. First, list all of the elements of G

{1, g1, g2, . . . }
If x ∈ G, we define the function f by

f (x) =
(

1 g1 g2 . . .
x x · g1 x · g2 . . .

)
We claim that this is a permutation in SG: If x · gi = x · gj, then we can
multiply on the left by x−1 to conclude that gi = gj. Furthermore, every
element of G occurs in the bottom row: if g ∈ G is an arbitrary element
of G, then it occurs under the entry x−1 · g in the top row. This function is
injective because f (x) = 1 implies that(

1 g1 g2 . . .
x x · g1 x · g2 . . .

)
= 1 =

(
1 g1 g2 . . .
1 g1 g2 . . .

)
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which implies that x = 1.
We must still verify that f is a homomorphism, i.e. that

f (xy) = f (x) f (y). We do this by direct computation:

f (y) =
(

1 g1 g2 . . .
y y · g1 y · g2 . . .

)

f (x) f (y) =


1 g1 g2 . . .
� � �
y y · g1 y · g2 . . .
� � �

xy xy · g1 xy · g2 · · ·


where we perform the permutation defined by f (y) and then (in the middle
row) apply the permutation defined by f (x). The composite — from top to
bottom — is a permutation equal to

f (xy) =
(

1 g1 g2 . . .
xy xy · g1 xy · g2 . . .

)
which proves the conclusion. □

Since symmetric groups are so important, it makes sense to look for a more
compact notation for permutations:

DEFINITION 4.5.2. A cycle, denoted by a symbol (i1, . . . , ik) with ij ̸= iℓ
for j ̸= ℓ represents the permutation that maps ij to ij+1 for all 1 ≤ j < k
and maps ik to i1. If a cycle has only two indices (so k = 2) it is called a
transposition. We usually follow the convention that in the cycle (i1, . . . , ik),
the index i1 < ij for j > 1. For instance the cycle (i1, . . . , i5) represents the
permutation:

i1

i2
i3

i4
i5

Any index not listed in the cycle is mapped to itself.

REMARK. It follows that the identity permutation is the empty cycle, (),
and transpositions are their own inverses — i.e., (i, j)(i, j) = 1. Most permu-
tations are products of cycles, like

(1, 3)(2, 6, 7)

representing the permutation

(4.5.1)
(

1 2 3 4 5 6 7
3 6 1 4 5 7 2

)
It is fairly straightforward to convert a permutation in matrix-form into

a product of cycles: (
1 2 3 4 5 6 7
3 4 7 5 2 1 6

)
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(1) Start with 1 and note that it maps to 3, so we get (1, 3, . . . ). Now,
note that 3 maps to 7, giving (1, 3, 7, . . . ). Since 7 maps to 6, we get
(1, 3, 7, 6, . . . ). Since 6 maps to 1, and 1 is already in the cycle we
are constructing, our first cycle is complete:

(1, 3, 7, 6)

(2) Now delete those columns from the matrix representation in 4.5.1
on the preceding page to give(

2 4 5
4 5 2

)
(3) And repeat the previous steps until all columns have been elimi-

nated. We get(
1 2 3 4 5 6 7
3 4 7 5 2 1 6

)
= (1, 3, 7, 6)(2, 4, 5)

which is much more compact than the matrix-representation.
Step 2 above guarantees that the cycles we generate will have the property

DEFINITION 4.5.3. Two cycles a = (i1, . . . , is) and b = (j1, . . . , jt) are
said to be disjoint if, as sets, {i1, . . . , is} ∩ {j1, . . . , jt} = ∅.

REMARK. Since a does not affect any of the elements that b permutes
and vice-versa, we have ab = ba.

THEOREM 4.5.4. The symmetric group is generated by transpositions.

PROOF. A little computation shows that we can write every cycle as a
product of transpositions:

(4.5.2) (i1, . . . , is) = (is−1, is) · · · (i2, is)(i1, is)

Recall exercise 5 on page 38, in which the reader showed that (ab)−1 =
b−1a−1 . A simple induction shows that

(a1 . . . an)
−1 = a−1

n · · · a−1
1

in any group. This fact, coupled with the fact that transpositions are their
own inverses means

(4.5.3) (i1, . . . , is) = (a1, b1) · · · (as−1, bs−1)(as, bs)

implies that

(4.5.4) (i1, . . . , is)−1 = (as, bs)(as−1, bs−1) · · · (a1, b1)

Since every permutation is a product of disjoint cycles, and every cycle
can be expressed as a product of transpositions, it follows that every permu-
tation can be written as a product of transpositions. This representation is
far from unique — for instance a bit of computation shows that

(1, 2, 3, 4, 5) = (1, 5)(1, 4)(1, 3)(1, 2)

= (4, 5)(2, 5)(1, 5)(1, 4)(2, 3)(1, 4)(4.5.5)

□
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We can carry this result further

COROLLARY 4.5.5. The symmetric group, Sn, is generated by the transposi-
tions

(1, 2), (1, 2), . . . , (1, n)

PROOF. By theorem 4.5.4 on the previous page, it suffices to show that
every transposition can be expressed in terms of the given set. We have:

(i, j) = (1, i)(1, j)(1, i)

□

It is possible to generate Sn with fewer than n generators:

COROLLARY 4.5.6. The symmetric group, Sn, is generated by the n− 1 ad-
jacent transpositions

(1, 2), (2, 3), . . . , (n− 1, n)

PROOF. As before, we must show that any transposition, (i, j), can be
expressed in terms of these. We assume i < j and do induction on j− i. If
j− 1 = 1 the transposition is adjacent and the result is true.

Now note that

(i, j) = (i, i + 1)(i + 1, j)(i, i + 1)

and j− (i + 1) < j− i so the induction hypothesis implies that (i + 1, j) can
be written as a product of adjacent transpositions. □

Notice that the longer representation in equation 4.5.2 on the preceding
page has precisely two more transpositions in it than the shorter one. This
no accident — representing a more general phenomena. To study that, we
need the following

LEMMA 4.5.7. If

(4.5.6) 1 = (a1, b1) · · · (ak, bk) ∈ Sn

then k must be an even number.

PROOF. We will show that there exists another representation of 1 with
k − 2 transpositions. If k is odd, we can repeatedly shorten an equation
like 4.5.6 by two and eventually arrive at an equation

1 = (α, β)

which is a contradiction.
Let i be any number appearing in equation 4.5.6 and suppose the right-

most transposition in which i appears is tj = (i, bj) — so i = aj and i ̸= aℓ, bℓ
for all ℓ > j. We distinguish four cases:

(1) (aj−1, bj−1) = (aj, bj) = (i, bj). In this case (aj−1, bj−1)(aj, bj) =
1 and we can simply delete these two permutations from equa-
tion 4.5.6. We are done.



4.5. SYMMETRIC GROUPS 53

(2) (aj−1, bj−1) = (i, bj−1) where bj−1 ̸= bj, i. In this case, a little com-
putation shows that

(aj−1, bj−1)(i, bj) = (i, bj)(bj−1, bj)

so that the index i now occurs one position to the left of where it
occurred before.

(3) (aj−1, bj−1) = (aj−1, bj), where aj−1 ̸= aj, bj. In this case

(aj−1, bj−1)(i, bj) = (i, bj−1)(aj−1, bj)

and, again, the index i is moved one position to the left.
(4) The transpositions (aj−1, bj−1) and (i, bj) = (aj, bj) are disjoint, as

per definition 4.5.3 on page 51 in which case they commute with
each other so that

(aj−1, bj−1)(i, bj) = (i, bj)(aj−1, bj−1)

We use cases 2-4 to move the rightmost occurrence of i left until we en-
counter case 1. This must happen at some point — otherwise we could move
i all the way to the left until there is only one occurrence of it in all of equa-
tion 4.5.6 on the preceding page. If this leftmost occurrence of i is in a
transposition (i, i′), it would imply that the identity permutation maps i to
whatever i′ maps to — which cannot be i since i doesn’t appear to the right of
this transposition. This is a contradiction. □

We are ready to prove an important result

PROPOSITION 4.5.8. If σ ∈ Sn is a permutation and

σ = (a1, b1) · · · (as, bs)

= (c1, d1) · · · (ct, dt)

are two ways of writing σ as a product of transpositions then

s ≡ t (mod 2)

PROOF. We will show that s + t is an even number. Equations 4.5.3
and 4.5.4 on page 51 show that

σ−1 = (ct, dt) · · · (c1, d1)

so that
1 = σ · σ−1 = (a1, b1) · · · (as, bs)(ct, dt) · · · (c1, d1)

and the conclusion follows from lemma 4.5.7 on the preceding page. □

So, although the number of transpositions needed to define a permuta-
tion is not unique, its parity (odd or even) is:

DEFINITION 4.5.9. If n > 1 and σ ∈ Sn is a permutation, then the parity
of σ is defined to be even if σ is equal to the product of an even number of
transpositions, and odd otherwise. We define the parity-function

℘(σ) =

{
0 if σ is even
1 if σ is odd
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REMARK. Equation 4.5.2 on page 51 shows that cycles of even length
(i.e., number of indices in the cycle) are odd permutations and cycles of odd
length are even.

If σ ∈ Sn is a permutation, equation 4.5.4 on page 51 implies ℘(σ−1) =
℘(σ). By counting transpositions, it is not hard to see that:

(1) The product of two even permutations is even,
(2) The product of an even and odd permutation is odd,
(3) The product of two odd permutations is even.

This implies that the even permutations form a subgroup of the symmetric
group:

DEFINITION 4.5.10. If n > 1 the subgroup of even permutations of Sn
is called the degree-n alternating group An.

REMARK. The parity-function defines a homomorphism

℘: Sn → Z2

whose kernel is An.

It is fairly straightforward to compute conjugates of cycles:

PROPOSITION 4.5.11. If σ ∈ Sn is a permutation and (i1, . . . , ik) ∈ Sn is a
cycle, then

(i1, . . . , ik)σ = (σ(i1), . . . , σ(ik))

PROOF. Recall that

(i1, . . . , ik)σ = σ ◦ (i1, . . . , ik) ◦ σ−1

If x /∈ {σ(i1), . . . , σ(ik)}, then σ−1(x) /∈ {i1, . . . , ik} so (i1, . . . , ik)σ
−1(x) =

σ−1(x) and
σ ◦ (i1, . . . , ik) ◦ σ−1(x) = x

On the other hand, if x = σ(ij), then σ−1(x) = ij and (i1, . . . , ik) ◦
σ−1(x) = ij+1 (unless j = k, in which case we wrap around to i1) and

σ ◦ (i1, . . . , ik) ◦ σ−1(σ(ij)) = σ(ij+1)

□

COROLLARY 4.5.12. The cycles (i1, . . . , is), (j1, . . . , jt) ∈ Sn are conjugate
if and only if s = t.

PROOF. Proposition 4.5.11 implies that s = t if they are conjugate. If
s = t, proposition 4.5.11 shows that

(j1, . . . , js) = (i1, . . . , is)(i1,j1)···(is ,js)

Here, we follow the convention that (iα, jα) = () if iα = jα. □

Just as Sn is generated by transpositions, we can find standard genera-
tors for alternating groups:

PROPOSITION 4.5.13. The alternating group, An, is generated by cycles of
the form (1, 2, k) for k = 3, . . . , n.
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PROOF. The group, An, is generated by pairs of transpositions:
(a, b)(c, d) or (a, b)(b, c) but

(a, b)(c, d) = (a, c, b)(a, c, d)

(a, b)(b, c) = (a, c, b)

so we know that An is generated by cycles of length 3. Now, note that
(1, a, 2) = (1, 2, a)−1 and (1, a, b) = (1, 2, b)(1, 2, a)−1. In addition,
(2, a, b) = (1, 2, b)−1(1, 2, a).

With these basic cases out of the way, we are in a position to handle the
general case. If a, b, c ̸= 1, 2, a slightly tedious calculation shows that

(a, b, c) = (1, 2, a)−1(1, 2, c)(1, 2, b)−1(1, 2, a)

which proves the result. □

DEFINITION 4.5.14. A group, G, is defined to be simple if it has no nor-
mal subgroups other than {1} and G itself.

REMARK. It is not hard to find examples of simple groups: if p is a
prime number, Zp is simple since it doesn’t have any subgroups other than
{0} and Zp. One reason that simple groups are interesting is that one can
construct all finite groups out of them.

For many years, the classification of all finite simple groups was one
of the most famous unsolved problems in group theory. It was solved in
a series of several hundred papers published between 1955 and 2004 —
involving thousands of pages of logical reasoning.

THEOREM 4.5.15. If n ̸= 4, the group An is simple.

PROOF. If n = 3, A3 = Z3 so it is simple. If n = 4 , A4 has the subgroup

{1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
which can be verified to be normal, so A4 is not simple. Now suppose
n ≥ 5.

Suppose H ⊂ An is a normal subgroup. If (1, 2, 3) ∈ H, then propo-
sition 4.5.11 on the facing page implies that (1, 2, 3)(3,k) = (1, 2, k) and this
conjugate must be contained in H because H is normal. Since these cycles
generate An (see proposition 4.5.13 on the preceding page) it follows that
H = An. If H has any 3-cycle, corollary 4.5.12 on the facing page shows
that this 3-cycle is conjugate to (1, 2, 3) so that (1, 2, 3) ∈ H and H = An.

Now we show that, if n > 4, H ⊂ An must have a 3-cycle so that
H = An. We consider the elements of H — products of disjoint cycles:

x = c1 · · · cr

Case 1: At least one of the ci has length ≥ 4 — i.e. ci = (i1, . . . , ik)τ ∈ H,
where k ≥ 4 and τ is disjoint from (i1, . . . , ik). The normality of
H and corollary 4.5.12 on the preceding page means that it also
contains σ = (1, 2, . . . , k)τ′ and

σ−1σ(1,2,3) = (1, 2, k)

which implies that H = An.
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Case 2: x has at least two cycles of length 3 — i.e., x = (i1, i2, i3)(j1, j2, j3)τ
where τ is disjoint from the cycles. Proposition 4.5.11 on page 54
and the fact that H is normal shows that, without loss of general-
ity, we can assume x = (1, 2, 3)(4, 5, 6)τ. Let σ = (1, 2, 4). Then σ
commutes with τ so

xσ = [(1, 2, 3)(4, 5, 6)]στ

= (1, 2, 3)σ(4, 5, 6)στ

= (2, 4, 3)(1, 5, 6)τ

Then

xσx−1 = (2, 4, 3)(1, 5, 6)ττ−1(4, 5, 6)−1(1, 2, 3)−1

= (2, 4, 3)(1, 5, 6)(4, 6, 5)(1, 3, 2)

= (1, 2, 5, 3, 4)

which shows that H has a cycle of length ≥ 4 — and this takes us
back to case 1.

Case 3: x has one cycle of length 3 and all of the others have length 2. With-
out loss of generality, we can assume x = (1, 2, 3)τ. Since cycles of
length 2 are their own inverses we have τ2 = 1 and x2 = (1, 3, 2)
— which implies that H = An.

Case 4: x consists entirely of disjoint transpositions — so, for instance, x2 =
1. Without loss of generality, we can assume

x = (1, 2)(3, 4)τ

If σ = (1, 2, 3), we have

xσ = σxσ−1

= (1, 2)σ(3, 4)στ

= (2, 3)(1, 4)τ

and

xσx−1 = (2, 3)(1, 4)ττ−1(3, 4)(1, 2)

= (2, 3)(1, 4)(3, 4)(1, 2)

= (1, 3)(2, 4)

so we conclude that α = (1, 3)(2, 4) ∈ H (i.e., without any τ-factor).
Proposition 4.5.11 on page 54 shows that

α(1,3,5) = (3, 5)(2, 4)

and we have

αα(1,3,5) = (1, 3)(2, 4)(3, 5)(2, 4)(4.5.7)

= (1, 3, 5)

so (1, 3, 5) ∈ H and H = An. Note that the (2, 4)-transpositions
in equation 4.5.7 are disjoint from the others and just cancel each
other out.

□
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We can use symmetric groups and permutations to analyze other
groups.

Recall the group, D8, defined in table 4.1.1 on page 37 — the group of
symmetries of the square.

EXAMPLE 4.5.16. The general dihedral group D2n is the group of sym-
metries of a regular n-sided polygon.

These symmetries are:
� rotations by 2π/n — giving rise to an element r ∈ D2n with rn = 1.
� when n is even, we have reflections through axes through two

corners (the dotted lines in figure 4.1.2 on page 36), giving rise to
fi ∈ Dn, i = 1, . . . , n with f 2

i = 1. In this case, f1 = (2, n)(3, n−
1) · · · (k, k + 2) as a permutation of vertices.

� In the odd case n = 2k+ 1, fi is a reflection through vertex i and the
midpoint of the face (k+ 1, k+ 2), and f1 = (2, n)(3, n− 1) · · · (k+
1, k + 2), as a permutation of vertices.

� if n = 2k, we also have reflections through axes passing through
midpoints of two opposite faces (the dashed lines in figure 4.1.2 on
page 36). These give rise to elements gi ∈ Dn, i = 1, . . . , n with
g2

i = 1. It appears that we have 2n reflections in all but the sym-
metry of the even case implies that { f1, . . . , fk} = { fk+1, . . . , fn}
and {g1, . . . , gk} = {gk+1, . . . , gn} as sets, so that, again, we have n
reflections in all.

In all cases, proposition 4.5.11 on page 54 shows that

r f1 = (1, n, n− 1, . . . , 2) = r−1 = rn−1

PROPOSITION 4.5.17. If n > 2, D2n is generated by r and f1 and the ele-
ments of D2n are precisely{

1, r, . . . , rn−1, f1, r f1, . . . , rn−1 f1

}
so it is of order 2n and defined by the equations rn = 1, f 2

1 = 1, and r f1 = r−1.

REMARK. In a rather confusing convention, the dihedral group D2n
is sometimes written as Dn (especially where its geometric properties are
being studied).

PROOF. We have already seen 2n potential elements of D2n: the ro-
tations and reflections. The relations f 2

1 = 1 and r f1 = rn−1 imply that
f1r f1 = rn−1 so that f1rk f1 = rk(n−1), which implies that

f1rk = rk(n−1) f1

and this exhausts possible products of r and f1. It is not hard to see that
these are all distinct. An arbitrary product

f1rn1 · · · f1rnk f i
1

can be rewritten as rt f s
1 . □
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FIGURE 4.5.1. Regular pentagon

EXERCISES.

1. Convert (
1 2 3 4 5 6 7 8 9
3 1 6 9 4 7 2 5 6

)
to cycle notation

2. Is the permutation(
1 2 3 4 5 6 7 8 9
9 1 6 3 4 7 6 5 2

)
odd or even?

3. If g ∈ Sn is an element we arrange the disjoint cycles of g in order
from longest to shortest (and list elements that are fixed by g as cycles of
length 1):

g = (a1, . . . , ak1)(b1, · · · , bk2) · · · (z1, . . . , zkt)

and call the sequence of numbers k1 ≥ k2 ≥ · · · ≥ kt, the cycle structure of
g. Show that two elements of Sn are conjugate if and only if they have the
same cycle structure.

4. What is the center of S3?

5. Represent the dihedral group, D8 — see 3.2.2 on page 20 — as a
subgroup of S4.

6. Let G ⊂ S5 be a subgroup containing a 5-cycle and a transposition.
Show that this implies that G = S5.

4.6. Abelian Groups

There are a “islands of success” in mathematics — areas that are “com-
pletely solved:” Every reasonable question one has can be answered. The
theory of finitely generated abelian groups is one of these areas.

We begin with free abelian groups:
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DEFINITION 4.6.1. A group, A, is a free abelian group if it has a gener-
ating set

X = {x1, . . . }
that is linearly independent — i.e. any equation

(4.6.1)
n

∑
i=1

aki
xki

= 0

where ai ∈ Z, implies that ak1 = · · · = akn = 0. If the set X is finite, its
order is called the rank of A. This generating set is called a free basis of A.

REMARK. The word “free” is used because equation 4.6.1 implies that
the basis do not satisfy any equations other than those dictated by simple
logic (and the fact that the groups are abelian). If B is any abelian group,
this freeness property means that any map of the basis elements

f (xi) = bi ∈ B

gives rise to a unique homomorphism

f : A→ B

f

(
n

∑
i=1

nixi

)
=

n

∑
i=1

nibi(4.6.2)

At this point, we come up against the distinction between a direct sum
(as in definition 4.1.12 on page 38) and direct product.

DEFINITION 4.6.2. Given an infinite set of abelian groups {Ai}
(1) their direct product

∞

∏
i=1

Ai

is the set of all infinite sequences

(a1, a2, . . . )

with ai ∈ Ai.
(2) their direct sum

∞⊕
i=1

Ai

is the set of infinite sequences

(a1, a2, . . . )

in which only a finite number of the ai are nonzero.

REMARK. When a finite number of groups are involved, direct prod-
ucts are identical to direct sums. When an infinite number of groups are
involved, they become very different and

∞⊕
i=1

Ai ⊂
∞

∏
i=1

Ai

In a category-theoretic sense (see chapter 10 on page 339) direct products
are products (see definition 10.1.1 on page 339) in the category of abelian
groups and direct sums are coproducts (see definition 10.1.4 on page 342).
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Using direct sums, we can characterize free abelian groups:

PROPOSITION 4.6.3. If X is a set and A is a free abelian group with X as a
basis, then there exists an isomorphism

f :
⊕
x∈X

Zx → A

REMARK. This is true whether X is finite or infinite. Note that Zx rep-
resents a copy of Z indexed by x ∈ X.

PROOF. Just define

f (n1, . . . ) = n1x1 + · · ·
The fact that the xi are linearly independent in A implies that this map is
injective. The fact that every element of A is a finite linear combination of
the xi ∈ X implies that it is surjective. □

It follows that the infinite direct sum
∞⊕

i=1

Z

is a free abelian group.
We can also define

DEFINITION 4.6.4. The infinite direct product

B =
∞

∏
i=1

Z

is called the Baer-Specker group.

REMARK. In exercises 3 through 6 on page 73, the reader will get a
chance to prove that this group is not free abelian. This group first appeared
in Baer’s paper [9] in which he proved it was not free abelian2. Specker later
published the paper [100] which explored its rather bizarre properties.

COROLLARY 4.6.5. If A is a free abelian group of rank n, B is a free abelian
group of rank m and if

A ∼= B
is an isomorphism, then n = m.

REMARK. In other words the rank of a finitely generated free abelian
group is well-defined.

PROOF. The isomorphism A ∼= B induces an isomorphism

A
2A

= Zn
2
∼= B

2B
= Zm

2

forcing n = m. □

The property of freeness of an abelian group is hereditary in the sense
that all of its subgroups inherit it:

2The proof in the exercises is simpler.
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PROPOSITION 4.6.6. If S ⊂ A is a subgroup of a free abelian group, then S
is free abelian. If rank(A) < ∞, then

rank(S) ≤ rank(A)

REMARK. Compare this result with example 4.10.24 on page 103. The
essential difference is that A is free abelian.

PROOF. Let X be a free basis for A. By the Well Ordering Axiom of set
theory (see axiom 14.2.9 on page 465), we can order the elements of X

x1 ≻ x2 ≻ · · ·
so that every subset of X has a minimal element. Note that this ordering is
completely arbitrary — we only use the fact that such an ordering exists3.

If s ∈ S, we have
s = ∑ nixi

— a finite sum. Define the leading term, λ(s) = nαxα — the highest ordered
term in the sum. Let Y ⊂ X be the set of basis elements that occur in these
leading terms of elements of S. For each y ∈ Y, there is at least one s ∈ S
whose leading term is n · y. Let

(4.6.3) I(y) = {0} ∪ {n ∈ Z|λ(s) = n · y for some s ∈ S}
It is not hard to see that

I(y) ⊂ Z

is a cyclic subgroup (see proposition 4.3.2 on page 41). If ny is the positive
generator4 of I(y), there exists a set of elements Sy ⊂ S whose leading terms
are nyy. The Axiom of Choice (see theorem 14.2.11 on page 465) implies
that we can select one such element for each y ∈ Y — i.e. we can define a
function

f : Y → S
where f (y) is some (arbitrarily selected) element of Sy. We claim that the
set

B = { f (y)|y ∈ Y}
is a basis for S. We must demonstrate two things:

(1) the set B is linearly independent. This follows immediately from the
fact that its leading terms are multiples of distinct basis elements
of A. If we have a linear combination

n

∑
i=1

niyi + H = 0

where H is the non-leading terms. Of those leading terms, one is
ordered the highest — say nαyα and it can never be canceled out
by any other term. It follows that nα = 0 and a similar argument
applied to the remaining terms eventually leads to the conclusion
that all of the coefficients are 0.

3If X is finite, this is completely trivial; if X = R, not so much. The hard part is that every
subset must have a minimal element. See remark 14.2.10 on page 465.

4Both ny and −ny are generators of the same cyclic subgroup of Z.
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(2) the set B generates S. Suppose not and suppose g ∈ S \ ⟨B⟩ has
the property that λ(g) = my for m ∈ Z and y ∈ Y is minimal (in
the ordering on X — axiom 14.2.9 on page 465). Then m ∈ I(g)
(see equation 4.6.3 on the preceding page) so that m = k · ng and
k · f (y) ∈ ⟨B⟩ also has leading term my. It follows that

g− k · f (y) ∈ S \ ⟨B⟩
has a leading term strictly lower than that of g — a contradiction.

□

It is interesting that every abelian group is a quotient of a free abelian
group:

PROPOSITION 4.6.7. If A is any abelian group, there exists a surjective hom-
omorphism

f : F → A
where F is free abelian. If A is finitely generated then F can be of finite rank.

REMARK. Proposition 4.6.6 on the previous page implies that the ker-
nel of this map is also free so proposition 4.4.8 on page 45 implies that
every abelian group is a quotient of a free abelian group by a free abelian
subgroup.

PROOF. Just define F to be the free abelian group on the basis A \ {0}.
The map f sends the basis element a ∈ A \ {0} to a ∈ A, and we extend
this map of basis elements to all of F via an analogue to equation 4.6.2 on
page 59.

If A has a finite generating set S = {a1, . . . , an}, we can define F to be
a free abelian group whose basis is precisely S. The same argument as that
used above constructs the homomorphism f . □

Our structure-theorem for finitely generated abelian groups is:

THEOREM 4.6.8. If A is a finitely generated abelian group, then

(4.6.4) A ∼= F⊕Zn1 ⊕ · · · ⊕Znk

where F is free-abelian and n1
∣∣ n2

∣∣ · · · ∣∣ nk.

REMARK. Finite generation is essential to this result. When an abelian
group is not finitely generated the result fails — see example 4.6.14 on
page 67.

PROOF. Let {a1, . . . , an} be a generating set for A. Define G to be the
free-abelian group on basis {x1, . . . , xn} and define the surjective homo-
morphism

f : G → A
xi 7→ ai

Proposition 4.6.6 on the previous page implies that the kernel, K is also free
abelian on some basis {y1, . . . , ym}, where m ≤ n and proposition 4.4.8 on
page 45 implies that

A ∼= G
K
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If

yi =
n

∑
j=1

ai,jxj

the m× n matrix M = [ai,j] expresses how K fits in G and the quotient. We
consider ways of “simplifying” this matrix in such a way that the quotient
G/K remains unchanged:

(1) Rearranging the rows of M corresponds to re-labeling the yi, so it
leaves G/K unchanged.

(2) Rearranging the columns of M corresponds to re-labeling the xj,
leaving G/K unchanged.

(3) Multiplying a row by −1 defines an automorphism of K (see defi-
nition 4.2.3 on page 40), leaving G/K unchanged.

(4) Multiplying a column by −1 defines an automorphism of G, leav-
ing G/K unchanged.

(5) Adding a multiple of the ith row to the jth row (with i ̸= j) de-
fines an automorphism of K — we replace the basis {y1, . . . , ym}
by {y1, . . . , y′j, . . . , ym} where y′j = yj + n · yi, where n is the multi-
plying factor. This is invertible because yj = y′j− n · yi so it defines
an isomorphism that doesn’t change the subgroup H ⊂ G or the
quotient.

(6) For the same reason, adding a multiple of the ith column to the jth

column (with i ̸= j) defines an automorphism of G that leaves the
quotient, G/K, unchanged.

It follows that we can perform all of the operations listed above to M with-
out changing the quotient in any way.

We’ll call this part of our algorithm, Diagonalization:
This consists of two phases: row-reduction and column-reduction.
We will call the (1, 1) position in the matrix, the pivot.
By performing operations 1, 2, and 3 if necessary, we can assume that

a1,1 > 0. Now we scan down column 1.
(1) If a1,1|ak,1 with k > 1, we subtract (a1,1/ak,1)× row 1 from row k,

replacing ak,1 by 0.
(2) If a1,1 ∤ ak,1, perform two steps:

(a) write ak,1 = q · a1,1 + r with 0 < r < a1,1. Now subtract q×
row 1 from row k, replacing ak,1 by r.

(b) Swap row 1 with row k so that a1,1has been replaced by r.
We perform step 2 until the matrix-entry in position (k, 1) is 0. Since the
pivot position decreases every time we do step 2, we can only do it a finite
number of times. The astute reader will recognize repetition of step 2 above
as the Euclidean algorithm (see algorithm 3.1.4 on page 14) for computing
the greatest common divisor.

The effect is5:

a1,1 → gcd(a1,1, ak,1)

ak,1 → 0

5Where the symbol ‘→’ means “is replaced by.”
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Repeating these operations for all lower rows ultimately clears all elements
of column 1 below a1,1 to 0. This completes row-reduction for column 1.

Now we do column-reduction on row 1, ultimately clearing out all ele-
ments to the right of a1,1 to 0.

After these steps, our matrix looks like[
ā1,1 0
0 M̄

]
where M̄ is an (m− 1)× (n− 1) matrix.

After recursively carrying out our algorithm above on this and the
smaller sub-matrices that result, we get the diagonal form:

ā1,1 0 0 · · · 0
0 ā2,2 0 · · · 0
...

...
. . . · · · ...

0 0 0 · · · 0


where all off-diagonal entries are 0 and we have n − m columns of 0’s on
the right. This matrix means that the new bases for K and F satisfy

yi = āi,i · xi

for 1 ≤ i ≤ m. This completes the phase of the algorithm called diagonal-
ization.

Now we may run into the problem āi,i ∤ āi+1,i+1. We can resolve this as
follows:

The subgroup of A determined by these two rows of the matrix has
āi,i · āi+1,i+1 elements. Now add column i + 1 to column i to give[

āi,i 0
āi+1,i+1 āi+1,i+1

]
If we row-reduce this, a tedious calculation shows that we get[

δ u
0 v

]
where δ = gcd(āi,i, āi+1,i+1) and u and v are linear combinations of āi,i and
āi+1,i+1. At this point, we subtract (u/δ)× column i from column i + 1 to
get [

δ 0
0 v

]
Since the subgroup of A determined by these two rows is unchanged, it
still has āi,i · āi+1,i+1 elements. This means δ · v = āi,i · āi+1,i+1 so

v =
āi,i · āi+1,i+1

δ
= lcm(āi,i, āi+1,i+1)

On the other hand, the number of distinct prime factors in δ must be strictly
less than those in āi,i and āi+1,i+1 (equality only occurs if āi,i and āi+1,i+1
have the same prime factors). So this operation shifts prime factors to the
right and down.
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After a finite number of steps, ā1,1 must stabilize (i.e. remain constant
over iterations of this process) since it has a finite number of prime factors.
One can say the same of ā2,2 as well. Eventually the entire list of elements

{ā1,1, . . . , ām,m}
must stabilize, finally satisfying the condition

ā1,1
∣∣ · · · ∣∣ ām,m

When we form the quotient

A ∼= G
K

=
Z⊕Z⊕ · · · ⊕Z

ā1,1 ·Z⊕ ā2,2 ·Z⊕ · · · ⊕Z

=
Z

ā1,1 ·Z
⊕ Z

ā2,2 ·Z
⊕ · · · ⊕Z

� each nonzero entry ai,i results in a direct summand Zai,i = Z/āi,i ·
Z, if āi,i ̸= ±1 and 0 otherwise.

� each column of zeros contributes a direct summand of Z to F in
equation 4.6.4 on page 62.

□

If an abelian group is finite, the F-factor is zero and, in light of exercise 7
on page 40, we conclude that

COROLLARY 4.6.9. If A is a finite abelian group, then

(4.6.5) A ∼= Z
p

k1
1
⊕ · · · ⊕Zpkn

n

where the pi are (not necessarily distinct) primes.

PROOF. Simply factor each ni in equation 4.6.4 on page 62 into powers
of primes. □

We summarize and extend these results with:

THEOREM 4.6.10. If A is a finite abelian group, then

A ∼= ∏
i

Zpi ⊕ · · · ⊕Zpi︸ ︷︷ ︸
αi,1 factors

⊕Zp2
i
⊕ · · · ⊕Zp2

i︸ ︷︷ ︸
αi,2 factors

⊕ · · · ⊕Z
p

ti
i
⊕ · · · ⊕Z

p
ti
i︸ ︷︷ ︸

αi,ti
factors

where the (finite number of) primes, pi, and the integers αi,j are uniquely deter-
mined by A.

REMARK. Of course many of the αi,j may be zero.

PROOF. We get the equation above from equation 4.6.5 by arranging
the factors in order by primes and their powers. The only additional things
to be proved are the statements regarding the primes pi and the integers
αi,j.

If p and q are distinct primes, then for any integers i, k > 0

qk×: Zpi → Zpi
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is an isomorphism (see exercise 3 on page 42), so its kernel is 0. In addition,
the kernel of

p×: Zpk → Zpk

is isomorphic to Zp (generated by pk−1 ∈ Zpk ).
Consider the map

pj
i×: A→ A

and call its kernel A
pj

i
and its image pj

i A. Factors corresponding to primes

other than pi will not appear in the kernels of these multiplication-maps
because they are mapped isomorphically. Then any isomorphism

f : A→ A′

induces isomorphisms

f |A
pj

i
: A

pj
i
→ A′

pj
i

f̄ : pj
i A→ pj

i A′

Now note that
Api
∼= Zpi ⊕ · · · ⊕Zpi︸ ︷︷ ︸

αi,1+αi,2+··· factors

because every factor of Z
pj

i
(regardless of j) gives rise to a copy of Zpi in

the kernel. Multiplying by pi kills off all copies of Zp1
i

and we get

(pi A)pi
∼= Zpi ⊕ · · · ⊕Zpi︸ ︷︷ ︸

αi,2+αi,3+··· factors

In general

|(pj−1
i A)pi | = p

αi,j+αi,j+1+···
i

so we can compute αi,j via

p
αi,j
i =

|(pj−1
i A)pi |
|(pj

i A)pi |
Any isomorphism of A will map all of these groups derived from it

isomorphically, and preserve all of the αi,j. □

Given any positive integer, n, we could list all of the isomorphism
classes of abelian groups of order n. For instance, if n = 8 we get

Z2 ⊕Z2 ⊕Z2

Z4 ⊕Z2

Z8

DEFINITION 4.6.11. A group, G, is torsion free if it has no elements of
finite order.

Theorem 4.6.8 on page 62 immediately implies that

PROPOSITION 4.6.12. A finitely generated torsion free abelian group is free.
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REMARK. This requires finite generation. For instance Q under addition
is torsion free but definitely not free abelian: If {q1, q2, . . . } is any generating
set with qi ∈ Q, let q1 = a1/b1 and q2 = a2/b2 where a1, a2, b1, b2 ∈ Z. Then

(b1a2) · q1 − (b2a1) · q2 = 0

which implies that this arbitrary generating set is not linearly independent.

We need the following result to prove several other things in the future:

LEMMA 4.6.13. Let G be an abelian group with subgroups A and B. Then
we have an isomorphism

A⊕ B
((1⊕−1) ◦ ∆)(A ∩ B)

∼= A + B ⊂ G

where
∆: A ∩ B→ A⊕ B

is the diagonal embedding defined by ∆(x) = x⊕ x for all x ∈ A ∩ B, and

(1⊕−1): A⊕ B→ A⊕ B

sends (a, b) to (a,−b) for all a ∈ A and b ∈ B.

REMARK. In particular, whenever G = A + B and A ∩ B = 0, G ∼=
A⊕ B.

In the nonabelian case, this result fails — see definition 4.7.15 on
page 79.

PROOF. Consider the map

A⊕ B→ A + B

defined by
(a, b) 7→ a + b

The kernel of this map is
(c,−c)

where c ∈ A ∩ B, so Proposition 4.4.8 on page 45 implies

A + B =
A⊕ B

((1⊕−1) ◦ ∆)(A ∩ B)
□

When groups are not finitely generated, their behavior becomes more
complicated. For instance we have a counterexample to theorem 4.6.8 on
page 62:

EXAMPLE 4.6.14. Let p be a prime number and define

G =
∞

∏
k=1

Zp2k

This group is not torsion because it has elements of infinite order like

(1, 1, 1, . . . )

We claim that its torsion subgroup, tG, is not a direct summand. If so, there
would be a subgroup of G isomorphic to G/tG (as per lemma 4.6.13).
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Note that all elements of G are divisible by, at most, a finite power of p,
i.e.

x = (n1 pk1 , n2 pk2 , . . . )

where all of the ni are relatively prime to p, is a multiple of pn with n =
min(k1, . . . ) and no higher power of p. On the other hand, we claim there
are elements of G/tG divisible by arbitrarily high powers of p:

Let x = (p, p2, . . . , pk, . . . ), let j > 0 be an integer, and let
y = (y1, . . . , yk, . . . )

yk =

{
pk−j if k ≥ j
0 otherwise

Then
x− pjy = (p, p2, . . . , p2j−2, 0, 0, . . . )

has order p2j−2 and is, therefore, torsion. It follows that the element of
G/tG represented by x cannot be any element of G.

DEFINITION 4.6.15. If G is a torsion abelian group and p is a prime,
its p-primary component, Gp is the subgroup of elements x ∈ G such that
pk · x = 0 for some integer k > 0.

We can prove a limited version of theorem 4.6.10 on page 65 for groups
that may not be finitely generated:

THEOREM 4.6.16. If G is a torsion abelian group, then G is a direct sum of
its p-primary components for all primes p:

G ∼=
⊕

p
Gp

PROOF. Suppose x has order

n = pk1
1 · · · p

kt
t

The integers

ni = pk1
1 · · · p

kt
t︸ ︷︷ ︸

omit ith factor

have a greatest common divisor of 1 so that there exist integers mi such that

1 = ∑ mini

We conclude that
x = ∑ mini · x

and ni · x has order pki
i . It follows that

G = ∑
p

Gp

The conclusion follows from lemma 4.6.13 on the previous page and the
fact that Gp ∩ Gp′ = 0 whenever p, p′ are distinct primes. □

� �
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4.6.1. Divisible groups. This is a class of groups that is used in category the-
ory and cohomology. All groups will be assumed to be abelian.

DEFINITION 4.6.17. A group G is divisible if every element is an arbitrary mul-
tiple of some other element, i.e., if x ∈ G and n > 0 is an integer, then

x = ny

for some y ∈ G.

REMARK. For example, Q, R, and Q/Z are clearly divisible.

PROPOSITION 4.6.18. Divisible groups have the following properties
(1) sums and products of divisible groups are divisible, and
(2) quotients of divisible groups are divisible

PROOF. If
D = ∏ Di

is a product of divisible groups and x ∈ D is and element and n > 0 is an integer,
then

x = (d1, . . . )
and each component, di, of x can be ‘divided’ by n, so the same is true of x. If all
but a finite number of the di are 0, the same reasoning applies (where the result of
‘dividing’ 0 by n is 0).

If D is divisible with a subgroup, S, and

G =
D
S

we can ‘divide’ x ∈ G by lifting it to D, dividing it there, and projecting back to
G. □

The following general result will be useful

LEMMA 4.6.19 (Pasting lemma). Let C be an abelian group with subgroups A and
B and

f : A→ C
g: B→ C

are homomorphisms of groups with the property that

f |A ∩ B = g|A ∩ B

then there exists a unique extension f + g to , A + B ⊂ C, defined by

( f + g)(a + b) = f (a) + g(b)

for a ∈ A and b ∈ B.

REMARK. A corresponding result holds for nonabelian groups but is much
more complicated.

PROOF. Lemma 4.6.13 on page 67 implies that

f ⊕ g: A⊕ B→ A + B

has kernel
((1⊕−1) ◦ ∆)(A ∩ B)

The hypotheses imply that

f ⊕ g|((1⊕−1) ◦ ∆)(A ∩ B) = 0

so it factors through the quotient. □
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The following result gives one of the most significant properties of divisible
groups:

THEOREM 4.6.20. An abelian group D is divisible if and only if it satisfies the “injec-
tivity condition:”

Any homomorphism f : A → D from any abelian group, A, extends to
any group containing A. In other words, if A ⊂ B and

f : A→ D

is a homomorphism, there exists a homomorphism

F: B→ D

such that

F|A = f

REMARK. See propositions 10.5.5 on page 363 and 10.5.6 on page 363 for a
generalization of this argument.

PROOF. Suppose D satisfies this condition. If n > 0 is an integer and x ∈ D,
we can define a mapping

fx: Z → D
1 7→ x

Since Z can be regarded as the subgroup A = n · Z ⊂ Z = B, the injectivity
condition implies that fx extends to a map

F: Z→ D

and F(1) ∈ D is an element such that x = n · F(1), so D is divisible.
Conversely, suppose D is divisible. Let P be the partially ordered set of ele-

ments (C, g) where
A ⊂ C

and g|A = f . This contains, at least, (A, f ). Any tower of elements {(Cα, gα)} has
an upper bound (⋃

Cα,∪gα

)
Zorn’s lemma ( 14.2.12 on page 465) implies that it has a maximal element (C̄, ḡ).
We claim that C̄ = B.

If not, there exists x ∈ B \ C̄. Consider its image, x̂, in the quotient, B/C̄. If the
order of x̂ is infinite, then

⟨x⟩ ∩ C̄ = 0
so that lemma 4.6.13 on page 67 implies that

C̄ + ⟨x⟩ ∼= C̄⊕ ⟨x⟩
and we can extend ḡ to ḡ ⊕ 0:∼= C̄ ⊕ ⟨x⟩ → D, contradicting the maximality of
(C̄, ḡ) .

On the other hand, suppose x̂ has order n in B/C̄. Then nx ∈ C̄. Since D is
divisible, there exists a y ∈ D such that n · y = ḡ(n · x).

Lemma 4.6.19 on the previous page implies that ḡ can be extended to

g′: C̄ + ⟨x⟩ → D
x 7→ y

which also contradicts the maximality of (C̄, ḡ) . □

This has a number of interesting implications:
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COROLLARY 4.6.21. If D is a divisible group and D ⊂ G, where G is abelian, then

G ∼= D⊕ (G/D)

In other words, a divisible subgroup of an abelian group is a direct summand.

PROOF. Since D is a subgroup of G, there exists an injective map

1: D → D

and theorem 4.6.20 on the facing page implies the existence of a map

F: G → D

such that F|D = 1 — which implies that F2 = F (since the image of F lies in D).
If x ∈ G, then F(x− F(x)) = F(x)− F2(x) = 0 so x− F(x) ∈ ker F. It follows

that
G = D + ker F

Since D ∩ ker F = 0, lemma 4.6.13 on page 67 implies the conclusion. □

This will allow us to classify all divisible groups

COROLLARY 4.6.22. Let D be a divisible abelian group and let tD be its torsion
subgroup. Then tD is divisible and

(4.6.6) D ∼= tD⊕ (D/tD)

where D/tD is a direct sum of copies of Q.

PROOF. Suppose x ∈ tD. Then m · x = 0 for some integer m. Since D is
divisible, for any integer n > 0, there exists a y ∈ D such that x = n · y — and
mn · y = 0. It follows that tD is divisible and corollary 4.6.21 implies equation 4.6.6.

Proposition 4.6.18 on page 69 implies that D/tD is also divisible.
We claim that elements of D/tD are uniquely divisible in the sense that, if

x = ny1 = ny2 then y1 = y2. This true because n(y1 − y2) = 0, so y1 − y2 must be
torsion — but D/tD is torsion free. We can define an action of Q on D/tD via

n
m
· x = n · y

where m · y = x. It follows that D/tD is a Q-vector space (see definition 6.2.1 on
page 165) and a direct sum of copies of Q. □

Now we consider divisible groups that are torsion.

DEFINITION 4.6.23. If G is an abelian group and n is an integer, let G[n] denote
the kernel of

f = n×: G → G

The Prüfer groups, Z/p∞ (see example 4.1.10 on page 38), play a vital part in
the classification of divisible groups:

LEMMA 4.6.24. If p is a prime and D is a divisible p-group (i.e., one where every
element is of order pk for some k > 0) with

D[p] =
n⊕

i=1
Zp

then

D ∼=
n⊕

i=1
Z/p∞
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PROOF. It is not hard to see that (Zp∞ )[p] = Zp so(
n⊕

i=1
Z/p∞

)
[p] =

n⊕
i=1

Zp

Since Zp∞ is divisible, the isomorphism

D[p]→
n⊕

i=1
Zp ⊂

n⊕
i=1

Z/p∞

extends to a map

F: D →
n⊕

i=1
Z/p∞

If the kernel is K, we get K[p] = K ∩ D[p] = 0 since the original map is an isomor-
phism. We claim that this forces K to be 0. If x ̸= 0 ∈ K then pt · x = 0 for some
integer t — assume t is minimal in this respect. Then pt−1 · x ∈ K[p] = 0, which
contradicts the minimality of t.

The image F(D) ⊂ ⊕n
i=1 Z/p∞ is divisible, so corollary 4.6.21 on the previous

page implies that
n⊕

i=1
Z/p∞ = F(D)⊕W

where W is some other (divisible) subgroup of
⊕n

i=1 Z/p∞. If x ̸= 0 ∈ H, reasoning
like that used above implies that x = 0. □

This immediately leads to

THEOREM 4.6.25. If D is a divisible group, then D is a direct sum of copies of Q and
copies of Z/p∞ for primes p.

PROOF. Corollary 4.6.22 on the preceding page implies the immediate split of
D into torsion free and torsion components, and theorem 4.6.16 on page 68 implies
that the torsion subgroup splits into a direct sum of its p-primary components for
all primes p. Lemma 4.6.24 on the preceding page classifies the p-primary divisible
subgroups as direct sums of copies of Z/p∞. □

DEFINITION 4.6.26. If D is a divisible group let

(1) dimQ D be the dimension of the torsion-free summand (see
corollary 4.6.22 on the previous page).

(2) for a prime, p, dimp D = dim D[p] (see definition 4.6.23 on the preceding
page and lemma 4.6.24 on the previous page).

We can characterize divisible groups now:

THEOREM 4.6.27. Two divisible groups, D1 and D2 are isomorphic if and only if

(1) dimQ D1 = dimQ D2, and
(2) dimp D1 = dimp D2 for all primes p.



4.7. GROUP-ACTIONS 73

EXERCISES.

1. List all isomorphism classes of abelian groups of order 60.

2. Show that the group

Q+ = {q ∈ Q|q > 0}
where the operation is multiplication, is free abelian (of infinite rank).

3. If a free abelian group, A, is uncountable, show that A/2A is also
uncountable.

4. Let S ⊂ B be the subgroup of the Baer-Specker group whose entries
are eventually divisible by arbitrarily high powers of 2 — i.e. S consists of
infinite sequences of integers

(n1, . . . )

such that, for any integer k, there exists an m such that 2k
∣∣ ni for all i > m.

Show that S is uncountable.

5. If S is the subgroup of the Baer-Specker group defined in exercise 4,
compute S/2S.

6. Prove that the Baer-Specker group is not free abelian.

7. Show that the group Z/p∞ defined in example 4.1.10 on page 38 is
divisible (see definition 4.6.17 on page 69).

8. Show that
Q

Z
∼=
⊕

p
Z/p∞

where the direct sum is taken over all primes, p.

4.7. Group-actions

Group theory can be used to count complex symmetries and combina-
torial structures.

We begin with

DEFINITION 4.7.1. If S is a set and G is a group, an action of G on S is a
map

f : G× S→ S

written as f (g, s) = g · s with the property that

g1 · (g2 · s) = (g1g2) · s
for all s ∈ S and all g1, g2 ∈ G.

A group-action will be called transitive if, given any s1, s2 ∈ S, there
exists some g ∈ G such that g · s1 = s2.



74 4. GROUP THEORY

1 2

3 4

FIGURE 4.7.1. A simple graph

REMARK. The simplest example of this is G acting on itself by multi-
plication.

A more subtle example of a group action is G acting on itself via conju-
gation:

g · x = xg

for x, g ∈ G.

EXAMPLE 4.7.2. The symmetric group Sn acts on the set {1, . . . , n} by
permuting them. This action is transitive since, given any two elements
a, b ∈ {1, . . . , n}, there is a permutation (many, in fact), σ ∈ Sn such that
σ(a) = b.

In order to give another good example of group-actions, we need the
following combinatorial concept:

DEFINITION 4.7.3. A graph, (V, E), consists of a set of vertices, V, and a
set of pairs of vertices E = {(v1, w1), . . . }, called edges. If e = (v, w) ∈ E,
the vertices v and w are called the ends of e.

Two graphs (V1, E1) and (V2, E2) are isomorphic if there is bijective func-
tion

f : V1 → V2

such that ( f (v), f (w)) ∈ E2 if and only if (v, w) ∈ E1.

REMARK. Graphs are used to represent networks in general: computer
networks, networks of roads, pipes carrying oil, etc. Isomorphic graphs are
essentially identical.

Graphs can easily be represented by diagrams — see figure 4.7.1. If a
graph. G = (V, E), has n vertices, the symmetric group, Sn, acts on it by
permuting the vertices and edges. The result of this group-action is another
graph, G′, that is isomorphic to G.

DEFINITION 4.7.4. If G is a finite group acting on a set S, the orbit of an
element s ∈ S is defined to be

Orbit(s) = {g · s|∀g ∈ G}
and the stabilizer of s ∈ S is defined by

Gs = {g ∈ G|g · s = s}
Given an element g ∈ G, we also define

Sg = {s ∈ S|g · s = s}
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— the invariant set of g.
The set of orbits is written as S/G.

REMARK. If T is the set of all possible graphs with n vertices, the sym-
metric group Sn, acts on this by permuting vertices. The orbit of a graph
within T is just the set of graphs isomorphic to it (even though the vertex-
numbers that appear in its list of edges may vary).

The stabilizer of a graph consists of all permutations that leave all of the
two-element subsets in E unchanged. If there are isolated vertices (i.e., ver-
tices that are not endpoints of any edges), they can be permuted arbitrarily
without changing the graph.

EXAMPLE 4.7.5. If H ⊂ G is a subgroup of a group, H acts on G by
right-multiplication. The orbit of an element g ∈ G is just its coset gH. The
stabilizer of g ∈ G is the set of elements h ∈ H such that gh = g, i.e. just
1 ∈ H.

PROPOSITION 4.7.6. If f : G× S→ S is a group-action on a set and s1, s2 ∈
S are two elements such that

Orbit(s1) ∩Orbit(s2) ̸= ∅

then
Orbit(s1) = Orbit(s2)

It follows that the group-action partitions S into a disjoint union of orbits

S =
|S/G|⊔
i=1

Orbit(si)

PROOF. If x ∈ Orbit(s1) ∩Orbit(s2), then

x = g1 · s1 = g2 · s2

for g1, g2 ∈ G. It follows that g−1
2 g1 · s1 = s2, so s2 ∈ Orbit(s1) and

Orbit(s2) ⊂ Orbit(s1). A similar argument shows that s1 ∈ Orbit(s2). □

It is not hard to show that

PROPOSITION 4.7.7. If G acts on a set S and s ∈ S, then

|Orbit(s)| = [G: Gs] =
|G|
|Gs|

or
|Orbit(s)| · |Gs| = |G|

PROOF. We will show that there is a 1-1 correspondence between the
cosets of Gs and elements of the orbit. If g1 · s = g2 · s then g−1

1 g2 · s = s so
that g−1

1 g2 ∈ Gs and g1Gs = g2Gs. On the other hand, if g1Gs ̸= g2Gs, it is
not hard to see that g1 · s ̸= g2 · s. □

In many cases, we are most interested in the number of orbits of a group-
action:
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LEMMA 4.7.8 (Burnside’s Lemma). If G is a finite group and S is a finite
set with group-action f : G× S→ S then

|S/G| = 1
|G| ∑

g∈G
|Sg|

REMARK. Although this result is called Burnside’s Lemma, it was not
due to him — he mentioned it in his 1897 book [23] and attributed it to
Frobenius. It was also known to Cauchy, many years earlier. This is often
cited as an example of Stigler’s law of eponymy: “No scientific discovery
is named after its original discoverer.”

Sometimes it’s called “The Lemma not due to Burnside.”

William Burnside (1852 – 1927) was an English mathematician and re-
searcher in the theory of finite groups. Burnside’s main area of research
was in group representations. For many years Burnside’s classic, [23], was
the standard text on group theory. One of Burnside’s best known contri-
butions to group theory is his paqb theorem, which proves that every finite
group whose order is divisible by fewer than three distinct primes is solv-
able (see chapter 8 on page 297 for this concept). He also posed Burnside’s
Problem (see 4.10.1 on page 87) in combinatorial group theory.

Baron Augustin-Louis Cauchy (1789 – 1857) was a French mathemati-
cian, engineer and physicist who made pioneering contributions to several
branches of mathematics, including: mathematical analysis and continuum
mechanics. He almost singlehandedly founded complex analysis and the
study of permutation groups in abstract algebra.

PROOF. We begin by expressing a sum over elements of G as a sum
over elements of S:

∑
g∈G
|Sg| = |{(g, s) ∈ G× S|g · s = s}| = ∑

s∈S
|Gs|

Now we use proposition 4.7.7 on the preceding page to conclude that
|Gs| = |G|/|Orbit(s)| so we get

∑
g∈G
|Sg| = ∑

s∈S

|G|
|Orbit(s)| = |G| ·∑s∈S

1
|Orbit(s)|

Since the group-action partitions S into disjoint orbits (see proposition 4.7.6
on the previous page), we can rewrite this as

(4.7.1) ∑
g∈G
|Sg| = |G| · ∑

z∈G/S

(
∑
s∈z

1
|z|

)
where z runs over all of the orbits in S. Now, simply note that, if z is an orbit
of the G-action then

∑
s∈z

1
|z| = 1
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so equation 4.7.1 on the facing page becomes

∑
g∈G
|Sg| = |G| · ∑

z∈G/S
1 = |G| · |G/S|

which proves the result. □

EXAMPLE 4.7.9. Now we answer the question: how many distinct ways
of coloring a square with five colors exist?

The colors are Red, Green, Yellow, Blue, and Orange and c(i) is the
color of vertex i, where i = 1, . . . , 4. We regard two squares to be colored
the same if one can be rotated or flipped so its colors coincide with those of
the other square, i.e. the sets of colors are mapped into each other by the
action of D4 — see figure 4.1.1 on page 37.

(1) If g = 1 ∈ D4, then the invariant set consists of all possible colors
on the 4 vertices, so |S1| = 54.

(2) If g = R ∈ D4, then a coloring is invariant under g if and only
if all vertices are colored the same. It follows that |SR| = 5. The
same is true for |SR3 | = 5.

(3) If g = R2, then vertex 1 must be the same color as vertex 3 and
vertex 2 must be the same color as vertex 4. It follows that |SR2 | =
52.

(4) If g = d1 ∈ D4, then vertex 1 must be the same color as vertex 3
and no other conditions need be satisfied. It follows that |Sd1 | =
53. A similar argument shows that |Sd2 | = 53.

(5) If g = c1 ∈ D4, then vertex 1 must be the same color as vertex 4
and vertex 2 must be the same color as vertex 3. It follows that
|Sc1 | = 52. A similar argument shows that |Sc2 | = 52.

Combining all of this together, we get that the number of distinct colorings
of the square are

1
8

(
54 + 2 · 53 + 3 · 52 + 2 · 5

)
= 120

EXAMPLE 4.7.10. Now we will apply Burnside’s Lemma to determin-
ing the number of isomorphism classes of graphs with a bounded number of
vertices. Suppose we limit the number of vertices to 4. In this case, S is the
number possible graphs on four vertices and the group acting on it is S4.

� S1 = S and we can determine the size of this set by noting possible
edges involve pairs of vertices. There are (4

2) = 6 and each such
pair can either have an edge or not have one. This gives rise to
26 = 64 possible graphs.

� S4 has (4
2) = 6 two-cycles. If a graph is invariant under the two-

cycle (a, b) (with a < b taken from the set {1, 2, 3, 4}) then vertices
a and c are connected if and only if vertices b and c are connected.
The possibilities are
• a is connected to b or not: ×2
• c is connected to d or not: ×2
• a and b are both connected to c or not: ×2
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• a and b are both connected to d or not: ×2
This gives rise to 24 = 16 possibilities.

� S4 has 3 disjoint two-cycles (a, b)(c, d). The possibilities are:
• a is connected to b or not: ×2
• c is connected to d or not: ×2
• a is connected to d and b is connected to c or not: ×2
• a is connected to c and b is connected to d or not: ×2

Again, we get 24 = 16 possibilities.
� S4 has 8 three-cycles that look like (a, b, c). The possibilities are

• vertices a, b, c are all connected to each other or not: ×2
• vertices a, b, c are all connected to vertex d or not: ×2

We get 4 possibilities.
� S4 has 6 cycles of length four (a, b, c, d) — the first entry is 1 and

the other three entries are permutations of {2, 3, 4} of which there
are 3! possibilities. The possibilities are:
• a is connected to b which is connected to c which is connected

to d or not: ×2
• each vertex is connected to the other 3 or not: ×2

We get 4 possibilities in this case.

The number of isomorphism classes of graphs with 4 vertices is, therefore,

1
|S4| ∑

σ∈S4

|Sσ| = 1
24

(1 · 64 + 6 · 16 + 3 · 16 + 8 · 4 + 6 · 4) = 11

We conclude this section with development of the class equation.

PROPOSITION 4.7.11. If G is a group with element x, y the relation

x ∼ y

— called conjugation — if x = yg for some g ∈ G is an equivalence relation.

PROOF. Certainly x ∼ x because x = x1. If x ∼ y, x = yg it is not hard
to see that y = xg−1

, so y ∼ x. If x ∼ y and y ∼ z then x = yg1 and y = zg2

so x = yg1g2 . □

It follows that conjugation partitions G into a union of disjoint equiva-
lence classes called conjugacy classes:

(4.7.2) G =
⊔

Ci

Since the elements of Z(G) commute with everything in G, each of them
is its own conjugacy class. We get an equation

(4.7.3) |G| = |Z(G)|+ |C1|+ · · ·+ |Ck|
called the class equation of a group. Here C1, . . . , Ck are the various conju-
gacy classes that contain more than one element.

Consider the action of G on itself via conjugation. The orbit of any el-
ement g ∈ G is just its conjugacy class, say Ci as in equation 4.7.2. In this
case, define
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DEFINITION 4.7.12. If g ∈ G is an element of a group, we define the
centralizer of g, denoted ZG(g) — via

ZG(g) = {x ∈ G|xg = gx}
REMARK. The centralizer of g is just the stabilizer of g in the group-

action via conjugation — i.e. ZG(g) = Gg.

COROLLARY 4.7.13. If g ∈ G is an element of a group G, the size of the
conjugacy-class of g,

|Cg(G)| = [G: ZG(g)] = |G|/|ZG(g)|
PROOF. This follows immediately from proposition 4.7.7 on page 75.

□

This implies that we can rewrite the class equation, 4.7.3 on the facing
page, as

(4.7.4) |G| = |Z(G)|+ [G: ZG(g1)] + · · ·+ [G: ZG(gk)]

where g1, . . . , gk ∈ G are representatives of the different conjugacy classes.
This new version of the class equation has some interesting implications:

THEOREM 4.7.14 (Burnside’s Theorem for p-groups). If p is a prime
number and G is a group with |G| = pn for some integer n > 0 then |Z(G)| > 1
and is a multiple of p.

PROOF. Each of the groups ZG(gi) is a subgroup of G so
|ZG(gi)|

∣∣ |G| = pn. If |ZG(gi)| = |G|, then Z(G) = ZG(gi) = G and the
result follows.

If |ZG(gi)| < |G|, then |ZG(gi)| = pji for some ji > 0 and the class
equation ( 4.7.4) becomes

pn = |Z(G)|+ pj1 + · · ·+ pjk

from which it follows that p
∣∣ |Z(G)|. □

DEFINITION 4.7.15. If G is a group with normal subgroup, N, and an-
other subgroup, H, and a homomorphism

φ: H → Aut(N)

we define the semidirect product

G = N ⋊φ H

to have a set of elements N × H with group-operation defined by

(n1, h1) · (n2, h2) = (n1 φ(h1)(n2), h1h2)

REMARK. Note that G contains both N and H as subgroups and

N ∩ H = 1 ∈ G

This shows how lemma 4.6.13 on page 67 fails when the groups are not
abelian.

In general, the semidirect product depends on the map

φ: H → Aut(N)

and different such maps give rise to non-isomorphic semidirect products.
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If φ: H → Aut(N) maps all of H to 1 ∈ Aut(N), then

N ⋊φ H = N ⊕ H

EXAMPLE 4.7.16. The dihedral group, D2n, satisfies

D2n ∼= Zn ⋊φ Z2

where 1 ∈ Z2 maps to the element of Aut(Zn) that sends each element to
its additive inverse, giving rise to the familiar presentation

D2n =
〈

x, y|x2 = 1, yn = 1, xyx−1 = y−1
〉

EXERCISES.

1. If G is a group of order p2 for some prime p, show that G is abelian.

2. Verify that the semidirect product in definition 4.7.15 on the previ-
ous page really defines a group.

3. What is the inverse of (n, h) ∈ N ⋊φ H?

4. In the semidirect product N ⋊φ H, show that conjugation of N by an
element h ∈ H, induces the automorphism φ(h).

5. If G is a group with subgroups N and H with
a. N ◁ G and abelian
b. N ∩ H = {1}
c. G = NH.

Show that
G = N ⋊φ H

where φ: H → Aut(N) defined by conjugating N by elements of H.

4.8. The Sylow Theorems

4.8.1. Statement. These are deep theorems that are indispensable for
classifying finite groups — they form a partial converse to Lagrange’s The-
orem ( 4.4.2 on page 43). For small values of n, in many cases, these three
theorems allow one to give an exhaustive list of all possible groups of order
n.

Peter Ludwig Mejdell Sylow (1832 – 1918) was a Norwegian mathematician
who was a high school teacher from 1858 to 1898 and a substitute lecturer at
Christiania University in 1862 — where he covered Galois theory. During
this time he posed a question that led to his celebrated Sylow Theorems,
which he published in 1872.

Sylow’s first theorem is:
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THEOREM 4.8.1 (First Sylow Theorem). If G is a group with |G| = pk ·m,
where p is a prime number and gcd(p, m) = 1, then there exists a subgroup
H ⊂ G with |H| = pk.

This subgroup, H, is called a Sylow p-subgroup of G.

THEOREM 4.8.2 (Second Sylow Theorem). Given G as above, all Sylow
p-subgroups of G are conjugates of each other.

Sylow’s third theorem is

THEOREM 4.8.3 (Third Sylow Theorem). Given G as above, if np is the
number of distinct Sylow p-subgroups, then np

∣∣m and np ≡ 1 (mod p).

EXAMPLE 4.8.4. In A4 we have Sylow subgroups of order 22 = 4 and 3.
Consider subgroups of order 3: If n3 is the number of them, the third Sylow
theorem states that n3

∣∣ 4 and n3 ≡ 1 (mod 3). This means that n3 = 1 or 4.
It turns out that A4 has four cyclic subgroups

⟨(1, 2, 3)⟩ , ⟨(1, 2, 4)⟩ , ⟨(1, 3, 4)⟩ , ⟨(2, 3, 4)⟩
If we consider 2-Sylow subgroups, they must have order 22 = 4 and the
number of them, n2 must satisfy n2

∣∣ 3 and n2 ≡ 1 (mod 2) — conditions
that could be satisfied by n2 = 1 or 3. It turns out (and the Sylow theorems
cannot tell us this) that n1 = 1 and the 2-Sylow subgroup is

⟨(1, 2)(3, 4), (1, 4)(2, 3)⟩
4.8.2. Preliminary lemmas. In order to prove the Sylow Theorems, we

need several lemmas.

LEMMA 4.8.5. If H and K are subgroups of a finite group G, HK is generally
just a set of elements. The size of this set is given by

(4.8.1) |HK| = |H| · |K||H ∩ K|
REMARK. If H or K is a normal subgroup of G, then HK is a subgroup.

This result works even if neither H nor K are normal.

PROOF. Note that HK is a union of cosets

HK =
⋃

h∈H

hK

Since each coset has |K| elements, it suffices to compute how many distinct
cosets there are. Since h1K = h2K if and only if h−1

1 h2 ∈ K, it follows that
h−1

1 h2 ∈ H ∩ K (since it is also in H). Lagrange’s theorem implies that the
number of distinct such cosets is

|H|
|H ∩ K|

and since the size of these cosets is |K|, we get equation 4.8.1. □

We will also need this somewhat odd lemma:
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LEMMA 4.8.6. If G is a finite group with p-Sylow subgroup P ⊂ G and
Q ⊂ G is any other subgroup of order a power of p, then

Q ∩ NG(P) = Q ∩ P

REMARK. Recall that NG(P) is the normalizer of P — see
definition 4.4.10 on page 46.

PROOF. Set H = Q ∩ NG(P). Since P ◁ NG(P) it follows that Q ∩ P ◁
H. Since H ⊂ Q, the statement of the lemma is equivalent to H ⊂ P. Since
H ⊂ NG(P) and P ◁ NG(P), it follows that HP is a subgroup of NG(P) —
and also a subgroup of G. Lemma 4.8.5 on the previous page implies that

|HP| = |H| · |P||H ∩ P|
Since all of the numbers in this quotient are powers of p, it follows that HP
is a p-group containing P. Since P is the maximal such p-group, it follows
that HP = P, which implies that H ⊂ P. □

4.8.3. Proof of the Sylow theorems. We begin with theorem 4.8.1 on
the preceding page — the statement that Sylow subgroups exist. It is triv-
ially true if |G| = 1 so we will do induction on |G|. If |G| = pk · m with
gcd(p, m) = 1, we consider two cases:

Case 1: p
∣∣ |Z(G)| In this case, we know that Z(G) has a subgroup, H,

of order p (see theorem 4.6.10 on page 65 and proposition 4.3.4 on page 41)
which — since it is in the center — is normal. Form the quotient

G
H

= G′

By the inductive hypothesis, G′ has a Sylow p subgroup, S, of order pk−1.
The Correspondence Theorem (see exercise 5 on page 48) implies that G
has a subgroup of order pk.

Case 2: p ∤ |Z(G)|. In this case, we write out the class equation (see
equation 4.7.4 on page 79):

|G| = |Z(G)|+ [G: ZG(g1)] + · · ·+ [G: ZG(gn)]

If p
∣∣ [G: C(gi)] for all i, then |Z(G)| is a linear combination of multiples of

p so p| |Z(G)|. Since we are assuming that this is not true, we conclude
that p ∤ [G: ZG(gi)] for at least one value of i. If |ZG(gi)| = pj · ℓ, with
gcd(p, ℓ) = 1 we get

[G: ZG(gi)] =
|G|

|ZG(gi)|
= pk−j · m

ℓ

and since p ∤ [G: ZG(gi)], we have k = j. Since |ZG(gi)| < |G| induction
implies that ZG(gi) has a subgroup of order pk — which is also a Sylow
p-subgroup of G.

Now we prove theorem 4.8.3 on the previous page and 4.8.2 on the
preceding page. Let S be a Sylow p-subgroup of G (which we now know
exists) and let

Z = {S1, . . . , Sr}
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be the set of all conjugates of S. In addition, let T be a p-subgroup of G and
let

Z = Orbit1 ∪ · · · ∪Orbits

where Orbiti are the orbits (see definition 4.7.4 on page 74) of the action of
T on the Sj by conjugation — so that

r = |Orbit1 |+ · · ·+ |Orbits |
and renumber the elements of Z so that the first s terms are representatives
of distinct orbits of T. It follows from lemma 4.7.7 on page 75 that

|Orbiti | = [T: NT(Si)]

By definition, NT(Si) = NG(Si) ∩ T, so lemma 4.8.6 on the preceding page
implies that NT(Si) = Si ∩ T and we get

|Orbiti | = [T: T ∩ Si]

Since T was an arbitrary p-subgroup of G, we can set T = S1 and

|Orbit1 | = 1

Since S1 ̸= Si for i > 1, we get |S1 ∩ Si| < |S1| if i > 1, which implies that

|Orbiti | = [S1: S1 ∩ Si] > 1

for i > 1. Since S1 and Si are p-groups, we conclude that p
∣∣ [S1: S1 ∩ Si] and

|Orbiti | for i > 1.
We conclude that

r = |Orbit1 |+ (|Orbit2 |+ · · ·+ |Orbits |) ≡ 1 (mod p)

Now we are in a position to prove that all Sylow subgroups are conju-
gates of each other. Suppose T is a p-subgroup of G that is not contained in
any of the Si. Then the argument used above implies that

|Orbiti | = [T: T ∩ Si] > 1

for all i — and p divides it. This implies that p
∣∣ r, which contradicts the fact

that r ≡ 1 (mod p).
It follows that all p-subgroups are contained in conjugates of this one

Sylow subgroup. Since they have the same number of elements, all Sylow
subgroups must be on this list of conjugates of one Sylow subgroup.

The final statement to be proved is that r
∣∣m:

Since r is the size of the orbit of S under the action of G, lemma 4.7.7 on
page 75 implies that

r = [G: GS]

where GS is the stabilizer of S — see definition 4.7.4 on page 74 — but this
is identical to the definition of the normalizer of S, so

r = [G: NG(S)] =
|G|

|NG(S)|
Since S ⊂ NG(S), we have |NG(S)| = pk · ℓ and

r =
pk ·m
pk · ℓ =

m
ℓ

or r · ℓ = m and r
∣∣m.
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EXERCISES.

1. Show that every group of order 35 is cyclic.

2. Show that no group of order 70 can be simple.

4.9. Subnormal series

We can break groups into smaller factors in various ways.

DEFINITION 4.9.1. If G is a group, a subnormal series

{1} ⊂ G0 ⊂ G1 ⊂ · · · ⊂ G

is a sequence of subgroups of G such that Gi ◁ Gi+1 for all i.

REMARK. Note that Gi ◁ Gi+1 but this does not mean Gi ◁ G.
Since each term is a normal subgroup of the next, the quotients

Gi+1

Gi

are well-defined for all i.

Now we will discuss certain standard classes of subnormal series.

DEFINITION 4.9.2. If G is a group, its derived series

· · · ⊂ Gn ⊂ · · · ⊂ G1 ⊂ G0 = G

is defined by
Gn+1 = [Gn, Gn]

REMARK. Note that all of the quotients Gn/Gn+1 are abelian.
Derived series do not necessarily terminate in a finite number of steps:

Since An is simple for n ≥ 5 (see theorem 4.5.15) and [An, An] ◁ An it
follows that all of the terms of the derived series for An are equal to An.

The next class of subnormal series is particularly important in the clas-
sification of finite groups.

DEFINITION 4.9.3. If G is a finite group, its composition series is a sub-
normal series

{1} ⊂ G0 ◁ G1 ◁ · · · ◁ Gk ◁ G

with the property that each quotient

Gi+1

Gi
= Fi

is a simple group. The quotients, Fi, are called composition factors.
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REMARK. In a manner of speaking, we are fracturing G into a series of
smaller groups — the composition factors. Each of them fits into what is
called a group-extension

1→ Gi → Gi+1 → Fi → 1

With suitable information, it is possible to reconstruct Gi+1 from Gi and Fi
— see chapter 13 on page 433 and section 13.3.2 on page 458.

This is related to the Isomorphism Problem for finite groups:
List all isomorphism classes of finite groups.

Since it is possible to construct groups from normal subgroups and quo-
tients, this follows (to some extent) from the corresponding problem for
simple groups:

List all isomorphism classes of finite simple groups.
Since this problem has been solved, in principle, so has the former. In 1983,
Daniel Gorenstein announced that finite simple groups had been classified,
but his classification turned out to be incomplete.

The first complete classification was published in 2004 by Aschbacher
and Smith. At 1221 pages, their proof is beyond the scope of the present
text. See the survey [4].

LEMMA 4.9.4. If G is a finite group, a composition series for G exists.

PROOF. Let
{1} ⊂ G0 ◁ G1 ◁ · · · ◁ Gk ◁ G

be a subnormal series of maximal length (i.e., maximal value of k). We claim
that

Gi+1

Gi
= Fi

is simple for all i. If not, let A ◁ Fi be a proper normal subgroup. If

pi: Gi+1 → Fi

is the standard projection, then p−1
i (A) ◁ Gi+1 (see exercise 5 on page 48)

and Gi ◁ p−1
i (A) so we get a subnormal series

{1} ⊂ G0 ◁ G1 ◁ · · · ◁ Gi ◁ p−1
i (A) ◁ Gi+1 ◁ · · · ◁ Gk ◁ G

of length k + 1, a contradiction. □

In an analogy to the unique factorization of integers into primes, a group
uniquely determines its composition factors.

THEOREM 4.9.5 (Jordan-Hölder). If G is a finite group and

{1} ⊂ G0 ◁ G1 ◁ · · · ◁ Gk ◁ G
and

{1} ⊂ H0 ◁ H1 ◁ · · · ◁ Hℓ ◁ G
are two composition series for G, then k = ℓ and both series have the same compo-
sition factors — possibly occurring in a different order.
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PROOF. The statement that k = ℓ follows quickly from lemma 4.9.4 on
the previous page: its proof implies that a subnormal series is a composi-
tion series if and only if it is of maximal length.

We prove the rest of the theorem by induction on |G|. It’s trivial if
|G| = 1.

Suppose |G| = n and the theorem is true for all groups of order < n. If
Gk = Hk, we apply the inductive hypothesis to conclude that the theorem
is true for Gk which implies it is true for G.

Consequently, assume Gk ̸= Hk and let K = Gk ∩ Hk.
Note that K ◁ Hk (see exercise 3 on page 47) and

(4.9.1)
Hk
K
∼= Gk · Hk

Gk

(see exercise 4 on page 48) where Gk · Hk ⊂ G is a normal subgroup (see
exercise 1 on page 47). Note that

Gk · Hk/Gk ◁ G/Gk

Since the latter group is simple, we must have Gk · Hk/Gk = G/Gk so that:
(1) G = Gk · Hk
(2) Gk · Hk/Gk and Hk/K are also simple (by equation 4.9.1).

It follows that we can get a composition series for Hk via

{1} ◁ K0 ◁ · · · ◁ Kt ◁ K ◁ Hk

where
{1} ◁ K0 ◁ · · · ◁ Kt ◁ K

is a composition series for K, and t + 1 = k− 1, and induction implies that

{K1/K0, . . . , Kt/Kt−1, Hk/K} = {H1/H0, . . . , Hk/Hk−1}
as sets of isomorphism classes of groups. Furthermore,

{1} ◁ K0 ◁ · · · ◁ Kt ◁ K ◁ Gk

is a composition series for Gk and we have

{K1/K0, . . . , Kt/Kt−1, Gk/K} = {G1/G0, . . . , Gk/Gk−1}
It follows that

{H1/H0, . . . , Hk/Hk−1} = {G1/G0, . . . , Gk/Gk−1}
and the conclusion follows from G/Gk

∼= Hk and G/Hk
∼= Gk (since G =

Gk · Hk). □

EXAMPLE 4.9.6. If G is abelian, all of its composition factors are of the
form Zpi , for pi all primes, since these are the simple abelian groups.

In our later work on Galois Theory (see chapter 8 on page 297) we will
need a class of groups that have this property in common with abelian
groups:

DEFINITION 4.9.7. A finite group, G, is defined to be solvable if its com-
position factors are all of the form Zpi for primes pi. The primes that occur
in the manner are called the associated primes of G.
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Not all solvable groups are abelian. For instance S3 has a normal sub-
group generated by (1, 2, 3) that is isomorphic to Z3 and S3/Z3 ∼= Z2.

EXAMPLE 4.9.8. On the other hand, the groups Sn for n ≥ 5 are not
solvable: their composition factors are Z2 and An, which are known to
be simple (see theorem 4.5.15). Theorem 4.9.5 on page 85 implies that all
composition series for Sn will have these factors.

EXERCISES.

1. If G is a solvable group, show that it contains a normal subgroup H
such that [G: H] is a prime number.

2. Show that we could’ve defined solvable groups as groups with a
subnormal series whose quotients are abelian.

3. If G is a finite group, show that its derived series becomes constant
at some point.

4. Show that a finite group, G, is solvable if and only if its derived
series terminates after a finite number of steps, i.e. if its derived series

· · · ⊂ Gn ⊂ · · · ⊂ G1 ⊂ G0 = G

has the property that there exists an integer k such that Gi = {1} for i ≥ k.

5. Show that quotients and subgroups of solvable groups are solvable.

6. Let G be a group with a normal subgroup H. If H and G/H are both
solvable, show that G must also be solvable.

4.10. Free Groups

4.10.1. Introduction. In this section, we will introduce groups that are
“free-er” than the free abelian groups defined in section 4.6 on page 58.
They can be used to define presentations of groups — ways of describing
them using “coordinates” and “equations”. This gives rise to an area of
group theory called combinatorial group theory.

Combinatorial group theory originally arose in algebraic topology,
with the study of knot-groups. One of the first purely group-theoretic
problems in the field was

PROBLEM 4.10.1 (Burnside’s Problem). If n > 1 is an integer and G is a
finitely generated group that satisfies the equation

xn = 1

for all x ∈ G, is G finite?
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Burnside showed that the answer was “yes” for n = 2, 3, 4, 6. The
breakthrough in Burnside’s problem was achieved by Pyotr Novikov and
Sergei Adian in 1968 (see [6]). Using a combinatorial argument, they
showed that for every odd number n with n > 4381, there exist infinite,
finitely generated groups where every element satisfies xn = 1.

DEFINITION 4.10.2. If X = {x1, . . . } is a set of symbols, the free group
on X, FX consists of equivalence classes of all possible finite strings

xα1
i1
· · · xαn

in

where the xi ∈ X, the αi ∈ Z, and the product of two such strings is their
concatenation. Two strings are equivalent or freely equal if one can be trans-
formed into the other via the following operations or their inverses:
Identity: 1 is equivalent to the empty string,
Consolidation: whenever we have · · · xα

j · x
β
j · · · in a string, we may re-

place it by · · · xα+β
j · · · to get an equivalent string,

Culling: whenever a factor in a string has exponent 0, we may remove it.

REMARK. Sometimes, we’ll abuse the terminology and say things like
“These strings are freely equal as elements of the free group, FX”. This is
abuse because the elements of FX are equivalence classes of strings, where
strings are equivalent if they’re freely equal.”

Deciding when two strings are equivalent is fairly easy:

DEFINITION 4.10.3. If xα1
i1
· · · xαn

in ∈ FX is a string in a free group, the
reduced form of xα1

i1
· · · xαn

in is the result of applying the operations in defini-
tion 4.10.2 as many times as possible to minimize the number of factors in
xα1

i1
· · · xαn

in .

REMARK. A string, xα1
i1
· · · xαn

in , is reduced if and only if

(1) xij ̸= xij+1 for all j, and
(2) αi ̸= 0 for all i

Since reduced forms of words are unique and equivalent to the original
words, we have

PROPOSITION 4.10.4. Two words w1, w2 ∈ FX are equivalent if and only if
their reduced forms are equal.

Note that the inverse of xα1
i1
· · · xαn

in is x−αn
in · · · x−α1

i1
— we must negate

the exponents and reverse the order of the factors.
Also notice that the relations that words satisfy (in definition 4.10.2)

are relations that all elements in all groups must satisfy. This has several
consequences:

THEOREM 4.10.5. Let FX be a free group on a set of generators, X, and let G
be a group. Any function

f : X → G
extends uniquely to a group-homomorphism

f̄ : FX → G
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REMARK. This can be regarded as the defining property of a free group.

PROOF. Simply define

f̄ (xα1
i1
· · · xαn

in ) = f (xi1)
α1 · · · f (xin)

αn

□

This immediately implies:

PROPOSITION 4.10.6. If G is any group, there exists a free group FX and a
surjective homomorphism

f : FX → G

If G is finitely generated, then X can be finite.

REMARK. Compare this to proposition 4.6.7 on page 62. Just as every
abelian group is a quotient of a free abelian group, every group (including
abelian groups) is a quotient of a free group.

PROOF. Let FX be a free group on the set, X.If G is finitely generated,
then the elements of X are in a 1-1 correspondence with its generators. Oth-
erwise it is in a 1-1 correspondence with the non-identity elements of G, so
xi 7→ gi and define f by

f (xα1
i1
· · · xαn

in ) = gα1
i1
· · · gαn

in ∈ G

□

4.10.2. Combinatorial group theory. This leads to the topic of presen-
tations of groups:

DEFINITION 4.10.7. If X = {x1, . . . } is a set of symbols and
R = {r1, . . . } is a set of elements of FX the symbol, called a presentation of a
group, G,,

(4.10.1) ⟨X|R⟩
is an isomorphism

G =
FX

⟨R⟩FX

where ⟨R⟩ ⊂ FX is the subgroup generated by the elements of R and ⟨R⟩FX

is the normal closure of this subgroup — see definition 4.4.11 on page 46.
The elements of X are called the generators of G and the elements of R are
called the relators or relations of G.

REMARK. The group being presented is G, which is generated by im-
ages of the xi under the projection

FX →
FX

⟨R⟩FX

and the ri = 1 are “equations” that these images satisfy.



90 4. GROUP THEORY

For instance
Zn = ⟨x|xn⟩

is a presentation of Zn.
Sometimes we write the relators as equations, so

Z⊕Z = ⟨x, y|xy = yx⟩ =
〈

x, y|xyx−1y−1
〉

are presentations. When a relation is not written as an equation, it is as-
sumed to equal 1.

Proposition 4.5.17 on page 57 shows that

(4.10.2) D2n =
〈

x, y|xn, yxy = x−1
〉

is a presentation of the dihedral group.
A given group can have many different presentations that may not re-

semble each other. For instance, it turns out that

S3 =
〈

a, b|a3, b2, ab = ba2
〉
=
〈

x, y|x2, y2, (xy)3
〉

This leads to Max Dehn’s three fundamental problems in combinatorial
group theory:

Given a presentation of a group G like that in equation 4.10.1 on the
preceding page, we have

(1) The word problem: Determine whether a word in the generators,
like xα1

i1
· · · xαn

in , is the identity element in a finite number of steps.
(2) The conjugacy problem: Given two words in the generators, de-

termine whether they represent conjugate elements of G in a finite
number of steps.

(3) The isomorphism problem: Given two group-presentations, in a fi-
nite number of steps determine whether they represent isomor-
phic groups.

If a free group has the standard presentation, ⟨X| ⟩, proposition 4.10.4 on
page 88 solves the word problem: a word is the identity element if and
only if its reduced form is empty.

Notice that these problems refer to presentations of groups, not the
groups themselves. Solutions to, say, the word problem will be very
different for different presentations of a group.

Max Dehn (1878 – 1952) was a German-born American mathematician and
student of David Hilbert. His most famous work was in the fields of geom-
etry, topology, and geometric group theory. He is also known for being the
first to resolve one of Hilbert’s famous 23 problems. Dehn solved Hilbert’s
third problem:

Given two polyhedra of equal volume, is it possible to
cut the first into finitely many pieces that can be reassem-
bled to give the second?

Dehn produced a counterexample.

If our group is the dihedral group with presentation

(4.10.3) D2n =
〈

x, y|xn, y2, yxy = x−1
〉
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proposition 4.5.17 on page 57 shows that the word-problem can be solved
via

Given a string of x’s and y’s, repeat the following two operations until
the string is of the form xiyj

� reduce all exponents of x modulo n and all exponents of y modulo
2.

� replace each occurrence of yx by x−1y = xn−1y
The string represents the identity element if and only if, at the end, i = j =
0.

This is the solution of the word problem for the presentation in equa-
tion 4.10.3 on the preceding page of the dihedral group.

In 1955, Novikov (see [85]) showed that there are finite
group-presentations whose word problems are unsolvable. In 1958, Boone
(see [15]) gave examples of such presentations with 2 generators and 32
relations.

Given a presentation for a group

G = ⟨X|R⟩
Tietze showed that it is possible to get any other presentation for G using
the Tietze transformations

DEFINITION 4.10.8. The Tietze transformations are:
T1: If words w1, . . . , wk are derivable from the relators in R (i.e. they are

products of conjugates of the ri ∈ R), they can be added to R.
T2: If some of the relators ri1 , . . . , rik are derivable from the others, they may

be deleted from R.
T3: If w1, . . . , wm are words in the symbols in X, we may add generators

y1, . . . , ym to X if we also add relations yi = wi to R.
T4: If we have a relation xi = w, where w is a word in X \ xi, we may

delete the relation from R and the symbol xi from X. We must
also replace every occurrence of xi in the remaining relations by
w.

REMARK. The even numbered transformations are the inverses of the
odd-numbered ones. Some authors list only two transformations.

THEOREM 4.10.9. Tietze transformations replace one presentation of a group
by another. If a group has two different presentations

G =
〈
{xi} |

{
rj
}〉

(4.10.4)

= ⟨{yk} | {sℓ}⟩
one can be transformed into the other by Tietze transformations.

REMARK. This does not solve the isomorphism problem. It gives no
algorithm for finding a sequence of Tietze transformations to go from one
presentation to another.

PROOF. It is not hard to see these transformations preserve the group,
G. T1 asserts relations already known to be true in G, and T2 deletes them.
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T3 adds new elements to G and equates them to elements already present,
and T4 deletes them.

Given the two presentations for G in equation 4.10.4 on the preceding
page, we have surjections

f : FX → G
g: FY → G

where X = {xi} and Y = {yk}. We start with presentation
〈
{xi} |

{
rj
}〉

.
Let ui ∈ FX have the property that f (ui) = g(yi). Then applications of T3
convert the presentation to

G =
〈
{xi} ,

{
yj
}
|
{

rj
}

,
{

yj = uj
}〉

If we plug the uj into the relations, sℓand map them via f we get

f (sℓ(u1, . . . , um)) = sℓ( f (u1), . . . , f (um))

= sℓ(g(y1), . . . , g(ym))

= g (sℓ(y1, . . . , ym))

= 1

which means that sℓ(u1, . . . , um) follows from the set of relations
{

rj
}

. The
relations

{
yj = uj

}
imply that sℓ(y1, . . . , ym) follows from the relations{

rj
}
∪
{

yj = uj
}

. We can, consequently use T1 multiple times to get
another presentation of G:

G =
〈
{xi} ,

{
yj
}
|
{

rj
}

,
{

yj = uj
}

, {sℓ}
〉

with map
f ∪ g: FX∪Y → G

Now let vi ∈ FY have the property that g(vi) = f (xi). Since g(vi) = f (xi),
the words vix−1

i map to 1 ∈ G under this new map, so that vix−1
i are con-

sequences of the relations
{

rj
}
∪
{

yj = uj
}

. We can use T1 to add them to
the relations, getting

G =
〈
{xi} ,

{
yj
}
|
{

rj
}

,
{

yj = uj
}

, {sℓ} , {vi = xi}
〉

Now we can use T4 several times to delete the x’s from the generators

G =
〈{

yj
}
|
{

rj(vi)
}

,
{

yj = uj
}

, {sℓ}
〉

where the rj(vi) are relators with the variables xi replaced by the words vi
that are written in the yj. Note that

g(rj(vi)) = rj(g(vi))

= rj( f (xi))

= f
(
rj(xi)

)
= 1

so that the rj(vi) are implied by the relators, sℓ. We can use T2 to delete
them and get the presentation

G =
〈{

yj
}
| {sℓ}

〉
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□

EXAMPLE 4.10.10. Suppose we start with the presentation

⟨a, b|aba = bab⟩
Now we introduce new generators x = ab, and y = aba. Two applications
of T3 give

⟨a, b, x, y|aba = bab, x = ab, y = aba⟩
Now x−1y = a, so we can eliminate a using T4 to get〈

b, x, y|x−1ybx−1y = bx−1yb, x = x−1yb, y = x−1ybx−1y
〉

or 〈
b, x, y|x−1ybx−1y = bx−1yb, x2 = yb, 1 = x−1ybx−1

〉
or 〈

b, x, y|x−1ybx−1y = bx−1yb, x2 = yb, x2 = yb
〉

We use T2 to eliminate the last relation and note that b = y−1x2. Apply T4
again to eliminate b and get〈

b, x, y|x−1yy−1x2x−1y = y−1x2x−1yy−1x2, x2 = yy−1x2
〉

or 〈
x, y|y = y−1x3, x2 = x2

〉
or 〈

x, y|y2 = x3, x2 = x2
〉

and we use T2 to eliminate the last relation to get〈
x, y|y2 = x3

〉
This is a very different-appearing presentation for the same group.

EXERCISES.

1. Let G be a group with normal subgroup A ◁ G and quotient

F =
G
A

a free group. Show that G = A ⋊α F, where α: F → Aut(A) is defined by
conjugation.

2. Show that

G =
〈

xn, n ∈ Z+|xn
n = xn−1, n ∈ {2, . . . }

〉
is a presentation for (Q,+), the rational numbers under addition.
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3. Show, using Tietze transformations, that〈
a, b, c|b(abc−1)2a, c(abc−1)3

〉
is the free group on two generators.

Hint: In F{x,y} adjoin the new generators a = xy, b = y−1x, and c = x3.
Then solve for x and y in terms of a, b, c.

4. Show that the Prüfer group (see example 4.1.10 on page 38), Z/p∞,
can be presented as

Z/p∞ =
〈

x1, x2, x3, . . . |xp
1 = 1, xp

2 = x1, xp
3 = x2, . . .

〉
�

4.10.3. Quotients and subgroups. Given a group-presentation

G = ⟨X|R⟩
let H be a normal subgroup generated by the conjugates of element g1, . . . , gn ∈ G.
If we find words w1, . . . , wn in FX representing these elements, we get a presentation
of G/H:

G/S = ⟨X|R, w1, . . . , wn⟩
This follows immediately from the fact that a group-presentation defines a quotient
of a free group.

A related but harder (and more interesting!) problem is how we can get a
presentation of a subgroup of G.

We begin with

DEFINITION 4.10.11. If H ⊂ G = ⟨X|R⟩ is a subgroup generated by words
w1, . . . , wk ∈ FX , a rewriting process for H with respect to the words wi is a function

ξ: U → V

where U is the set of words of FX that define elements of H and V = FS, where
sw1 , . . . , swk are symbols in a one-to-one correspondence with the wi. If w ∈ FX
defines an element of H, we require that

ξ(w)sw1→w1,....swk→wk

defines the same element of H as w. Here ξ(w)sw1→w1,....swk→wk denotes the result of
taking the word ξ(w) ∈ FS — a word in the sj — and substituting wi for swi for all
i, obtaining a word in FX .

REMARK. In other words, ξ simply rewrites a word representing an element
of H into one in the generators of H.

Here’s an example:

EXAMPLE 4.10.12. Let
G = ⟨x, y| ⟩

and let H be the normal subgroup generated by y and its conjugates. This means H
is generated by elements

sk = xkyx−k
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Note that

sℓk = xkyx−k · · · xkyx−k︸ ︷︷ ︸
ℓ times

= xkyℓx−k

If
w = xα1 yβ1 · · · xαt yβt

is a word with
t

∑
i=1

αi = 0

we can rewrite it as

w =
(

xα1 yx−α1
)β1 ·

(
xα1+α2 yx−α1−α2

)β2 · · ·
(

xα1+···+αt yx−α1−···−αt
)βt(4.10.5)

= sβ1
α1 · · · s

βt
α1+···+αt

so that w ∈ H and equation 4.10.5 constitutes a rewriting process for H with respect
to the generators S = {sj}, i.e.

ξ(w) = sβ1
α1 · · · s

βt
α1+···+αt

The idea of finding a presentation for H is fairly simple:

Since the relators in the presentation of G represent its identity
element, they represent an element of H as well, so rewrite the
relators of G using the rewriting process and we’re done!

Unfortunately, “the devil’s in the details”. Handling them gives us a (rather useless)
presentation for H:

THEOREM 4.10.13. If

(4.10.6) G = ⟨X|R⟩
is a presentation of a group, H = ⟨g1, . . . , gn⟩ is a subgroup, where gi is represented by a
word wi ∈ FX , and

ξ: ⟨w1, . . . , wn⟩ → FS

is a rewriting process for H with respect to the {wi}, then the following is a presentation
for H:

� generators S = {s1, . . . , sn} in a one-to-one correspondence with the words
{w1, . . . .wn},

� relations
(1) si = ξ(wi) for all i.
(2) ξ(w) = ξ(w′) for all pairs w, w′ of words representing elements of H that

are freely equal6 in FX ,
(3) ξ(u · v) = ξ(u) · ξ(v) for all pairs of words u, v representing elements of

H,
(4) ξ(w · r · w−1) = 1 where w runs over all words in FX and r runs over all

defining relations, R, in equation 4.10.6.

REMARK. Note that this presentation for H usually has an infinite number of
relations! We will work at simplifying it.

6See definition 4.10.2 on page 88, for the definition of ‘freely equal.’
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PROOF. The statement about generators is clear. It is also not hard to see that
the stated relations are reasonable — i.e., they are valid in H. For instance, in state-
ment 1 on the previous page, si and wi and ξ(wi) represent the same element of H
so it is valid to equate them.

If two words are freely equal in FX , they represent the same element of G, there-
fore also of H and statement 2 on the preceding page makes sense. Statements 3 on
the previous page and 4 on the preceding page are also clear.

The hard part of this proof is showing that all relations in H can be derived
from these.

We begin by deriving some consequences of the four sets of relations in 1 on
the previous page through 4 on the preceding page:

Statement 3 on the previous page implies that ξ(1) · ξ(1) = ξ(1) or ξ(1) = 1. If
we set v = u−1, we get

ξ(u) · ξ(u−1) = ξ(1) = 1

so that ξ(u−1) = ξ(u)−1.
A simple induction shows that, if b1, . . . , bk ∈ FX are words representing ele-

ments of H, then

(4.10.7) ξ(bα1
1 · · · b

αk
k ) = ξ(b1)

α1 · · · ξ(bk)
αk

and this is a direct consequence of statements 2 on the preceding page and 3 on the
previous page.

Suppose
sα1

1 · · · sαr
r

is a word in FS that maps to 1 in H — i.e., is a relator in presentation of H. We will
show that

sα1
1 · · · sαr

r = 1

is a consequence of statements 1 on the preceding page through 4 on the previous
page. Let qi ∈ FX be a word representing si for all i. Then statement 1 on the
preceding page and equation 4.10.7 imply that

sα1
1 · · · sαr

r = ξ(q1)
α1 · · · ξ(qr)

αr = ξ(qα1
1 · · · qαr

r )

Since qα1
1 · · · q

αr
r ∈ FX maps to 1 in G, it is in the normal closure of the relations of G,

namely the elements of R. It follows that qα1
1 · · · q

αr
r is freely equal to

ry1
1 · · · r

yℓ
ℓ

where the ri ∈ R and the yi ∈ FX are some words. We conclude that

sα1
1 · · · sαr

r = ξ(q1)
α1 · · · ξ(qr)

αr

= ξ(qα1
1 · · · qαr

r )

= ξ(ry1
1 · · · r

yℓ
ℓ )

= ξ(ry1
1 ) · · · ξ(ryℓ

ℓ ) = 1 · · · 1 = 1

so that sα1
1 · · · s

αr
r = 1 is a consequence of statements 1 through 4 on the preceding

page. □

We will explore alternate rewriting processes that automatically satisfy many
of the conditions in theorem 4.10.13 on the previous page, resulting in a simpler
presentation.

DEFINITION 4.10.14. If
G = ⟨X|R⟩
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is a presentation of a group and H is a subgroup let

C = {1, e(g1), . . . }

be a set of distinct right coset-representatives — i.e. for each coset Hg, we select a
single element e(g) ∈ Hg, to represent it. For the coset of 1, namely H, we select the
element 1.

A right coset representative function is a mapping

η: FX → FX

defined as follows:
If w represents the element g ∈ G, η(w) ∈ FX is a word representing the chosen

representative for the coset Hg, namely e(g).
The notation Cη = {1, w1, . . . } denotes the set of words representing the coset

representatives, so |Cη | = [G: H].

REMARK. Several arbitrary choices were made in defining η:

(1) the elements g selected to represent a coset Hg
(2) the words, η(∗), selected to represent these elements in FX

Another common term for a coset representative function is transversal.
In general, we want to pick words that are as short and simple as possible.

EXAMPLE 4.10.15. We return to the group and subgroup in example 4.10.12
on page 94. Since H is a normal subgroup, the cosets of H in G are in a 1-1 cor-
respondence with elements of G/H = ⟨x| ⟩ = Z. For the coset Hxk, we pick the
representative xk — and we also pick this word in F{x,y} so our coset representative
function is

η(xα1 yβ1 · · · xαn yβn ) = x∑n
i=1 αi

In this case Cη = {xn, ∀n ∈ Z}.

LEMMA 4.10.16. Under the conditions of definition 4.10.14 on the preceding page,

(1) If w ∈ H, then

(4.10.8) η(w) = 1

(2) If v, w ∈ FX are freely equal, then η(v) = η(w),
(3) If w ∈ FX , then η(η(w)) = η(w)
(4) If v, w ∈ FX , then η(vw) = η(η(v)w)
(5)

(4.10.9)
(

k′xη(k′x)−1
)−1

= kx−1η
(

kx−1
)−1

where k ∈ Cη , x ∈ X, and k′ = η(kx−1).

REMARK. If we write

tk,xϵ = kxϵη(kxϵ)−1

with ϵ = ±1, then equation 4 implies that

(4.10.10) tk,x−1 = t−1
η(kx−1),x
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PROOF. Most of these are immediate from definition 4.10.14 on page 96. To
show the final statement, set k′ = η(kx−1). Then

(
k′xη(k′x)−1

)
·
(

kx−1η
(

kx−1
)−1

)
= η(kx−1)xη(η(kx−1)x)−1

· kx−1η
(

kx−1
)−1

= η(kx−1)xη(kx−1x)−1

· kx−1η
(

kx−1
)−1

=
(

η(kx−1)xη(k)−1
)
·
(

kx−1η
(

kx−1
)−1

)
=
(

η(kx−1)xk−1
)
·
(

kx−1η
(

kx−1
)−1

)
= η(kx−1)x · x−1 · η

(
kx−1

)−1

= 1

□

Given a coset representative function, we can define a rewriting process that
automatically satisfies some of the conditions in theorem 4.10.13 on page 95 — so we
can simplify the relations in the presentation.

If G = ⟨X|R⟩ is a presentation of a group and H is a subgroup with a coset
representative function η: FX → FX , consider elements of the form

kixjη(kixj)
−1

where ki ∈ Cηand xj ∈ X. This is an element of H since η(kixk) is in the same
right-coset as kixj.

THEOREM 4.10.17. If G = ⟨X|R⟩ is a presentation of a group and H is a subgroup
with a coset representative function η: FX → FX , define words

(4.10.11) tk,xϵ = kxϵη(kixϵ)−1

where k runs over the elements of Cη and xj runs over X. These words generate H. In fact,
if

xα1
1 · · · xαn

n

is a word representing an element of H with all exponents equal to ±17, then

(4.10.12) xα1
1 · · · xαn

n =
(

t1,xα1
1

)
·
(

tη(xα1
1 ),xα2

2

)
· · ·
(

t
η(xα1

1 ···x
αn−1
n−1 ),xαn

n

)
REMARK. This first appeared in [93], in connection with algebraic topology

(knot theory).

7So x3 is written as xxx, and x−2 as x−1x−1.
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PROOF. Just fill in what the t-symbols equal (from equation 4.10.11 on the pre-
ceding page):

t1.xα1
1

= xα1
1 η(xα1

1 )−1

tη(xα1
1 ),xα2

2
= η(xα1

1 )xα2
2 η(η(xα1

1 )xα2
2 )−1

= η(xα1
1 )xα2

2 · η(xα1
1 xα2

2 )−1 by lemma 4.10.16 on page 97

tη(xα1
1 xα2

2 ),xα3
3

= η(xα1
1 xα2

2 )xα3
3 · η(xα1

1 xα2
2 xα3

3 )−1

...

t
η(xα1

1 ···x
αn−1
n−1 ),xαn

n
= η(xα1

1 · · · x
αn−1
n−1 )xαn

n η(xα1
1 · · · x

αn−1
n−1 xαn

n )−1

= η(xα1
1 · · · x

αn−1
n−1 )xαn

n

because η(xα1
1 · · · x

αn−1
n−1 xαn

n ) = 1

since xα1
1 · · · x

αn−1
n−1 xαn

n ∈ H

We get a telescoping product in which all of the η(∗)-factors cancel, and we are left
with our original word,

xα1
1 · · · xαn

n

□

Kurt Werner Friedrich Reidemeister (1893 – 1971) was a mathematician
born in Braunschweig (Brunswick), Germany. Reidemeister’s interests
were mainly in combinatorial group theory, combinatorial topology, geo-
metric group theory, and the foundations of geometry.

We can use equation 4.10.12 on the facing page to define a rewriting process for
H:

DEFINITION 4.10.18. If G = ⟨X|R⟩ is a presentation of a group and H is a
subgroup with a coset representative function η: FX → FX , define words

(4.10.13) sk,x = kxη(kx)−1

where k runs over the elements of Cη and x runs over X. If

w = xα1
1 · · · xαn

n

represents an element of H, we take the string in equation 4.10.12 on the preceding
page and replace t-symbols by s-symbols via:

tk,x → sk,x

tk,x−1 → s−1
η(kx−1),x

This defines a function
FX → FS

where S is the set of all possible s-symbols defined in equation 4.10.13. It is called a
Reidemeister rewriting process based on the coset function, η.

REMARK. The s-symbols, sk,x, are nothing but t-symbols, tk,xϵ for which ϵ is
required to be +1. If we allow ϵ to be negative, equation 4.10.10 on page 97 shows
a simple relationship between t-symbols, tk,xϵ No such relationship exists between
the s-symbols — indeed, example 4.10.24 on page 103 shows that these symbols can
be completely independent.



100 4. GROUP THEORY

Theorem 4.10.17 on page 98 and equation 4.10.10 on page 97 implies that the
rewritten string (in s-symbols) will still represent the same element of H as w.

A Reidemeister rewriting process has several interesting properties that sim-
plify the presentation in theorem 4.10.13 on page 95:

LEMMA 4.10.19. If G = ⟨X|R⟩ is a presentation of a group and H is a subgroup with
a coset representative function η: FX → FX and associated Reidemeister rewriting process

ξ: FX → FS

then
(1) if w1, w2 are freely equal words in FX representing elements of H, then ξ(w1) is

freely equal to ξ(w2) in FS.
(2) if w1, w2 ∈ FX are two words that represent elements of H, then

ξ(w1 · w2) = ξ(w1) · ξ(w2)

PROOF. We start with the first statement. Suppose w1 = uv, where u, v ∈ FX . It
will suffice to prove the statement in the case where w2 = uxϵx−ϵv, where ϵ = ±1.
Let ξ(w1) = r1 · t1 and ξ(w2) = r2 · g · t2 where ri = ξ(ui) for i = 1, 2, and ti is the
portion of ξ(wi) derived from v. It is clear from equation 4.10.12 on page 98 that
r2 = r1.

Since η(uxϵx−ϵ) = η(u) , it follows that t2 = t1, and so we must analyze the
s-factors that come from xϵ and x−ϵ:

If ϵ = +1

g = sη(u),x · s−1
η(uxx−1),x

= sη(u),x · s−1
η(u),x

If ϵ = −1
g = s−1

η(ux−1),xsη(ux−1),x

so g ∈ FS is freely equal to the empty string in both cases.
Now we examine the second statement: Let ξ(w1w2) = r · t, where r = ξ(w1),

the s-symbols, sη(u),xi
, used to compute t will be the same as those used to compute

w2, except that the u-term in the subscript will be concatenated with w1. The con-
clusion follows from the fact that w1 ∈ H so η(w1w) = η(w), for any word w ∈ FX .
It follows that t = ξ(w2). □

With these tools in hand, we are ready to give Reidemeister’s simplified pre-
sentation of a subgroup.

THEOREM 4.10.20 (Reidemeister). If G = ⟨X|R⟩ is a presentation of a group and H
is a subgroup with a coset representative function η: FX → FX , with associated Reidemeister
rewriting process

ξ: FX → FS

then

(4.10.14) H =
〈{

ski ,xj

}
|
{

ski ,xj
= ξ

(
kixjη(kixj)

−1
)}

,
{

ξ(kirℓk−1
i )
}〉

where
(1) the ki run over the elements of Cη

(2) the xj run over the elements of X, and
(3) the rℓ run over the elements of R
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REMARK. The curly brackets denote sets of terms.
Note that this is finite if X, R, and Cη are.

PROOF. We use lemma 4.10.19 on the preceding page to show that many of the
conditions in theorem 4.10.13 on page 95 are automatically satisfied.

Statement 1 on the preceding page implies that statement 2 in theorem 4.10.13
on page 95 is automatically satisfied, and statement 2 on the preceding page implies
the same for 3 on page 95.

We are left with statements 1 on page 95 and 4. Statement 1 imposes a number
of conditions limited by the number of generators of H.

We can simplify statement 4 on page 95 (and reduce it to a smaller and, possibly
finite, number of conditions) by noting that, for any word w ∈ FX , and any relator
r ∈ R , we can write

w = wη(w)−1η(w)

where h = wη(w)−1 ∈ H. It follows that

(4.10.15) ξ(w · r · w−1) = hξ
(

η(w)rη(w)−1
)

h−1

where η(w) ∈ Cη . Since h ∈ H the relation ξ(η(w)rη(w)−1) = 1 implies that
quantities in equation 4.10.15 are equal to 1.

It follows that the (infinite) number of relations ξ(w · r ·w−1) = 1 in statement 4
on page 95 are derivable from

ξ(kirℓk−1
i ) = 1

where the ki run over the (probably smaller) set Cη . They can be removed, using
the T2 Tietze transformation (see definition 4.10.8 on page 91). □

We can immediately conclude:

THEOREM 4.10.21. If G is a finitely presented group (i.e., it has a presentation with
a finite number of generators and relations) and H is a subgroup of finite index, then H is
also finitely presented.

We can simplify the presentation in theorem 4.10.20 on the facing page further.
We start with:

DEFINITION 4.10.22. If G = ⟨X|R⟩ is a presentation of a group and H is a
subgroup, a coset representative function

η: FX → FX

will be called Schreier if every initial segment of a word in Cη is also in Cη . A Reide-
meister rewriting process based on a Schreier coset function is called a Reidemeister-
Schreier rewriting process.

REMARK. The initial segment requirement means that if xyxxy ∈ Cη , then
xyxx, xyx, xy, and x are also in Cη . Note that the coset representative function in
example 4.10.15 on page 97 is Schreier.

Otto Schreier (1901–1929) was an Austrian mathematician who made con-
tributions to combinatorial group theory and the topology of Lie groups.

THEOREM 4.10.23. If G = ⟨X|R⟩ is a presentation of a group and H is a subgroup
with a Schreier coset representative function η: FX → FX , with associated Reidemeister-
Schreier rewriting process

ξ: FX → FS
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then
H =

〈{
ski ,xj

}
| {sme ,xℓ} ,

{
ξ(kirℓk−1

i )
}〉

where
(1) the ki run over the elements of Cη

(2) the xj run over the elements of X, and
(3) the rℓ run over the elements of R
(4) the pairs (me, xℓ) ∈ S × X, have the property that mexℓ is freely equal to

η(mexℓ) in FX .

REMARK. This is a vast simplification of the presentation in equation 4.10.14
on page 100 because we have eliminated all the relations of the form

ski ,xj
= ξ

(
kixjη(kixj)

−1
)

The relations sme ,xℓ = 1 effectively deletes these s-symbols from the list of generators
and the other relations.

PROOF. If mexℓ is freely equal to η(mexℓ) in FX , then sme ,xℓ = mexℓη(mexℓ)−1

is freely equal to the empty string, so the relations sme ,xℓ = 1 make sense. Now we
compute

ξ
(

kxη(kx)−1
)

for k ∈ Cη , and x ∈ X. Equation 2 on page 100 implies that

ξ
(

kxη(kx)−1
)
= ξ(kx)ξ(η(kx))−1

Suppose
k = uϵ1

1 . . . uϵn
n

where ϵi = ±1. Suppose, in computing ξ
(
kxη(kx)−1) we are computing the ith

s-symbol, where i < n. If ϵi = +1, the symbol will be

s
η(uϵ1

1 ...uϵi
i ),ui+1

and the Schreier property implies that η(uϵ1
1 . . . uϵi

i )ui+1 = uϵ1
1 . . . uϵi

i ui+1 =

η(uϵ1
1 . . . uϵi

i ui+1) exactly. It follows that

s
η(uϵ1

1 ...uϵi
i ),ui+1

= sm,ui+1

for a suitable pair (m, ui+1).
If ϵi = −1, the symbol will be

s−1
η(uϵ1

1 ...uϵi
i u−1

i+1),ui+1

and η(uϵ1
1 . . . uϵi

i u−1
i+1)ui+1 = uϵ1

1 . . . uϵi
i u−1

i+1ui+1 = uϵ1
1 . . . uϵi

i = η(uϵ1
1 . . . uϵi

i ), exactly,
which implies that

s−1
η(uϵ1

1 ...uϵi
i u−1

i+1),ui+1
= s−1

m′ ,ui+1

for another suitable pair (m′, ui+1).
When we reach i = n, we get

sk,x

For i > n, reasoning like the above implies that all of the s-symbols of ξ(η(kx)) are
of the form

sϵ
m′′ ,v

with ϵ = ±1. If follows that

ski ,xj
= ξ

(
kixjη(kixj)

−1
)



4.10. FREE GROUPS 103

becomes
ski ,xj

= sϵ1
m1,u1

· · · sϵn−1
mn−1,un−1︸ ︷︷ ︸

sm,x-factors

·ski ,xj
· sϵn+1

mn+1,u1 · · · s
ϵn+q−1
mn+q−1,un+q−1︸ ︷︷ ︸

sm,x-factors

Since this is implied by
ski ,xj

= ski ,xj

and the relations smi ,ui = 1, we can use Tietze transformations T2 to eliminate them.
□

Now we will apply this to the group and subgroup in example 4.10.12 on
page 94.

EXAMPLE 4.10.24. Let G = ⟨x, y| ⟩ and let H ◁ G be the normal subgroup
generated by elements {xiyx−i}, with the coset representative function defined
in 4.10.15 on page 97. It is not hard to see that the rewriting process, ξ, defined
in example 4.10.12 on page 94 is Reidemeister, defined by this coset representative
function, which is also Schreier since the coset-representatives are

{xi, i ∈ Z}
Theorem 4.10.23 on page 101 implies that

H =
〈

sxi ,y, sxi ,x, i ∈ Z|sxi ,x, i ∈ Z
〉
=
〈

sxi ,y, i ∈ Z|
〉

We conclude that the free group on two letters contains a subgroup isomorphic
to a free group on a (countable) infinity of letters!

Compare this with proposition 4.6.6 on page 61, which shows what a difference
abelian-ness makes!

The following result shows that we can (in principle) always find a
Reidemeister-Schreier rewriting process for a subgroup.

THEOREM 4.10.25. If G = ⟨X|R⟩ is a presentation of a group and H is a subgroup,
then a Schreier right-coset representative function

η: FX → FX

exists for H.

REMARK. In the literature, η is often called a Schreier transversal. The proof
explicitly constructs η, although the method used isn’t particularly practical.

PROOF. For each coset Hg of H in FX let ℓ(Hg) denote its length: the length of
the shortest reduced word in FX representing elements of the coset. We have

ℓ(H · 1) = 0

ℓ(H · x) = 1 for an x ∈ X

Define η(H) = 1 and, among all the cosets of length 1 (i.e., of the form H · x for
some x ∈ X) (arbitrarily) pick a word, u, of length 1 and define η(H · x) = u. Every
word of length 1 is in one of these cosets.

For each coset, C, of length 2, (arbitrarily) pick a minimal-length word, u1u2,
and define η(C) = η(u1)u2.

For each coset, C, of length 3, pick a word of length 3 like u1u2u3 and define
η(C) = η(u1u2)u3. We continue this process until we have defined η for all of the
cosets of H.

Since every initial segment of a word in Cη is also in Cη , this defines a Schreier
right-coset representative function. □

This immediately implies
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COROLLARY 4.10.26. Every subgroup of a free group is free.

REMARK. This result is due to Schreier in [97].

PROOF. Given any subgroup, we can always find a Schreier right-coset repre-
sentative function and apply theorem 4.10.23 on page 101. Since the original group
was free, there are no relations — and the same is true for the subgroup. □

This concludes our discussion of combinatorial group theory. The interested
reader is referred to [72].

EXERCISES.

5. Let F be the free group on two letters, x, and y and let H be the subgroup
generated by words {xiyi} for i ∈ Z. Show that H is a free group on an infinite
number of letters.

4.11. Groups of small order

Using the Sylow theorems and other considerations, it is possible to
completely characterize small groups. We already know that groups of or-
der p are cyclic, if p is a prime.

Order 4: Since 4 = 22, exercise 1 on page 80 implies that the group is
abelian. At this point, theorem 4.6.10 on page 65 implies that we
have two groups Z4 and Z2 ⊕Z2.

Order 6: If G is a group of order 6, it must contain subgroups of order 2 and
order 3, by the Sylow theorems. These subgroups are cyclic and
isomorphic to Z2 and Z3. We get an abelian group Z2⊕Z3 ∼= Z6.
If assume G is nonabelian and a generates the copy of Z2 and b
generates the copy of Z3, we get strings 1, a, b, b2, ab, ba, where
ab ̸= ba. All of these strings must represent distinct elements of G
because b2 = ab or ba implies that b is the identity. Consider the
string aba. It must equal one of the strings listed above, but cannot
equal a, b, ab, or ba (since these equalities would imply that a or
b is the identity or one is an inverse of the other). It follows that
aba = b2. The mapping

a 7→(1, 2)

b 7→(1, 2, 3)

defines an isomorphism between G and S3.
To summarize, we have two groups Z6 and S3, one abelian and

one nonabelian.
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Order 8: If |G| = 8, theorem 4.6.10 on page 65 gives us three abelian groups

Z2 ⊕Z2 ⊕Z2

Z2 ⊕Z4

Z8

Suppose G is not abelian. The order of elements must divide
8. If all elements are of order 2, let a, b, c be three distinct elements
of order 2. Then the elements {1, a, b, c, ab, bc, ac, abc} must all be
distinct (equating any two of them implies that two other elements
are the same), hence they constitute all of G. Consider the element
ba. We have baba = 1 and multiplying on the left by b and the
right by a gives ab = ba. We conclude that a, b, c commute with
each other and G is abelian.

It follows that G has an element of order 4. Call this element
a and denote the subgroup it generates by H = {1, a, a2, a3}. If
b /∈ H

G = H ∪ bH

Now suppose the coset bH has an element of order 2 — we will
call it b. Then

G = {1, a, a2, a3, b, ab, a2b, a3b}
The element ba cannot equal a or b (or one of the generators would
be 1), so it must equal ab, a2b, or a3b. If it equals ab, then G is
abelian. If

(4.11.1) ba = a2b

then multiplying on the left by b gives

b2a = ba2b
= baab

= a2bab applying ba = a2bon the left

= a4b2 applying it with bain the middle

Since b2 = 1, we conclude that a = a4or a3 = 1, which is impos-
sible. It follows that ba = a3b so proposition 4.5.17 on page 57
implies that G = D8, the dihedral group.

Now assume that all elements of bH = {b, ab, a2b, a3b} have
order 4. Since b2 has order 2 and cannot equal any of the elements
of bH, it follows that b2 = a2, the only element of order 2.

Again, ba = ab implies that G is abelian (and leads to other
impossible conclusions). If ba = a2b, then the same argument
used above implies that b2a = a4b2. Since a has order 4, it follows
that b2a = b2 or a = 1, a contradiction. It follows that we must
have ba = a3b. The group G has the presentation

G =
〈

a, b|a4, b4, a2 = b2, ba = a3b
〉
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This is called the quaternion group, and denoted Q. This is the
group of unit-quaternions with integer coefficients — see section 9
on page 323.

Order 9: In this case, exercise 1 on page 80 implies that the group is abelian.
It follows from theorem 4.6.10 on page 65 implies that we have
two groups Z9 and Z3 ⊕Z3.



CHAPTER 5

The Theory of Rings

“In the broad light of day, mathematicians check their equations
and their proofs, leaving no stone unturned in their search for
rigour. But at night, under the full moon, they dream, they float
among the stars and wonder at the miracle of the heavens. They
are inspired.

Without dreams there is no art, no mathematics, no life.”
— Sir Michael Atiyah, Notices of the AMS, January 2010, page

8.

5.1. Basic concepts

Rings are mathematical structures with more features than groups —
two operations, written as addition and multiplication.

DEFINITION 5.1.1. A ring, R, is a set equipped with two binary opera-
tions, denoted + and multiplication, ·, such that, for all r1, r2, r2 ∈ R,

(1) (r1 + r2) + r3 = r1 + (r2 + r3)
(2) (r1 · r2) · r3 = r1 · (r2 · r3)
(3) r1 · (r2 + r3) = r1 · r2 + r1 · r3
(4) (r1 + r2) · r3 = r1 · r3 + r1 · r3
(5) there exists elements 0, 1 ∈ R such that r + 0 = 0 + r = r and

r · 1 = 1 · r = r for all r ∈ R.
(6) For every r ∈ R, there exists an element s ∈ R such that r + s = 0.

The ring R will be called commutative if r1 · r2 = r2 · r1 for all r1, r2 ∈ R.
A division ring is one in which every nonzero element has a multiplica-

tive inverse.
A subring S ⊂ R is a subset of R that is also a ring under the operations

+ and ·.
REMARK. We will also regard the set containing only the number 0 as a

ring with 0+ 0 = 0 = 0 · 0 — the trivial ring (the multiplicative and additive
identities are the same). When an operation is written with a ‘+’ sign it is
implicitly assumed to be commutative.

We have seen (and worked with) many examples of rings before, Z,
Zm, Q, R, and C. The rings Q, R, and C are commutative division rings —
also known as fields. For an example of a noncommutative division ring, see
section 9.2 on page 325.

We can classify elements of a ring by certain basic properties:

DEFINITION 5.1.2. An element u ∈ R of a ring will be called a unit if
there exists another element v ∈ R such that u · v = v · u = 1. The set of

107
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units of a ring, R, form a group, denoted R×. A commutative ring in which
every nonzero element is a unit is called a field.

An element u ∈ R is called a zero-divisor if it is nonzero and if there
exists a nonzero element v ∈ R such that u · v = 0.

EXAMPLE. Perhaps the simplest example of a ring is the integers, Z.
This is simple in terms of familiarity to the reader but a detailed analysis of
the integers is a very deep field of mathematics in itself (number theory).
Its only units are ±1, and it has no zero-divisors.

We can use the integers to construct:

EXAMPLE. If m is an integer, the numbers modulo m, Zm is a ring un-
der addition and multiplication modulo m. In Z6, the elements 2 and 3 are
zero-divisors because 2 · 3 = 0 ∈ Z6.

EXAMPLE 5.1.3. The rational numbers, Q, are an example of a field.
Other examples: the real numbers, R, and the complex numbers, C.

We also have polynomial rings:

DEFINITION 5.1.4. If R is a ring, rings of polynomials R[X] is the ring
of polynomials where addition and multiplication are defined(

n

∑
i=0

aiXi

)
+

(
m

∑
i=0

biXi

)
=

max(n,m)

∑
i=0

(ai + bi)Xi

(
n

∑
i=0

aiXi

)(
m

∑
j=0

bjX j

)
=

n+m

∑
k=0

(
∑

i+j=k
aibj

)
Xk

with ai, bj ∈ R and ai = 0 if i > n and bi = 0 if i > m.
More formally, one can define R[X] as the set of infinite sequences

(5.1.1) (r0, . . . , ri, . . . )

with the property that all but a finite number of the ri vanish, and with
addition defined by

(r0, . . . , ri, . . . ) + (s0, . . . , si, . . . ) = (r0 + s0, . . . , ri + si, . . . )

and multiplication defined by

(r0, . . . , ri, . . . )(s0, . . . , si, . . . ) = (t0, . . . , ti, . . . )

with

tn = ∑
i+j=n

i≥0,j≥0

risj

In this case,
k

∑
i=0

riXi

becomes the notation for the sequence (r0, . . . , ri, . . . , rk, 0 · · · ).
EXAMPLE. Z[X] is the ring of polynomials with integer coefficients.

We can also discuss noncommutative rings:
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EXAMPLE 5.1.5. The set of n × n real matrices, Mn(R) under matrix-
multiplication (see definition 6.2.13 on page 171) and addition is a ring —
see exercise 2 on page 171.

A common ring used in algebraic topology and group-representation
theory is:

DEFINITION 5.1.6. If G is a group and R is a commutative ring, the
group-ring, RG, is defined as the set of all finite formal linear combinations
of elements of G with coefficients in R:(

n

∑
i=1

rigi

)(
m

∑
j=1

sjhj

)
=

n,m

∑
i=1,j=1

risj(gi · hj)

where the ri, sj ∈ R, gi, hj ∈ G and the products gi · hj are computed using
the product-operation in G. These are heavily used in group-representation
theory (see chapter 11 on page 387) and algebraic topology. If G is not
abelian, this will be a non-commutative ring.

We can also define power-series rings

DEFINITION 5.1.7. If R is a ring, the ring of power-series R[[X]] over R is
the ring of formal power series

∞

∑
i=1

aiXi

with addition and multiplication defined as for R[X]. As with polynomial-
rings, one can formally define the elements of R[[X]] as infinite sequences
like those in 5.1.1 on the preceding page where we allow an infinite number
of the ri to be nonzero.

REMARK. Note that these power-series are like infinite polynomials. If
we impose a metric on R the ring of power-series that converge with respect
to that metric can be very different from R[[X]].

CLAIM 5.1.8. We can define a metric on R[[X]] that makes power-series
convergent in the usual sense.

Let p, q ∈ R[[X]] and define the distance between them by

d(p, q) =
(

1
2

)v(p−q)

where Xv(p−q)
∣∣ (p − q) but Xv(p−q)+1 ∤ (p − q), i.e. the function v(x) is

equal to the degree of the lowest-degree term of x. In this metric all formal
power-series series converge and we can define Cauchy-sequences, etc.

Power series rings can have very different properties than polynomial
rings. For instance

PROPOSITION 5.1.9. In the ring R[[X]], any element

α =
∞

∑
k=0

akXk

where a0 ∈ R is a unit (see definition 5.1.2 on page 107) has a multiplicative
inverse.
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REMARK. The multiplicative inverse of α is

1
a0
− a1

a2
0

X +
a0a2 − a2

1
a3

0
X2 + · · ·

PROOF. Suppose the inverse is
∞

∑
j=0

bjX j

and multiply α by this to get
∞

∑
n=0

cnXn

with

cn =
n

∑
j=0

ajbn−j

c0 = a0b0

b0 = a−1
0

In general, we get a recursive equation

bn = −a−1
0

n−1

∑
k=0

bkan−k

that computes bn for any n. □

We also have extension rings

DEFINITION 5.1.10. Suppose we have an embedding of rings R ⊂ Ω
and α ∈ Ω is some element. Then R[α] ⊂ Ω is the subring of all possible
polynomials

n

∑
i=1

ciα
i

with ci ∈ R.

EXAMPLE. In the extension Q[
√

2], the fact that (
√

2)2 ∈ Q implies that
all elements of Q[

√
2] will actually be of the form a + b

√
2, with a, b ∈ Q.

EXERCISES.

1. In the group-ring, ZS3, compute the product

(2(1, 2, 3)− 6(1, 2)) (2(1, 3)− 4)
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5.2. Homomorphisms and ideals

Now that we have defined rings, we can define mappings of them:

DEFINITION 5.2.1. Given two rings, R and S, a function f : R → S is
called a homomorphism if, for all r1, r2 ∈ R:

(1) f (r1 + r2) = f (r1) + f (r2) ∈ S
(2) f (r1 · r2) = f (r1) · f (r2) ∈ S and f (1) = 1.

The set of elements r ∈ R with the property that f (r) = 0 is called the kernel
of the homomorphism, or ker f . If the homomorphism is surjective and its
kernel vanishes, it is called an isomorphism. An isomorphism from a ring to
itself is called an automorphism.

REMARK. Compare this to 4.2.3 on page 40 for groups. It will turn
out that many of the concepts in ring theory correspond to similar ones in
group theory. As one might imagine, this means that they are special cases
of more general concepts. Category theory (see chapter 10 on page 339)
attempts to find these more general concepts.

PROPOSITION 5.2.2. Let K be the kernel of a homomorphism f : R → S of
rings. If k ∈ K and r ∈ R, then r · k, k · r ∈ K.

PROOF. The defining property of a homomorphism implies that f (r ·
k) = f (r) · f (k) = f (r) · 0 = 0. □

We abstract out the important property of the kernel of a homomorph-
ism with:

DEFINITION 5.2.3. If R is a ring, a left-ideal I ⊂ R is a subset closed
under addition with the property that, for all x ∈ I, r ∈ R, r · x ∈ I. A
right-ideal is a subset closed under addition I ⊂ R such that x · r ∈ I for all
r ∈ R. An ideal that is both left and right is called a two-sided ideal, or just
an ideal.

(1) An ideal, I ⊂ R is prime if a · b ∈ I implies that a ∈ I or b ∈ I (or
both).

(2) The ideal generated by α1, . . . , αn ∈ R, denoted (α1, . . . αn) ⊆ R, is
the set of all linear combinations

n

∑
k=1

rk · αk · sk

where the ri and si run over all elements of R. The element 0 is an
ideal, as well as the whole ring. The set α1, . . . , αn ∈ R is called a
basis for the ideal (α1, . . . αn).

(3) An ideal I ⊂ R is maximal if I ⊂ K, where K is an ideal, implies
that K = R. This is equivalent to saying that for any r ∈ R with
r /∈ I,

I+ (r) = R

(4) An ideal generated by a single element of R is called a principal ideal.
(5) Given two ideals a and b, their product is the ideal generated by all

products {(a · b)|∀a ∈ a, b ∈ b}.
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REMARK. Following a convention in algebraic geometry, we will usu-
ally denote ideals by Fraktur letters.

If R is commutative, all ideals are two-sided.

EXAMPLE. We claim that the ideals of Z are just the sets

(0) = {0}
(2) = {. . . ,−4,−2, 0, 2, 4, 6, 8, . . . }
(3) = {. . . ,−6,−3, 0, 3, 6, 9, 12, . . . }

...
(n) = {n ·Z}

for various values of n. Proposition 3.1.5 on page 14 shows that (n, m) =
(gcd(m, n)) and a simple induction shows every ideal of Z is generated by
a single element. Note that the ideal (1) = Z. An ideal (n) ⊂ Z is prime if
and only if n is a prime number.

Maximal ideals are prime:

PROPOSITION 5.2.4. If R is a commutative ring with maximal ideal I, then
I is also prime.

PROOF. This is similar to the proof of proposition 3.1.7 on page 15.
Suppose r, s ∈ R, r · s ∈ I but r /∈ I. Then I+ (r) = R so that there exists a
t ∈ R such that

a + t · r = 1

where a ∈ I. If we multiply this by s, we get

a · s + t · r · s = s

Since both terms on the left are in I, it follows that s ∈ I. □

Proposition 5.2.2 on the previous page shows that the kernel of a hom-
omorphism is an ideal. The following is a converse to that:

PROPOSITION 5.2.5. Let R be a ring and let I ⊂ R be an ideal. For all
r1, r2 ∈ R define

r1 ≡ r2 (mod I)

if r1 − r2 ∈ I. Then ≡ is an equivalence relation. If we denote the set of
equivalence-classes by R/I, then the ring-operations of R induce corresponding
operations on R/I making it into a ring (called the quotient ring of R by I). The
canonical map

R→ R/I

that sends an element to its equivalence class is a homomorphism with kernel I.

REMARK 5.2.6. We can also think of the elements of R/I as disjoint sets
of elements of R, namely sets of the form

r + I

These are all of the elements of R equivalent to r ∈ R.
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PROOF. It is not hard to see that

r1 ≡ r2 (mod I)

and
s1 ≡ s2 (mod I)

implies that
r1 + s1 ≡ r2 + s2 (mod I)

so that addition is well-defined in R/I. To see that multiplication is also
well-defined note that

r1s1 − r2s2 = (r1 − r2)s1 + r2(s1 − s2) ∈ I

due to the closure property in definition 5.2.3 on page 111. The final state-
ment follows from the fact that I is just the set of elements of R equivalent
to 0. □

EXAMPLE. Here are examples of quotient rings:
(1) For instance, Z/(n) = Zn, the integers modulo n, where Z/(1) is

the trivial ring.
(2) In the example given earlier, Q[X, Y]/(X) = Q[Y] and

Q[X, Y]/(X, Y) = Q.
(3) We can think of the ring Q[

√
2] two ways: as an extension or as a

quotient
Q[X]/(X2 − 2)

There’s a homomorphism

Q[X] → Q[
√

2]

X 7→
√

2

whose kernel is exactly (X2 − 2). This induces an isomorphism
Q[X]/(X2 − 2) ∼= Q[

√
2].

Complementing the concept of kernel, we have the cokernel:

DEFINITION 5.2.7. If f : R → S is a homomorphism of rings and if
f (R) ⊂ S is an (two-sided) ideal in S, the quotient

S
f (R)

is called the cokernel of f .

REMARK. Cokernels for homomorphisms of rings do not always exist
because one cannot “divide” a ring by an arbitrary subring.

DEFINITION 5.2.8. A ring R is called a local ring if it has a unique maxi-
mal ideal.

For instance, let R be the subring of Q of fractions
p
q

where q is an odd number. Then 2 · R ⊂ R is the only ideal not equal to all
of R. It follows that R is a local ring.
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We could also have defined R by

R = Z[
1
3

,
1
5

, . . . ,
1
p

, . . . ]

where p runs over all odd primes.
Here is how the projection to a quotient ring affects ideals:

LEMMA 5.2.9. Let R be a commutative ring and let a ⊂ R be an ideal and let

p: R→ R/a

Then p induces a one-to-one correspondence between ideals of R/a and ideals b ⊂
R that contain a. In addition,

� p(b) is prime or maximal in R/a if and only if b is prime or maximal in
R

� p−1(c) is prime or maximal in R if and only if c is prime or maximal in
R/a.

PROOF. Let b ⊂ R be an ideal containing a and let y ∈ R with p(y) =
x ∈ R/a. Then x · p(b) = p(y · b) ⊂ p(b) so that p(b) ⊂ R/a is an ideal.

Suppose b is maximal in R. Then (x) + p(b) = p((y) + b) = p(R) =
R/a so p(b) is maximal in R/a.

If b is prime, X1 · x2 ∈ p(b) implies that y1 · y2 ∈ b, where p(yi) = xi,
and either y1 ∈ b or y2 ∈ b, which implies that x1 ∈ p(b) or x2 ∈ b. This
means that p(b) ⊂ R/a is prime.

Now suppose c ⊂ R/a. Then a ⊂ p−1(a) (since a = p−1(0)). If x ∈ R,
then x · p−1(c) has the property that its image under p is equal to c, i.e., it is
contained in p−1(c). It follows that p−1(c) is an ideal of R.

Suppose c is maximal in R/a, and suppose that x ∈ R has the property
that x /∈ p−1(c). Then p(x) /∈ c and I = (x) + p−1(c) is an ideal of R that
has the property that p(I) = (p(x)) + c = R/a. So I = R and p−1(c) is
maximal.

We leave the final statement that p−1 of a prime ideal is prime as an
exercise. □

We will also need to know the effect of multiple quotients:

LEMMA 5.2.10. Let R be a ring with ideals a ⊂ b ⊂ R. Let
(1) f : R→ R/a,
(2) g: R→ R/b and
(3) h: R/a→ (R/a)/ f (b)

be projections to the quotients. Then (R/a)/ f (b) = R/b and the diagram

R
f

//

g
��

R/a

h
��

R/b (R/a)/ f (b)

commutes.
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PROOF. Elements of R/a are equivalence classes of the equivalence re-
lation

r1 ∼a r2 if r1 − r2 ∈ a

or sets of the form (see remark 5.2.6 on page 112)

r + a ⊂ R

and elements of R/b are sets of the form

r + b ⊂ R

Elements of (R/a)/ f (b) are sets of the form

q + f (b)

where q ∈ R/a, or sets of the form

r + a+ b = r + b

This shows that (R/a)/ f (b) = R/b. The commutativity of the diagram
follows from the fact that the image of r ∈ R under the maps going down
either side of the diagram is the set r + b. □

PROPOSITION 5.2.11. If I ⊂ R is a proper (i.e., 1 /∈ I) ideal in a ring, then
there exists a proper maximal ideal M ⊂ R such that

I ⊂M

REMARK. ‘Maximal’ means no other proper ideal contains it.

PROOF. The ideals of R that contain I can be ordered by inclusion. Ev-
ery ascending chain of such ideals has an upper bound, namely the union.
Zorn’s Lemma implies (lemma 14.2.12 on page 465) that there is a maximal
such ideal. □

EXERCISES.

1. Show that

C ∼= R[X]

(X2 + 1)

2. If x, y ∈ R are two elements with the property that (x, y) = R, show
that (xn, ym) = R for positive integers n, m.

3. Show that the converse of proposition 5.1.9 on page 109 is also true:
if

α =
∞

∑
i=0

aiXi ∈ R[[X]]

is a unit, so is a0.

4. If a and b are ideals in a ring, show that a · b ⊂ a∩ b.

5. Suppose a, b, p ⊂ R are ideals in a commutative ring. If p is a prime
ideal and

a · b ⊂ p

(for instance, if a∩ b ⊂ p) prove that either a ⊂ p or b ⊂ p
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6. If
p1 ⊃ p2 ⊃ · · ·

is a decreasing sequence of prime ideals in a ring, show that

p =
⋂

pi

is also a prime ideal.

7. In the ring R = Q[X, Y], show that the ideal (X) is prime but not
maximal.

8. In the ring R = Q[
√

2], show that the map that leaves Q fixed and is
defined by

f : Q[
√

2] → Q[
√

2]√
2 7→ −

√
2

is an isomorphism of rings (so it is an automorphism of Q[
√

2]).

9. Show that the ring R = Q[
√

2] is a field by finding a multiplicative
inverse for any nonzero element.

10. Suppose R is a ring and J is the intersection of all maximal ideals of
R, i.e.

J =
⋂

m maximal in R

m

If r ∈ R has the property that r ≡ 1 (mod J), show that r is a unit (i.e., has
a multiplicative inverse).

11. If a1, . . . , an ⊂ R are distinct ideals with the property that ai + aj =
R for any i ̸= j, show that

ai + ∏
j ̸=i

aj = R

for any i where the product is take over all the integers 1, . . . , n except i.

12. If a1, . . . , an ⊂ R are distinct ideals with the property that ai + aj =
R for any i ̸= j, and

a =
n⋂

i=1

ai

show that
R
a
=

n

∏
i=1

R
ai

This is a generalization of theorem 3.3.5 on page 24, the Chinese Remainder
Theorem.
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5.3. Integral domains and Euclidean Rings

In this section, all rings will be assumed to be commutative.
Now we are in a position to define classes of rings with properties like

those of the integers. An integral domain is a ring without zero-divisors
(see definition 5.1.2 on page 107), and a Euclidean ring is one in which a
version of the division algorithm (proposition 3.1.1 on page 13) applies.

DEFINITION 5.3.1. Let R be a commutative ring. Then R is an integral
domain (or just a domain) if, for all r1, r2 ∈ R, r1 · r2 = 0 implies that at least
one of r1 or r2 is 0.

An element, x, of an integral domain is called irreducible if x = a · b
implies that x = u · a or x = u · b where u is some unit of the ring (see
definition 5.1.2 on page 107).

An element, x, is called prime if the principal ideal, (x), is prime (see
definition 5.2.3 on page 111).

REMARK. For instance, Z is an integral domain but Z6 is not since
2 · 3 ≡ 0 (mod 6).

When we discussed the integers, we defined prime numbers as posi-
tive. In a general ring, the concept of “> 0” is not well-defined so we have
to define irreducible elements “up to multiplication by a unit.” It is as if we
regarded 2 and −2 as essentially the same prime.

LEMMA 5.3.2. Let a ⊂ R be an ideal in a commutative ring. Then:

(1) a is prime if and only if R/a is an integral domain.
(2) a is maximal if and only if R/a is a field.

PROOF. Let a, b ∈ R/a be the images of x, y ∈ R under the standard
projection

R→ R/a

(see proposition 5.2.5 on page 112) Then a · b = 0 ∈ R/a if and only if

x · y = 0 (mod a)

which is equivalent to saying that x · y ∈ a. If a is prime, x · y ∈ a implies
that x ∈ a or y ∈ a , which means that a = 0 or b = 0. Conversely, if
a · b = 0 ∈ R/a always implies a = 0 or b = 0, then x · y ∈ a would always
imply that x ∈ a or y ∈ a.

If a is maximal, then it is also prime (see proposition 5.2.4 on page 112)
so we know that R/a is an integral domain. Suppose x ∈ R projects to
a ̸= 0 ∈ R/a. Since a ̸= 0, we know that x /∈ a, and since a is maximal,

a+ (x) = R

so 1 ∈ a+ (x) and
y · x + z = 1

for some z ∈ a and y · x = 1 (mod a) so the image of y in R/a is a multi-
plicative inverse of a.

The converse is left to the reader as an exercise. □
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DEFINITION 5.3.3. A Euclidean domain, R, is an integral domain that
has a function called the norm, N: R→N that measures the “size” of an el-
ement, and such that a version of the division algorithm holds (see propo-
sition 3.1.1 on page 13):

Given elements a, b ∈ R with b ∤ a , there exist elements
q, r ∈ R such that

a = b · q + r
with r ̸= 0 and N(r) < N(b).

REMARK. The term “norm” has at least two unrelated meanings in
commutative algebra: the meaning above (which is like the degree of a
polynomial) and norms of field extensions in section 7.3.1 on page 273.

EXAMPLE 5.3.4. If F is any field, the ring of polynomials with coeffi-
cients in F, F[X] is a Euclidean domain, where the norm is the degree of a
polynomial. Any irreducible polynomial generates a prime ideal.

Many basic properties of the integers immediately carry over to Eu-
clidean rings — for instance, we have Bézout’s Identity (that he originally
proved for the Euclidean ring R[X]):

PROPOSITION 5.3.5. If R is a Euclidean ring and a, b ∈ R, and we define
the greatest common divisor, gcd(a, b) of a and b to be the largest in terms of the
norm, then there exist elements u, v ∈ R such that

gcd(a, b) = u · a + v · b
If a and b have no common divisors (other than 1) then we can find u, v ∈ R such
that

1 = u · a + v · b
PROOF. Exactly the same as the proof of lemma 3.1.5 on page 14, but

we replace every occurrence of “minimal” with “nonzero elements with
minimal N(*)”. □

In fact, we can also prove this for a principal ideal domain:

PROPOSITION 5.3.6. If R is a principal ideal domain, the concept of greatest
common divisor is well-defined and, for any two elements x, y ∈ R, there exist
elements u, v ∈ R such that

gcd(x, y) = u · x + v · y
PROOF. If x, y ∈ R, then the ideal (x, y) ⊂ R is generated by a single

element (g), i.e. (x, y) = (g). It follows that g|x and g|y — and g = u · x +
v · y, which implies that any common divisor of x and y must divide g. We
define g to be the greatest common divisor of x and y. □

In rings with greatest common divisor, we can prove:

COROLLARY 5.3.7. Let R be a Euclidean domain or a principal ideal domain,
let r ∈ R be some element, and let

r = pα1
1 · · · · · p

αk
k

= qβ1
1 · · · · · q

βℓ
ℓ
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be factorizations into powers of irreducible elements. Then k = ℓ and there is a
reordering of indices f : {1, . . . , k} → {1, . . . , k} such that qi = u f (i) · p f (i) for
some units, u f (i), and βi = α f (i) for all i from 1 to k.

PROOF. Simply repeat the proof of proposition 3.1.7 on page 15. □

Note that all ideals of R are principal, i.e., generated by a single ele-
ment. We will be interested in general rings that share this property:

DEFINITION 5.3.8. A principal ideal domain is an integral domain in
which all ideals are principal.

PROPOSITION 5.3.9. All Euclidean domains are principal ideal domains.

PROOF. Let R be a Euclidean domain with norm N: R → Z and a ⊂ R
be an ideal. If a′ = a \ {0}, let x ∈ a′ be a minimal element in the sense that
there does not exist any element y ∈ a′ with N(y) < N(x). We claim that
a = (x). If y ∈ a is not a multiple of x, then we can divide y by x to get

y = x · q + r

Because a is an ideal, x · q ∈ a. Since y ∈ a, it follows that r ∈ a′ and
N(r) < N(x), which contradicts the minimality of x. □

COROLLARY 5.3.10. Let F be a field and let F[X] be the ring of polynomials
over F. Then F[X] is a principal ideal domain.

PROOF. It’s easy to see that F[X] is an integral domain. We claim that it
is a Euclidean domain as well — see definition 5.3.3 on page 118. This is be-
cause we can divide polynomials as we do integers: given two polynomials
p(X), q(X) we can write

p(X) = a(X)q(X) + r(X)

with a(X) as the quotient and r(X) as the remainder where deg r(X) <
deg q(X). So the conclusion follows from proposition 5.3.9. □

Another important class of rings are unique factorization domains:

DEFINITION 5.3.11. A ring, R, is a unique factorization domain if it is a do-
main whose elements satisfy the conclusion of corollary 5.3.7 on page 118,
i.e., if factorization of elements into irreducibles is unique up to units.

REMARK 5.3.12. Since Bézout’s identity was used to prove unique fac-
torization of integers (see proposition 3.1.7 on page 15), it follows that any
principal ideal domain has unique factorization.

We have already seen several examples of unique factorization do-
mains: the integers, polynomials over the rational numbers.

It is useful to give an example of a ring that is not a unique factorization
domain. It shows that such examples are fairly common:

EXAMPLE 5.3.13. Consider the extension ring Z[
√
−5] ⊂ C. It is the

set of all numbers
a + b

√
−5
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with a, b ∈ Z. These elements satisfy the multiplication law

(5.3.1) (a1 + b1
√
−5) · (a2 + b2

√
−5) = a1a2 − 5b1b2 + (a1b2 + a2b1)

√
−5

It is not hard to see that the map f : Z[
√
−5]→ Z[

√
−5] that sends

√
−5 to

−
√
−5 is an automorphism (see definition 5.2.1 on page 111) — just plug it

into equation 5.3.1.
If x = a + b

√
−5 ∈ Z[

√
−5], then define

N(x) = x · f (x) = a2 + 5b2 ∈ Z

and
(1) N(x) = 0 if and only if x = 0.
(2) for all x, y ∈ Z[

√
−5],

N(x · y) = x · y · f (x · y) = x · y · f (x) · f (y) = N(x) · N(y)

since f is a homomorphism. This means that a|b ∈ Z[
√
−5] im-

plies that N(a)|N(b) ∈ Z.
Now note that N(2) = 4 and N(3) = 9. The only elements z = a + b

√
−5

with N(z) ≤ 9 are 1±
√
−5. Both have N(z) = 6 which does not divide 4 or

9. It follows that the four elements 2, 3, 1±
√
−5 ∈ Z[

√
−5] are irreducible

— i.e., primes.
The formula

6 = 2 · 3 = (1−
√
−5) · (1 +

√
−5)

gives an example of non-unique factorization. So the ring Z[
√
−5] is not a

unique factorization domain. The function, N, is an example of a norm of a
field-extension, a topic covered in more detail in section 7.3.1 on page 273.

We conclude this section with an application to number theory.
Consider the polynomial ring Q[X], polynomials with rational coefficients.
Given any element α ∈ C, we can define a unique homomorphism of rings
that sends X to α

fα: Q[X]→ C

p(X) 7→ p(α)

Since Q[X] is a PID, the kernel of this homomorphism will be a principal
ideal of the form (mα(X)) ⊂ Q[X]. We have two possibilities

1. mα(X) ̸= 0, in which case, α is a root of a polynomial with rational
coefficients and is called an algebraic number. In this case, mα(X) is called the
minimal polynomial of α. Example:

√
2 is an algebraic number with minimal

polynomial X2 − 2.
2. mα(X) = 0, in which case α is not the root of any polynomial

with rational coefficients and is called a transcendental number. In this case,
Q[α] ∼= Q[X]. Examples: e and π (although the proofs are not at all obvi-
ous).
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EXERCISES.

1. If F is a field, show that the equation xn = 1 in F has at most n
solutions.

2. Let C[0, 1] be the ring of all real-valued continuous functions on the
unit interval, [0, 1]. If a ∈ [0, 1], let fa = { f ∈ C[0, 1]| f (a) = 0}. Show that
fa ⊂ C[0, 1] is a maximal ideal.

3. Find the greatest common divisor of

a(X) = X4 + 3X3 − 2X2 + X + 1

and
b(X) = X5 − X3 + X + 5

in Q[X].

4. Show that there exists integral domains with pairs of elements that
have no greatest common divisor. Hint: consider the subring R ⊂ Q[X] of
polynomials with no linear term — i.e., polynomials of the form

f (x) = a0 + a2X2 + · · ·
and consider the monomials X5 and X6.

5. Let f : R → S be a homomorphism of rings and let p ⊂ S be a prime
ideal. Show that f−1(p) ⊂ R is also a prime ideal.

5.4. Noetherian rings

We add to our menagerie of ring-types (see figure 5.4.1 on page 123)
with

DEFINITION 5.4.1. A ring R is noetherian if all of its ideals are finitely
generated.

REMARK. This is a generalization of principal ideal domain. The term
‘noetherian’ is in honor of the mathematician Emmy Noether.

Emmy Noether (1882-1935) was a German-Jewish mathematician noted for
her contributions to abstract algebra and theoretical physics. She was de-
scribed by Pavel Alexandrov, Albert Einstein, Jean Dieudonné, Hermann
Weyl, and Norbert Wiener as the most important woman in the history of
mathematics. As one of the leading mathematicians of her time, she devel-
oped the theories of rings, fields, and algebras.
At the University of Göttingen, she proved the theorem now known as
Noether’s theorem, which shows that a conservation law is associated with
any differentiable symmetry of a physical system.
After she fled Nazi Germany, she spent the last two years of her life at Bryn
Mawr College and the Institute for Advanced Studies.
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PROPOSITION 5.4.2. The definition given above is equivalent to the state-
ment:

All increasing sequences of ideals in R eventually become con-
stant, i.e., if

a1 ⊆ a2 ⊆ · · ·
then there exists a number n such that ai = ai+1 for all i ≥ n.
This is called the ascending chain condition or ACC.

PROOF. Consider the ideal

a =
∞⋃

i=1

ai

If a = (r1, . . . , rn) for finite n, each of the ri would occur in one of the aj, say
aj(i). If k = max(j(1), . . . , j(n)), then all of the ri ∈ aK and

ak = ak+1 = · · · = a

On the other hand, if all ascending chains stabilize after a finite number of
terms, let

b = (r1, . . . )
be an ideal generated by an infinite number of elements and define

bn = (r1, . . . , rn)

and consider the ascending chain of ideals

b1 ⊆ b2 ⊆ · · · ⊆ bk = bk+1 = · · ·
It follows that b = (r1, . . . , rk), which is finitely generated. □

REMARK. The similar-looking descending chain condition leads to a
class of rings called Artinian rings — see definition 5.8.1 on page 158.

The following result (due to Emmy Noether — see [82]) shows that
noetherian rings are extremely common:

LEMMA 5.4.3. If R is noetherian, then so is R[X].

PROOF. Recall that, for a polynomial

f (X) = akXk + · · ·+ a0

k is called the degree and ak is called the leading coefficients. If a ⊆ R[X]
is an ideal, let ci be the set of all leading coefficients of polynomials in a of
degree ≤ i.

Then ci ⊆ R is an ideal and

c1 ⊆ c2 ⊆ · · · ⊆ ci ⊆ · · ·
Because R is noetherian, this sequence eventually becomes constant,

say cd = cd+1 = · · · . For each i ≤ d, let

ci = (ai,1, . . . , ai,n(i)) ⊂ R

and let fi,j ∈ a ⊂ R[X] be a polynomial whose leading coefficient is ai,j . If
f ∈ a, we will show by induction on the degree of f that it lies in the ideal
generated by the (finite) set of fi,j.
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When f has degree 0, the result is clear. If f has degree s < d then

f = aXs + · · ·
with a ∈ cs, and

a =
n(s)

∑
j=1

bj · as,j

for some bj ∈ R, so

f −
n(s)

∑
j=1

bj · fs,j

is a polynomial of degree s− 1 and induction implies the conclusion.
If f has degree s ≥ d, then

f = aXs + · · ·
with a ∈ cd. It follows that

a = ∑ bj · ad,j

for some bj ∈ R and that

f −∑
j

bj · fd,jXs−d

has degree < deg f , and so lies in the ideal generated by the { fi,j} (by
induction). □

Some relations between classes of rings is illustrated in figure 5.4.1.

Euclidean domain +3

��

Principal ideal domain

��ow
Unique factorization domain Noetherian domain

FIGURE 5.4.1. Relations between classes of rings

THEOREM 5.4.4 (Hilbert Basis Theorem). If R is noetherian, then so is
R[X1, . . . , Xn], i.e., every ideal is finitely generated.

REMARK. Technically this is Noether’s generalization of the Hilbert
Basis Theorem. Hilbert originally proved it for R a field.

PROOF. Since R is noetherian, and

R[X1, . . . , Xn] = R[X1, . . . , Xn−1][Xn]

the theorem follows by an easy induction from lemma 5.4.3 on the preced-
ing page. □

�

A variation of this argument even shows that power-series rings are noetherian.

LEMMA 5.4.5. If R is a noetherian ring, so is R[[X]].
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REMARK. As above, a simple induction shows that

R[[X1, . . . , Xk]]

is noetherian for any finite k.

PROOF. Given a power series s ∈ R[[X]], let ℓ(s) denote its lowest nonzero
coefficient.

Let a ⊂ R[[X]] be an ideal whose elements are

v =
∞

∑
i=0

c(v)iXi

with c(V)i ∈ R. Define hn ⊂ R to be composed of the nth coefficients of elements of
a whose lower coefficients vanish, i.e.

hn = {c(v)n|v ∈ a, c(v)0 = · · · = c(v)n−1 = 0}
We claim that the hn are all ideals of R (from the way elements of R[[X]] are multi-
plied). Now set

Hn =
n⋃

i=0
hn

Then we get an ascending chain of ideals in R

H0 ⊂ · · ·
which must eventually become constant with some finitely generated ideal (since
R is noetherian)

Hm+1 = Hm = (r0, . . . , rt)

So the {ri} generate all of the coefficients of all elements of a. Each of the ri is the
lowest nonzero coefficient of some power series fi ∈ a. We claim that

a = ( f0, . . . , ft)

Given z = ∑∞
i=0 ciXi ∈ a, we must show that there exist power-series

di = ∑∞
j=0 di,jX j such that

(5.4.1) z = d1 f1 + · · ·+ dt ft

If s is the highest degree of the lowest nonzero term that occurs in the fi, we can
subtract R-linear combinations of the fi from z that will kill off all of its terms of
degree ≤ s — giving z1. This gives the constant terms of the di, i.e. {di,0}.

To cancel the lowest term of z1, we know that its coefficient, cs+1, is also a linear
combination of the ri. We must multiply suitable fi by X to reach it, thus defining
the d1,i. Subtracting this linear combination gives z2.

Continuing this indefinitely results in equation 5.4.1. Despite the seeming “in-
finite complexity” of z, we express it as a finite linear combination because we have
infinite series available to us as coefficients. □

We conclude this section with a result due to Emmy Noether:

LEMMA 5.4.6. Let I ⊂ R be an ideal in a noetherian ring. Then:
(1) in the set of prime ideals p such that I ⊂ p, there is a minimal element
(2) the set of minimal prime ideals containing I is finite.

PROOF. The first statement follows from:
(1) every ideal is contained in a maximal ideal (see proposition 5.2.11 on

page 115),
(2) maximal ideals are prime (see proposition 5.2.4 on page 112) so every

ideal is contained in at least one prime ideal,
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(3) the intersection of a decreasing sequence of prime ideals is prime (see
exercise 6 on page 116).

We prove the second statement by contradiction. Let I denote the set of ideals with
an infinite number of minimal primes that contain them. Every ascending chain of
ideals in I

I1 ⊂ I2 ⊂ · · ·
has an upper bound since the sequence stabilizes after a finite number of terms
(this is the only place where we use the noetherian property of R). Zorn’s Lemma
( 14.2.12 on page 465) implies that I has a maximal member, M.

Clearly, M is not prime because it would be the (one and only) minimal prime
containing it. It follows that

(1) there exist a, b ∈ R such that a · b ∈M and a /∈M and b /∈M.
(2) if A = (a,M) and B = (b,M), then M ⊂ A, M ⊂ B, and A ·B ⊂M

If {pi} is the infinite set of minimal primes that contain I, exercise 5 on page 115
implies that, for each i, A ⊂ pi or B ⊂ pi. It follows that A or B (or both) is
contained in an infinite number of the pi — without loss of generality, we will say
it is A. Since M ⊊ A, it follows that A can only have a finite number of minimal
primes containing it. This is the contradiction. □

EXERCISES.

1. Show that every finite integral domain is a field.

2. Use the proposition 5.4.2 on page 122 to show that any quotient of a
noetherian ring is noetherian.

3. Show that Q[X, Y] is not a Euclidean domain.

4. Find all the maximal ideals of Z[X].

5. Show that an element of R[[X1, . . . , Xn]] is a unit if and only if its
constant term is a unit in R.

6. If R is a noetherian ring, show that the nilradical is nilpotent, i.e.
that there exists a integer k > 0 such that N(R)k = 0.

7. Suppose p ⊂ R is a minimal prime ideal in a noetherian (commuta-
tive) ring. Show that all of the elements of p are zero-divisors.

5.5. Polynomial rings

Polynomial rings are important in many areas of algebra and algebraic
geometry. Problems in important application-areas can often be reduced to
computations in polynomial rings.
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5.5.1. Ideals and systems of equations. Suppose

W = C[X1, . . . , Xn]

suppose f1, . . . , fs ∈ W, and suppose we want to solve the system of alge-
braic equations

f1(X1, . . . , Xn) = 0
...

fs(X1, . . . , Xn) = 0(5.5.1)

If g1, . . . , gt ∈W is a set of polynomials with the property that

( f1, . . . , fs) = (g1, . . . , gt) = B

— i.e., the gj are another basis for the ideal generated by the fi, then the
equations in 5.5.1 are equivalent to

g1(X1, . . . , Xn) = 0
...

gt(X1, . . . , Xn) = 0

To see that, note that, since the fi are a basis for B and the gi ∈ B, we
have equations

gi =
s

∑
j=1

ai,j f j

where ai,j ∈ W for all i and j. It follows that f1 = · · · = fs = 0 implies that
g1 = · · · = gt = 0. Since the gj are also a basis for B, the reverse implication
is also true.

EXAMPLE 5.5.1. Suppose we want to find solutions to the system of
algebraic equations

xy = z2

xz = 1

x2 + y2 = 3

We first make these into equations set to zero

xy− z2 = 0
xz− 1 = 0

x2 + y2 − 3 = 0

and find another basis for the ideal these polynomials generate. It turns out1

that

(xy− z2, xz− 1, x2 + y2 − 3) = (z8 − 3z2 + 1, y− z3, z7 − 3z + x)

1This is not at all obvious! Later, we will look at an algorithm for coming to this
conclusion.
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So our original equations are equivalent to the equations

z8 − 3z2 + 1 = 0

y− z3 = 0

z7 − 3z + x = 0

or

z8 − 3z2 + 1 = 0

y = z3

x = 3z− z7

so that it follows that our original set of equations had eight solutions: find
8 roots of the polynomial in z and plug them into the equations for x and y.

It follows that there are applications to finding “simplified” or “im-
proved” bases for ideals in polynomial rings.

5.5.2. Gröbner bases. One of the most powerful technique for compu-
tations in polynomial rings use a special basis for an ideal, called a Gröbner
basis. Gröbner bases were discovered by Bruno Buchberger (in his thesis,
[20]) and named after his teacher, Wolfgang Gröbner. He refined this con-
struction in subsequent papers — see [21, 22].

One key idea in the theory of Gröbner bases involves imposing an or-
dering on the monomials in a polynomial ring:

DEFINITION 5.5.2. If F is a field, define an ordering on the elements
of Nn and an induced ordering on the monomials of F[X1, . . . , Xn] by α =
(a1, . . . , an) ≻ β = (b1, . . . , bn) implies that

∏ Xai
i ≻∏ Xbi

i

The ordering of Nn must satisfy the conditions:
(1) if α ≻ β and γ ∈Nn, then α + γ ≻ β + γ
(2) ≻ is a well-ordering: every set of elements of Nn has a minimal

element.
For any polynomial f ∈ F[X1, . . . , Xn], let LT( f ) denote its leading term in
this ordering — the polynomial’s highest-ordered monomial with its coef-
ficient.

REMARK. Condition 1 implies that the corresponding ordering of
monomials is preserved by multiplication by a monomial. Condition 2
implies that there are no infinite descending sequences of monomials.

DEFINITION 5.5.3. Suppose F is a field and an ordering has been cho-
sen for the monomials of F[X1, . . . , Xn]. If a ∈ F[X1, . . . , Xn] is an ideal, let
LT(a) denote the ideal generated by the leading terms of the polynomials
in a.

(1) If a = ( f1, . . . , ft), then { f1, . . . , ft} is a Gröbner basis for a if

LT(a) = (LT( f1), . . . , LT( ft))
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(2) A Gröbner basis { f1, . . . , ft} is minimal if the leading coefficient of
each fi is 1 and for each i

LT( fi) /∈ (LT( f1), . . . , LT( fi−1), LT( fi+1), . . . LT( ft))

(3) A Gröbner basis { f1, . . . , ft} is reduced if the leading coefficient of
each fi is 1 and for each i and no monomial of fi is contained in

(LT( f1), . . . , LT( fi−1), LT( fi+1), . . . LT( ft))

REMARK. There are many different types of orderings that can be used
and a Gröbner basis with respect to one ordering will generally not be one
with respect to another.

DEFINITION 5.5.4. The two most common orderings used are:
(1) Lexicographic ordering. Let α = (a1, . . . , an), β = (b1, . . . , bn) ∈ Nn.

Then α > β ∈ Nn if, in the vector difference α − β ∈ Zn, the
leftmost nonzero entry is positive — and we define

∏ Xai
i ≻∏ Xbi

i

so
XY2 ≻ Y3Z4

(2) Graded reverse lexicographic order. Here, monomials are first or-
dered by total degree — i.e., the sum of the exponents. Ties are
resolved lexicographically (in reverse — higher lexicographic or-
der represents a lower monomial).

REMARK. In Graded Reverse Lexicographic order, we get

X4Y4Z7 ≻ X5Y5Z4

since the total degree is greater. As remarked above, Gröbner bases de-
pend on the ordering, ≻: different orderings give different bases and even
different numbers of basis elements.

Gröbner bases give an algorithmic procedure (detailed later) for decid-
ing whether a polynomial is contained in an ideal and whether two ideals
are equal.

To describe Buchberger’s algorithm for finding a Gröbner (or standard)
basis, we need something called the division algorithm. This is a generaliza-
tion of the usual division algorithm for polynomials of a single variable:

ALGORITHM 5.5.5 (Division Algorithm). Let ≻ be an ordering on the
monomials of F[X1, . . . , Xn], where F is some field, and let A = { f1, . . . , fk}
be a set of polynomials. If f ∈ F[X1, . . . , Xn] is some polynomial, the division
algorithm computes polynomials a1, . . . , as such that

(5.5.2) f = a1 f1 + · · ·+ ak fk + R

where R = 0 or no monomial in R is divisible by LT( fi) for any i.
In general, we will be more interested in the remainder, R, than the “quo-

tients” ai. We will use the notation

f →A R

to express the fact that the remainder has a certain value (“ f reduces to R”). The
algorithm is:
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function DIVISION( f , f1, . . . , fk)
ai ← 0
R← 0
g← f
while g ̸= 0 do

Matched← False
for i = 1, . . . , k do

if LT( fi)
∣∣LT(g) then

h← LT(g)
LT( fi)

ai ← ai + h
g← g− fi · h
Matched← True▷ LT(g) was divisible by one of the LT( fi)
Break ▷ Leave the for-loop and continue the While-loop

end if
end for
if not Matched then▷ LT(g) was not divisible by any of the LT( fi)

R← R + LT(g) ▷ so put it into the remainder
g← g− LT(g) ▷ Subtract it from f

end if
end while
return f = a1 f1 + · · ·+ ak fk + R
▷ where the monomials of R are not divisible by the leading terms of

any of the fi
end function

REMARK. As is usual in describing algorithms, a ← b represents as-
signment, i.e. “take the value in b and plug it into a” (the symbol ‘=’ merely
states that two quantities are equal). The symbol ▷ denotes a comment —
on how the computation is proceeding.

It should be noted that:

PROPOSITION 5.5.6. The division algorithm terminates in a finite number of
steps and, in equation 5.5.2 on the facing page,

(5.5.3) LT( f ) ⪰ LT(ai fi)

for i = 1, . . . , k.

PROOF. The algorithm requires a finite number of steps because ⪰ is a
well-ordering: any decreasing sequence of monomials must terminate in a fi-
nite number of steps (see the remark following definition 5.5.2 on page 127).
In each iteration of the While-loop g (initially equal to f ) loses a monomial
and may gain others — which are ordered lower than the one it lost.

If there existed a term ai fi with LT(ai fi) ≻ LT( f ), there would have to
be cancellation among leading terms of the ai fi, since their sum is f . The
method used to construct the ai guarantees that

LT(ai fi) ̸= LT(aj f j)

for i ̸= j, so no cancellation can occur among the leading terms in equa-
tion 5.5.2 on the facing page. □
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EXAMPLE 5.5.7. Let f = X2Y + XY2 + Y2, and let f1 = XY − 1 and
f2 = Y2 − 1.

Assume lexicographic ordering with X ≻ Y. Then LT( f1)
∣∣LT( f ) and

we get

h ← X
a1 ← X
g ← g− X · (XY− 1)

= XY2 + Y2 + X

In the second iteration of the While-loop, LT( f1)
∣∣LT(g) and

h ← Y
a1 ← a1 + Y

= X + Y
g ← g−Y · (XY− 1)

= Y2 + X + Y

In the third iteration of the While-loop, we have LT( f1) ∤ LT(g) and LT( f2) ∤
LT(g) so

R ← X
g ← g− X

= Y2 + Y

In the fourth iteration of the While-loop, we have LT( f1) ∤ LT(g) but
LT( f2)

∣∣LT(g) so

h ← 1
a2 ← 1
g ← g− 1 · (Y2 − 1)

= Y + 1

Since neither Y nor 1 are divisible by the leading terms of the fi they are
thrown into the remainder and we get

f = (X + Y) · f1 + 1 · f2 + X + Y + 1

Note that our remainder depends on the order of the polynomials. If
we set f1 = Y2 − 1 and f2 = XY− 1 we get

f = (X + 1) · f1 + X · f2 + 2X + 1

It turns out that the remainder can vanish with one ordering and not an-
other!

With the Division Algorithm in hand, we can discuss some of the more
important properties of Gröbner bases:

PROPOSITION 5.5.8 (Division Property). Let ≻ be an ordering of monomi-
als in F[X1, . . . , Xn] where F is a field, and let a = (g1, . . . , gk) ⊂ F[X1, . . . , Xn]
be an ideal with G = {g1, . . . , gk} a Gröbner basis. If f ∈ F[X1, . . . , Xn], then
f ∈ a if and only if

f →G 0
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PROOF. If f →G 0, then f ∈ a. Conversely, suppose f ∈ a and f →G R.
If R ̸= 0 then

R = f −
t

∑
i=1

aigi

so that R ∈ a and LT(R) ∈ LT(a) (since G is a Gröbner basis). This contra-
dicts the fact that the leading term of R is not divisible by the leading terms
of the gi. □

This immediately implies that

COROLLARY 5.5.9. If F is a field, a ⊂ F[X1, . . . , Xn] is an ideal, and B is a
minimal Gröbner basis then a = (1) if and only if B = {1}.

PROOF. If 1 ∈ a, then
1→B 0

which can only happen if 1 ∈ B. Since B is minimal, B = {1}. □

5.5.3. Buchberger’s Algorithm. We begin by proving a property that
Gröbner bases have.

DEFINITION 5.5.10. If F is a field, ≽ is some ordering on the monomials
of F[X1, . . . , Xn], and a = ( f1, · · · , ft) is an ideal, let

(5.5.4) gi,j =
LT( fi)

gcd(LT( fi), LT( f j))

and define the S-polynomial

Si,j = gj,i · fi − gi,j · f j

REMARK. Note that LT(gj,i · fi) = LT(gi,j · f j) so that they cancel out in
Si,j.

Buchberger’s Theorem states that the S-polynomials give a criterion
for a basis being Gröbner. It quickly leads to an algorithm for computing
Gröbner bases.

THEOREM 5.5.11. Let F be a field, F = { f1, . . . , ft} ∈ F[X1, . . . , Xn] be a
set of polynomials and let ≻ be an ordering on the monomials of F[X1, . . . , Xn].
Then F is a Gröbner basis of the ideal a = ( f1, . . . , ft) if and only if

Si,j →F 0

for every S-polynomial one can form from the polynomials in F.

PROOF. If F is a Gröbner basis, then the division property (proposi-
tion 5.5.8 on the preceding page) implies

Si,j →F 0

since Si,j ∈ a.
On the other hand, suppose all S-polynomials reduce to 0. Then there

exist expressions

(5.5.5) Si,j =
t

∑
ℓ=1

aℓi,j fℓ
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for all 1 ≤ i < j ≤ t and 1 ≤ ℓ ≤ t such that

LT(Si,j) ⪰ LT(aℓi,j fi)

LT(si,j f j) ≻ LT(aℓi,j fi)(5.5.6)

Suppose that F is not a Gröbner basis — i.e.
LT(a) ̸= (LT( f1), . . . , LT( ft)). Then there exists an element
f ∈ a with

(5.5.7) f =
t

∑
i=1

bi fi

such that LT( fi) ∤ LT( f ) for all i = 1, . . . , t. The only way this can happen
is if the leading terms of two of the terms in equation 5.5.7 cancel. Suppose
m is the highest (in the ordering) monomial of {LT(bi fi)} for i = 1, . . . , t,
suppose f has been chosen to make m minimal, and so that m occurs a
minimal number of times.

Without loss of generality, suppose that b̄1LT( f1) = LT(b1 f1) and
b̄2LT( f2) = LT(b2 f2) are equal to m, up to multiplication by an element of
k. If we divide both of these by gcd(LT( f1), LT( f2)), we get

k1b̄1s1,2 = b̄2 · s2,1

where si,j is as in equation 5.5.4 on the previous page. Since the si,j have no
common factors, we conclude that s2,1|b̄1 or b̄1 = c · s2,1, for some monomial
c, so b̄1LT( f1) = c · s2,1 · LT( f1). Now form the quantity

f ′ = f − c

(
S1,2 −

t

∑
ℓ=1

aℓ1,2 fℓ

)
(where S1,2 is as in definition 5.5.10 on the preceding page).

Our hypothesis (equation 5.5.5 on the previous page) implies that f ′ =
f . On the other hand, the term −c · s2,1 · f1 in −cS1,2 cancels out b̄1LT( f1)
and the term +c · s1,2 · f2 combines with the term b2 f2 so that the number
of occurrences of the monomial m decreases by at least 1. Equation 5.5.6 on
page 132 implies that the terms {aℓ1,2 fℓ} cannot affect this outcome, so we
have a contradiction to the fact that m occurred a minimal number of times
in f . We conclude that F must have been a Gröbner basis. □

This result immediately leads to an algorithm for computing a Gröbner
basis:

ALGORITHM 5.5.12 (Buchberger’s Algorithm). Given a set of polynomials
F = { f1, . . . , ft} ∈ F[X1, . . . , Xn],

(1) for each pair (i, j) with 1 ≤ i < j ≤ t, compute Si,j as in defini-
tion 5.5.10 on the preceding page,

(2) compute Si,j →F hi,j, using the Division Algorithm ( 5.5.5 on page 128),
(3) if hi,j ̸= 0, set

F = F ∪ {hi,j}
and return to step 1.

The algorithm terminates when all of the {hi,j} found in step 3 are 0.
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REMARK. The Hilbert Basis theorem ( 5.4.4 on page 123) implies that
this process will terminate in a finite number of steps (since we are append-
ing generators of LT(a)).

To get a minimal Gröbner basis, simply throw away unnecessary ele-
ments. To get a reduced basis, apply the Division Algorithm to each member
of the output of this algorithm with respect to the other members.

Unfortunately, Buchberger’s algorithm can have exponential
time-complexity — for graded-reverse lexicographic ordering — and
doubly-exponential (een

) complexity for lexicographic ordering (see [73]).
This, incidentally, is why we discussed resultants of polynomials: the
complexity of computing Gröbner bases (especially with lexicographic
ordering, which leads to the Elimination Property) can easily overwhelm
powerful computers. Computing resultants is relatively simple (they boil
down to computing determinants).

In practice it seems to have a reasonable running time. In special cases,
we have:

(1) For a system of linear polynomials, Buchberger’s Algorithm be-
come Gaussian Elimination (see 6.2.30 on page 178) for putting a
matrix in upper triangular form.

(2) For polynomials over a single variable, it becomes Euclid’s algo-
rithm for finding the greatest common divisor for two polynomials
(see 3.1.12 on page 17).

Here is an example:

EXAMPLE 5.5.13. Let f1 = XY + Y2 and f2 = X2 in F[X, Y] and we
compute a Gröbner basis using lexicographical ordering with

X ≻ Y

We have LT( f1) = XY and LT( f2) = X2. Neither is a multiple of the
other and their greatest common divisor is X. Our first S-polynomial is

S1,2 =
LT( f2)

X
f1 −

LT( f1)

X
f2 = XY2

The remainder after applying the Division Algorithm is−Y3 so we set f3 =
Y3. We compute

S1,3 =
LT( f3)

Y
f1 −

LT( f1)

Y
f3 = Y4

S2,3 =
LT( f3)

1
f2 −

LT( f2)

1
f3 = 0

Since both of these are in the ideal generated by { f1, f2, f3}, we are done.

Gröbner bases have an interesting history. In 1899, Gordon gave a new
proof of the Hilbert Basis theorem2 (theorem 5.4.4 on page 123) that demon-
strated the existence of a finite Gröbner basis (with lexicographic ordering)
but gave no algorithm for computing it. See [46].

2He felt that Hilbert’s proof was too abstract and gave a constructive proof.



134 5. THE THEORY OF RINGS

In 1920, Janet (see [58]) gave an algorithm for computing “involutive
bases” of linear systems of partial differential equations, that can be trans-
lated into Buchberger’s algorithm in a certain case. Given a system of
differential equations that are linear combinations of products of partial
derivatives of ψ(x1, . . . , xn) (with constant coefficients), one can substitute

ψ = e∑ αixi

and get systems of polynomials in the αi whose solution leads to solutions
of the differential equations.

In 1950, Gröbner published a paper ([50]) that explored an algorithm
for computing Gröbner bases, but could not prove that it ever terminated.
One of Buchberger’s signal contributions were the introduction of
S-polynomials and theorem 5.5.11 on page 131.

Teo Mora (see [75, 76]) extended much of the theory of Gröbner bases to
some non-polynomial rings, including local rings and power series rings.

At this point, we can prove another interesting property of Gröbner
bases, when computed in a certain way:

PROPOSITION 5.5.14 (Elimination Property). Suppose F is a field and
{g1, . . . , gj} is a Gröbner basis for the ideal a ∈ F[X1, . . . , Xn], computed us-
ing lexicographic ordering with

X1 ≻ X2 ≻ · · · ≻ Xn

If 1 ≤ t ≤ n, then
a∩F[Xt, . . . , Xn]

has a Gröbner basis that is

{g1, . . . , gj} ∩F[Xt, . . . , Xn]

REMARK. This is particularly important in using Gröbner bases to
solve systems of algebraic equations. Here, we want to eliminate variables
if possible and isolate other variables. In example 5.5.1 on page 126, we
have the ideal

B = (xy− z2, xz− 1, x2 + y2 − 3)
and can find a Gröbner basis for it with lexicographic ordering with x ≻
y ≻ z of

(z8 − 3z2 + 1, y− z3, z7 − 3z + x)
Here, the basis element z8 − 3z2 + 1 is an element of B ∩R[z] ⊂ R[x, y, z]
and the variables x and y have been eliminated from it. It follows that z,
alone, must satisfy

z8 − 3z2 + 1 = 0
and we can solve for x and y in terms of z.

PROOF. Suppose f ∈ a∩F[Xt, . . . , Xn] and its expansion using the Di-
vision Algorithm ( 5.5.5 on page 128) is

f = ∑ qi · gi

with LT(qi · gi) ⪯ LT( f ) for all i (see equation 5.5.3). Lexicographic order-
ing implies that, if X1, . . . , Xt−1 occur anywhere in qi · gi then these variables
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will be in the leading term of qi · gi and LT(qi · g1) ≻ LT( f ) — a contradic-
tion. It follows that, for all i such that gi contains variables X1, . . . , Xt−1,
the corresponding qi = 0. Since f is a linear combination of polynomials
{g1, . . . , gj} ∩ k[Xt, . . . , Xn], they generate a∩ k[Xt, . . . , Xn].

Since
Si,i′ →G′ 0

whenever gi, gi′ ∈ {g1, . . . , gj} ∩ F[Xt, . . . , Xn], theorem 5.5.11 on page 131
implies that G′ = {g1, . . . , gj} ∩F[Xt, . . . , Xn] is a Gröbner basis. □

We already know how to test membership of a polynomial in an ideal via
the Division Algorithm and proposition 5.5.8 on page 130. This algorithm
also tells us when one ideal is contained in another since ( f1, . . . , f j) ⊆
(g1, . . . , gℓ) if and only if fi ∈ (g1, . . . , gℓ) for i = 1, . . . , j.

We can use Gröbner bases to compute intersections of ideals:

PROPOSITION 5.5.15 (Intersections of ideals). Let a = ( f1, . . . , f j), b =
(g1, . . . , gℓ) be ideals in F[X1, . . . , Xn]. If we introduce a new variable, T, and
compute the Gröbner basis of

(T f1, . . . , T f j, (1− T)g1, . . . (1− T)gℓ)

using lexicographic ordering and ordering T higher than the other variables, the
Gröbner basis elements that do not contain T will be a Gröbner basis for a∩ b.

REMARK. If f , g ∈ F[X1, . . . , Xn], this allows us to compute the least
common multiple, z, of f and g since

(z) = ( f ) ∩ (g)

and the greatest common divisor — even if we don’t know how to factor
polynomials! If n > 1, F[X1, . . . , Xn] is not a Euclidean domain.

PROOF. Let I ∈ F[T, X1, . . . , Xn] denote the big ideal defined above.
We claim that

I∩F[X1, . . . , Xn] = a∩ b

Suppose f ∈ I∩F[X1, . . . , Xn] . Then

f = ∑ aiT fi + ∑ bj(1− T)gj

= T
(
∑ ai fi −∑ bjgj

)
+ ∑ bjgj

so

∑ ai fi −∑ bjgj = 0

It follows that f = ∑ bjgj and that ∑ ai fi = ∑ bjgj so that f ∈ a∩ b. The
conclusion now follows from the Elimination Property. □

5.5.4. Mathematical software. All of the more commonly used sys-
tems of mathematical software are able to compute Gröbner bases and im-
plement the Division Algorithm. Among commercial systems, Maple and
Mathematica have very nice user-interfaces. Free software that can do this
includes Maxima and Macaulay 2, and CoCoa. See [34] for much more
information.
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To use Macaulay 2, start it (in Unix-type systems) by typing M2 (the
command is actually capitalized). The default output format is rather aw-
ful, so you should change it by typing

compactMatrixForm = false
Now define a polynomial ring over Q

R = QQ[a..f,MonomialOrder=>Lex]
Note that ordering is also specified here. Now define an ideal:

i3 : I = ideal(a*b*c-d*e*f,a*c*e-b*d*f,
a*d*f-b*c*e)
o3 = ideal (a*b*c - d*e*f, a*c*e - b*d*f,
a*d*f - b*c*e)
o3 : Ideal of R

To get a Gröbner basis, type:
gens gb I
You need to make the window wide enough to contain the entire out-

put expression. Subscripted variables can be defined via
x_2=3
The ring above could have been defined via
R = QQ[x_1..x_6,MonomialOrder=>Lex]

In Maple the procedure is somewhat different: First, load the library
via ’with(Groebner);’. The library PolynomialIdeals is also very
useful. Enter an ideal by simply enclosing its generators in square brackets.
The command Basis computes a Gröbner basis:
Basis([a*b*c-d*e*f, a*c*e-b*d*f,
a*d*f-b*c*e], plex(a, b, c, d, e, f))

The output is nicely formatted.
The expression plex implies lexicographic ordering, and

you must explicitly give the order of variables. For instance
plex(a, b, c, d, e, f) means

a ≻ b ≻ c ≻ d ≻ e ≻ f

Maple also supports graded lexicographic ordering with the
command grlex(a,b,c,d,e,f) or graded reverse lexicographic order
via tdeg(a,b,c,d,e,f).

To reduce a polynomial using the Division Algorithm ( 5.5.5 on
page 128), the Maple command is

NormalForm(list_polys,basis,monomial_order) where
the basis need not be Gröbner. It returns a list of remainders of the
polynomials in the list.

Maxima has a package that computes Gröbner bases
using lexicographic ordering (at present, no other ordering
is available). To load it, type load(grobner). The main
commands are poly_grobner(poly-list,var-list), and
poly_reduced_grobner(poly-list,var-list). For example:

poly_grobner([x^2+y^2,x^3-y^4],[x,y]); returns

(x2 + y2, x3 − y4, x4 + xy2, y6 + y4)



5.5. POLYNOMIAL RINGS 137

— the Gröbner basis with lexicographic order: x ≻ y.
Another very powerful and free system is called Sage (it aims to “take

over the world” of computer algebra systems!). It is available for all com-
mon computer systems and can even be used online (i.e., without installing
it on your computer) at HTTP://www.sagemath.org/.

Here’s a small example:
The command:
R.<a,b,c,d> = PolynomialRing(QQ, 4, order=’lex’)

defines a polynomial ring, R, over Q with 4 indeterminates: a, b, c, and d.
The statement order=’lex’ defines lexicographic ordering on monomi-
als. The command:
I = ideal(a+b+c+d, a*b+a*d+b*c+c*d,

a*b*c+a*b*d+a*c*d+b*c*d, a*b*c*d-1);

defines an ideal in R. Now the command:
B = I.groebner_basis()

computes the Gröbner basis with respect to the given ordering. Just typing
the name B prints out the basis:
[a + b + c + d,
b^2 + 2*b*d + d^2, b*c - b*d + c^2*d^4 + c*d - 2*d^2,
b*d^4 - b + d^5 - d, c^3*d^2 + c^2*d^3 - c - d,
c^2*d^6 - c^2*d^2 - d^4 + 1]

5.5.5. Motion planning. Here’s an application of Gröbner bases to the
robotics problem in section 6.2.9 on page 203:

EXAMPLE 5.5.16. We set the lengths of the robot arms to 1. The system
of equations 6.2.37 on page 205 gives rise to the ideal

r = (a1a2 − b1b2 + a1 − x, a2b1 + a1b2 + b1 − y, a1
2 + b1

2 − 1, a2
2 + b2

2 − 1)

in C[a1, a2, b1, b2]. If we set x = 1 and y = 1/2, the Gröbner basis of r (using
the command ‘Basis(r,plex(a1,b1,a2,b2))’ in Maple) is

(−55 + 64 b2
2, 8 a2 + 3, 16 b2 − 5 + 20 b1,−5− 4 b2 + 10 a1)

from which we deduce that a2 = −3/8 and b2 can be either +
√

55/8 in
which case

a1 = 1/2 +
√

55/20

b1 = 1/4−
√

55/10

or −
√

55/8 in which case

a1 = 1/2−
√

55/20

b1 = 1/4 +
√

55/10

It follows that there are precisely two settings that allow the robot arm
in figure 6.2.2 on page 204 to reach the point (1, 1/2). It is straightforward
to compute the angles involved in figure 6.2.2 on page 204: in the first case,

θ = −29.44710523◦

ϕ = 112.024312◦
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FIGURE 5.5.1. Reaching a point

as in figure 5.5.1 and in the second

θ = 82.57720759◦

ϕ = −112.024312◦

Another question we might ask is:
For what values of x are points on the line y = 1− 2x reachable?

In this case, we start with the ideal

r = (a1a2 − b1b2 + a1 − x, a2b1 + a1b2 + b1 + 2x− 1,

a1
2 + b1

2 − 1, a2
2 + b2

2 − 1)

and get the Gröbner basis (using the Maple command
‘Basis(r,plex(a1,b1,a2,b2,x))’

(−3 + 8 x + 6 x2 + 4 b2
2 − 40 x3 + 25 x4,−5 x2 + 1 + 4 x + 2 a2,

− 1 + 6 x− 13 x2 + 2 xb2 + 10 x3 + 2 b1 − 8 xb1 + 10 x2b1,

3 x− 2 b2 + 4 x2 + 4 xb2 − 5 x3 + 4 b1b2,

− 1 + 4 x− b2 − 5 x2 + 2 b1 − 5 xb1 + a1)

The first monomial

−3 + 8 x + 6 x2 + 4 b2
2 − 40 x3 + 25 x4

is significant: When all variables are real, 4b2
2 ≥ 0, which requires

−3 + 8 x + 6 x2 − 40 x3 + 25 x4 ≤ 0

— since the basis elements are assumed to be set to 0. This only happens if

x ∈
[

2−
√

19
5

,
2 +
√

19
5

]
— so those are the only points on the line y = 1− 2x that the robot-arm can
reach.
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We can also analyze the Puma-type robot-arm in figure 6.2.3 on
page 205:

EXAMPLE 5.5.17. If we set ℓ1 = ℓ2 = 1, equation 6.2.38 on page 207
implies that the endpoint of the robot-arm are solutions to the system

a5a4a3 − a5b4b3 + a5a4 − x = 0
b5a4a3 − b5b4b3 + b5a4 − y = 0

b4a3 + a4b3 + b4 − z = 0
a2

3 + b2
3 − 1 = 0

a2
4 + b2

4 − 1 = 0

a2
5 + b2

5 − 1 = 0(5.5.8)

If we want to know which points it can reach with the hand pointing in the
direction  1/

√
3

1/
√

3
1/
√

3


use equation 6.2.39 on page 207 to get

(a5a4a3 − a5b4b3) a2 + (−a5a4b3 − a5b4a3) b2 − 1/
√

3 = 0

(b5a4a3 − b5b4b3) a2 + (−b5a4b3 − b5b4a3) b2 − 1/
√

3 = 0

(b4a3 + a4b3) a2 + (a4a3 − b4b3) b2 − 1/
√

3 = 0

a2
2 + b2

2 − 1 = 0(5.5.9)

We regard these terms (in equations 5.5.8 and 5.5.9 as generators of
an ideal, P. The variety V (P) ⊂ R10 is called the variety of the movement
problem. Its (real-valued) points correspond to possible configurations of
the robot-arm.

To understand V (P), we compute a Gröbner basis of P with lexico-
graphic ordering — giving the lowest weight to x, y, z — to get

(5.5.10) P = (4 y2x2 − 4 z2 + z4 + 2 z2x2 + 2 y2z2,

− 1 + 2 b5
2,−b5 + a5, 2 zb4 − z2 − 2 yx,

− 4 z + 4 yb4x + z3 − 2 xzy + 2 y2z + 2 x2z,

− 2− 2 yx + 2 b4
2 + y2 + x2,

a4 − b5y + b5x,

− b5yz + b5xz + b3 + 2 b5yb4,

2 + 2 a3 − 2 y2 − z2,

2 b5z
√

3−
√

3b5y−
√

3b5x− 2 b4
√

3b5 + 3 b2,

3 a2 − y
√

3− x
√

3− z
√

3 + b4
√

3)

It follows that a point (x, y, z) is reachable (with the hand oriented as stated)
only if it lies on the surface

4 y2x2 − 4 z2 + z4 + 2 z2x2 + 2 y2z2 = 0
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FIGURE 5.5.2. Points reachable by the second robot arm

Solving for z2 gives

(5.5.11) z2 = 2− y2 − x2 ±
√
(2− (x− y)2)(2− (x + y)2)

The fourth expression from the top in equation 5.5.10 on the preceding page
is

−2− 2 yx + 2 b4
2 + y2 + x2 = 0

2b2
4 = 2− 2xy− x2 − y2

which implies that
2− (x− y)2 ≥ 0

and gives the additional constraint on (x, y, z):

(x− y)2 ≤ 2

It follows that 2− (x− y)2 ≥ 0 so that the square root in equation 5.5.11
is only well-defined if 2− (x + y)2 ≥ 0 and we get an additional constraint
on x and y.

The requirement that z2 ≥ 0 implies that the only case worth consider-
ing is

z2 = 2− y2 − x2 +
√
(2− (x− y)2)(2− (x + y)2)

and figure 5.5.2 shows the set of points that are reachable.
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EXERCISES.

1. The point (1/2, 1/2, 1 +
√

2/2) lies on the “reachability surface” in
example 5.5.17 on page 139 that can be reached by the robot arm with its
hand pointed in the direction

1√
3

 1
1
1


Find the angles ϕ1, θ1, θ2, θ3 that accomplish this.

2. Find the reachability surface of the robot arm in example 5.5.17 on
page 139 when we require the “hand” to point in the direction 1

0
0


3. Find the least common multiple of the polynomials

−X3 − 2 YX2 − XY2 + 2 X

and

4− 4 X2 − 4 Y2 + X4 − 2 Y2X2 + Y4

in F[X, Y].

4. Consider the ideal a = (Y3, X−Y).
Is X + Y ∈ a?

5. If a = (Y6,−3 Y5 + 5 XY4, X2 − 2 XY +Y2) is a Gröbner basis for an
ideal, what is the lowest power of X + Y that is contained in a?

6. Find the least common multiple of the polynomials

−X3 − 2 YX2 − XY2 + 2 X

and

4− 4 X2 − 4 Y2 + X4 − 2 Y2X2 + Y4

in F[X, Y].

7. Consider the ideal a = (Y3, X−Y).
Is X + Y ∈ a?

8. If a = (Y6,−3 Y5 + 5 XY4, X2 − 2 XY +Y2) is a Gröbner basis for an
ideal, what is the lowest power of X + Y that is contained in a?
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5.5.6. Elementary symmetric functions. If R is a commutative ring,
consider the polynomial ring

P = R[X1, . . . , Xn]

The symmetric group, Sn, acts on this ring by permuting the variables.
Each such permutation of the variables defines an automorphism of P so
the set of elements

S = R[X1, . . . , Xn]
Sn

fixed by the action of Sn is a subring of P. It is interesting that the structure
of this subring is completely understood — and was in the time of Isaac
Newton. The actual description of this subring will be important in the
sequel and is used in several areas of algebra and algebraic geometry.

In order to give this description, we will need to define the elementary
symmetric functions. The quickest (if not the simplest) way to describe
them is to consider a polynomial in the ring P[T] where T is a new indeter-
minate:

n

∏
i=1

(T − Xi) = q(T)(5.5.12)

= Tn − σ1 · Tn−1 + · · ·+ (−1)nσn

Since q(T) is unchanged when the Xi’s are permuted, the coefficients of
q(T) must be functions of the Xi that are also unchanged by permuting the
Xi. They are

σ0(X1, . . . , Xn) = 1

σ1(X1, . . . , Xn) =
n

∑
i=1

Xi

σ2(X1, . . . , Xn) = ∑
1≤i<j≤n

XiXj

...

σn(X1, . . . , Xn) =
n

∏
i=1

Xi(5.5.13)

where σi(X1, . . . , Xn) is (−1)i× the coefficient of tn−i.
If we consider the ring R[σ1, . . . , σn] of polynomials of the σi, it is clear

that
R[σ1, . . . , σn] ⊂ R[X1, . . . , Xn]

and even that
R[σ1, . . . , σn] ⊂ R[X1, . . . , Xn]

Sn = S
since the σi are unchanged by permutations of the Xi. It is remarkable that:

THEOREM 5.5.18. The subring of polynomials of

R[X1, . . . , Xn]

that are invariant under all permutations of the Xi is precisely the polynomial ring
of elementary symmetric functions, i.e.
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R[σ1, . . . , σn] = R[X1, . . . , Xn]
Sn

PROOF. Let p(X1, . . . , Xn) ∈ R[X1, . . . , Xn]Sn . We will express this as a
polynomial of the elementary symmetric functions. Suppose

m = r · Xα1
1 · · ·Xαn

n

is a monomial of p, where r ∈ R. Since p is invariant under permutations of
the Xi, p also contains an ordered-monomial that is equivalent to m under
the action of Sn, where an ordered monomial is of the form

r · Xβ1
1 · · ·X

βn
n

where β1 ≥ β2 ≥ · · · ≥ βn where the βi’s are some permutation of the
αi’s. We may focus our attention entirely on ordered-monomials of this
type, since every monomial will be equivalent to one of these. The (unique)
ordered monomial of σi(X1, . . . , Xn) is

(5.5.14) X1 · · ·Xi

Now we order the ordered-monomials of p(X1, . . . , Xn) lexicographi-
cally by exponents, i.e. so

Xα1
1 · · ·Xαn

n ≻ Xβ1 · · ·Xβn
n

if αj > β j and αi = βi, for i = 1 . . . j− 1.
The polynomial p will contain a unique maximal ordered-monomial,

say

r · Xβ1
1 · · ·X

βn
n

and this agrees with the unique maximal ordered monomial of

(5.5.15) r · σβn
n · σβn−1−βn

n−1 · · · σβ1−β2
1

by equation 5.5.14. It follows that the unique maximal ordered monomial
of

p− r · σβn
n · σβn−1−βn

n−1 · · · σβ1−β2
1

is strictly ≺ r · Xβ1
1 · · ·X

βn
n . Since there are only a finite number of mono-

mials ≺ r · Xβ1
1 · · ·X

βn
n , repeating this procedure over and over again must

terminate after a finite number of steps. The polynomial p is equal to the
sum of the symmetric polynomials we subtracted from p. □

The proof gives us an algorithm for computing the expression of sym-
metric polynomials in terms of symmetric functions:

EXAMPLE. Consider

X2 + Y2 ∈ Q[X, Y]

The maximal ordered monomial of this is X2 — which corresponds to σ2
1 in

equation 5.5.15. The difference is

X2 + Y2 − σ2
1 = X2 + Y2 − (X + Y)2

= −2XY
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which is equal to −2σ2. So we get

X2 + Y2 = σ2
1 − 2σ2

An interesting consequence of formula 5.5.12 on page 142 and theo-
rem 5.5.18 on page 142 is:

PROPOSITION 5.5.19. Let Xn + an−1Xn−1 + · · · + a0 = p(X) ∈ Q[X]
and suppose q(X1, . . . , Xn) ∈ Q[X1, . . . , Xn] is invariant under permutations of
the Xi. If µ1, . . . , un ∈ C are the roots of p(X), then there exists a polynomial
z(X1, . . . , Xn) such that

q(µ1, . . . , µn) = z(a0, . . . , an−1)

PROOF. Theorem 5.5.18 on page 142 implies that
q(X1, . . . , Xn) = z(σ1, . . . , σn). Equation 5.5.12 on page 142 shows that
σi(µ1, . . . , µn) = (−1)ian−i and the result follows. □

This has an interesting application in the definition of discriminants of
polynomials:

DEFINITION 5.5.20. Let p(x) ∈ Q[x] be of degree n with roots
α1, . . . , αn ∈ C. The discriminant, D, of p(X) is defined to be

D = ∏
1≤i<j≤n

(αi − αj)
2

REMARK. The discriminant is nonzero if and only if p(X) has n distinct
roots (so it discriminates between roots).

Since the discriminant is unchanged by a permutation of the roots,
proposition 5.5.19 implies that

COROLLARY 5.5.21. If

p(X) = Xn + an−1Xn−1 + · · ·+ a0

there is a polynomial function z(a0, . . . an−1) equal to the discriminant of p(X).

For instance, the discriminant of X2 + aX + b is

(α1 − α2)
2 = α2

1 − 2α1α2 + α2
2

= σ2
1 (α1, α2)− 4α1α2

= σ2
1 (α1, α2)− 4σ2(α1, α2)

= a2 − 4b

A lengthy calculation shows that the discriminant of X3 + aX2 + bX + c
is

D = a2b2 − 4b3 − 4a3c− 27c2 + 18abc
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EXERCISES.

9. Express X3 + Y3 + Z3 ∈ Q[X, Y, Z] in terms of elementary symmet-
ric functions.

10. Show that the discriminant of Xn − 1 is ±nn.

11. Let p1, p2 ∈ Q[t] are monic polynomials with roots α1, . . . , αn ∈ C

and β1, . . . , βm ∈ C, respectively. Let

∆ = ∏(αi − β j)

with i running from 1 to n and j running from 1 to m. Show that ∆ is a
polynomial function of the coefficients of p1 and p2.

12. Another way of defining the discriminant involves using the Van-
dermonde matrix. Given elements α1, . . . , αn, we define the corresponding
Vandermonde matrix as

V =


1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2
1 α3 α2

3 · · · αn−1
3

...
...

...
. . .

...
1 αn α2

n · · · αn−1
n


Show that

det V = ∏
1≤i<j≤n

(αj − αi)

13. Suppose F is a field and

I ⊂ F[X1, . . . , Xn]

is an ideal. If f (X1, . . . , Xn) ∈ F[X1, . . . , Xn] is any polynomial, show that

F[X1, . . . , Xn]

I
∼= F[X1, . . . , Xn+1]

I+ (Xn+1 − f (X1, . . . , Xn))

In other words, show that a variable, like Xn+1, that can be expressed in
terms of the others is superfluous.

5.6. Unique factorization domains

5.6.1. Introduction. This section is one of the most complex in
the chapter on commutative algebra and most of it is flagged with a
dangerous bend symbol. We study the important question of when a
ring has unique factorization. Aside from any inherent interest, unique
factorization has geometric implications that will become apparent later.

A great deal of this material is due to Gauss in his groundbreaking [41],
and Weierstrass (in [107]) in his research on complex analysis in several
variables.
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Johann Carl Friedrich Gauss (1777 – 1855) was a German mathematician
and scientist who contributed to many fields, including number theory,
analysis, statistics (the normal distribution curve), differential geometry (he
essentially invented it), geophysics, electrostatics, astronomy, and optics.

We can characterize unique factorization domains by

LEMMA 5.6.1. If R is a ring, the following three statements are equivalent
(1) R is a unique factorization domain
(2) For any r, p, q ∈ R such that

r
∣∣ p · q

with r irreducible
r ∤ p =⇒ r

∣∣ q
(3) For any r, p, q ∈ R such that

r
∣∣ p · q

and r and p have no common factors

r ∤ p =⇒ r
∣∣ q

(4) For any irreducible element r ∈ R, the principal ideal (r) ⊂ R is prime.

REMARK. Prime ideals play an important part in algebraic geometry,
and statement 4 implies that they can have a particularly simple structure.

PROOF. If statement 1 is true, then R is a unique factorization domain
by reasoning like that used in lemma 3.1.9 on page 3.1.9. Conversely, if R is
a unique factorization domain, then

p = u1

m

∏
i=1

pβi
i

q = u2

m

∏
i=1

pγi
i(5.6.1)

where u1, u2 ∈ R are units, the pi ∈ R are irreducible elements and the
αi, βi, γi ∈ Z are all ≥ 0. If r|p · q, then r must equal one of the pi, say pj
and αj + β j ≥ 1. Since r ∤ p, we get αj = 0, which implies that β j ≥ 1 and
this proves the conclusion.

Statement 3 implies statement 2. Conversely, if statement 2 is true, R is
a unique factorization domain and equation 5.6.1 holds as well as

r = u0

m

∏
i=1

pαi
i

Since r has no common factors with p, αi > 0 implies that βi = 0, hence
αi ≤ γi for all i = 1, . . . , n. This implies that r|q.

To see statement 4, suppose a, b ∈ U and a · b ∈ (r) or ra · b. The
previous statement implies that r|a or r|b which means a ∈ (r) or b ∈ (r).
The implication clearly goes in the opposite direction too. □

One of the easiest results in this section is:
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LEMMA 5.6.2. If F is a field, then F[X] is a unique factorization domain.

PROOF. It is a Euclidean domain in the sense of definition 5.3.3 on
page 118 so it is also a unique factorization domain by corollary 5.3.7 on
page 118. □

Even though the ideals in a unique factorization might not all be prin-
cipal, we have:

PROPOSITION 5.6.3. In a unique factorization domain, the concept of great-
est common divisor and least common multiple are well-defined.

REMARK. In general, we have no analogue of the Euclidean Algorithm,
so it may be impossible to have a formula like equation 3.1.1 on page 14.

PROOF. If U is a unique factorization domain with elements x and y,
then they have factorizations, unique up to multiplication by units. Let
{p1, . . . , pk} be all of the irreducible factors that occur in their factorizations:

x = u
k

∏
i=1

pαi
i

y = u′
k

∏
i=1

pβi
i

Now we can define

gcd(x, y) =
k

∏
i=1

pmin(αi ,βi)
i

lcm(x, y) =
k

∏
i=1

pmax(αi ,βi)
i

□

5.6.2. Polynomial rings. Throughout the rest of this section, we fix a
unique factorization domain, U. We will show that U[X] is also a unique
factorization domain. We use a trick to prove this: embed U[X] in F[X],
where F is the field of fractions of U and uniquely factor elements there.

The proof involves several steps.

DEFINITION 5.6.4. A polynomial anXn + · · ·+ a0 ∈ U[X] will be called
primitive, if the greatest common divisor of its coefficients is 1.

Note that if f ∈ U[X] is a polynomial, we can write f = u · f ′ where u
is the greatest common divisor of the coefficients of f and f ′ is primitive.

The following result is called Gauss’s Lemma:

LEMMA 5.6.5. If f , g ∈ U[X] are primitive polynomials, then so is f g.

REMARK. This and the following lemma were proved by Carl Friedrich
Gauss in his treatise [41].
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PROOF. Suppose

f = anXn + · · ·+ a0

g = bmXm + · · ·+ b0

f g = cn+mXn+m + · · ·+ c0

If d ∈ U is irreducible, it suffices to prove that d does not divide all of the
ci. Let ai and bj be the first coefficients (i.e. with the lowest subscripts) not
divisible by d. We claim that ci+j is not divisible by d. Note that

ci+j = a0bi+j + · · ·+ ai−1bj+1︸ ︷︷ ︸
Group 1

+aibj + ai+1bj−1 + · · ·+ ai+jb0︸ ︷︷ ︸
Group 2

By construction, d divides all of the terms in Group 1 and Group 2. Since
U is a unique factorization domain, d|ci+1 if and only if d|aibj. But, the fact
that U is a unique factorization domain also implies that d|aibj if and only
if d|ai or d|bj. □

This leads to the following:

LEMMA 5.6.6. Let f ∈ U[X] be primitive. Then f is irreducible in U[X] if
and only if it is irreducible in F[X], where F is the field of fractions of U.

PROOF. Suppose f is irreducible in U[X], and that f = gh ∈ F[X]. By
clearing denominators, we can assume

g = u−1
1 ḡ

h = u−1
2 h̄

where ḡ, h̄ are primitive polynomials of U[X], and u1, u2 ∈ U. We conclude
that

u1u2 f = ḡh̄

where ḡh̄ is primitive by 5.6.5 on the preceding page. Since f is also primi-
tive, the factor u1u2 ∈ U must be a unit. Since f is irreducible in U[X], ḡ or
h̄ must be a unit in U[X] and also in F[X].

On the other hand, suppose f ∈ U[X] is irreducible in F[X] and assume
f = gh ∈ U[X]. Since f is irreducible in F[X], either g or h must be a unit
in F[X], i.e. a constant polynomial. If g is a constant polynomial then the
formula f = gh with f primitive implies that g ∈ R is a unit. □

We are finally ready to prove:

THEOREM 5.6.7. If U be a unique factorization domain, then so is U[X].

REMARK. This is interesting because U doesn’t have to be a euclidean
domain or a principal ideal domain.

PROOF. We use a trick to prove this: embed U[X] in F[X], where F
is the field of fractions of U and uniquely factor elements there. Suppose
r, f , g ∈ U[X] are polynomials and

(1) r is irreducible.
(2) r

∣∣ f g
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We will show that r
∣∣ f or r

∣∣ g and lemma 5.6.1 on page 146 will show that
U[x] has unique factorization.

Lemma 5.6.2 on page 147 implies that F[X] is a unique factorization
domain because it is Euclidean.

Write

r = ur′

f = u1 f ′

g = u2g′

where u, u1, u2 ∈ U are, respectively, the greatest common divisors of the
coefficients of r, f , g and r′, f ′, g′ ∈ U[x] are primitive. Since r is irreducible,
we can assume u ∈ U is a unit (otherwise r = ur′ would be a nontrivial
factorization of r).

Lemma 5.6.6 on the preceding page implies that r′ is irreducible in F[X]
so, in F[X], r′| f ′ or r′|g′ in F[x]. Without loss of generality, assume r′| f ′, so
that

f ′ = a · r′

where a ∈ F[X]. We can write a = v−1a′, where v ∈ U and a′ ∈ U[X] is
primitive. We get

v · f ′ = a′ · r′
in U[X]. Since f ′ and a′ · r′ are both primitive (by lemma 5.6.5 on page 147),
v ∈ U must be a unit and we get r| f . □

REMARK. Actually finding factorizations in these rings can be challeng-
ing.

To actually find a factorization of a polynomial, it is helpful to have a
criterion for irreducibility. The following is called Eisenstein’s Criterion:

THEOREM 5.6.8. Let U be a unique factorization domain and let

f (X) = anXn + · · ·+ a0 ∈ U[X]

be a primitive polynomial and let p ∈ U be irreducible. If p
∣∣ ai for 0 ≤ i ≤ n− 1,

p ∤ an, and p2 ∤ a0 then f (X) is irreducible in U[X].

REMARK. If F is the field of fractions of U, lemma 5.6.6 on the pre-
ceding page shows that this criterion works for polynomials over F[X] too,
after clearing the denominators of the coefficients.

Eisenstein originally proved this for Z[X] but it works for any unique
factorization domain.

PROOF. We will reason by contradiction. Suppose there exist polyno-
mials

p(X) = bsXs + · · ·+ b0

q(X) = ctXt + · · ·+ c0

such that f (X) = p(X) · q(X) and s ≥ 1 and t ≥ 1. Since p2 ∤ a0 we must
have p ∤ b0 or p ∤ c0. Assume that p|c0 and p ∤ b0. Since f is primitive, not
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all the ci are divisible by p. Suppose ck is the first that is not divisible by p.
Then

ak = bkc0 + · · ·+ b0ck

By assumption, p|ak and p|ci for 0 ≤ i < k, which implies that p|b0ck
and this implies that p|b0, which is a contradiction. □

EXAMPLE. The polynomial X3 + 3X2 + 3X + 1 ∈ Q[X] is irreducible
by Eisenstein’s Criterion with respect to the prime p = 3.

EXAMPLE 5.6.9. In some cases, one must first transform the polynomial
a bit to use Eisenstein’s Criterion. For instance, in the polynomial

f (X) = X2 + X + 1 ∈ Q[X]

there are no primes that divide any of the coefficients. After substituting
X = U + 1, f (X) becomes

g(U) = U2 + 3U + 3

which satisfies Eisenstein’s Criterion with respect to the prime p = 3. Since
X → U + 1 defines an isomorphism

Q[X]→ Q[U]

f (X) is irreducible if and only if g(U) is.

5.6.3. Power-series rings. Next, we tackle the question of unique fac-
torization in power series rings. This appears daunting at first glance be-
cause power series seem to have “infinite complexity”. For instance, it is
not true that whenever U is a unique factorization domain, U[[X]] is also —
see [96].

It is gratifying to see that, in some cases, factorization is actually easier
in power series rings. The point is that factorizations are only well-defined
up to multiplication by a unit — and the power series ring F[[X]] (for F a
field) has many units: Proposition 5.1.9 on page 109 shows that any power
series

z =
∞

∑
n=0

cnXn

with c0 ̸= 0 is a unit. If the lowest nonzero coefficient in z is cr then our
unique factorization of z is

(5.6.2) Xr · (cr + cr+1X + · · · )
In other words, X is our “only prime” in F[[X]], and an arbitrary element
of F[[X]] is the product of a polynomial in X and a unit.

This will turn out to be true in general: the Weierstrass Preparation The-
orem will show that certain elements (every element can be transformed
into one of these — see lemma 5.6.15 on page 153) of

F[[X1, . . . , Xn]]

will equal units × polynomials in

F[[X1, . . . , Xn−1]][Xn]
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i. e., polynomials in Xn with coefficients in F[[X1, . . . , Xn−1]]. Unique fac-
torization in F[[X1, . . . , Xn−1]] and F[[X1, . . . , Xn−1]][Xn] will imply it in
F[[X1, . . . , Xn]] (via lemma 5.6.1 on page 146).

We will fix the following notation throughout the rest of this
section: Pn = F[[X1, . . . , Xn]], where F is a field.

� �

We need to develop some properties of power-series rings.

PROPOSITION 5.6.10. An element p ∈ Pn is a unit if and only if its constant term is
nonzero.

PROOF. Straightforward induction using proposition 5.1.9 on page 109 and ex-
ercise 3 on page 115. □

DEFINITION 5.6.11. An element p(X1, . . . , Xn) ∈ Pn will be called Xn-general
if p(0, . . . , 0, Xn) ̸= 0. If Xd

n
∣∣ p(0, . . . , 0, Xn) and Xd+1

n ∤ p(0, . . . , 0, Xn) for some
integer d > 0, we say that p is Xn-general of degree d.

REMARK. A power series is Xn-general if it has a term that only involves Xn.
For instance X1 + X2 is X2-general but X1X2 is not.

Next, we have a kind of division algorithm for power-series rings (even though
these rings are not Euclidean):

THEOREM 5.6.12 (Weierstrass Division Theorem). Let p ∈ Pn be Xn-general
power-series of degree d that is not a unit of Pn. For every power series g ∈ Pn, there
exists a power series u ∈ Pn and a polynomial r ∈ Pn−1[Xn] of degree d− 1 such that

(5.6.3) g = u · p + r

The power-series u and polynomial r are uniquely determined.

REMARK. A shorter way to say this is that

Pn

(p)
= Pn−1 ⊕ Xn · Pn−1 ⊕ · · · ⊕ Xd−1

n Pn−1

or that it is a module over Pn−1 generated by {1, . . . , Xd−1
n }.

PROOF. We will explicitly construct u and r.
For every f ∈ Pn, let r( f ) equal the set of terms, T, such that Xd

n ∤ T, and let
h( f ) be the factor of Xd

n in f − r( f ). Then

f = r( f ) + Xd
nh( f )

for all power series in Pn. So r( f ), h( f ) ∈ Pn and r( f ) is a polynomial in Pn−1[Xn]
of degree < d. Note that, regarding Pn as a vector space (see definition 6.2.1 on
page 165) over k, both r(∗) and h(∗) are linear maps.

CLAIM 5.6.13. In addition, h(p) is a unit (since its constant term is the element
of k multiplying Xd

n, and r( f ) has no constant terms since f is not a unit.

We claim that equation 5.6.3 is equivalent to

(5.6.4) h(g) = h(u · p)
for some u ∈ Pn. If equation 5.6.3 holds then h(g − u · p) = 0 and equation 5.6.4
is true. Conversely, if equation 5.6.4 on page 151is true, then h(g− u · p) = 0 and
g− u · p = r(q− u · p), a degree d− 1 polynomial in Pn−1[Xn].
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Since p = r(p) + Xd
n · h(p), equation 5.6.4 on the previous page is equivalent to

(5.6.5) u · p = u · r(p) + Xd
n · u · h(p)

Since h(p) is a unit (see the claim above), it suffices to compute the power-series
v = u · h(p). Set

m = −r( f ) · h(p)−1

Then u · r(p) = −m · v and we can rewrite equation 5.6.5 to the equivalent equation

(5.6.6) h(g) = −h(m · v) + v

or

(5.6.7) v = h(g) + s(v)

where, for any power series, f ∈ Pn, we have defined s( f ) = h(m · f ). Note that s
is a linear operation on power-series.

Let m = (X1, . . . , Xn−1) ⊂ Pn−1 be the maximal ideal. Note that r(p) ∈
m[Xn] ⊂ Pn−1[Xn] since it is not a unit (so it has vanishing constant term). This
means that, if the coefficients of f ∈ Pn = Pn−1[[Xn]] lie in mj, then the coefficients
of s( f ) will lie in mj+1.

Now we plug equation 5.6.7 into itself to get

v = h(g) + s(h(g) + s(v))

= h(g) + s(h(g)) + s2(v)

We can iterate this any number of times:

v =
t

∑
j=0

sj(h(g)) + st+1(v)

or

v−
t

∑
j=0

sj(h(g)) ∈ mt+1[[Xn]] ⊂ Pn−1[[Xn]]

Since lemma 6.3.34 on page 246 implies that
∞⋂

j=1
mj = (0)

we claim that

v =
∞

∑
j=0

sj(h(g))

is the unique solution to our problem. It is easy to verify that it satisfies equa-
tion 5.6.7. Now all we have to do is set

u = v · h(p)−1

and r = r(q− u · p). □

The Weierstrass Preparation Theorem is a simple corollary:

THEOREM 5.6.14 (Weierstrass Preparation Theorem). Let p ∈ Pn be Xn-general
power-series of degree d that is not a unit of Pn. Then there exists a unit u ∈ Pn and a
monic polynomial w ∈ Pn−1[Xn] of degree d such that

(5.6.8) p = u · w
and u and w are uniquely determined by p.
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REMARK. This is the general analogue of 5.6.2 on page 150 for power-series of
n variables. Weierstrass originally proved it for convergent power series using the
methods of complex analysis. It gives valuable information on the behavior of the
zero-sets of analytic functions of several complex variables (besides implying that
the ring of such functions has unique factorization).

Our proof of the Division Theorem is the “combinatorial” or “algebraic” form
— that does not use contour integrals.

The polynomial w ∈ Pn−1[Xn] is called the Weierstrass Polynomial of p.

Case 1. Apply the division theorem ( 5.6.12 on page 151) to g = Xd
n. It gives q and

r such that
Xd

n = q · p + r

so we get

q · p = Xd
n − r = w ∈ Pn−1[Xn]

We claim that q must be a unit since the lowest Xn term in p is Xd
n. The

only way the product could contain Xd
n is for u to have a nonvanishing

constant term. Now set u = q−1, so that p = u · w.

If A is an n× n invertible matrix whose entries are in k, then A induces an automor-
phism

A∗: Pn → Pn

p(X1, . . . , Xn) 7→ pA = p(A−1 · (X1, . . . , Xn))

The inverse is given by the inverse of A.

LEMMA 5.6.15. Let p ∈ Pn be a power series that is not a unit. If the field F is
infinite, then there exists a matrix, A, such that pA is Xn-general.

PROOF. Let L be the leading term of p — this consists of the terms of lowest to-
tal degree in the power series and will be a homogeneous polynomial in X1, . . . , Xn.
Let

(k1, . . . , kn) ∈ Fn

be a set of values on which L is nonvanishing. Such a set of values exists because
we can plug in 1 for all of the Xi except one, and the resulting polynomial of one
variable vanishes at a finite number of values. Since the field F is infinite, we can
find a value for the remaining variable that makes L ̸= 0 vanish. Let A be an
invertible matrix that transforms this point

(k1, . . . , kn)

to (0, . . . , 0, 1). The conclusion follows. □

It is easy (and necessary) to generalize this a bit:

COROLLARY 5.6.16. Let p1, . . . , pt ∈ Pn be a finite set of power series that are non-
units. Then there exists an invertible matrix A such that pA

1 , . . . , pA
t ∈ Pn are all Xn-

regular.

PROOF. Simply apply lemma 5.6.15 to the product p1 · · · pt. □

We are finally ready to prove the main result:

THEOREM 5.6.17. If F is an infinite field, then the ring Pn = F[[X1, . . . , Xn]] is a
unique factorization domain.
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REMARK. The requirement that F be an infinite field is not really necessary but
it simplifies the proof of lemma 5.6.15 on the previous page — and F will be infinite
in all of our applications of this result.

Weierstrass originally proved this for F = C and Pn = C{X1, . . . , Xn} — the
ring of convergent power-series. This is essentially the ring of complex-analytic func-
tions. See [56].

PROOF. We prove this by induction on n, the number of indeterminates. The
result is almost trivial for n = 1 — see 5.6.2 on page 150.

Let p1 ∈ Pn be irreducible and suppose p1
∣∣ p2 · p2 and p1 ∤ p2. We will

show that this forces p1
∣∣ p3. Use corollary 5.6.16 on the previous page to trans-

form p1, p2, p3 to Xn-regular power series of degrees d1, d2, d3, respectively. Then
the Weierstrass Preparation Theorem (theorem 5.6.14 at page 152) implies that

pA
1 = u1 · w1

pA
2 = u2 · w2

pA
3 = u3 · w3

where u1, u2, u3 ∈ Pn are units and w1, w2, w3 ∈ Pn−1[Xn] are the Weierstrass poly-
nomials of the pi. We claim that the polynomial w1 ∈ Pn−1[Xn] is irreducible. This
is because a nontrivial factorization of it would give a nontrivial factorization of p1,
since A induces an automorphism. Since Pn−1 is a unique factorization domain by
induction and Pn−1[Xn] is one by theorem 5.6.7 on page 148, we must have

w1
∣∣w3

which implies that
pA

1
∣∣ pA

3

and
p1
∣∣ p

which means Pn is a unique factorization domain, by lemma 5.6.1 on page 146. □

5.7. The Jacobson radical and Jacobson rings

� �

In this section, we give a very brief treatment of a construct similar to the nil-
radical.

DEFINITION 5.7.1. If R is a commutative ring, the Jacobson radical, J(R), of R is
defined by

J(R) =
⋂

maximal m⊂R
m

— the intersection of all of the maximal ideals of R.

REMARK. Since the nilradical is the intersection of all prime ideals and maxi-
mal ideals are prime, it is easy to see that

N(R) ⊂ J(R)

is always true.

DEFINITION 5.7.2. A commutative ring, R, is called a Jacobson ring if for any
ideal I ⊂ R √

I =
⋂

I⊂m
m

where the intersection is taken over all maximal ideals containing I.
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REMARK. The term Jacobson ring was coined by Krull in [64] in honor of the no-
table American mathematician, Nathan Jacobson (1910–1999). Krull used Jacobson
rings to generalize Hilbert’s famous Nullstellensatz in algebraic geometry. Because
of their relation to the Nullstellensatz, they are sometimes called Hilbert rings or
Jacobson-Hilbert rings.

Theorem 12.2.8 on page 421 shows that
√
I is the intersection of all prime ideals

containing I. In a Jacobson ring, there are “enough” maximal ideals so the corre-
sponding statement is true for the primes that are maximal.

We can characterize Jacobson rings by how prime ideals behave:

PROPOSITION 5.7.3. The following statements are equivalent
(1) R is a Jacobson ring
(2) every prime ideal p ⊂ R satisfies

(5.7.1) p =
⋂

p⊂m
m

where the intersections is taken over all maximal ideals containing p.
(3) J(R′) = 0 for every quotient, R′, of R that is an integral domain.

PROOF. If R is Jacobson, the statement is clearly true because prime ideals
are radical, so 1 =⇒ 2. Conversely, if I ⊂ R is any ideal, theorem 12.2.8 on
page 421 implies that

√
I is the intersection of all prime ideals that contain I and

equation 5.7.1 implies that each of these is the intersection of all the maximal ideals
that contain it. It follows that the condition in definition 5.7.2 on page 154 is satis-
fied, so 2 =⇒ 1. Statement 2 is equivalent to statement 2 because R′ = R/p for
some prime ideal and lemma 5.2.9 on page 114 implies that the maximal ideals of
R/p are in a one to one correspondence with the maximal ideals of R containing
p. □

This immediately implies:

COROLLARY 5.7.4. Every quotient of a Jacobson ring is Jacobson.

It is not hard to find examples of Jacobson rings:

PROPOSITION 5.7.5. A principle ideal domain is a Jacobson ring if and only if it has
an infinite number of prime ideals.

REMARK. We immediately conclude that
(1) any field is a Jacobson ring,
(2) Z is a Jacobson ring,
(3) k[X] is a Jacobson ring, where k is any field. An argument like that used

in number theory implies that k[X] has an infinite number of primes.

PROOF. We use the characterization of Jacobson rings in proposition 5.7.3. Let
R denote the ring in question — this is a unique factorization domain (see re-
mark 5.3.12 on page 119). All of the prime ideals of R are maximal except for (0).
It follows that all prime ideals are equal to the intersection of maximal ideals that
contain them, with the possible exception of (0).

If there are only a finite number of prime ideals, (x1), . . . , (xk) then

(x1) ∩ · · · ∩ (xk) = (x1 · · · xk) ̸= (0)

so R fails to be Jacobson.
If there are an infinite number of prime ideals and x ̸= 0 ∈ R is an arbitrary

element, then x factors as a finite product of primes. It follows that there exists a
prime not in this factorization so that x /∈ J(R) — since nonzero prime ideals are
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maximal. It follows that the intersection of all maximal ideals that contain (0) is (0)
and the ring is Jacobson. □

It is well-known that Jacobson rings are polynomially-closed: if J is a Jacobson
ring, so is J[X]. To prove this, we need what is widely known as the Rabinowich
Trick (which first appeared in [92]):

LEMMA 5.7.6. The following statements are equivalent:
(1) the ring R is Jacobson
(2) if p ⊂ R is any prime ideal and S = R/p has an element t ∈ S such that S[t−1]

is a field, then S is a field.

PROOF. If R is Jacobson, so is S. The prime ideals of S[t−1] are those of S that
do not contain t. Since S[t−1] is a field, it follows that t is contained in every nonzero
prime ideal. If any nonzero prime ideals existed in S, t would be contained in them.
Since R is Jacobson, so is S and J(R) = 0 (see proposition 5.7.3 on page 155), so
there cannot exist any nonzero prime ideals, and S must be a field.

Conversely, suppose the hypotheses are satisfied and p ⊂ R is a prime ideal
with

p ⊊
⋂

p⊂m
m

where the intersection is taken over all maximal ideals containing p. We will derive
a contradiction.

If t ∈ ⋂p⊂mm \ p , the set of prime ideals, q, with t /∈ q has a maximal element
(by Zorn’s Lemma — 14.2.12 on page 465), Q. This ideal is not maximal since t
is contained in all maximal ideals, so R/Q is not a field. On the other hand Q
generates a maximal ideal of R[t−1] so

R[t−1]/Q · R[t−1] = (R/Q)[t−1]

(see lemma 10.6.19 on page 373) is a field. The hypotheses imply that R/Q is also a
field — which is a contradiction. □

We need one more lemma to prove our main result:

LEMMA 5.7.7. Let R be a Jacobson domain and let S be an algebra over R generated
by a single element, i.e. S = R[α] and an integral domain. If there exists an element t ∈ S
such that S[t−1] is a field, then R and S are both fields, and S is a finite extension of R.

PROOF. Let F be the field of fractions of R. We have S = R[X]/p where
p ⊂ R[X] is a prime ideal and X maps to α under projection to the quotient. We
claim that p ̸= (0). Otherwise, there would exist an element t ∈ R[X] that makes
R[X][t−1] a field. Since R[X][t−1] = F[X][t−1], the fact that F[X] is known to be
Jacobson (by proposition 5.7.5 on page 155) and lemma 5.7.6 imply that F[X] is also
a field, which is a contradiction.

Since p ̸= 0, let p(X) ∈ p be any nonzero polynomial

pnXn + · · ·+ p0

that vanishes in S. In S[p−1
n ] we may divide by pn to get a monic polynomial —

showing that α is integral over R[p−1
n ] (see definition 6.5.1 on page 252) so corol-

lary 6.5.6 on page 254 implies that S[p−1
n ] is integral over R[p−1

n ].
Let

(5.7.2) cntn + · · ·+ c0 = 0

be a polynomial that t satisfies in S (factor off copies of t to guarantee that c0 ̸=
0). Now, invert pnc0 in R and S, so we get S[(pnc0)

−1] integral over R[(pnc0)
−1].



5.8. ARTINIAN RINGS 157

After doing this, we can divide equation 5.7.2 on the preceding page by c0tn in
S[(c0 pn)−1, t−1] to get a monic polynomial for t−1

t−n +

(
c1
c0

)
t−(n−1) + · · ·+ cn

c0
= 0

It follows that S[(c0 pn)−1, t−1] is integral over R[(pnc0)
−1]. Since S[t−1] is a field,

so is S[(c0 pn)−1, t−1] (the same field) and proposition 6.5.7 on page 254 implies that
R[(pnc0)

−1] is also a field. The fact that R is Jacobson, and lemma 5.7.6 on the facing
page implies that R is also a field. So R = R[p−1

n ] and R[α] = S is integral over R.
Proposition 6.5.7 on page 254 applied a second time implies that S is also a field and
the conclusion follows. □

We are now ready to prove the main result:

THEOREM 5.7.8. If R is a Jacobson ring, any finitely generated algebra over R is also
a Jacobson ring.

REMARK. This result provides a huge number of Jacobson rings:
� Z[X1, . . . , Xn]

PROOF. We start with S = R[α]. The general case follows by a simple induc-
tion. If p ⊂ S is a prime ideal, then S/p will be an integral domain and the image
of R in S/p will be a Jacobson domain. If there exists t ∈ S/p such that (S/p) [t−1]
is a field, lemma 5.7.7 implies that S/p (and, for that matter R/R ∩ p) is also a field
— satisfying the conditions of lemma 5.7.7 on the preceding page. It follows that S
is Jacobson. □

It is also easy to find non-Jacobson rings:

EXAMPLE 5.7.9. If t = 2 ·Z ⊂ Z, then Zt, is the ring3 of rational numbers
with odd denominators. This is a local ring with a unique maximal ideal, 2 ·Z(2) so
J(Zt) = 2 ·Zt but N(Zt) = 0, since it is an integral domain.

This example induces many more

EXAMPLE 5.7.10. Let R = Zt[X1, . . . , Xn] be a polynomial ring over Zt from
example 5.7.9 above. The maximal ideals of Q[X1, . . . , Xn] are of the form (X1 −
q1, . . . , Xn − qn). If we restrict the qi to be in Zt, we get ideals of R that are no
longer maximal because the quotient of R by them is Zt, which is not a field. We
can make these ideal maximal by adding one additional element. The ideals

L(q1, . . . , qn) = (2, X1 − q1, . . . , Xn − qn)

are maximal because the quotient of R by them is Z2. The intersection of the ideals
L(q1, . . . , qn) contains (at least) (2) or 2 · R. Since R is an integral domain, N(R) = 0
but (2) ⊂ J(R). So R is not Jacobson, either.

5.8. Artinian rings

� �

Artinian rings are an example of the effect of slightly changing the defining
property of noetherian rings. It turns out (theorem 5.8.5 on page 159) that Artinian
rings are noetherian rings with a special property.

3We do not use the notation Z(2) because that would conflict with the notation for 2-adic
integers (see example 10.4.14 on page 359).
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In algebraic geometry, Artinian rings are used to understand the geometric
properties of finite maps — see chapter 2 of [99].

Emil Artin, (1898 – 1962) was an Austrian mathematician of Armenian de-
scent. He is best known for his work on algebraic number theory, contribut-
ing largely to class field theory and a new construction of L-functions. He
also contributed to the pure theories of rings, groups and fields. His work
on Artinian rings appears in [3] and [2].

DEFINITION 5.8.1. A ring, R, will be called Artinian if every descending se-
quence of ideals becomes constant from some finite point on — i.e., if

a1 ⊇ a2 ⊇ · · ·
is a descending chain of ideals, there exists an integer n such that ai = ai+1 for all
i ≥ n.

REMARK. Emil Artin (1898-1962) introduced these rings in the papers [3] and
[2]. At first glance, this definition appears very similar to the definition of noether-
ian ring in definition 5.4.1 on page 121 (at least if you look at the remark following
the definition).

For instance Z is noetherian but not Artinian since we have an infinite descend-
ing sequence of ideals that does not become constant

(2) ⊃ (4) ⊃ · · · ⊃ (2k) ⊃ · · ·
Artinian rings have some unusual properties:

LEMMA 5.8.2. If R is an Artinian ring:

(1) every quotient of R is Artinian
(2) if R is an integral domain, it is a field
(3) every prime ideal of R is maximal
(4) the number of maximal ideals in R is finite.

REMARK. Statement 3 implies that all Artinian rings are Jacobson rings — see
definition 5.7.2 on page 154.

PROOF. The first statement follows immediately from the definition of Ar-
tinian ring and lemma 5.2.9 on page 114.

To prove the second statement, suppose R is an integral domain and x ̸= 0 ∈ R.
Then the descending chain of ideals

(x) ⊃ (x2) ⊂ · · · ⊃ (xn) ⊃ · · ·
must stabilize after a finite number of steps, so (xt) = (xt+1) and xt = r · xt+1 for
some r ∈ R, or xt − r · xt+1 = 0. Since R is an integral domain xt · (1− r · x) = 0
implies 1− r · x = 0 so r = x−1.

The third statement follows from the first two: if p ⊂ R is a prime ideal, then
R/p is an Artinian integral domain, hence a field. This implies that p is maximal.

Suppose we have an infinite set of distinct maximal ideals, {mi} and consider
the following descending sequence of ideals

m1 ⊃ m1 ·m2 ⊃ · · · ⊃ m1 · · ·mk ⊃ . . .

The Artinian property implies that this becomes constant at some point, i.e.,

m1 · · ·mn ⊂ m1 · · ·mn+1 ⊂ mn+1



5.8. ARTINIAN RINGS 159

The fact that maximal ideals are prime (see proposition 5.2.4 on page 112) and ex-
ercise 5 on page 115 implies that either

m1 ⊂ mn+1

a contradiction, or
m2 · · ·mn ⊂ mn+1

In the latter case, a simple induction shows that one of the mi ⊂ mn+1, so a contra-
diction cannot be avoided. □

We can completely characterize Artinian rings. The first step to doing this is:

LEMMA 5.8.3. Let R be a ring in which there exists a finite product of maximal ideals
equal to zero, i.e.

m1 · · ·mk = 0

Then R is Artinian if and only if it is noetherian.

PROOF. We have a descending chain of ideals

R ⊃ m1 ⊃ m1m2 ⊃ · · · ⊃ m1 · · ·mk−1 ⊃ m1 · · ·mk = 0

Let for 1 ≤ i ≤ k, let Mi = m1 · · ·mi−1/m1 · · ·mi, a module over R/mi i.e., a
vector space over R/mi. Then Mi is Artinian if and only if it is noetherian — if
and only if it is finite-dimensional. The conclusion follows from induction on k,
proposition 6.3.12 on page 226 and the short exact sequences

0→ m1 · · ·mi → m1 · · ·mi−1 → Mi → 0

□

PROPOSITION 5.8.4. If R is an Artinian ring, the nilradical, N(R), is nilpotent, i.e.
there exists an integer k such that N(R)k = 0.

REMARK. We have already seen this for noetherian rings — see exercise 6 on
page 125.

PROOF. Since R is Artinian, the sequence of ideals

N(R) ⊃ N(R)2 ⊃ · · ·
becomes constant after a finite number of steps. Suppose n = N(R)k = N(R)k+1.
We claim that n = 0.

If not, consider the set, I of ideals, a, in R such that a · n ̸= 0. Since all descend-
ing sequences of such ideals have a lower bound (because R is Artinian), Zorn’s
Lemma ( 14.2.12 on page 465) implies that I has a minimal element, b. There exists
an element x ∈ b such that x · n ̸= 0, and the minimality of b implies that b = (x).
The fact that n2 = n implies that (x · n) · n = x · n2 = x · n so x · n ⊂ (x). The
minimality of b = (x) implies that x · n = (x) so that there is an element y ∈ n such
that

x · y = x = x · y2 = · · · = x · ym

Since y ∈ N(R), we have yn = 0 for some n > 0, which implies that x = 0, which
in turn contradicts the requirement that x · n ̸= 0. This contradiction is the result of
assuming that n ̸= 0. □

We are finally ready to characterize Artinian rings:

THEOREM 5.8.5. A ring is Artinian if and only if it is noetherian and all of its prime
ideals are maximal.



160 5. THE THEORY OF RINGS

REMARK. The reader may wonder whether this contradicts our statement that
Z is not Artinian. After all, all of its prime ideals of the form (p) for a prime number
p ∈ Z are maximal. The one exception is (0) ⊂ (p) which is a prime ideal that is
proper subset of another prime ideal.

PROOF. If R is Artinian, then lemma 5.8.2 on page 158 implies that all of its
prime ideals are maximal. Proposition 5.8.4 on the previous page implies that
N(R)k = 0 for some k > 0 and the proof of 12.2.8 on page 421 implies that

m1 ∩ · · · ∩mn ⊂ N(R)

where m1, . . . ,mn are the finite set of maximal ideals of R. Since

m1 · · ·mn ⊂ m1 ∩ · · · ∩mn

it follows that a finite product of maximal ideals is equal to 0. Lemma 5.8.3 on the
previous page then implies that R is noetherian.

Conversely, if R is noetherian and all of its prime ideals are maximal,
lemma 5.4.6 on page 124 implies that the number of these will be finite. Since the
nilradical is nilpotent (see exercise 6 on page 125), the argument above implies that
R is Artinian. □

Another interesting property of Artinian rings is:

THEOREM 5.8.6. An Artinian ring decomposes (uniquely) into a product of finitely
many local Artinian rings.

REMARK. Recall that a local ring is one that has a unique maximal ideal — see
definition 5.2.8 on page 113.

PROOF. Let A be an Artinian ring with maximal ideals {m1, . . . ,mn}. Then

N(R) = m1 ∩ · · · ∩mn = m1 · · ·mn

Let k be a value for which N(R)k = 0 (this exists by proposition 5.8.4 on the previous
page). Then

(m1 · · ·mn)
k = mk

1 · · ·mk
n

and the Chinese Remainder Theorem (see exercise 12 on page 116) implies that

R =
R

(m1 · · ·mn)
k =

n

∏
i=1

R
mk

i

Each of the quotients R/mk
i has a unique maximal ideal, namely the image of

mi so it is a local ring.
Suppose we have an expression

A = A1 × · · · × At

where the Ai are Artinian local rings. Then every ideal, I ⊂ A is of the form

I = I1 × · · · × It

and the maximal ideals of A are of the form

mi = A1 × · · · ×Mi × · · · × At

where Mi ⊂ Ai is a maximal ideal. This implies that t = n — i.e., the number of
factors is uniquely determined by A. We also conclude that

mk
1 · · ·mk

n = Mk
1 × · · · ×Mk

n = 0
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so that Mk
i = 0 for all i. We finally note that

R
mk

i
=

A1 × · · · × An

A1 × · · · × Ai−1 × 0× Ai+1 × · · · × An
= Ai

so the decomposition is unique. □





CHAPTER 6

Modules and Vector Spaces

“Every mathematician worthy of the name has experienced, if
only rarely, the state of lucid exaltation in which one thought suc-
ceeds another as if miraculously, and in which the unconscious
(however one interprets that word) seems to play a role.”

— André Weil.

6.1. Introduction

Linear algebra includes two main themes: vectors and systems of linear
equations1.

Vectors in Rn have a geometric significance, and were first studied in
the mid-19th century. They were conceived as objects with magnitude and
direction and often represented as arrows:

x

where the length of the arrow is the magnitude. One is to imagine that this
vector displaces the universe from its tail to its head. Although they have
magnitude and direction, they do not have a location, so the two vectors

are the same.
The sum of two vectors is the result of applying one displacement after

the other

x
y

x + y

1This is not in historical order. The study of linear equations precedes that of vectors by
at least a century.
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Of course, there is only so much one can do with pictures. The need
to quantify vectors quickly became apparent and vectors were given a nu-
merical representation, where

v =

 1
2
3


represents the vector that displaces the origin to the point (1, 2, 3). Addition
of vectors is easy to formulate a

b
c

+

 u
v
w

 =

 a + u
b + v
c + w


Linear equations are problems like

2x + 3y = 5

6x− y = 2(6.1.1)

where we must solve for x and y.
The obstacle to solving these equations easily is that they both have

two variables. We must, somehow, isolate one of the variables — and solve
for it. Getting the second variable is straightforward.

In this case it is not hard to see that we can subtract 3× the first equation
from the second to give

2x + 3y = 5

6x− 6x− 10y = −13(6.1.2)

so y = 13/10. Now we substitute this into the first equation to get

2x + 3 · 13/10 = 5

or x = 11/20.
Mathematicians quickly developed a shorthand for a set of variables or

quantities by writing them in tables[
x
y

]
and

[
5
2

]
called vectors, and writing the coefficients in a table

(6.1.3)
[

2 3
6 −1

]
called a matrix. Strictly speaking, a vector is a matrix with one column. The
original problem is rewritten as[

2 3
6 −1

]
·
[

x
y

]
=

[
5
2

]
where we, somehow, define multiplication of a vector by a matrix (see
equations 6.2.6 on page 170 and 6.2.7 on page 170) in a way that reproduces
equation 6.1.1.

The reader might protest that we haven’t simplified the process of solv-
ing equation 6.1.1 at all. We have, however, clarified the most important as-
pect of the solution: subtracting 3× the first equation from the second only
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involves the coefficients — i.e. the matrix in equation 6.1.3 on the preceding
page — and not the variables x and y.

We define a vector space to be the mathematical structure where vec-
tors “live.”

6.2. Vector spaces

6.2.1. Basic properties. Vector-spaces and maps between them are the
main objects of study of linear algebra.

DEFINITION 6.2.1. If F is a field, a vector space, V, over F is an abelian
group with an action of F on V

•: F×V → V

— i.e. multiplication of elements of V by elements of F is well-defined. In
addition

(1) if x ∈ F and v1, v2 ∈ V, then x · v1 + x · v2 = x · (v1 + v2),
(2) if x, y ∈ F and v ∈ V, then x · v+ y · v = (x+ y) · v, and x · (y · v) =

(xy) · v,
(3) 0 · v = 0 ∈ V, and 1 · v = v for all v ∈ V.

REMARK. It is easy to find examples of vector spaces:
� Rn is a vector space over R

� C∞([0, 1]) — the set of infinitely differentiable real-valued func-
tions on the interval [0, 1] — is a vector space over R.

� a field is a vector space over any of its subfields.
� Mn,m(k) — the set of n×m matrices with entries in a field, k, is a

vector space.

DEFINITION 6.2.2. If V is a vector space over a field, k, and
s = {v1, . . . , vn} is a set with vi ∈ V for i = 1, . . . , n then s is linearly
dependent if there exists an equation

(6.2.1)
n

∑
i=1

αivi = 0

with αi ∈ k and at least one αi ̸= 0. If s is not linearly dependent, it is said
to be linearly independent.

An infinite set of vectors is linearly independent if all of its finite subsets
are.

REMARK. If s is linearly dependent, then one of its elements is a linear
combination of the others: if αk ̸= 0 in equation 6.2.1, then

vk = −α−1
k

n

∑
i=1,i ̸=k

αivi

Note that linear independence is a property of the set of vectors that is in-
herited by every subset:

A single vector is a linearly independent set if it is nonzero.
Two vectors are linearly independent if neither is a multiple of the

other. This also means both of the vectors are nonzero.
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DEFINITION 6.2.3. If V is a vector-space over a field k and
s = {v1, . . . , vn} are elements of V, their span, Span(s) is the set of all
possible linear combinations

n

∑
i=1

αivi

for αi ∈ k.

REMARK. It’s not hard to see that the span of a set of vectors is always
a vector space.

PROPOSITION 6.2.4. Let V be a vector space and let s = {v1, . . . , vn} be a
linearly independent set of vectors. If v ∈ V and v /∈ Span(s), then the set

s ∪ {v}
is also linearly independent.

PROOF. Suppose

αv +
n

∑
i=1

αivi = 0

with some nonzero coefficients (making the set s ∪ {v} linearly dependent).
If α = 0, then we get

n

∑
i=1

αivi = 0

which forces all of the αi to be zero, a contradiction. It follows that α ̸= 0 so
that

v = −α−1
n

∑
i=1

αivi

which contradicts the hypothesis that v /∈ Span(s). □

DEFINITION 6.2.5. A basis for a vector space, V, is a linearly indepen-
dent set of vectors s = {v1, . . . } such that

V = Span(s)

Now we can outline an inductive procedure for finding a basis of a
vector space.

(1) Start with a nonzero vector, v1 ∈ V, and set s1 = {v1},
(2) In step n, sn = {v1, . . . , vn}. If V = Span(s), we are done and sn is

a basis. If not, there exists vn+1 ∈ V \ Span(s), and set sn+1 = sn ∪
{vn+1}. This will be linearly independent, by proposition 6.2.4.

If this terminates in a finite number of steps, it proves a basis exists and
explicitly constructs one. Unfortunately, this is unlikely to happen in many
cases — for instance if V = C∞([0, 1]).

In light of this, we have

THEOREM 6.2.6. If V is a vector-space and s = {v1, . . . , vk} is a linearly
independent set of vectors, then V has a basis containing s.
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PROOF. We will assume that the procedure described above never ter-
minates, since we would be done in that case. Let S be the set of all linearly
independent sets of vectors of V containing s.

We begin by claiming that every ascending chain of elements in S

A1 ⊂ A2 ⊂ · · ·
has a maximum, namely

A =
∞⋃

i=1

Ai

This involves proving that A = {w1, . . . } is a linearly independent set of
vectors, where wi = vi for i ≤ k. Any linear dependence equation

n

∑
i=1

αiwi = 0

involves a finite set of vectors of A, hence would involve the vectors of Aj
for some j. This contradicts the fact that each Aj is a linearly independent
set of vectors.

Zorn’s lemma ( 14.2.12 on page 465) implies that S contains a maximal
element, T. This is linearly independent, and we claim that it spans V. If
not, there exists v ∈ V \ Span(T) and

T ∪ {v} ⊃ T

is linearly independent (by proposition 6.2.4 on the preceding page). This
contradicts the maximality of T. □

Bases for vector spaces are interesting because they constitute coordi-
nate systems:

PROPOSITION 6.2.7. If V is a vector space over a field k with a basis B =
{b1, . . . } and v ∈ V is any vector, then there exists a unique expression

v =
n

∑
i=1

αibji

PROOF. We know that such an expression exists because V = Span(B).
If we had two distinct expressions for v, i.e.

v =
n

∑
i=1

αibji =
n

∑
i=1

βibji

then
n

∑
i=1

(αi − βi)bji = 0

and the linear independence of B implies that αi − βi = 0 for all i. □

It turns out that the size of a basis is uniquely determined

PROPOSITION 6.2.8. If V is a vector space over a field k and
B = {b1, . . . , bn} is a basis, then every other basis has precisely n elements. This
value n is called the dimension of V.
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REMARK. It turns out that this result is true even if the basis-sets are
infinite, but one must use transfinite induction and the axiom of choice
( 14.2.11 on page 465) to prove it.

PROOF. Let F = { f1, . . . , fm} be another basis for V.
If n = 1, the fact that B is a basis implies that fi = αib1, so that

{ f1, . . . , fk} is linearly dependent unless k = 1.
Now we consider the case where n > 1.
We will show that m ≤ n and the conclusion will follow by symmetry.

Since F is linearly independent, f1 ̸= 0. Since B is a basis, we have

(6.2.2) f1 = α1b1 + · · ·+ αnbn

Without loss of generality, assume α1 ̸= 0 (if necessary, rearrange the bi to
make this happen) so we can solve for b1:

(6.2.3) b1 = α−1
1 ( f1 − α2b2 − · · · − αnbn)

We claim that { f1, b2, . . . , bn} is a basis for V. If v ∈ V, there is a formula

v = β1b1 + · · ·+ βnbn

and plugging equation 6.2.3 into it gives a formula for v in terms of
{ f1, b2, . . . , bn}. It follows that { f1, b2, . . . , bn} spans V.

If

(6.2.4) γ1 f1 +
n

∑
i=2

γibi = 0

is a linear dependence relation (i.e., some of the γi ̸= 0), we claim that
γ1 ̸= 0. If γ1 = 0, we get a linear dependence equation

n

∑
i=2

γibi = 0

which contradicts the fact that B is a linearly independent set. Now we
plug equation 6.2.2 into equation 6.2.4 to get

γ1 (α1b1 + · · ·+ αnbn) + γ2b2 + · · ·+ γnbn = 0

γ1α1b1 + (γ1α2 + γ2)b2 + · · ·+ (γ1αn + γn) = 0

Since we know γ1α1 ̸= 0, this gives a nontrivial linear dependence relation
between the bi, a contradiction.

Assume m > n. We have established that we can replace one of the bi
by one of the fi and still have a basis. We do this repeatedly until we have a
basis { f1, . . . fn}. If m > n the fi with i > n will be linear combinations of
{ f1, . . . fn} and the original set { f1, . . . , fm} cannot be linearly independent:
a contradiction.

It follows that m ≤ n and symmetry (i.e., starting with the F-basis and
successively replacing basis elements by the bi) shows that n ≤ m, so they
are equal. □

DEFINITION 6.2.9. If a vector-space V over field k has a finite basis
B = {b1, . . . , bn} and

v =
n

∑
i=1

αibi
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is the unique expression for v ∈ V, we use the notation

(6.2.5) v =

 α1
...

αn


B

which we will call a matrix with one column and n rows.

REMARK. Note that the elements αi in equation 6.2.5 depend on the
basis used to compute them.

6.2.2. Linear transformations. Having defined vector spaces, we turn
to the question of maps between them:

DEFINITION 6.2.10. If V1 and V2 are vector spaces over the field k, a
homomorphism or linear transformation

f : V1 → V2

is a function with the properties
(1) for all v, w ∈ V1, we have f (v + w) = f (v) + f (w)
(2) for all v ∈ V1, x ∈ k, we have f (x · v) = x · f (v)

The set of vectors v ∈ V1with the property that f (v) = 0 is called the
nullspace of f , denoted Null( f ).

REMARK. The nullspace is just the kernel of f , regarded as a map of
abelian groups (for instance). It is clearly a subspace of V1.

Suppose we have a linear transformation

f : V →W

and B = {b1, . . . , bn} is a basis for B and G = {g1, . . . , gm} is a basis for W.
If v ∈ V is given by

v =
n

∑
i=1

αibi

then the definition of a linear transformation implies that

f (v) =
n

∑
i=1

αi f (bi)

If

f (bi) =

 β1,i
...

βn,i


G

then

f (v) =

 β1,1 · · · β1,n
...

. . .
...

βm,1 · · · βm,n


 α1

...
αn


in the G-basis. The quantity

M =

 β1,1 · · · β1,n
...

. . .
...

βm,1 · · · βm,n
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is called an n×m matrix, and the product is defined by

(6.2.6)

 β1,1 · · · β1,n
...

. . .
...

βm,1 · · · βm,n


 α1

...
αn

 = α1

 β1,1
...

βm,1

+ · · ·+ αn

 β1,n
...

βm,n


or, if we regard the columns of M as m× 1 matrices, so

(6.2.7) M =
[

C1 · · · Cn
]

where the Ci are called column-vectors of M, we get

f (v) =
n

∑
i=1

αiCi

or

f (v)i =
n

∑
j=1

βi,jαj

so that a matrix is a convenient notation for representing a linear transfor-
mation. We will also use the notation

(6.2.8) M =

 R1
...

Rm


where the Ri are the rows of M, regarded as 1× n matrices.

By abuse of notation, we will often refer to the nullspace (see defini-
tion 6.2.10 on the previous page) of a matrix.

Note that the matrix-representation of a linear transformation depends
in a crucial way on the bases used.

DEFINITION 6.2.11. If n ≥ 1 is an integer, define the identity matrix

In =


1 0 · · · 0
0 1 · · · 0

0 0
. . .

...
0 0 · · · 1


or

Ii,j =

{
1 if i = j
0 otherwise

REMARK. It is not hard to see that

In

 α1
...

αn

 =

 α1
...

αn


which motivates the term identity matrix. It represents the identity map
regarded as a linear transformation.

DEFINITION 6.2.12. If A is an n×m matrix, its transpose, At is an m× n
matrix defined by

(At
i,j) = Aj,i
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Composites of linear transformations give rise to matrix products:

DEFINITION 6.2.13. If A is an n × m matrix and B is an m × k matrix
with

B =
[

C1 · · · Ck
]

where the Ci are the column-vectors, then

AB =
[

AC1 · · · ACk
]

or

(AB)i,j =
m

∑
ℓ=1

Ai,ℓBℓ,j

— an n× k matrix. If A and B are n× n matrices and AB = I, A is said to
be invertible and B is its inverse.

Note that any isomorphism of vector spaces is represented by a square
matrix since the size of a basis is uniquely determined.

EXERCISES.

1. Which of the following functions define linear transformations?

a. f (x, y, z) = xy + z
b. f (x, y, z) = 3x + 2y− z
c. f (x, y, z) = x + y + z + 1
d. f (x, y, z) = z− x + 5

2. Show that matrix-multiplication is distributive over addition and
associative, so that the set of all n× n matrices over a ring, R, forms a (non-
commutative) ring Mn(R).

3. Show that powers of a matrix commute with each other, i.e. for any
matrix, A, over a ring, R, and any n, m ≥ 0, show that

An · Am = Am · An

4. If R is a commutative ring, Mn(R) is the ring of n × n
matrices, and A ∈ Mn(R) is a specific matrix, show that there exists a
ring-homomorphism

R[X]→ Mn(R)
X 7→ A

so that the matrix A generates a commutative subring R[A] ⊂ Mn(R).
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6.2.3. Determinants.

DEFINITION 6.2.14. If M is an n× n matrix, its determinant, det(M) is
defined by

(6.2.9) det(M) = ∑
σ∈Sn

℘(σ)M1,σ(1) · · ·Mn,σ(n)

where the sum is taken over all n! permutations in Sn. If τ ∈ Sn is any
transposition and An ◁ Sn is the alternating group (see definition 4.5.10 on
page 54), then τ projects to the nontrivial element of Sn/An = Z2 so

Sn = An ⊔ τ · An

as sets. We can rewrite formula 6.2.9 as

det(M) = ∑
σ∈An

M1,σ(1) · · ·Mn,σ(n) − ∑
σ∈An

M1,τσ(1) · · ·Mn,τσ(n)(6.2.10)

= ∑
σ∈An

(
M1,σ(1) · · ·Mn,σ(n) −M1,τσ(1) · · ·Mn,τσ(n)

)
(6.2.11)

since all the permutations in An are even.

REMARK. Equation 6.2.9 is due to Euler. It is not particularly suited to
computation of the determinant since it is a sum of n! terms.

In a few simple cases, one can write out the determinant explicitly:

(6.2.12) det
[

a b
c d

]
= ad− bc

and

det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11a22a33 + a11a23a31 + a13a32a21(6.2.13)

− a13a22a31 − a23a32a11 − a33a21a12

DEFINITION 6.2.15. An n × n matrix, A, is called upper-triangular
ifAi,j = 0 whenever i > j. The matrix, A, is lower triangular if Ai,j = 0
whenever j > i.

REMARK. The term “upper-triangular” comes from the fact that A
looks like 

A1,1 A1,2 · · · A1,n−1 A1,n

0 A2,2
. . . A2,n−1 A2,n

0 0
. . .

...
...

...
...

. . . An−1,n−1 An−1,n
0 0 · · · 0 An,n


We explore a closely related concept:

DEFINITION 6.2.16. Let A be an n× n upper-triangular matrix. In any
given row, the pivot element is the first nonzero entry encountered, scanning
from left to right. Suppose the pivot element in row i is Ai,p(i), so that the
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pivot-column for row i is p(i). We define the matrix A to be in echelon form
if

(1) p(j) > p(i) whenever j > i.
(2) rows of all zeroes lie below rows that have nonzero entries

REMARK. Oddly enough, the term echelon form comes from the mili-
tary, referring to a formation of soldiers. Here’s an example of a matrix in
echelon form 

2 0 1 0 3
0 1 0 4 0
0 0 0 1 5
0 0 0 0 3
0 0 0 0 0


with its pivots highlighted. The point of echelon form is that the pivot
element in every row is to the right of the pivots in the rows above it.

Here’s an example of a upper-triangular matrix that is not in echelon
form 

2 0 1 0 3
0 1 0 4 0
0 0 0 1 5
0 0 0 0 3
0 0 0 0 2


The problem is that it has two pivots in the same column. Another example
of an upper-triangular matrix that is not echelon is

2 0 1 0 3
0 0 0 0 0
0 0 2 1 5
0 0 0 7 3
0 0 0 0 2


Here, the problem is that there is a row of zeroes above rows that have
nonzero entries.

In the next few results we will investigate the properties of determi-
nants.

PROPOSITION 6.2.17. If M is an n× n matrix, then

det(Mt) = det(M)

PROOF. Definitions 6.2.14 on the preceding page and 6.2.12 on
page 170 imply that

det(Mt) = ∑
σ∈Sn

℘(σ)Mσ(1),1 · · ·Mσ(n),n

= ∑
σ∈Sn

℘(σ)M1,σ−1(1) · · ·Mn,σ−1(n) sorting by left subscripts

= ∑
σ∈Sn

℘(σ−1)M1,σ−1(1) · · ·Mn,σ−1(n) since ℘(σ−1) = ℘(σ)

= det(M)
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since, if σ runs over all permutations in Sn, so does σ−1. □

PROPOSITION 6.2.18. If M is an n× n upper- or lower-triangular matrix

det M =
n

∏
i=1

Mi,i

PROOF. We’ll do the upper-triangular case — the other case follows
from proposition 6.2.17 on the previous page. In equation 6.2.9 on page 172,
all terms with σ(i) < i will have a factor of 0, so we must have σ(i) ≥ i for
all i. For all permutations, σ

n

∑
i=1

(i− σ(i)) = 0

If σ ̸= 1, some terms will have (j − σ(j)) > 0 and must be balanced by
other terms (j′ − σ(j′)) < 0. If follows that σ(i) ≥ i for all i implies that σ
is the identity. □

COROLLARY 6.2.19. If M is an n× n matrix in echelon form and det M =
0, then the bottom row of M consists of zeros.

PROOF. Since det M = 0, proposition 6.2.15 on page 172implies that
one of the diagonal entries of M is 0. This implies that there is a pivot
element ≥ 2 columns to the right of the pivot of the previous row. Since M
has the same number of rows and columns, the pivot elements must reach
the right side of M before they reach the bottom, so the bottom row consists
of zeroes. □

PROPOSITION 6.2.20. If M is an n× n matrix and M′ is the result of inter-
changing rows i and j ̸= i or columns i and j of M, then

det M′ = −det M

PROOF. We will prove this for interchanged columns; the conclusion
for interchanged rows follows from 6.2.17 on the preceding page.

Let τ = (i, j), the transposition. Then equation 6.2.10 on page 172 (and
the fact that τ2 = 1)implies that

det(M′) = ∑
σ∈An

M′1,σ(1) · · ·M′n,σ(n) − ∑
σ∈An

M′1,τσ(1) · · ·M′n,τσ(n)

= ∑
σ∈An

M1,τσ(1) · · ·Mn,τσ(n) − ∑
σ∈An

M1,σ(1) · · ·Mn,σ(n)

= −det(M)

□

We have the related result:

PROPOSITION 6.2.21. If M is an n× n matrix and M has two rows or two
columns that are the same, then det(M) = 0.

REMARK. If we are working over an integral domain whose character-
istic is ̸= 2, this follows immediately from proposition 6.2.20 since it shows
that det(M) = −det(M).
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PROOF. We’ll suppose columns i and j ̸= i are identical; the corre-
sponding result for rows follows from proposition 6.2.17 on page 173.

Let τ ∈ Sn be the transposition (i, j). Then

M1,σ(1) · · ·Mn,σ(n) = M1,τσ(1) · · ·Mn,τσ(n)

for all σ ∈ An and equation 6.2.10 on page 172 implies that

det(M) = ∑
σ∈An

(
M1,σ(1) · · ·Mn,σ(n) −M1,τσ(1) · · ·Mn,τσ(n)

)
= 0

□

The next two results follow immediately from equation 6.2.9 on
page 172; their proofs are left as exercises for the reader.

PROPOSITION 6.2.22. If

A =



R1
...

Ri
...

Rn


is an n× n matrix and

B =



R1
...

k · Ri
...

Rn


where k is a constant, then det B = k · det A.

PROPOSITION 6.2.23. If

A =



R1
...

Ri−1
Ri

Ri+1
...

Rn


and B =



R1
...

Ri−1
Si

Ri+1
...

Rn
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are n× n matrices and

C =



R1
...

Ri−1
Ri + Si

Ri+1
...

Rn


then

det C = det A + det B

DEFINITION 6.2.24. If A is an m × n matrix, the act of adding a mul-
tiple of one row to another is called a type 1 elementary row operation. If Im
is an m × m identity matrix, the result of performing an elementary row
operation on Im is called an type 1 elementary matrix.

REMARK 6.2.25. It is not hard to see that performing a type 1 elemen-
tary row operation on A is the same as forming the product EA, where E is
an m×m type 1 elementary matrix.

There are type 2 and three elementary row operations, too:

Type 2: involves swapping two rows of a matrix
Type 3: involves multiplying a row of a matrix by a nonzero constant.

PROPOSITION 6.2.26. Elementary matrices are invertible and their inverses
are other elementary matrices.

REMARK. For instance 1 0 0
0 1 0
α 0 1

 ·
 1 0 0

0 1 0
−α 0 1

 =

 1 0 0
0 1 0
0 0 1


PROOF. The inverse of adding α× row i to row j is adding −α× row i

to row j. □

COROLLARY 6.2.27. If A is an n × n matrix and we perform a type 1 ele-
mentary row operation on A, the determinant is unchanged.

PROOF. Suppose we add a multiple of row i to row k with j > i and
suppose

A =



R1
...

Ri
...

Rj
...

Rn


, B =



R1
...

Ri
...

Ri
...

Rn


, C =



R1
...

Ri
...

k · Ri
...

Rn


and D =



R1
...

Ri
...

k · Ri + Rj
...

Rn
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where k is a constant. Then det C = 0, by corollary 6.2.21 on page 174 and
proposition 6.2.22 on page 175. Proposition 6.2.23 on page 175 implies that

det D = det A + det C = det A

□

Proposition 6.2.17 on page 173, coupled with these results, immediately
implies

PROPOSITION 6.2.28. Let A = [ C1 · · · Cn ] be an n× n matrix with
column-vectors Ci.

(1) if Ci = Cj for i ̸= j, then det A = 0,
(2) if A′ =

[
C1 · · · Ci−1 k · Ci Ci+1 · · · Cn

]
— the ith column

has been multiplied by a constant k — then

det A′ = k · det A

(3) If
B =

[
C1 · · · Ci−1 Di Ci+1 · · · Cn

]
and

C =
[

C1 · · · Ci−1 Ci + Di Ci+1 · · · Cn
]

— i.e., their columns are the same as those of A except for the ith — then
det C = det A + det B

This leads to an application for determinants2:

THEOREM 6.2.29 (Cramer’s Rule). Let

A = [ C1 · · · Cn ] =

 A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

 , and B =

 b1
...

bn


and let Āi =

[
C1 · · · Ci−1 B Ci+1 · · · Cn

]
— the result of replacing

the ith column of A by B. If

A1,1x1 + · · ·+ A1,nxn = b1

...
An,1x1 + · · ·+ An,nxn = bn(6.2.14)

is a system of linear equations, then

(6.2.15) (det A) · xi = det Āi

If det A ̸= 0, then

xi =
det Āi
det A

REMARK. Note that we have not used the fact that we are working over
a field until the last step. It follows that equation 6.2.15 is valid over any
commutative ring. This is used in a proof of the Cayley-Hamilton Theorem
( 6.2.57 on page 199) in Example 6.3.18 on page 229.

2The reader has, no doubt, wondered what they are “good for.”
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PROOF. Just plug both sides of equation 6.2.14 on the previous page
into the ith column of A and take determinants. If

E =

 A1,1x1 + · · ·+ A1,nxn
...

An,1x1 + · · ·+ An,nxn


then equations 6.2.14 on the preceding page become

(6.2.16) det
[

C1 · · · Ci−1 E Ci+1 · · · Cn
]
= det Āi

On the other hand

(6.2.17) det
[

C1 · · · Ci−1 E Ci+1 · · · Cn
]

= det
[

C1 · · · Ci−1 x1 · C1 Ci+1 · · · Cn
]
+

· · ·+ det
[

C1 · · · Ci−1 xi · Ci Ci+1 · · · Cn
]
+

· · ·+ det
[

C1 · · · Ci−1 xn · Cn Ci+1 · · · Cn
]

= x1 · det
[

C1 · · · Ci−1 C1 Ci+1 · · · Cn
]
+

· · ·+ xi · det
[

C1 · · · Ci−1 Ci Ci+1 · · · Cn
]
+

· · ·+ xn · det
[

C1 · · · Ci−1 Cn Ci+1 · · · Cn
]

Now, note that

det
[

C1 · · · Ci−1 Cj Ci+1 · · · Cn
]

=

{
det A if i = j
0 if i ̸= j because column j is duplicated

Plugging this into equation 6.2.17 gives

det
[

C1 · · · Ci−1 E Ci+1 · · · Cn
]
= xi · det A

and equation 6.2.15 on the preceding page follows. □

Gabriel Cramer (1704-1752), was a Swiss mathematician born in Geneva
who worked in geometry and analysis. Cramer used his rule in the book,
[25], to solve a system of five equations in five unknowns. The rule had
been used before by other mathematicians. Although Cramer’s Rule is not
the most efficient method of solving systems of equations, it has theoretic
applications.

We can develop an efficient algorithm for computing determinants us-
ing propositions 6.2.27 on page 176 and 6.2.20 on page 174:

PROPOSITION 6.2.30 (Gaussian Elimination). If A is an n × n matrix,
the following algorithm computes an echelon matrix, Ā, with d · det Ā = det A
(where d is defined below):

d← 1
c← 1
for r = 1, . . . , n− 2 do ▷ Main for-loop

if Ar,i = 0 for all c ≤ i ≤ n then
Move row r to the last row ▷ This is a row of zeroes.
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end if
if Ar,c = 0 then

if ∃ row k with r ≤ k ≤ n and Ak,c ̸= 0 then
Swap row r with row k
d← −d

else
c← c + 1 ▷ The new pivot is more than one column

▷ further to the right
Perform next iteration of the Main for-loop

end if
end if
for i = r + 1, . . . , n do ▷ For all lower rows

for j = c, . . . , n do ▷ do an type 1 elementary row-operation
Ai,j ← Ai,j − Ai,c

Ar,c
· Ar,j

end for
end for
c← c + 1 ▷ Advance the pivot-column

end for

REMARK. This algorithm is reasonably fast (proportional to n3 steps
rather than n!) and can easily be turned into a computer program.

This algorithm first appeared in Europe in the notes of Isaac Newton.
In the 1950’s it was named after Gauss due to confusion about its history.
Forms of it (with no proofs) appeared in Chapter 8: Rectangular Arrays of
the ancient Chinese treatise, The Nine Chapters on the Mathematical Art (see
[26]).

PROOF. The variable d keeps track of how many times we swap rows
— because proposition 6.2.20 on page 174 implies that each such swap
multiplies the determinant by −1. The only other thing we do with A is
elementary row operations, which leave the determinant unchanged by
corollary 6.2.27 on page 176. In the end, the matrix is echelon and proposi-
tion 6.2.18 on page 174 implies that the determinant is the product of diag-
onal entries. □

Here are some examples:
Start with

A =


1 2 0 6 3
1 1 1 0 2
2 0 1 2 3
0 5 1 1 1
1 3 0 5 1


The first pivot column is 1 and we start with the first row. We subtract the
first row from the second, 2× the first row from the third and the first row
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from the last, to get

A1 =



1 2 0 6 3

0 −1 1 −6 −1

0 −4 1 −10 −3

0 5 1 1 1

0 1 0 −1 −2


The new pivot-column is 2 and we subtract 4× the second row from the
third and so on, to get

A2 =



1 2 0 6 3

0 −1 1 −6 −1

0 0 −3 14 1

0 0 6 −29 −4

0 0 1 −7 −3


Now we add 2× the third row to the fourth, and so on, to get

A4 =



1 2 0 6 3

0 −1 1 −6 −1

0 0 −3 14 1

0 0 0 −1 −2

0 0 0 −7/3 −8/3


We finally get

A5 =



1 2 0 6 3

0 −1 1 −6 −1

0 0 −3 14 1

0 0 0 −1 −2

0 0 0 0 2


Since this is in echelon-form, the determinant of the original matrix is

det A = 1 · (−1) · (−3) · (−1) · 2 = −6

It is not hard to see that

PROPOSITION 6.2.31. If the matrix A in proposition 6.2.30 on page 178 was
lower-triangular with nonzero diagonal entries, then Ā is a diagonal matrix with
the same diagonal entries as A.

PROOF. We use induction on n. It’s clearly true for n = 1. For a larger
value of n, simply use column 1 as the pivot column. Since all the other
elements in the first row are 0, subtracting multiples of the first row from
the lower rows will have no effect on columns larger than 1. Columns 2
through n and the rows below the first constitute an (n− 1)× (n− 1) lower-
triangular matrix and the inductive hypotheses implies the conclusion. □
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PROPOSITION 6.2.32. If A and Ā are n× n matrices as in proposition 6.2.30
on page 178 and

x =

 x1
...

xn


then the solution-sets of the equations Ax = 0 and Āx = 0 are the same. It follows
that, det A = 0 implies that Ax = 0 has nonzero solutions.

PROOF. Both Ax = 0 and Āx = 0 represent systems of n equations
in the n unknowns, x1, . . . , xn. Rearranging rows of A simply renumbers
the equations, and has no effect on the solution-set. An elementary row-
operation consists in adding one equation to another and (since the left sides
are equated to 0) also does not effect the solution-set.

The final statement follows from corollary 6.2.19 on page 174, which
implies that the bottom row (at least!) of Ā consists of zeroes when det A =
0. That implies that the unknown xn can take on arbitrary values and the
other equations express the other variables in terms of xn. □

Here’s an example of this:

A =

 1 2 3
2 1 6
−1 1 −3


In the first step, the pivot column is 1 and subtract 2× the first row from
the second and add the first row to the third to get

A1 =

 1 2 3
0 −3 0
0 3 0


Now the pivot column is 2 and we add the second row to the third to get

Ā = A2 =

 1 2 3
0 −3 0
0 0 0


so that det A = 0. The equation

Āx = 0

has nontrivial solutions, because this matrix equation represents the linear
equations

x1 + 2x2 + 3x3 = 0
−3x2 = 0

0x3 = 0

so that
(1) x3 can be arbitrary
(2) x2 = 0
(3) x1 = −3x3
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and the general solution can be written as

x = x3

 −3
0
1


It is easy to check that Ax = 0, so that equation has nonzero solutions (an
infinite number of them, in fact).

COROLLARY 6.2.33. If A is an n× n matrix, the following statements are
equivalent:

(1) det A ̸= 0
(2) if

x =

 x1
...

xn


the equation Ax = 0 has x = 0 as its only solution.

(3) the rows of A are linearly independent,
(4) the columns of A are linearly independent
(5) A has an inverse

PROOF. Cramer’s Rule (theorem 6.2.29 on page 177) also implies that
Ax = 0 has x = 0 as its only solution.

Suppose
A =

[
C1 · · · Cn

]
and

α1C + · · ·+ αnCn = 0
is a linear dependence equation. If det A ̸= 0, then theorem 6.2.29 on
page 177 implies

α1 = · · · = αn = 0
so the columns of A are linearly independent.

Taking the transpose of A and invoking proposition 6.2.17 on page 173
implies that the rows are linearly independent.

Now suppose det A = 0. Then proposition 6.2.32 on the preceding
page implies that the equation Ax = 0 has nontrivial solutions and

Ax = x1C1 + · · ·+ xnCn = 0

is a nontrivial dependence relation between columns. Since A annihilates
nonzero vectors (the nontrivial solutions of Ax = 0) it cannot have an in-
verse (even as a function). Cramer’s Rule (theorem 6.2.29 on page 177) im-
plies that the equations

Axi =



0
...
0
1
0
...
0
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have unique solutions, where the 1 on the right occurs in the ith row. The
matrix [

x1 · · · xn
]

is easily seen to be A−1. □

This, remark 6.2.25 on page 176, and proposition 6.2.26 on page 176
imply that:

COROLLARY 6.2.34. If A is an n× n matrix, there exists an equation

S1 · · · Sk · A = U

where the Si are either lower triangular elementary matrices or transpositions and
U is upper-triangular. It follows that

(6.2.18) A = Tn · · · T1 ·U
where Ti = S−1

i are also lower triangular elementary matrices. We also have a
decomposition

A = L · R1 · · · Rk

where L is lower-triangular and the Ri are upper-triangular elementary matrices
or transpositions. If det A ̸= 0, we have a decomposition

(6.2.19) A = Tn · · · T1 · D · R1 · · · Rk

where D is a diagonal matrix.

PROOF. To prove the second statement, simply take the transpose of A
and apply equation 6.2.18:

At = Tk · · · T1 ·U
and take the transpose

A = Ut · Tt
1 · · · Tt

k
The transpose of an upper-triangular matrix is lower-triangular and the
transpose of an elementary matrix is elementary.

The final statement follows from proposition 6.2.31 on page 180, ap-
plied to L. □

The determinant has an interesting property:

THEOREM 6.2.35. If A and B are n× n matrices, then

det(AB) = det A · det B

PROOF. We divide this into cases.
(1) det B = 0. In this case, the equation Bx = 0 has nontrivial solu-

tions, by proposition 6.2.32 on page 181. It follows that ABx = 0
as well, and corollary 6.2.33 on the preceding page implies that
det AB = 0.

(2) From now on, det B ̸= 0. If B is an elementary matrix, det B = 1.
We have (AB)t = Bt At and Bt At is the result of performing an el-
ementary row operation on At so corollary 6.2.27 on page 176 im-
plies that det Bt At = det At. Since proposition 6.2.17 on page 173
implies that det M = det Mt for any n × n matrix, M, it follows
that det AB = det A and the conclusion follows.
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(3) In this case, use corollary 6.2.34 on the preceding page to represent
B via

B = Tn · · · T1 · D · R1 · · · Rk

and the T’s and R’s are elementary matrices. The product
of the diagonal entries in D give the determinant of B,i.e.
det B = ∏n

i=1 Di,i. Then

det(AB) = det(A · Tn · · · T1 · D · R1 · · · Rk)

= det(A′ · D) where det A′ = det A

= det A′ · det B
= det A · det B

since A′D is the result of multiplying row i of A′ by Di,i and each
such multiplication multiplies det A′ = det A by Di,i, by proposi-
tion 6.2.23 on page 175.

□

DEFINITION 6.2.36. If A is an n× n matrix and 1 ≤ i, j ≤ n, then the
(i, j)th minor of A, denoted Mi,j(A) is the determinant of the (n− 1)× (n−
1) matrix formed from A by deleting its ith row and its jth column.

The use of minors leads to another way to compute determinants:

PROPOSITION 6.2.37. If A is an n × n matrix, and k = 1, . . . , n is fixed,
then

det A =
n

∑
i=1

(−1)i+j Ak,i ·Mk,i(A)(6.2.20)

Furthermore, if j ̸= k , we have

Aj,1 ·Mk,1(A)− Aj,2 ·Mk,2(A) + · · ·+ (−1)n+1 Aj,n ·Mk,n(A) = 0

PROOF. We begin by proving the claim for k = 1. Recall the equation
of the determinant

(6.2.21) det(A) = ∑
σ∈Sn

℘(σ)A1,σ(1) · · · An,σ(n)

Now note that A1,i · M1,i(A) is all terms of equation 6.2.21 for which
σ(1) = i and

M1,i(A) = ∑
τ∈Sn−1

℘(τ)A2, f (τ(1)) · · · An, f (τ(n−1))

where

f (k) =

{
k if k < i
k + 1 if k ≥ i

Write τ′ = τ, extended to Sn by setting τ′(n) = n. Then ℘(τ′) = ℘(τ).
Converting from τ′ to σ involves

(1) decreasing all indices by 1 and mapping 1 to n (which τ′ fixes)
(2) applying τ′

(3) increasing all indices ≥ i by 1 and mapping n to i
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In other words

σ = (i, i + 1, . . . , n) ◦ τ′ ◦ (n, . . . , 1)

which implies that

℘(τ′) = (−1)(n+1)+(n−i)℘(σ) = (−1)2n+i+1℘(σ) = (−1)i+1℘(σ)

The sum of all the terms of equation 6.2.20 on the preceding page accounts
for all of the terms in equation 6.2.21 on the facing page.

The statement for k ̸= 1 follows from constructing a matrix, V, via

V =



Ak,1 · · · Ak,n
A1,1 · · · A1,n

...
. . .

...
Ak−1,1 · · · Ak−1,n
Ak+1,1 · · · Ak+1,n

...
. . .

...
An,1 · · · An,n


where the kth row has been “shuffled” to the top via k − 1 swaps of rows
— in other words, the kth row has been moved to the top in a way that
preserves the relative order of the other rows. It follows that

det V = (−1)k+1 det A

and the conclusion follows from the fact that M1,i(V) = Mk,i(A), V1,i = Ak,i
for i = 1, . . . , n.

The final statement follows from the fact that we are computing the
determinant of a matrix whose jth and kth rows are the same. □

We can define the adjoint or adjugate of a matrix:

DEFINITION 6.2.38. If A is an n × n matrix, we define the adjoint or
adjugate of A, denoted adj(A) via

adj(A)i,j = (−1)i+j Mj,i(A)

Proposition 6.2.37 on the preceding page immediately implies that

PROPOSITION 6.2.39. If A is an n× n matrix

A · adj(A) = det A · I
where I is the n× n identity matrix. If det A ̸= 0, we get

A−1 =
1

det A
· adj(A)

REMARK. Note that A commutes with its adjugate because the latter is
a scalar multiple of the inverse of A.

�
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6.2.4. Application of determinants: Resultants of polynomials. Resultants of
polynomials answer many of the same questions as Gröbner bases, but are compu-
tationally more tractable.

We begin by trying to answer the question:
Given polynomials

f (x) = anxn + · · ·+ a0(6.2.22)
g(x) = bmxm + · · ·+ b0(6.2.23)

when do they have a common root?
An initial (but not very helpful) answer is provided by:

LEMMA 6.2.40. If f (x) is a nonzero degree n polynomial and g(x) is a nonzero de-
gree m polynomial, they have a common root if and only if there exist nonzero polynomials
r(x) of degree ≤ m− 1 and s(x) of degree ≤ n− 1 such that

(6.2.24) r(x) f (x) + s(x)g(x) = 0

REMARK. Note that the conditions on the degrees of r(x) and s(x) are impor-
tant. Without them, we could just write

r(x) = g(x)
s(x) = − f (x)

and always satisfy equation 6.2.24.

PROOF. Suppose f (x), g(x) have a common root, α. Then we can set

r(x) = g(x)/(x− α)

s(x) = − f (x)/(x− α)

and satisfy equation 6.2.24.
On the other hand, if equation 6.2.24 is satisfied it follows that r(x) f (x) and

s(x)g(x) are degree t ≤ n + m− 1 polynomials that have the same t factors

x− α1, . . . , x− αt

since they cancel each other out. This set (of factors) of size t includes the n factors
of f (x) and the m factors of g(x). The pigeonhole principal implies that at least 1 of
these factors must be common to f (x) and g(x). And this common factor implies
the existence of a common root. □

Suppose

r(x) = um−1xm−1 + · · ·+ u0

s(x) = vn−1xn−1 + · · ·+ v0

Then

r(x) · f (x) =
n+m−1

∑
i=0

xici(6.2.25)

s(x) · g(x) =
n+m−1

∑
i=0

xidi

where ci = ∑j+k=i ujak. We can compute the coefficients {ci} by matrix products

[um−1, . . . , u0]


an
0
...
0

 = cn+m−1
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and

[um−1, . . . , u0]


an−1

an
0
...
0

 = cn+m−2

or, combining the two,

[um−1, . . . , u0]


an an−1
0 an
0 0
...

...
0 0

 = [cn+m−1, cn+m−2]

where the subscripts of ak increase from top to bottom and those of the uj increase
from left to right.

On the other end of the scale

[um−1, . . . , u0]


0
...
0
a0

 = c0

and

[um−1, . . . , u0]


0
...
0
a0
a1

 = c1

so we get

[um−1, . . . , u0]


0 0
...

...
0 0
a0 0
a1 a0

 = [c1, c0]

This suggests creating a matrix

M1 =


an an−1 · · · a0 0 · · · 0

0 an · · · a1
. . . · · · 0

...
. . .

. . .
...

. . .
. . .

...
0 · · · 0 an · · · a1 a0


of m rows and n + m columns. The top row contains the coefficients of f (x) fol-
lowed by m− 1 zeros and each successive row is the one above shifted to the right.
We stop when a0 reaches the rightmost column. Then[

um−1 · · · u0
]

M1 =
[

cn+m−1 · · · c0
]
= [c]
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so we get the coefficients of r(x) f (x). In like fashion, we can define a matrix with n
rows and n + m columns

M2 =


bm bm−1 · · · b0 0 · · · 0

0 bm · · · b1
. . . · · · 0

...
. . .

. . .
...

. . .
. . .

...
0 · · · 0 bm · · · b1 b0


whose top row is the coefficients of g(x) followed by n− 1 zeros and each successive
row is shifted one position to the right, with b0 on the right in the bottom row. Then[

vn−1 · · · v0
]

M2 = [dn+m−1, . . . , d0] = [d]

— a vector of the coefficients of s(x)g(x). If we combine the two together, we get
an (n + m)× (n + m)-matrix

S =

[
M1
M2

]
with the property that

(6.2.26)
[

u v
]

S = [c + d]

— an n + m dimensional vector of the coefficients of r(x) f (x) + s(x)g(x), where

u =
[

um−1 · · · u0
]

(6.2.27)

v =
[

vn−1 · · · v0
]

It follows that S reduces the question of the existence of a common root of f (x)
and g(x) to linear algebra: The equation

(6.2.28)
[

u v
]

S = [0]

has a nontrivial solution if and only if det(S) = 0 by corollary 6.2.33 on page 182.

DEFINITION 6.2.41. If

f (x) = anxn + · · ·+ a0

g(x) = bmxm + · · ·+ b0

are two polynomials, their Sylvester Matrix is the (n + m)× (n + m)-matrix

S( f , g, x) =



an an−1 · · · a0 0 · · · 0

0 an · · · a1
. . . · · · 0

...
. . .

. . .
...

. . .
. . .

...
0 · · · 0 an · · · a1 a0

bm bm−1 · · · b0 0 · · · 0

0 bm · · · b1
. . . · · · 0

...
. . .

. . .
...

. . .
. . .

...
0 · · · 0 bm · · · b1 b0


and its determinant det(S( f , g, x)) = Res( f , g, x) is called the resultant of f and g.

James Joseph Sylvester (1814–1897) was an English mathematician who
made important contributions to matrix theory, invariant theory, number
theory and other fields.

The reasoning above shows that:
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PROPOSITION 6.2.42. The polynomials f (x) and g(x) have a common root if and
only if Res( f , g, x) = 0.

PROOF. Equations 6.2.23 on page 186 and 6.2.26 on the preceding page
imply that the hypothesis of lemma 6.2.40 on page 186 is satisfied if and only if
det(S( f , g, x)) = 0. □

EXAMPLE. For instance, suppose

f (x) = x2 − 2x + 5

g(x) = x3 + x− 3

Then the Sylvester matrix is

M =


1 −2 5 0 0
0 1 −2 5 0
0 0 1 −2 5
1 0 1 −3 0
0 1 0 1 −3


and the resultant is 169, so these two polynomials have no common roots.

There are many interesting applications of the resultant. Suppose we are given
parametric equations for a curve

x =
f1(t)
g1(t)

y =
f2(t)
g2(t)

where fi and gi are polynomials, and want an implicit equation for that curve, i.e.
one of the form

F(x, y) = 0

This is equivalent to finding x, y such that the polynomials

f1(t)− xg1(t) = 0
f2(t)− yg2(t) = 0

have a common root (in t). So the condition is

Res( f1(t)− xg1(t), f2(t)− yg2(t), t) = 0

This resultant will be a polynomial in x and y. We have eliminated the variable t —
in a direct generalization of Gaussian elimination (see 6.2.30 on page 178) — and
the study of such algebraic techniques is the basis of Elimination Theory.

For example, let

x = t2

y = t2(t + 1)

Then the Sylvester matrix is

1 0 −x 0 0

0 1 0 −x 0

0 0 1 0 −x

1 1 0 −y 0

0 1 1 0 −y
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and the resultant is

Res(t2 − x, t2(t + 1)− y, t) = −x3 + y2 − 2 yx + x2

and it is not hard to verify that

−x3 + y2 − 2 yx + x2 = 0

after plugging in the parametric equations for x and y.

EXERCISES.

5. Compute an implicit equation for the curve defined parametrically by

x = t/(1 + t2)

y = t2/(1− t)

6. Compute an implicit equation for the curve

x = t/(1− t2)

y = t/(1 + t2)

7. Compute an implicit equation for the curve

x = (1− t)/(1 + t)

y = t2/(1 + t2)

8. Solve the equations

x2 + y2 = 1

x + 2y− y2 = 1

by computing a suitable resultant to eliminate y.

9. Find implicit equations for x, y, and z if

x = s + t
y = s2 − t2

z = 2s− 3t2

Hint: Compute resultants to eliminate s from every pair of equations and then elim-
inate t from the resultants.

6.2.5. A geometric property of determinants. Consider the effect of
operating on the unit cube, [0, 1]n, in Rn via a matrix. In R2 the unit square
at the origin becomes a parallelogram, as in figure 6.2.1 on the facing page

We give a heuristic argument that an elementary matrix does not alter
the n-dimensional volume of a region of Rn:

PROPOSITION 6.2.43. In R2, an elementary matrix leaves the area of the
square [x, x + 1]× [y, y + 1] unchanged.
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FIGURE 6.2.1. Image of a unit square under a matrix

PROOF. An elementary matrix[
1 a
0 1

]
maps [x, x + 1]× [y, y + 1] to the parallelogram spanning the four points

(x + ay, y)

(x + ay + a, y + 1)

(x + 1 + ay, y)

(x + 1 + ay + a, y + 1)

so its base and height are still 1 and its area is still 1. A similar argument
holds for the elementary matrix [

1 0
a 1

]
□

COROLLARY 6.2.44. An elementary n× n matrix leaves the volume of a unit
cube unchanged.

PROOF. If the elementary matrix E adds a multiple of row i to row j,
then it only alters the copy of R2 ⊂ Rn spanned by coordinates xi and xj,
where it behaves like a 2× 2 elementary matrix. The volume of E(Cube) is
1n−2× A where A is the area of the parallelogram cross-section of E(Cube)
in the xi-xj plane, which is 1, by 6.2.43 on the preceding page. □

DEFINITION 6.2.45. If B = ∏n
i=1[ai, bi] is a box in Rn, its volume, vol(B)

is defined by

vol(B) =
n

∏
i=1

(bi − ai)

REMARK. This is used to define the Lebesgue measure:

DEFINITION 6.2.46. If R ⊂ Rn is a region, its outer Lebesgue measure is
defined by

λ(R) =

inf

{
∑

B∈C
vol(B):C is a countable set of boxes whose union covers R

}
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PROPOSITION 6.2.47. Let E be an n× n elementary matrix and let R ⊂ Rn

be a region. Then
λ(E(R)) = λ(R)

PROOF. The matrix E does not change the volume of the boxes cover-
ing R so the Lebesgue measure will also be unchanged. □

PROPOSITION 6.2.48. If D is an n × n diagonal matrix and R ⊂ Rn is a
region, then

λ(D(R)) = λ(R) ·
n

∏
i=1
|Di,i|

PROOF. The matrix D dilates the ith coordinate of Rn by Di,i, thereby
multiplying the volume of all boxes by that factor. □

This is all building up to

THEOREM 6.2.49. If A is an n× n matrix, R ⊂ Rn, then

λ(A(R)) = |det A| · λ(R)

REMARK. So the determinant gives the effect of a linear transformation
on volumes. Analytic geometry and manifold theory considers volumes to
have signs, in which case we do not take the absolute value of the determi-
nant.

PROOF. If det A ̸= 0, this follows immediately from equation 6.2.19 on
page 183, proposition 6.2.47 and proposition 6.2.48.

If det A = 0, then there are linear dependency relations between the
rows of A (see corollary 6.2.33 on page 182) so the image of A is a linear
subspace of Rn of dimension < n, and the n-dimensional volume of it is
0. □

6.2.6. Changes of basis. Suppose we have a vector-space with basis
{ei}, i = 1, . . . , n and we are given a new basis {bi}. If x1

...
xn


is a vector in this new basis, then

x1b1 + · · ·+ xnbn =
[

b1 · · · bn
]
·

 x1
...

xn


is the same vector in the old basis, where P =

[
b1 · · · bn

]
is an n× n

matrix whose columns are the basis-vectors. Since the basis-vectors are lin-
early independent, corollary 6.2.33 on page 182 implies that P is invertible.
Since P converts from the new basis to the old one, P−1 performs the re-
verse transformation.
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For instance, suppose R3 has the standard basis and we have a new
basis

b1 =

 28
−25

7

 , b2 =

 8
−7
2

 , b3 =

 3
−4
1


We form a matrix from these columns:

P =

 28 8 3
−25 −7 −4

7 2 1


whose determinant is verified to be 1. The vector 1

−1
1


in the new basis is

b1 − b2 + b3 = P

 1
−1
1

 =

 23
−36
10


If we want to convert the vector  1

2
3


in the standard basis into the new basis, we get

P−1

 1
2
3

 =

 1 −2 −11
−3 7 37
−1 0 4

 1
2
3

 =

 −36
122
11


and a simple calculation shows that

−36b1 + 122b2 + 11b3 =

 1
2
3


For matrices, changes of basis are a bit more complicated.

Definition 6.2.10 on page 169 shows that a matrix depends in a crucial way
on the basis used to compute it.

Suppose V is an n-dimensional vector-space and an n × n matrix, A,
represents a linear transformation

f : V → V

with respect to some basis. If {b1, . . . , bn} is a new basis for V, let

P = [b1, . . . , bn]
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be the matrix whose columns are the bi. We can compute the matrix repre-
sentation of f in this new basis, Ā, via

Vold
A // Vold

P−1

��

Vnew

P

OO

Ā
// Vnew

In other words, to compute a matrix representation for f in the new basis:

(1) convert to the old basis (multiplication by P)
(2) act via the matrix A, which represents f in the old basis
(3) convert the result to the new basis (multiplication by P−1).

We summarize this with

THEOREM 6.2.50. If A is an n× n matrix representing a linear transforma-
tion

f : V → V

with respect to some basis {e1, . . . , en} and we have a new basis {b1, . . . , bn} with

P =
[

b1 · · · bn
]

then, in the new basis, the transformation f is represented by

Ā = P−1 AP

EXERCISES.

10. Suppose

C =

[
A 0
0 B

]
where A is an n × n matrix and B is an m × m matrix and all the other
entries of C are 0. Show that

det C = det A · det B

11. Solve the system of linear equations

2x + 3y + z = 8
4x + 7y + 5z = 20
−2y + 2z = 0

12. Solve the system

2x + 3y + 4z = 0
x− y− z = 0

y + 2z = 0
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13. If V is a 3-dimensional vector-space with a standard basis and

b1 =

 8
4
3

 , b2 =

 −1
0
−1

 , b3 =

 2
1
1


is a new basis, convert the matrix

A =

 1 0 −1
2 1 3
−1 2 1


to the new basis.

6.2.7. Eigenvalues and the characteristic polynomial. Suppose V is a
vector space over a field k. If A: V → V is a linear transformation, consider
the equation

(6.2.29) Av = λv

where we require v ̸= 0 and λ to be a scalar. A nonzero vector, v, satisfying
this equation is called an eigenvector of A and the value of λ that makes this
work is called the corresponding eigenvalue.

Eigenvectors and eigenvalues are defined in terms of each other, but
eigenvalues are computed first.

We rewrite equation 6.2.29 as

Av = λIv

where I is the suitable identity matrix and get

(A− λI)v = 0

This must have solutions for nonzero vectors, v. Corollary 6.2.33 on page 182
and proposition 6.2.32 on page 181 imply that this can only happen if

det(A− λI) = 0

DEFINITION 6.2.51. If A is an n× n matrix

det(λI − A) = χA(λ)

is a degree-n polynomial called the characteristic polynomial of A. Its roots
are the eigenvalues of A.

REMARK. Its roots are understood to lie in an algebraic closure (see
section 7.5 on page 283) of the field k. Essentially, this is a larger field con-
taining k with the property that roots of polynomials lie in it. For instance,
if k = R, the eigenvalues would lie in C.

This is often defined as det(A − λI). The present definition ensures
that the coefficient of the highest power of λ is 1.
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EXAMPLE 6.2.52. If

A =

[
1 2
3 4

]
its characteristic polynomial is

χA(λ) = λ2 − 5λ− 2

with roots
5±
√

33
2

with corresponding eigenvectors[
1

3−
√

33
4

]
and

[
1

3+
√

33
4

]
We have another interesting invariant of a matrix:

DEFINITION 6.2.53. If A is an n× n matrix, its trace, Tr (A) is defined
by:

Tr (A) =
n

∑
i=1

Ai,i

REMARK. The trace seems like an innocuous-enough (and easily com-
puted!) quantity, but it has a number of interesting properties: see exer-
cises 18 on page 201 and 6 on page 240.

The reader might wonder why we are interested in eigenvalues and
eigenvectors. The answer is simple:

Equation 6.2.29 on the preceding page shows that A be-
haves like a scalar when it acts on an eigenvector.

If we could find a basis for our vector space of eigenvectors, A would become
a diagonal matrix in that basis — because it merely multiplies each basis-
vector by a scalar.

Diagonal matrices are relatively easy to compute with3: adding or mul-
tiplying them simply involves adding or multiplying corresponding diago-
nal entries. They almost behave like scalars.

Finding a basis of eigenvectors is made somewhat easier by the follow-
ing:

PROPOSITION 6.2.54. Let A be an n× n matrix with eigenvalues and corre-
sponding eigenvectors

{(λ1, v1), . . . , (λn, vn)}
If the λi are all distinct, then the vi are linearly independent.

PROOF. We prove this by contradiction. Assume the vi are linearly
dependent and let

k

∑
i=1

aivi = 0

3We don’t need the complex formula in definition 6.2.13 on page 171.
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be a minimal linear relation between them (assume we have renumbered
the eigenvectors so that the linearly dependent ones are first). If we multi-
ply this by λk, we get

(6.2.30)
k

∑
i=1

λkaivi = 0

and if we act on this via A we get

(6.2.31)
k

∑
i=1

λiaivi = 0

If we subtract equation 6.2.31 from 6.2.30, we get
k−1

∑
i=1

(λk − λi)aivi = 0

Since the eigenvalues are all distinct, λk− λi ̸= 0. This dependency-relation
is smaller than the original one, contradicting its minimality.

Consider the matrix

(6.2.32) A =

 −9 2 −3
8 1 2

44 −8 14


Its characteristic polynomial is

−λ3 + 6λ2 − 11λ + 6

and its roots are {1, 2, 3}— the eigenvalues of A. These are all distinct, so
the corresponding eigenvectors are linearly independent and form a basis
for R3 . The corresponding eigenvectors are computed □

λ = 1: We solve the equation −9 2 −3
8 1 2
44 −8 14

− 1 ·
 1 0 0

0 1 0
0 0 1

 ·
 x

y
z


=

 −10 2 −3
8 0 2

44 −8 13

 ·
 x

y
z

 =

 0
0
0


and we get  1

−1
−4


λ = 2 We solve the equation −9 2 −3

8 1 2
44 −8 14

− 2 ·
 1 0 0

0 1 0
0 0 1

 ·
 x

y
z


=

 −11 2 −3
8 −1 2

44 −8 12

 ·
 x

y
z

 =

 0
0
0
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and we get  1
−2
5


When λ = 3, we get the eigenvector 1

0
−4


So our basis of eigenvectors can be assembled into a matrix

P =

 1 1 1
−1 −2 0
−4 −5 −4


with inverse

P−1 =

 8 −1 2
−4 0 −1
−3 1 −1


and

D = P−1 AP =

 1 0 0
0 2 0
0 0 3


as expected. To pass back to the original basis, we compute

A = PDP−1

Both A and D represent the same linear transformation — viewed from dif-
ferent bases.

Since

Dn =

 1 0 0
0 2n 0
0 0 3n


we easily get a closed form expression for An:

(6.2.33) An = PDnP−1

=

 −2n+2 − 3n+1 + 8 3n − 1 −3n − 2n + 2
2n+3 − 8 1 2n+1 − 2

5 · 2n+2 + 4 · 3n+1 − 32 4− 4 · 3n 4 · 3n + 5 · 2n − 8


This is even valid for non-integral values of n — something that is not evi-
dent from looking at definition 6.2.13 on page 171.

We can use this technique to compute other functions of matrices like
eA, sin A, cos A.

Even in cases where eigenvalues are not all distinct, it is possible to get
a basis of eigenvectors for a vector space.

DEFINITION 6.2.55. Given an n× n matrix A with an eigenvalue λ, the
eigenspace of λ is defined to be the nullspace (see 6.2.10 on page 169) of

A− λ · I
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REMARK. An eigenspace may be more than one-dimensional, in which
case it is possible for eigenvectors to span a vector space even if not all
eigenvalues are distinct.

EXAMPLE 6.2.56. It is also possible for eigenvectors to not span a vector
space. Consider the matrix

B =

[
1 1
0 1

]
This has a single eigenvalue, λ = 1, and its eigenspace is one-dimensional,
spanned by [

1
0

]
so there doesn’t exist a basis of R2 of eigenvectors of B. All matrices (even
those like B above) have a standardized form that is “almost” diagonal
called Jordan Canonical Form — see section 6.3.3 on page 235.

For a class of matrices that can always be diagonalized, see
corollary 6.2.95 on page 222.

We conclude this section with

THEOREM 6.2.57 (Cayley-Hamilton). If A is an n× n matrix with charac-
teristic polynomial

χA(λ)

then χA(A) = 0.

REMARK. In other words, every matrix “satisfies” its characteristic
polynomial.

The proof given here works over an arbitrary commutative ring; it
doesn’t require computations to be performed over a field.

Using the idea of modules over a ring, we can get a shorter proof of the
theorem — see example 6.3.18 on page 229.

The Cayley-Hamilton Theorem can be useful in computing powers of
a matrix. For instance, if the characteristic polynomial of a matrix, A, is
λ2 − 5λ + 3, we know that

A2 = 5A− 3I

so all powers of A will be linear combinations of A and I. Since A is invert-
ible

A = 5I − 3A−1

or
A−1 =

1
3
(5I − A)

This can also be used to calculate other functions of a matrix. If

f (X)

is a high-order polynomial or even an infinite series, write

f (X) = χA(X) · g(X) + r(X)

where r(X) is the remainder with deg r(X) < deg χA(X) and

f (A) = r(A)
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PROOF. Consider the matrix λ · I − A, where λ is an indeterminate.
This matrix has an adjugate (see definition 6.2.38 on page 185)

B = adj(λ · I − A)

with the property

(λ · I − A)B = det(λ · I − A) · I = χA(λ) · I
Since B is also a matrix whose entries are polynomials in λ, we can gather
terms of the same powers of λ

B =
n−1

∑
i=0

λiBi

where we know B is of degree n− 1 in λ since its product with A− λ · I is
of degree n.

We have

χA(λ)I =(λ · I − A)B

=(λ · I − A)
n−1

∑
i=0

λiBi

=
n−1

∑
i=0

λ · IλiBi −
n−1

∑
i=0

λi ABi

=
n−1

∑
i=0

λi+1Bi −
n−1

∑
i=0

λi ABi

=λnBn−1 +
n−1

∑
i=1

λi(Bi−1 − ABi)

− AB0

If χA(λ) = λn + cn−1λn−1 + · · ·+ c0, we equate equal powers of λ to get

Bn−1 = I, Bi−1 − ABi = ci−1 I, · · · ,−AB0 = c0 I

If we multiply the equation of the coefficient of λi by Ai we get (note that
ci Ai = Aici because the ci are scalars)

An + cn−1 An−1 + · · ·+ c0 I =

AnBn−1 + An−1(Bn−2 − ABn−1)

+ An−2(Bn−3 − ABn−2) + · · ·+ A(B0 − AB1)− AB0

= An − An︸ ︷︷ ︸+An−1Bn−2 − An−1Bn−2︸ ︷︷ ︸+An−1Bn−3 − · · ·

· · · − A2B1 + AB0 − AB0︸ ︷︷ ︸ = 0

This is a telescoping sum whose terms all cancel out. □



6.2. VECTOR SPACES 201

Sir William Rowan Hamilton, (1805 – 1865) was an Irish physicist, as-
tronomer, and mathematician who made major contributions to mathemat-
ical physics (some had applications to quantum mechanics), optics, and al-
gebra. He invented quaternions, a generalization of the complex numbers
(see section 9 on page 323).

EXERCISES.

14. Compute a square root of the matrix, A, in 6.2.32 on page 197 using
equation 6.2.33 on page 198.

15. Give a simple proof of the Cayley-Hamilton Theorem for a diagonal
matrix. Generalize that to a matrix whose eigenvalues are all distinct (this
gives an intuitive motivation for the theorem)4.

16. Suppose

C =

[
A 0
0 B

]
where A is an n × n matrix and B is an m × m matrix and all the other
entries of C are 0. Show that their characteristic polynomials satisfy

χC(λ) = χA(λ) · χB(λ)

17. Suppose A and B are n× n matrices and there exists an invertible
matrix, C, such that

B = C−1 AC
Show that

χA(λ) = χB(λ)

So the characteristic polynomial of a linear transformation is independent
of the basis used.

18. Suppose A and B are n× n matrices and there exists an invertible
matrix, C, such that

B = C−1 AC
Show that

Tr (B) = Tr (A)

(see definition 6.2.53 on page 196). It follows that the trace of a matrix
is an invariant of the linear transformation — independent of the basis used
to compute it.

19. This is a partial converse to exercise 17. Suppose A and B are two
diagonalizable n× n matrices with

χA(λ) = χB(λ)

Show that there exists an invertible matrix C such that

B = C−1 AC

4We claim that every matrix is “arbitrarily close” to one with distinct eigenvalues: a small
perturbation of the characteristic polynomial has distinct roots.
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6.2.8. Geometric Groups. In this section we will analyze groups that
originate in geometry — groups of symmetries and motions. We will also
give applications of the latter.

DEFINITION 6.2.58. If F is any field (see definition 7.1.1 on page 261) —
for instance F = Q, Zp for p prime, R, or C — then the general linear group,
GL(n, F) is the set of n× n matrices with entries in F whose determinants
are ̸= 0.

REMARK. Regard F as an abelian group under addition and let

Fn = F⊕ · · · ⊕F︸ ︷︷ ︸
n summands

In this case, GL(n, F) is the group of automorphisms of Fn. If V is a vector-
space, GL(V) is the group of automorphisms of V, i.e., linear transformations
f : V → V that are isomorphisms.

If F = R, the abelian group Rn is a space in which geometry is de-
fined and GL(n, F) represents ways of “deforming” that space in ways that
preserve the origin and are invertible.

We will often be concerned with various subgroups of GL(n, F):

DEFINITION 6.2.59. Under the assumptions of definition 6.2.58, the spe-
cial linear group SL(n, F) ⊂ GL(n, F) is the subgroup of matrices whose
determinant is 1 ∈ F.

REMARK. If F = R, SL(n, R) is the set of “deformations” of Rn that
preserve n-dimensional volume — see theorem 6.2.49 on page 192. If A, B ∈
GL(n, F) then

det(ABA−1) = det(A)det(B)det(A−1) = det(B)

so that SL(n, F) is a normal subgroup of GL(n, F).

DEFINITION 6.2.60. Under the assumptions of definition 6.2.58, the or-
thogonal group O(n, F) ⊂ GL(n, F) is the group of matrices M ∈ GL(n, F)
with the property that

MMt = I

where Mt is the transpose of M and I is the identity matrix.
The special orthogonal group, SO(n, F) ⊂ GL(n, F) is given by

SO(n, F) = O(n, F) ∩ SL(n, F)

REMARK. If F = R, the orthogonal group is the set of “deformations”
of Rn that preserve distances and angles between lines through the origin.
In other words, the matrices in O(n, R) represent rotations and reflections.
The group SO(n, R) eliminates the reflections.

To understand the geometry of Rn, it is not enough to simply be able
to rotate space about a fixed point (namely, the origin — which matrix-
operations do). We must also be able to move objects through space, to
displace them. This leads to the affine groups.
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Regard Rn as the plane xn+1 = 1 in Rn+1. An (n + 1)× (n + 1) matrix
of the form

(6.2.34) D(a1, . . . , an) =



1 0 · · · 0 a1

0 1
. . .

...
...

...
. . . . . . 0 an−1

...
. . . 0 1 an

0 · · · · · · 0 1


preserves this imbedded copy of Rn and displaces it so that the origin is
moved to the point (a1, . . . , an). A simple calculation shows that

D(a1, . . . , an) · D(b1, . . . , bn) = D(a1 + b1, . . . , an + bn)

which implies that the matrices of the form D(a1, . . . , an) ∈ GL(n, R) form
a subgroup, S ⊂ GL(n + 1, R) isomorphic to Rn.

DEFINITION 6.2.61. If n > 0 is an integer and G ⊂ GL(n, F) is a sub-
group, the subgroup of GL(n + 1, F) generated by matrices

M =

[
g 0
0 1

]
for g ∈ G and matrices of the form D(a1, . . . , an) with the ai ∈ F is called
the affine group associated to G and denoted Aff(G).

�

6.2.9. An application of geometric groups. Now we perform computations in
Aff(SO(3, R)) to study problems in motion-planning.

Recall that if we want to represent rotation in R2 via an angle of θ in the coun-
terclockwise direction, we can use a matrix[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
: R2 → R2

Regard R2 as the subspace, z = 1, of R3. The linear transformation

(6.2.35) f =

 cos(θ) − sin(θ) a
sin(θ) cos(θ) b

0 0 1

 : R3 → R3

in Aff(SO(2, R)) sends  x
y
1

 ∈ R2 ⊂ R3

to  x cos(θ)− y sin(θ) + a
x sin(θ) + y cos(θ) + b

1

 ∈ R2 ⊂ R3

and represents

(1) rotation by θ (in a counterclockwise direction), followed by
(2) displacement by (a, b).
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FIGURE 6.2.2. A simple robot arm

Affine group-actions are used heavily in computer graphics: creating a scene in
R3 is done by creating objects at the origin of R3 ⊂ R4 and moving them into
position (and rotating them) via linear transformations in R4. A high-end (and not
so high end) computer graphics card performs millions of affine group-operations
per second.

Suppose we have a simple robot-arm with two links, as in figure 6.2.2.

If we assume that both links are of length ℓ, suppose the second link were
attached to the origin rather than at the end of the second link.

Then its endpoint would be at (see equation 6.2.35 on the preceding page) ℓ cos(ϕ)
ℓ sin(ϕ)

1

 =

 cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 1 0 ℓ
0 1 0
0 0 1

 0
0
1


=

 cos(ϕ) − sin(ϕ) ℓ cos(ϕ)
sin(ϕ) cos(ϕ) ℓ sin(ϕ)

0 0 1

 0
0
1


In other words, the effect of moving from the origin to the end of the second

link (attached to the origin) is

(1) displacement by ℓ — so that (0, 0) is moved to (ℓ, 0) = (ℓ, 0, 1) ∈ R3.
(2) rotation by ϕ

This is the effect of the second link on all of R2. If we want to compute the effect of
both links, insert the first link into the system — i.e. rigidly attach the second link to
the first, displace by ℓ, and rotate by θ. The effect is equivalent to multiplying by

M2 =

 cos(θ) − sin(θ) ℓ cos(θ)
sin(θ) cos(θ) ℓ sin(θ)

0 0 1


It is clear that we can compute the endpoint of any number of links in this manner —
always inserting new links at the origin and moving the rest of the chain accordingly.

At this point, the reader might wonder
Where does algebra enter into all of this?

The point is that we do not have to deal with trigonometric functions until the very
last step. If a, b ∈ R are numbers with the property that

(6.2.36) a2 + b2 = 1

there is a unique angle θ with a = cos(θ) and b = sin(θ). This enables us to replace
the trigonometric functions by real numbers that satisfy equation 6.2.36 and derive
purely algebraic equations for

(1) the set of points in R2 reachable by a robot-arm
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FIGURE 6.2.3. A more complicated robot arm

(2) strategies for reaching those points (solving for explicit angles).

In the simple example above, let a1 = cos(θ), b1 = sin(θ), a2 = cos(ϕ), b2 = sin(ϕ)
so that our equations for the endpoint of the second link become x

y
1

 =

 a1 −b1 ℓa1
b1 a1 ℓb1
0 0 1

 ℓa2
ℓb2
1


=

 ℓa1a2 − ℓb2b1 + ℓa1
ℓb1a2 + ℓa1b2 + ℓb1

1


It follows that the points (x, y) reachable by this link are those for which the system
of equations

ℓa1a2 − ℓb2b1 + ℓa1 − x = 0
ℓb1a2 + ℓa1b2 + ℓb1 − y = 0

a2
1 + b2

1 − 1 = 0

a2
2 + b2

2 − 1 = 0(6.2.37)

has real solutions (for ai and bi). Given values for x and y, we can solve for the set
of configurations of the robot arm that will reach (x, y). Section 5.5.2 on page 127
develops the theory needed.

We conclude this chapter with a more complicated robot-arm in figure 6.2.3—
somewhat like a Unimation Puma 5605.

It has:

(1) A base of height ℓ1 and motor that rotates the whole assembly by ϕ1 —
with 0 being the positive x-axis.

(2) An arm of length ℓ2 that can be moved forward or backward by an angle
of θ1 — with 0 being straight forward (in the positive x-direction).

(3) A second arm of length ℓ3 linked to the first by a link of angle θ2, with 0
being when the second arm is in the same direction as the first.

(4) A little “hand” of length ℓ4 that can be inclined from the second arm by
an angle of θ3 and rotated perpendicular to that direction by an angle ϕ2.

5In 1985, this type of robot-arm was used to do brain-surgery! See [66].
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We do our computations in R4, start with the “hand” and work our way back to the
base. The default position of the hand is on the origin and pointing in the positive x-
direction. It displaces the origin in the x-direction by ℓ4, represented by the matrix

D0 =


1 0 0 ℓ4

0 1 0 0

0 0 1 0

0 0 0 1


The angle ϕ2 rotates the hand in the yz-plane, and is therefore represented by

1 0 0 0
0 cos(ϕ2) − sin(ϕ2) 0
0 sin(ϕ2) cos(ϕ2) 0
0 0 0 1


or

Z1 =


1 0 0 0
0 a1 −b1 0
0 b1 a1 0
0 0 0 1


with a1 = cos(ϕ2) andb1 = sin(ϕ2). The “wrist” inclines the hand in the xz-plane
by an angle of θ3, given by the matrix

Z2 =


a2 0 −b2 0
0 1 0 0
b2 0 a2 0
0 0 0 1


with a2 = cos(θ3) and b2 = sin(θ3) and the composite is

Z2Z1D0 =


a2 −b2b1 −b2a1 a2ℓ4

0 a1 −b1 0

b2 a2b1 a2a1 b2ℓ4

0 0 0 1


The second arm displaces everything by ℓ3 in the x-direction, giving

D1 =


1 0 0 ℓ3

0 1 0 0

0 0 1 0

0 0 0 1


so

D1Z2Z1D0 =


a2 −b2b1 −b2a1 a2ℓ4 + ℓ3

0 a1 −b1 0

b2 a2b1 a2a1 b2ℓ4

0 0 0 1


so and then inclines it by θ2 in the xz-plane, represented by

Z3 =


a3 0 −b3 0
0 1 0 0
b3 0 a3 0
0 0 0 1
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so that Z3D1Z2Z1D0 is
a3a2 − b3b2 (−a3b2 − b3a2) b1 (−a3b2 − b3a2) a1 (a3a2 − b3b2) ℓ4 + a3ℓ3

0 a1 −b1 0

b3a2 + a3b2 (a3a2 − b3b2) b1 (a3a2 − b3b2) a1 (b3a2 + a3b2) ℓ4 + b3ℓ3

0 0 0 1


Continuing in this fashion, we get a huge matrix, Z. To find the endpoint of the

robot-arm, multiply 
0
0
0
1


(representing the origin of R3 ⊂ R4) by Z to get

(6.2.38)


x
y
z
1

 =


((a5a3 + b5b4b3) a2 + (−a5b3 + b5b4a3) b2) ℓ4 + (a5a3 + b5b4b3) ℓ3 + a5ℓ2

((b5a3 − a5b4b3) a2 + (−b5b3 − a5b4a3) b2) ℓ4 + (b5a3 − a5b4b3) ℓ3 + b5ℓ2

(a4b3a2 + a4a3b2) ℓ4 + a4b3ℓ3 + ℓ1

1


where a3 = cos(θ2), b3 = sin(θ2), a4 = cos(θ1), b4 = sin(θ1) and a5 = cos(ϕ1),
b5 = sin(ϕ1). Note that a2

i + b2
i = 1 for i = 1, . . . , 5. We are also interested in the

angle that the hand makes (for instance, if we want to pick something up). To find
this, compute

(6.2.39) Z


1
0
0
1

− Z


0
0
0
1

 = Z


1
0
0
0

 =


(a5a3 + b5b4b3) a2 + (−a5b3 + b5b4a3) b2

(b5a3 − a5b4b3) a2 + (−b5b3 − a5b4a3) b2

a4b3a2 + a4a3b2

0


The numbers in the top three rows of this matrix are the direction-cosines of the
hand’s direction. We can ask what points the arm can reach with its hand aimed
in a particular direction.
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EXERCISES.

20. If S ⊂ GL(n + 1, F) is the subgroup of matrices of the form D(a1, . . . , an)
(see equation 6.2.34 on page 203) that is isomorphic to Fn and G ⊂ GL(n, F), show
that S is a normal subgroup of Aff(G).

21. Under the assumptions of exercise 20 above, show that

Aff(G)

S
∼= G

6.2.10. Geometry of Vectors in Rn. Given vectors on Rn, we can de-
fine a product that has a geometric significance.

DEFINITION 6.2.62. If v, w ∈ Rn are

v =

 v1
...

vn

 , w =

 w1
...

wn


then their dot-product, denoted v •w, is the scalar

v •w =
n

∑
i=1

viwi ∈ R

If we regard a vector as an n× 1 matrix, then

v •w = vtw ∈ R

where vt is the transpose of v (a 1 × n matrix) and we perform matrix-
multiplication.

Give this, we can express the magnitude in terms of the dot-product:

DEFINITION 6.2.63. If v ∈ Rn, define ∥v∥ = √v • v is the norm of v. A
unit vector u ∈ Rn is one for which ∥u∥ = 1.

The following properties of the dot-product are clear:

PROPOSITION 6.2.64. Let x, y ∈ Rn. Then:

(1) x • y = y • x
(2) (k · x) • y = k · (x • y), for k ∈ R,
(3) (x± y) • (x± y) = x • x± 2x • y + y • y, or

(6.2.40) ∥x± y∥2 = ∥x∥2 + ∥y∥2 ± 2x • y

We need a generalization of Pythagoras’s Theorem (proved in most
precalculus books):

THEOREM 6.2.65 (Law of Cosines). Given a triangle:
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b

c

a

θ

we have the formula

c2 = a2 + b2 − 2ab cos(θ)

REMARK. If θ = 90◦ = π/2, cos(θ) = 0 and we recover Pythagoras’s
original theorem.

The following result gives the geometric significance of dot-products

THEOREM 6.2.66. Let x, y ∈ Rn be two vectors with an angle θ between
them. Then

cos(θ) =
x • y
∥x∥ · ∥y∥

PROOF. Simply compare the triangle in theorem 6.2.65 on the facing
page with

y

y− x

x

θ

Here a = ∥x∥, b = ∥y∥, and c = ∥y− x∥, so the Law of Cosines gives

∥y− x∥2 = ∥x∥2 + ∥y∥2 − 2∥x∥ · ∥y∥ cos(θ)

= ∥x∥2 + ∥y∥2 − 2x • y from equation 6.2.40 on the preceding page

It follows that 2∥x∥ · ∥y∥ cos(θ) = 2x • y, which implies the conclusion.
□

COROLLARY 6.2.67. Two nonzero vectors x, y ∈ Rn are perpendicular if
and only if x • y = 0.

PROPOSITION 6.2.68. If M ∈ O(n), the orthogonal group defined in 6.2.60
on page 202, then M preserves all dot-products, i.e. for any vectors u, v ∈ Rn

(Mu) • (Mv) = u • v
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u

v

Projuv

v⊥

θ

FIGURE 6.2.4. Projection of a vector onto another

PROOF. We write

(Mu) • (Mv) = (Mu)t (Mv)

= ut Mt Mv

= utv
= u • v

since Mt = M−1(see definition 6.2.60 on page 202). □

This, definition 6.2.63 on page 208 and theorem 6.2.66 on the preceding
page immediately imply

COROLLARY 6.2.69. An orthogonal matrix defines a linear transformation
that preserves lengths of vectors and the angles between them.

REMARK. It follows that orthogonal matrices define geometric opera-
tions: rotations and reflections.

We can use products of vectors to define other geometric concepts:

DEFINITION 6.2.70. Let u ∈ Rn be a unit vector and v ∈ Rn be some
other vector. Define the projection of v onto u via

Projuv = (u • v)u

Also define
v⊥ = v− Projuv

REMARK. Note that Projuv is parallel to u with a length of ∥v∥ · cos θ,
where θ is the angle between u and v. Also note that

u • v⊥ = u • (v− (u • v)u)

= u • v− (u • v)u • u
= u • v− u • v = 0

so v⊥ is perpendicular to u.
Since v = Projuv + v⊥, we have represented v as a sum of a vector

parallel to u and one perpendicular to it. See figure 6.2.4
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EXERCISES.

22. Compute the angle between the vectors 1
2
3

 and

 1
−2
0


23. If u1, . . . , un ∈ Rnare an orthonormal basis, show that the matrix

M =

 u1
...

un


— i.e. the matrix whose rows are the ui, is an orthogonal matrix — i.e.
defines an element of O(n) in definition 6.2.60 on page 202.

24. Suppose A is a symmetric matrix (i.e., A = At). If (λ1, v1) and
(λ2, v2) are eigenvalue-eigenvector pairs with λ1 ̸= λ2, show that v1 • v2 =
0. Hint: If a vector is regarded as an n× 1 matrix, its transpose is a 1× n
matrix and utv = u • v — i.e. the matrix product is the dot-product.

6.2.11. Vectors in R3. Besides the dot-product, there’s another way to
form products of vectors — that is only well-defined in R3 (to see what hap-
pens in other dimensions, look at the discussion following corollary 10.7.13
on page 383).

DEFINITION 6.2.71. Define vectors

i =

 1
0
0

 , j =

 0
1
0

 , k =

 0
0
1


so that vectors in R3 can be written as linear combinations of i, j, and k.
Given this definition and vectors in R3

x =

 x1
x2
x3

 , y =

 y1
y2
y3


set

(6.2.41) x× y = det

 i j k
x1 x2 x3
y1 y2 y3


— the cross product of x and y.

REMARK. Expansions by minors in the first row (see definitions 6.2.37
on page 184 and proposition 6.2.36 on page 184) gives

(6.2.42) x× y = i ·det
[

x2 x3
y2 y3

]
− j ·det

[
x1 x3
y1 y3

]
+ k ·det

[
x1 x2
y1 y2

]
We have the following properties of cross-products:



212 6. MODULES AND VECTOR SPACES

PROPOSITION 6.2.72. Given vectors

x =

 x1
x2
x3

 , y =

 y1
y2
y3

 , z =

 z1
z2
z3


then

(1) (x + y)× z = x× z + y× z
(2) y× x = −x× y
(3) x× x = 0
(4)

x • (y× z) = det

 x1 x2 x3
y1 y2 y3
z1 z2 z3


(5) so x • (x× y) = y • (x× y) = 0 so x× y is perpendicular to x and y.

PROOF. The first statement follows from corollary 6.2.27 on page 176,
proposition 6.2.23 on page 175, and corollary 6.2.17 on page 173.

Statement 2 follows from proposition 6.2.20 on page 174, and state-
ment 3 follows from equation 6.2.42 on the preceding page, which implies
that

x • (y× z) = x1 · det
[

y2 y3
z2 z3

]
− x2 · det

[
y1 y3
z1 z3

]
+ x3 · det

[
y1 y2
z1 z2

]

= det

 x1 x2 x3
y1 y2 y3
z1 z2 z3


by proposition 6.2.37 on page 184. □

Statement 4 and theorem 6.2.49 on page 192 implies that:

COROLLARY 6.2.73. Given vectors

x =

 x1
x2
x3

 , y =

 y1
y2
y3

 , z =

 z1
z2
z3


the composite

x • (y× z)
is equal to the volume of the parallelepiped spanned by x, y, and z.

This leads to a geometric interpretation of x× y:

PROPOSITION 6.2.74. If x and y are vectors in R3 with an angle of θ between
them, then

∥x× y∥ = ∥x∥ · ∥y∥ · sin(θ)
— the area of the parallelogram generated by x and y.

REMARK. This almost completes a geometric description of x × y: it
is perpendicular to x and y and has the length given above. The vector
has two possible directions and the one it takes is given by the Right Hand
Rule: if fingers of the right hand go from x and y, the thumb points in the
direction of x× y.
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u Projuv

v⊥
u× v

FIGURE 6.2.5. The plane perpendicular to u

PROOF. Let u be a unit vector in the direction of x× y. Then

u • (x× y) = ∥x× y∥
is the volume of the parallelepiped spanned by u, x, and y. Since u is per-
pendicular to x, and y and of unit length, the volume of this parallelepiped
is equal to the area of its base:

y

x

θ

which is ∥x∥ · ∥y∥ · sin(θ) . □

Examination of figure 6.2.4 on page 210 (and the definition of the sine-
function) shows that ∥v⊥∥ = ∥v∥ · sin θ.

If we form the cross-product u× v⊥, we get

u× v⊥ = u× (v− (u • v)u)

= u× v− (u • v)u× u
= u× v

producing a vector perpendicular to u and v⊥ and v — see figure 6.2.5.
The two vectors, v⊥ and u× v span a plane perpendicular to u, and both
vectors have lengths of ∥v∥ · sin θ.

Now consider the linear combination

vϕ = cos ϕ · v⊥ + sin ϕ · u× v

as ϕ runs from 0 to 2π.
We claim that vϕ traces out a circle in the plane perpendicular to u, with

a radius of ∥u∥ · sin θ — see figure 6.2.6 on the next page.
We have our final geometric result:

THEOREM 6.2.75. If u, v ∈ R3 are vectors with ∥u∥ = 1, the result, r, of
rotating v (counterclockwise, viewed in the direction of u) by an angle of ϕ around
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u

v

Projuv

vϕ

r ϕ

FIGURE 6.2.6. Rotation of a vector in R3

the axis defined by u is

r = Projuv + vϕ

= (u • v)u + cos ϕ · (v− (u • v)u) + sin ϕ · (u× v)(6.2.43)

REMARK. Compare this with theorem 9.2.9 on page 329 in section 9.2
on page 325 on quaternions.

PROOF. This follows from the fact that vϕ is the portion of v perpen-
dicular to u — and that has been rotated by an angle of ϕ. The portion of v
parallel to u has been unchanged. □

EXERCISES.

25. If u, v, w ∈ R3, show that

u× (v×w) = v(u ·w)−w(u · v)
This is called Lagrange’s formula (one of many called this!).

26. Rotate the vector

v =

 1
2
3


by 30◦ around the vector

u =
1√
2

 1
0
−1
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6.2.12. Inner-product spaces over R and C. Inner product spaces are
vector space equipped with an analogue to the dot product, called an inner
product:

DEFINITION 6.2.76. A vector space, V, over k = R or C is called a
Hilbert space if it has a function

⟨∗, ∗⟩ : V ×V → k

called its inner product, such that
(1) ⟨α · v1 + β · v2, w⟩ = α · ⟨v1, w⟩+ β · ⟨v2, w⟩ for all α, β ∈ k , and

v1, v2, w ∈ V,
(2) ⟨v, w⟩ = ⟨w, v⟩, the complex conjugate, for all v, w ∈ V. Note

that this implies ⟨v, v⟩ = ⟨v, v⟩, or that ⟨v, v⟩ ∈ R for all v ∈ V.
(3) ⟨v, v⟩ = 0 implies that v = 0.
(4) Define ∥v∥ =

√
⟨v, v⟩

(5) Let {vi} be an infinite sequence of elements of V. If the series
∞

∑
n=1
∥vi∥

converges, then so does
∞

∑
n=1

vi

REMARK. The first rule implies that ⟨0, v⟩ = ⟨v, 0⟩ = 0.
We have already seen an example of an inner product space over R,

namely Rn, equipped with the dot product — see 6.2.62 on page 208.
It turns out that the last condition is always satisfied if V is finite-

dimensional (the proof is beyond the scope of this book!). We mention it
here because many interesting Hilbert spaces are infinite-dimensional.

We have a version of the last statement in proposition 6.2.64 on
page 208

PROPOSITION 6.2.77. If V is an inner product space and x, y ∈ V, then

∥x± y∥2 = ∥x∥2 + ∥y∥2 ± ⟨x, y⟩ ± ⟨y, x⟩
In particular, if ⟨x, y⟩ = 0 then

∥x± y∥2 = ∥x∥2 + ∥y∥2

PROOF. Straightforward computation:

⟨x± y, x± y⟩ = ⟨x, x⟩ ± ⟨x, y⟩
± ⟨y, x⟩+ (±1)2 ⟨y, y⟩

□

DEFINITION 6.2.78. Let V = Cn for some finite n > 0. For any v, w ∈ V
define the standard inner product via

⟨v, w⟩ =
n

∑
i=1

v̄iwi
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Even over the real numbers, we can have spaces with “exotic” inner
products:

EXAMPLE 6.2.79. Let

M =

 2 −1 0
−1 2 −1
0 −1 2


and define an inner product in R3 via

⟨v, w⟩ = vt Mw

This is clearly bilinear (i.e., it satisfies rules 1 and 2). We must verify rule 3:
If

v =

 x
y
z


then

⟨v, v⟩ = vt Mv =
[

x y z
]  2 −1 0
−1 2 −1
0 −1 2

 x
y
z


=
[

2x− y, −x + 2y− z, −y + 2z
]  x

y
z


= 2x2 − 2xy + 2y2 − 2yz + 2z2

= x2 + (x− y)2 + (y− z)2 + z2

≥ 0

If ⟨v, v⟩ = 0, it follows that x = 0 = z and x = y so v = 0.
If

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1


is the standard basis for R3, ⟨e1, e1⟩ = 2 so the norm of e1with this new
inner-product is √

⟨e1, e1⟩ =
√

2

Since ⟨e1, e2⟩ = −1, e1 and e2 are not even perpendicular in this new
inner-product.

Here’s an example of an infinite dimensional Hilbert space used heav-
ily in functional analysis:

EXAMPLE 6.2.80. If a, b ∈ R with a < b define L2([a, b]) to be the set of
equivalence classes of complex-valued functions, f , on [a, b] with∫ b

a
∥ f (x)∥2dx < ∞

where two functions f , g are regarded as equivalent if∫ b

a
∥ f (x)− g(x)∥2dx = 0
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and with an inner product defined by

⟨ f , g⟩ =
∫ b

a
f (x)g(x)dx

From now on, we’ll only be concerned with finite-dimensional Hilbert
spaces like example 6.2.78 on page 215.

DEFINITION 6.2.81. Given an n × n matrix, A, with complex entries,
define the Hermitian transpose, AH , via(

AH
)

i,j
= Āj,i

A matrix, A, is called Hermitian if

A = AH

A n× n matrix, U, is called unitary if

UUH = UHU = I

REMARK. Note that these are direct generalizations of familiar con-
cepts to the complex domain: a real-valued Hermitian matrix is symmetric,
and a real-valued unitary matrix is orthogonal.

Charles Hermite (1822 – 1901) was a French mathematician who did re-
search involving number theory, quadratic forms, invariant theory, orthog-
onal polynomials, elliptic functions, and algebra. He was the first to prove
that e is a transcendental number.
The Hermite crater near the Moon’s north pole is named in his honor.

Proof of the following two statements is left as an exercise for the
reader:

PROPOSITION 6.2.82. The product of two unitary matrices is unitary, so the
set of n× n unitary matrices form a group, U(n). If A and B are complex-valued
matrices then

(AB)H = BH AH

REMARK. Note that the standard inner product on Cn can be defined
as the matrix-product

⟨u, v⟩ = uHv

We have a unitary version of proposition 6.2.68 on page 209:

PROPOSITION 6.2.83. Let V = Cn with the standard inner product (see
definition 6.2.78 on page 215) and let U be a unitary matrix. If v, w ∈ V then

⟨Uv, Uw⟩ = ⟨v, w⟩
PROOF. Straight computation:

⟨Uv, Uw⟩ = (Uv)HUw

= vHUHUw

= vHw

= ⟨v, w⟩
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□

We start with:

DEFINITION 6.2.84. Let V be an inner product space and let
u1, . . . , uk ∈ V be a set of vectors. This set is defined to be orthonormal if

(6.2.44)
〈
ui, uj

〉
=

{
1 if i = j
0 otherwise

Unitary matrices are a complex analogue to orthogonal matrices (see
exercise 23 on page 211):

PROPOSITION 6.2.85. If

M =
[

v1 · · · vn
]

be an n× n matrix with entries in C and column-vectors v1, · · · , vn , then M is
unitary if and only if the vi form an orthonormal set with respect to the standard
inner product (see definition 6.2.78 on page 215).

PROOF. We have
MH M = A

where
Ai,j = vH

i vj =
〈
vi, vj

〉
□

As with vector spaces over R, we can define projections:

DEFINITION 6.2.86. If V is an inner-product space, v ∈ V, and S =
{u1, . . . , uk} is an orthonormal set of vectors with W = Span(S) (see defi-
nition 6.2.3 on page 166), then define

ProjWv =
k

∑
i=1
⟨ui, v⟩ ui

REMARK. If V is over the complex numbers, we’ve lost the precise geo-
metric significance of projection.

It is easy to express vectors in terms of an orthonormal basis

PROPOSITION 6.2.87. Let V be an inner product space over k (R or C) with
an orthonormal basis u1, . . . , un and let v ∈ V be any vector. Then

v =
n

∑
i=1
⟨v, ui⟩ ui = ProjVv

PROOF. Since u1, . . . , un is a basis for V, there is a unique expression

v =
n

∑
i=1

aiui

with ai ∈ k. If we take the inner product〈
v, uj

〉
=

n

∑
i=1

ai
〈
ui, uj

〉
= aj

due to equation 6.2.44. □
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Consider an inner product space, V. If S = {u1, . . . , uk} is an or-
thonormal set of vectors that don’t span V, they span some vector subspace
W ⊂ V. Proposition 6.2.87 on the preceding page tells us that if v ∈W

v = ProjWv

This raises the question:

If v /∈W, what is the relation between v and ProjWv?

PROPOSITION 6.2.88. If V is an inner product space, S = {u1, . . . , uk} is
an orthonormal set of vectors that span W ⊂ V, and v is any other vector, then

v⊥ = v− ProjWv

has the property that
〈
v⊥, uj

〉
= 0 for all j = 1, . . . , k, making it perpendicular to

all of W. It follows that ProjWv is the vector in W closest to v in the sense that

∥v−w∥ > ∥v− ProjWv∥
for any w ∈W with w ̸= ProjWv.

REMARK. This result shows the advantages of having orthonormal
bases for vector spaces — in this case, W.

PROOF. If we form the inner product
〈
v⊥, uj

〉
for any j = 1, . . . , k, we

get

〈
v− ProjWv, uj

〉
=
〈
v, uj

〉
−
〈

k

∑
i=1
⟨v, ui⟩ ui, uj

〉

=
〈
v, uj

〉
−

k

∑
i=1

〈
⟨v, ui⟩ ui, uj

〉
=
〈
v, uj

〉
−
〈
v, uj

〉 〈
uj, uj

〉
by equation 6.2.44

= 0

It follows that, if w ∈W, then ⟨v⊥, w⟩ = 0.
Suppose v′ ∈W is a vector. Note that

v− v′ = (v− ProjWv) + (ProjWv− v′)

= v⊥ + (ProjWv− v′)

Since w = ProjWv− v′ ∈W, we have

⟨v⊥, w⟩ = 0

Proposition 6.2.77 on page 215 implies that

∥v− v′∥2 = ∥v⊥∥2 + ∥w∥2

so that ∥v− v′∥ > ∥v− ProjWv∥ = ∥v⊥∥ for all v′ ̸= ProjWv. □

Given the power of an orthonormal basis, it is gratifying that we can
always find one:
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THEOREM 6.2.89 (Gram-Schmidt orthonormalization). Let v1, . . . , vk ∈
V be a basis for an inner-product space, V over k = R or C. Then there exists an
orthonormal basis

u1, . . . , uk

for V such that

(6.2.45) Span(u1, . . . , ui) = Span(v1, . . . , vi)

for i = 1, . . . , k.

REMARK. This is named after Jørgen Pedersen Gram and Erhard
Schmidt but it appeared earlier in the work of Laplace and Cauchy6.

PROOF. This is an inductive process: We initially set

u1 =
v1

∥v1∥
Having performed j− 1 steps, define Wj = Span(u1, . . . , uj−1) ⊂ V and set

uj =
vj − ProjWj

vj

∥vj − ProjWj
vj∥

and continue until j = k. The process works because vj−ProjWj
vj ̸= 0 since:

(1) the u1, . . . , uj−1 are linear combinations of the v1, . . . , vj−1 — in a
way that is easily reversed7 — so the span of u1, . . . , uj−1 is the same
as that of v1, . . . , vj−1 — i.e., equation 6.2.45.

(2) the v1, . . . , vk are linearly independent, so vj is not in the span of
v1, . . . , vj−1 — or that of u1, . . . , uj−1 .

□

PROPOSITION 6.2.90. The eigenvalues of a Hermitian matrix lie in R.

PROOF. Let A be an n × n Hermitian matrix with
eigenvalue-eigenvector pair (λ, v). Then

(6.2.46) Av = λv

If we form the Hermitian transpose, we get

(6.2.47) vH AH = λ̄vH

Now, we left-multiply equation 6.2.46 by vH and right multiply equa-
tion 6.2.47 by v, we get

vH Av = vHλv = λ∥v∥2

vH AHv = λ̄∥v∥2

Since A = AH , λ∥v∥2 = λ̄∥v∥2, and since ∥v∥2 ̸= 0, we conclude that
λ = λ̄ or λ ∈ R. □

Since real-valued matrices are Hermitian if and only if they are symmet-
ric, we also conclude:

6Part of the mathematical tradition of naming things after people who didn’t discover
them!

7So the vi can be written as linear combinations of the ui .
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COROLLARY 6.2.91. The eigenvalues of a real-valued symmetric matrix lie
in R.

REMARK. It’s interesting that we must go into the complex domain to
prove this statement about real matrices.

Although many matrices cannot be diagonalized (see example 6.2.56
on page 199), there is an important class of them that can. We begin with:

LEMMA 6.2.92. If A is a complex-valued n× n matrix, then there exists an
n× n unitary matrix, U, such that

U−1 AU = B

where B has the form

B =

[
λ ∗
0 A1

]
where A1 is an (n− 1)× (n− 1) matrix and the first column of B has zeros below
the first row. If A is real-valued, so are U and B.

PROOF. Let λ be an eigenvalue of A with eigenvector v. By adjoining
other vectors, we extend v to a basis for Cn and perform Gram-Schmidt
orthonormalization (theorem 6.2.89 on the preceding page) to get an or-
thonormal basis u1, . . . , un. We create a matrix with the ui as its columns:

U =
[

u1 · · · un
]

This will be unitary, by proposition 6.2.85 on page 218. In the new ui-basis,
the linear transformation that A defines will have a matrix representation
that looks like B — since u1 = v/∥v∥ is still an eigenvector corresponding
to the eigenvalue λ. □

COROLLARY 6.2.93. If A is an n × n matrix over C, then there exists an
n × n unitary matrix, U, such that U−1 AU is upper-triangular. If A is real-
valued, so is U.

PROOF. Simply apply lemma 6.2.92 to A, and then to A1 and the
smaller matrices that result. After n− 1 such applications, we get

U−1
n−1 · · ·U−1

1 AU1 · · ·Un−1

is upper-triangular, where U = U1 · · ·Un−1. □

THEOREM 6.2.94. If A is a Hermitian n × n matrix, then there exists an
n× n unitary matrix, U, such that U−1 AU is diagonal. If A is real-valued, so is
U.

PROOF. Let U be such that B = U−1 AU is upper-triangular. We claim
that B is also Hermitian. Note that U−1 = UHand take the Hermitian trans-
pose of

B = UH AU
We get

BH = UH AHU = UH AU = B
But a Hermitian upper-triangular matrix is diagonal. □
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Since a real-valued matrix is Hermitian if and only if it is symmetric,
and unitary if and only if it is orthogonal, we get:

COROLLARY 6.2.95. If A is an n × n real-valued symmetric matrix, then
there exists an n× n orthogonal matrix, U, such that U−1 AU is diagonal.

REMARK. This is interesting because it says not only that a symmetric
matrix can be diagonalized, but that this can be done by geometric operations:
rotations and/or reflections.

Here’s an intuitive argument for why symmetric matrices can be diag-
onalized: Every matrix is arbitrarily “close” to one with distinct eigenval-
ues. For instance, we can we can perturb the matrix in example 6.2.56 on
page 199 so it has two distinct eigenvalues:[

1− ϵ 1
0 1 + ϵ

]
namely 1− ϵ and 1 + ϵ. The eigenvectors corresponding to these are, re-
spectively [

1
0

]
and

[
1
2ϵ

]
As we let ϵ approach 0 the eigenvalues and eigenvectors merge, and the
eigenvectors no longer span R2.

Exercise 24 on page 211 shows that the eigenvectors of a symmetric
matrix are orthogonal — so they cannot merge, even if the eigenvalues do —
i.e., the angle between two vectors is a continuous function of the vectors,
so it cannot abruptly jump from 90◦ to 0◦.

EXERCISES.

27. Find an orthonormal basis for R3, using the inner-product in ex-
ample 6.2.79 on page 216 (use the Gram-Schmidt process).

6.3. Modules

6.3.1. Basic properties. Modules are like vector-spaces over rings
rather than fields. This turns out to make the subject infinitely more
complex and many basic questions have no known general answers.

DEFINITION 6.3.1. If R is a commutative ring, a module over R is
(1) an abelian group, A,
(2) an action of R on A, i.e. a map

f : R× A→ A

such that
f (r, ∗): r× A→ A
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is a homomorphism of abelian groups, for all r ∈ R, and

f (r1, f (r2, a)) = f (r1r2, a)

and
f (r1 + r2, a) = f (r1, a) + f (r2, a)

This action is usually written with a product-notation, i.e. f (r, a) = r · a (in
analogy with multiplication by scalars in a vector space).

If B ⊂ A is a subgroup with the property that r · B ⊂ B for all r ∈ R,
then B is called a submodule of A. If R is not commutative, we can have
left- or right-modules over R, and they are generally not equivalent to each
other. This definition given here is for a left module.

EXAMPLE. We can regard a ring, R, as a module over itself. Its submod-
ules are precisely its ideals.

If g: R→ S is a homomorphism of rings, S naturally becomes a module
over R by defining r · s = g(r)s for all r ∈ R and s ∈ S.

EXAMPLE 6.3.2. If R is a ring and Rn =
⊕n

i=1 R, then Rn is a module
over R with the action defined by multiplication in R. This is called the free
module of rank n over R. An n-dimensional vector space over a field k is a free
module of rank n over that field.

It is possible to come up with more “exotic” examples of modules:

EXAMPLE 6.3.3. Let V be an n-dimensional vector space over a field F
and let M be an n× n matrix over F. Then V is a module over the polyno-
mial ring k[X], where a polynomial, p(X) ∈ k[X] acts via

p(M): V → V

In other words, we plug M into p(X) to get a matrix and then act on V via
that matrix.

Note that a vector-subspace W ⊂ V is a submodule if and only if
M(W) ⊂ W. It follows that the module-structure of V over k[X] depends
strongly on the matrix M.

DEFINITION 6.3.4. Let M1 and M2 be modules over the same ring, R.
A homomorphism of modules is a map of their underlying abelian groups

f : M1 → M2

such that f (r ·m) = r · f (m) for all m ∈ M and r ∈ R. The set of elements
m ∈ M1 with f (m) = 0 is called the kernel of f and denoted ker f . The set of
elements m ∈ M2 of the form f (n) for some n ∈ M1 is called the image of f
and denoted im f .

If ker f = 0, the homomorphism f is said to be injective. If im f =
M2, the homomorphism is said to be surjective. If f is both injective and
surjective, it is called an isomorphism.

REMARK. Note that, if f above is injective, we can regard M1 as a sub-
module of M2. Isomorphic modules are algebraically equivalent.

The corresponding statements about abelian groups imply that
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PROPOSITION 6.3.5. Let M be a module over a ring R and let A and B be
submodules of M. Then:

(1) we can define the quotient M/A as the set of equivalence classes of the
equivalence relation

m1 ≡ m2 (mod A)

if m1 − m2 ∈ A, for all m1, m2 ∈ M. We can also define M/A as the
set of cosets {m + A} for m ∈ M.

(2) the map
p: M→ M/A

sending an element to its equivalence class, is a homomorphism of mod-
ules.

(3) the map p defines a 1-1 correspondence between submodules of M con-
taining A and submodules of M/A

(4) there is a canonical isomorphism

A + B
A

∼= B
A ∩ B

DEFINITION 6.3.6. If f : M1 → M2 is a homomorphism of modules, the
quotient

M2

f (M1)

is called the cokernel of f .

REMARK. Since one can form quotients of modules with respect to ar-
bitrary submodules, cokernels always exist for module-homomorphisms.

DEFINITION 6.3.7. A sequence of modules and homomorphisms (all
over the same ring)

· · · fn+1−−→ Mn+1
fn−→ Mn

fn−1−−→ Mn−1 → · · ·
is said to be exact if im fn+1 = ker fn for all n. An exact sequence with five
terms like

0→ A
f−→ B

g−→ C → 0

is called a short exact sequence.

REMARK. In the short exact sequence above, the kernel of f must be
0, so A can be identified with a submodule of B, and the map g must be
surjective (since the kernel of the rightmost map is all of C).

The exactness of the (long) sequence above is equivalent to saying that
the short sequences

0→ im fn → Mn → im fn−1 → 0

are exact for all n.
Exact sequences are widely used in homological algebra and algebraic

topology, facilitating many types of computations.
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DEFINITION 6.3.8. If M is a module over a ring R, a set of elements
S = {m1, . . . } ∈ M will be called a generating set if every element m ∈ M
can be expressed in terms of the elements of S

m = ∑
mi∈S

ri ·mi

with the ri ∈ R.
A module is said to be finitely generated if it has a finite generating set.

EXAMPLE 6.3.9. As in example 6.3.3 on page 223Let V be an
n-dimensional vector space over a field F and let M be the n × n
permutation matrix

M =


0 0 0 · · · 1
0 1 0 · · · 0

0 0 1
. . . 0

1 0 0 · · · 0


Then, as a module over k[X] (defined as in example 6.3.3 on page 223), V
has a single generator, namely

g =


1
0
...
0


This is because

Mg =


0
1
...
0


and Mkg = gk, the kth basis element of V. So all of the basis-elements of V
are in the orbit of powers of M and of k[X].

In analogy with proposition 4.6.7 on page 62, we have:

PROPOSITION 6.3.10. Every R-module is a quotient of a free R-module.

PROOF. If M is an R-module with generating set {m1, . . . }, let F be free
on generators {e1, . . . }— one for each of the mi. We define a map

f : F → M

∑ rjej 7→∑ rjmj

This is clearly surjective, so that

F
ker f

∼= M

□
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It is interesting to consider what properties of vector-spaces carry over
to modules, or whether we can do a kind of “linear algebra” over a general
ring. This is a deep field of mathematics that includes several areas, such
as group-representations (see [40]), homological algebra (see [109]) and al-
gebraic K-theory (see [74]).

Even a simple question like
“Is a submodule of a finitely generated module finitely
generated?”

can have a complex answer. For instance, let R = k[X1, . . . ] — a polyno-
mial ring over an infinite number of variables. It is finitely generated as a
module over itself (generated by 1). The submodule of polynomials with
vanishing constant term is not finitely generated since every polynomial
has a finite number of variables.

We need to find a class of modules that is better-behaved.

DEFINITION 6.3.11. A module M over a ring R will be called noetherian
if all of its submodules are finitely generated — this is equivalent to saying
that all ascending chains of submodules of M

M1 ⊂ M2 ⊂ · · · ⊂ Mi ⊂ · · ·
becomes constant from some finite point on, i.e. Mt = Mt+i for all i > 0. A
module will be said to be Artinian if every descending chain of submodules

M1 ⊃ M2 ⊃ · · · ⊂ Mi ⊃ · · ·
becomes constant from some finite point on.

REMARK. A ring is noetherian if and only if it is noetherian as a module
over itself.

PROPOSITION 6.3.12. Let

0→ M1
f−→ M2

g−→ M3 → 0

be a short exact sequence (see definition 6.3.7 on page 224) of modules over a ring.
Then M2 is noetherian or Artinian if and only if M1 and M3 are both noetherian
or Artinian, respectively.

PROOF. We will prove this in the noetherian case; the Artinian case is
almost identical. Clearly, if M2 is noetherian, M1 will inherit this property
since it is a submodule. Any increasing chain of submodules of M3 will lift
to one in M2, which becomes constant from some finite point on. It follows
that M2 being noetherian implies that M1 and M3 are also noetherian.

Conversely, suppose that M1 and M3 are noetherian and

N1 ⊂ N2 ⊂ · · · ⊂ Ni ⊂ · · ·
is an increasing sequence of submodules of M2. Since M3 is noetherian, this
image of this sequence in M3 will become constant from some finite point
on, say k. Then

(6.3.1)
Ni

Ni ∩M1
=

Ni+1

Ni+1 ∩M1
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for i > k. Since M1 is noetherian, the sequence

Nj ∩M1 ⊂ Nj+1 ∩M2 ⊂ · · ·
will become constant from some finite point on — say j = t. Then, for
i > max(k, t), equation 6.3.1 on the preceding page and

Ni ∩M1 = Ni+1 ∩M1

imply that Ni = Ni+1. □

COROLLARY 6.3.13. If R is a noetherian ring, then Rn is a noetherian mod-
ule.

PROOF. This is a simple induction on n. If n = 1, R1 = R is noetherian
over itself since it is a noetherian ring. For n > 1 we use proposition 6.3.12
on the facing page with the short exact sequence

0→ R
f−→ Rn+1 g−→ Rn → 0

where

g(r1, . . . , rn+1) = (r1, . . . , rn)

f (r) = (0, . . . 0, r)

where the image of f is the n + 1st entry in Rn+1. □

Now we can define a large class of well-behaved modules:

LEMMA 6.3.14. If R is a noetherian ring, a module, M over R is noetherian
if and only if it is finitely generated.

PROOF. If M is noetherian it must be finitely generated (since its sub-
modules, including itself, are). Suppose M is finitely generated, say by
generators (a1, . . . , an). Then there exists a surjective homomorphism of
modules

Rn f−→ M
(r1, . . . , rn) 7→ r1 · a1 + · · ·+ rn · an

This map fits into a short exact sequence

0→ ker f → Rn f−→ M→ 0

and proposition 6.3.12 on the preceding page and corollary 6.3.13 imply the
conclusion. □

Although noetherian modules are somewhat “well-behaved,” they still
are more complex than vector-spaces. For instance, a subspace of a vector
space of dimension n must have dimension < n. The ring k[X, Y, Z] is
a module over itself with one generator: 1. On the other hand, the ideal
(X, Y, Z) ⊂ k[X, Y, Z], is a proper submodule that requires three generators.

The most “straightforward” modules are the free ones like Rn above.
They are closely related to projective modules:

DEFINITION 6.3.15. If R is a ring and P is an R-module, then P is said
to be projective if it is a direct summand of a free module.
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REMARK. In other words, P is projective if there exists an R-module, Q,
such that P⊕Q = Rn for some n. All free modules are (trivially) projective
but not all projective modules are free. For instance, if R = Z6, note that
Z2 ⊕Z3 = Z6 as rings so Z2 and Z3 are projective modules that are not
free.

Projective modules have an interesting property that is often (usually?)
used to define them:

PROPOSITION 6.3.16. Let R be a ring and let P be a projective module over
R. If α: M→ N is a surjective homomorphism of R-modules and β: P→ N is any
homomorphism, then a homomorphism, γ: P→ M exists that makes the diagram

(6.3.2) P

β
��

γ

~~

M
α
// N

commute.

PROOF. Since P is projective, there exists a module Q such that P ⊕
Q = Rn for some value of n. Consider the diagram

P⊕Q

β⊕1
��

M⊕Q
α⊕1
// N ⊕Q

and note that

P⊕Q = Rn =
n⊕

i=1

xi · R

where the xi ∈ Rn are its generators. Since α is surjective, α ⊕ 1 will also
be, and we can choose yi ∈ M⊕ Q such that (α⊕ 1)(yi) = (β⊕ 1)(xi) for
i = 1, . . . , n. Then we can define a homomorphism

G: Rn → M⊕Q
xi 7→ yi

making the diagram

P⊕Q
G

yy

β⊕1
��

M⊕Q
α⊕1
// N ⊕Q
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commute. Since (α⊕ 1)(Q) = Q, we can extend diagram this to a commu-
tative diagram

P⊕Q
G

yy

β⊕1
��

M⊕Q
α⊕1
//

p1

��

N ⊕Q

p2

��

M
α

// N

where the pi are projections to the factors. If γ is the composite P ↪→ P⊕
Q G−→ M⊕Q

p1−→ M, it will have the desired properties. □

EXAMPLE 6.3.17. Let R = C[X] and let A be an n× n matrix over C. If
V = Cn is a vector-space, we can make it a module over R by defining

X · v = Av

for all v ∈ V — this is actually a module over the commutative ring C[A]
— see exercise 4 on page 171. We know that some element of R annihilates
V because the Cayley-Hamilton theorem (see theorem 6.2.57 on page 199)
states that A “satisfies” its characteristic polynomial, i.e., χA(A) = 0. Be-
cause R is a principal ideal domain (see corollary 5.3.10 on page 119), the
annihilator of V is a principal ideal (p(X)) such that χA(X) ∈ (p(X)), i.e.
p(X)|χA(X). The polynomial, p(X), is called the minimal polynomial of A.

In general, the minimal polynomial of a matrix is not equal to its char-
acteristic polynomial. For instance, if A = 3 · I, where I is the identity
matrix then p(X) = X− 3 and χA(X) = (X− 3)n.

We can use this example to get a shorter, more straightforward proof of
the Cayley-Hamilton Theorem (theorem 6.2.57 on page 199).

EXAMPLE 6.3.18. Let A be an n× n matrix acting on an n-dimensional
vector-space, V with basis {x1, . . . , xn}, and call the generator (representing
A itself) of C[A] be γ. Then

γ · xi =
n

∑
j=1

Ai,jxj

or

γI

 x1
...

xn

 = A ·

 x1
...

xn


and

(6.3.3) (γI − A)

 x1
...

xn

 =

 0
...
0


Now we apply Cramer’s Rule (theorem 6.2.29 on page 177) to this, partic-
ularly equation 6.2.15 on page 177, to get

det (γI − A) · xi = det(M̄i) = 0
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where M = γI − A and M̄i is the result of replacing the ith column of M by
the right side of equation 6.3.3 on the previous page — zeroes. It follows
that det (γI − A) = χA(γ) annihilates all of the xi. If we get a matrix-
representation (i.e., by replacing γ by A) we get a matrix that annihilates
all basis-elements of V, i.e., the zero-matrix.

EXERCISES.

1. If A ⊂ R is an ideal in a commutative ring, R, then A is also an R-
module. Show that, if A is a free R-module, it must be of the form A = (x)
where x ∈ R is a non-zero divisor.

2. Let f : M1 → M2 be a homomorphism of modules (over a commuta-
tive ring, or left-modules over a noncommutative one). Suppose A ⊂ M1
is a submodule and

f |A: A→ f (A)

Show that there is an induced map

f̄ :
M1

A
→ M2

f (A)

6.3.2. Modules over principal ideal domains. When a ring is a PID, it
turns out one can easily classify modules over it. Throughout this section,
R will denote a PID — see definition 5.3.8 on page 119.

PROPOSITION 6.3.19. If S ⊂ A is a submodule of a free R-module, then S is
free. If rank(A) < ∞, then

rank(S) ≤ rank(A)

REMARK. Compare this with proposition 4.6.6 on page 61. The proof is
essentially the same. If we had proved the current result first, we could’ve
regarded proposition 4.6.6 on page 61 as a corollary with R = Z.

EXAMPLE 6.3.20. Exercise 1 produces plenty of counterexamples if R
is not a PID. For instance, Z6 is free as a Z6-module, but the ideal (i.e.,
submodule) 2Z6 = {0, 2, 4} is not because 3 · 2 = 3 · 4 = 0 ∈ Z6 so none of
these can be free generators of 2Z6. The ideal (X, Y) ⊂ C[X, Y] is another
counterexample.

REMARK. There’s a whole subfield of algebra that studies the extent to
which proposition 6.3.19 fails in general (among other things). It is called
Algebraic K-theory — see [106].

PROOF. Let X be a free basis for A. By the Well Ordering Axiom of set
theory (see axiom 14.2.9 on page 465), we can order the elements of X

x1 ≻ x2 ≻ · · ·
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so that every subset of X has a minimal element. Note that this ordering is
completely arbitrary — we only use the fact that such an ordering exists.

If s ∈ S, we have

s = ∑ rixi

— a unique finite sum, with ri ∈ R. Define the leading term, λ(s) = rαxα —
the highest ordered term in the sum. Let Y ⊂ X be the set of basis elements
that occur in these leading terms of elements of S. For each y ∈ Y, there is
at least one s ∈ S whose leading term is r · y. Let

(6.3.4) I(y) = {0} ∪ {r ∈ R|λ(s) = r · y for some s ∈ S}
It is not hard to see that

I(y) ⊂ R

is an ideal — since λ(r′s) = r′λ(s). Since R is a PID, it follows that I(y) =
(ry), and there exists a set of elements Sy ⊂ S whose leading terms are ryy.
The Axiom of Choice (see theorem 14.2.11 on page 465) implies that we can
select one such element for each y ∈ Y — i.e. we can define a function

f : Y → S

where f (y) is some (arbitrarily selected) element of Sy. We claim that the
set

B = { f (y)|y ∈ Y}
is a basis for S. We must demonstrate two things:

(1) the set B is linearly independent. This follows immediately from the
fact that its leading terms are multiples of distinct basis elements
of A. Suppose we have a linear combination

n

∑
i=1

riyi + H = 0

where H is the non-leading terms. Of those leading terms, one is
ordered the highest — say rαyα and it can never be canceled out
by any other term. It follows that rα = 0 and a similar argument
applied to the remaining terms eventually leads to the conclusion
that all of the coefficients are 0.

(2) the set B generates S. Suppose not and suppose g ∈ S \ ⟨B⟩ has the
property that λ(g) = ry for r ∈ R and y ∈ Y is minimal (in the
ordering on X — axiom 14.2.9 on page 465). Then r ∈ I(g) = (rg)
so that r = r′ · rg and r′ · f (y) ∈ ⟨B⟩ also has leading term ry. It
follows that

g− r′ · f (y) ∈ S \ ⟨B⟩
has a leading term strictly lower than that of g — a contradiction.

□

We also get a form of the Chinese Remainder Theorem:
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PROPOSITION 6.3.21. Let {r1, . . . , rk} be a set of elements of R such that
gcd(ri, rj) = 1 (see Proposition 5.3.6 on page 118) whenever i ̸= j. Then

R
(r1 · · · rk)

∼=
k⊕

i=1

R
(ri)

PROOF. The hypotheses imply that

(ri) + (rj) = R

whenever i ̸= j and

(r1 · · · rk) =
k⋂

i=1

(ri)

so the conclusion follows from exercise 12 on page 116. □

LEMMA 6.3.22. Let r, s ∈ R with t = gcd(r, s). Let α, β ∈ R be such that
αr + βs = t. Then the matrix

A =

[
α β
−s/t r/t

]
has inverse [

r/t −β
s/t α

]
and

A
[

r
s

]
=

[
t
0

]
If At is the transpose of A, then[

r s
]

At =
[

t 0
]

REMARK. The existence of α and β follows from the fact that (r, s) =
(t).

PROOF. Straightforward computation. □

THEOREM 6.3.23. If M is a finitely generated R-module then

(6.3.5) M ∼= F⊕ R
(g1)

⊕ · · · ⊕ R
(gk)

where F is free and g1
∣∣ g2

∣∣ · · · ∣∣ gk. The free submodule, F, and the R/(gi) are
uniquely determined by M and are called its invariant factors.

REMARK. The proof is very similar to that of theorem 4.6.8 on page 62
except that we do not have the Euclidean algorithm to simplify a matrix.
Lemma 6.3.22 takes its place.

PROOF. Propositions 6.3.10 on page 225 and 6.3.19 on page 230 imply
that

M ∼= G
K
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where G and K are both free modules of respective ranks n and m ≤ n. If
{x1, . . . , xm} is a free basis for K and {y1, . . . , yn} is one for G then

yi =
n

∑
j=1

ai,jxj

the m× n matrix A = [ai,j] expresses how K fits in G and the quotient. We
consider ways of “simplifying” this matrix in such a way that the quotient
G/K remains unchanged. Multiplication on the right by an invertible ma-
trix corresponds to a change of basis for K and on the left a change of basis
for G. It follows that the quotient is unchanged. As in theorem 4.6.8 on
page 62, we do row-reduction, and then column-reduction.

We’ll call this part of our algorithm, Diagonalization:
This consists of two phases: row-reduction and column-reduction.
By permuting rows and columns, if necessary, assume a1,1 ̸= 0. If this

is impossible, we have a matrix of zeros and there is no work to be done.
We will call the (1, 1) position in the matrix, the pivot.
Now we scan down column 1.

(1) If a1,1|ak,1 with k > 1, we subtract (a1,1/ak,1)× row 1 from row k,
replacing ak,1 by 0.

(2) If a1,1 ∤ ak,1, perform two steps:
(a) swap row k with row 2 so ak,1 becomes 0 and a2,1 becomes the

original value of ak,1,
(b) apply lemma 6.3.22 on the preceding page and left-multiply

the matrix A by a matrix whose first two rows and columns
are

(6.3.6)
[

α β
−a2,1/δ a1,1/δ

]
and whose remaining rows are the identity matrix. Here δ =
gcd(a1,1, a2,1), α and β are such that αa1,1 + βa2,1 = δ. Since
this matrix is invertible, it represents a basis change of K and
has no effect on the quotient.

The effect is8:

a1,1 → δ

a2,1 → 0
ak,1 → 0

Repeating these operations for all lower rows ultimately clears all elements
of column 1 below a1,1 to 0. This completes row-reduction for column 1.

Now we do column-reduction on row 1, ultimately clearing out all el-
ements to the right of a1,1 to 0. Here, we right-multiply the matrix by the
transpose of a matrix like that in equation 6.3.6.

After these steps, our matrix looks like[
ā1,1 0
0 M̄

]
8Where the symbol ‘→’ means “is replaced by.”
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where M̄ is an (m− 1)× (n− 1) matrix.
After recursively carrying out our algorithm above on this and the

smaller sub-matrices that result, we get the diagonal form:
ā1,1 0 0 · · · 0
0 ā2,2 0 · · · 0
...

...
. . . · · · ...

0 0 0 · · · 0


where all off-diagonal entries are 0 and we have n − m columns of 0’s on
the right. This matrix means that the new bases for K and F satisfy

yi = āi,i · xi

for 1 ≤ i ≤ m. This completes the phase of the algorithm called diagonal-
ization.

Now we may run into the problem āi,i ∤ āi+1,i+1. This is easily resolved:
just add column i + 1 to column i to give[

āi,i 0
āi+1,i+1 āi+1,i+1

]
Left multiplication by [

α β
−āi+1,i+1/δ āi,i/δ

]
where αāi,i + βāi+1,i+1 = δ = gcd(āi,i, āi+1,i+1) (as in lemma 6.3.22 on
page 232), gives [

δ βāi+1,i+1
0 āi,i āi+1,i+1/δ

]
At this point, we subtract (βāi+1,i+1/δ)× column i from column i+ 1 to get[

δ 0
0 āi,i āi+1,i+1/δ

]
and we have δ

∣∣ (āi,i āi+1,i+1/δ) = lcm(āi,i, āi+1,i+1). Notice that the product
of these diagonal entries is the same as before. On the other hand, the
number of distinct prime factors in δ must be strictly less than those in āi,i
and āi+1,i+1 (equality only occurs if āi,i and āi+1,i+1 have the same prime
factors).

Note that this operation shifts prime factors to the right and down.
After a finite number of steps, ā1,1 must stabilize (i.e. remain constant over
iterations of this process) since it has a finite number of prime factors. One
can say the same of ā2,2 as well. Eventually the entire list of elements

{ā1,1, . . . , ām,m}
must stabilize, finally satisfying the condition

ā1,1
∣∣ · · · ∣∣ ām,m

� each nonzero entry ai,i results in a direct summand R/(ai,i), if ai,i is
not a unit, and 0 otherwise.
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� each column of zeros contributes a direct summand of R to F in
equation 6.3.5 on page 232.

□

EXERCISES.

3. In theorem 6.3.23 on page 232 why are F and the invariant factors
uniquely determined by M?

4. If R is a PID and A is an m× n matrix over R, there exists an invert-
ible m×m matrix, S, and an invertible n× n matrix, T, such that

SAT

is a diagonal matrix with the property that the diagonal entries {di} satisfy
di
∣∣ di+1 for all i. This is called the Smith Normal Form of A and the proof

of theorem 6.3.23 on page 232 gives an algorithm for computing it. The
matrices S and T are computed by keeping careful track of the steps in
the algorithm (i.e., adding a row to another is multiplication by a suitable
elementary matrix). Find the Smith normal form of the matrix (over Z): 2 4 4

−6 6 12
10 −4 −16



6.3.3. Jordan Canonical Form. In this section, we will apply a knowl-
edge of rings and modules to find a standard form for matrices. It is well-
known that not all matrices can be diagonalized — for instance

B =

[
1 1
0 1

]
has a single eigenvalue of 1 and eigenvector[

1
0

]
which doesn’t span C2. All matrices can be put into Jordan Canonical Form,
which is as close as one can get to diagonalization.

Marie Ennemond Camille Jordan (1838 – 1922) was a French mathematician
known for (besides Jordan Canonical Form) the Jordan Curve Theorem and
the Jordan–Hölder theorem (see theorem 4.9.5 on page 85), and his influen-
tial series of books, Cours d’analyse.
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PROPOSITION 6.3.24. Let V be an n-dimensional vector-space over an C. If
A: V → V is a linear transformation, we can define an action of C[X] on V as in
example 6.3.17 on page 229:

X · v = Av

for all v ∈ V. Then, as C[X]-modules

(6.3.7) V ∼= C[X]

(p1(X))
⊕ · · · ⊕ C[X]

(pk(X))

where p1(X)
∣∣ · · · ∣∣ pk(X) where pk(X) is the minimal polynomial of V (see ex-

ample 6.3.17 on page 229),

k

∑
i=1

deg pi(X) = n

and
k

∏
i=1

pi(X) = χA(X)

the characteristic polynomial of A.

PROOF. Equation 6.3.7 follows immediately from theorem 6.3.23 on
page 232 since C[X] is a PID (see corollary 5.3.10 on page 119). That pk(X)
is the minimal polynomial of V follows from the fact that it is the lowest-
degree polynomial that annihilates the right side of equation 6.3.7. The
statement regarding dimensions follows from

dim
C[X]

(p(X))
= deg p(X)

To prove the final statement, note that each of the summands

C[X]

(pi(X))

represents an A-invariant subspace of V so there exists a basis of V for
which A is a block-matrix

A =


A1 0 · · · 0

0
. . . 0

...
. . .

...
0 · · · 0 Ak


where the Ai are the restrictions of A to each of these invariant subspaces
(in this basis!). We claim that, in the subspace

C[X]

(pi(X))

the characteristic polynomial of Ai is just pi(X), same as the minimum
polynomial. This is because they have the same degree, and one must di-
vide the other. The conclusion follows from exercise 16 on page 201. □
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COROLLARY 6.3.25. Under the assumptions of proposition 6.3.24 on the pre-
ceding page we have an isomorphism of C[X]-modules

V ∼= C[X]

(X− λ1)α1
⊕ · · · ⊕ C[X]

(X− λm)αm

where {λ1, . . . , λm} are the eigenvalues of A and
m

∑
i=1

αi = n

Each summand
C[X]

(X− λi)αi

is isomorphic to an A-invariant subspace, Vi, of V and there exists a basis of V in
which A is a block matrix

A =


A1 0 · · · 0

0
. . . 0

...
. . .

...
0 · · · 0 Am


where

Ai = A|Vi ⊂ V

PROOF. Simply factor the {pj(X)} in proposition 6.3.24 on the facing
page into powers of linear factors (possible in C). These factors are pair-
wise relatively prime to each other so the conclusion follows from proposi-
tion 6.3.21 on page 232. □

Our final conclusion is

THEOREM 6.3.26. Let V be an n-dimensional vector-space over an C. If
A: V → V is a linear transformation, there exists a basis for V such that A is a
block-matrix

A =


Jα1(λ1) 0 · · · 0

0
. . . 0

...
. . .

...
0 · · · 0 Jαm(λm)


where the block

(6.3.8) Jα(λ) =



λ 0 0 · · · 0

1 λ
. . . . . .

...

0 1
. . . . . . 0

... · · · . . . λ 0
0 · · · 0 1 λ


is an α× α matrix with λ on the main diagonal, 1’s in the diagonal below it and
zeros elsewhere. It is called a Jordan Block.
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REMARK. Note that J1(λ) = [λ]. If all the eigenvalues are distinct, the
Jordan blocks are all of size 1, and we get the usual diagonalized form of the
matrix,

This representation is called the Jordan Canonical Form of the matrix A.
The form given here is the transpose of the usual Jordan block, due to our
applying the matrix A on the left.

PROOF. We need to show that

Ai: Vi =
C[X]

(X− λi)αi
→ C[X]

(X− λi)αi

in corollary 6.3.25 on the preceding page can be put in the form Jαi (λi). We
claim that the image of

{e1 = 1, e2 = X− λi, . . . , eαi = (X− λi)
αi−1}

in Vi is a basis. The {ej} must be linearly independent since a linear rela-
tion would imply that a polynomial of degree αi − 1 could annihilate Vi —
contradicting the idea that (X− λi)

αi is its minimal polynomial. The ei also
span Vi since all linear combinations of the Xi can be written in terms of
them. The matrix Ai acts like multiplication by X in the quotient

C[X]

(X− λi)αi

and it is not hard to see that X · ej = λiej + ej+1 for j = 1, . . . , αi − 1 and
X · eαi = λieαi . Written as a matrix, this is precisely equation 6.3.8 on the
previous page. □

We will do some computations. Let

A =


−5 −1 −2 −1 −4
−1 3 2 −1 0
21 2 5 4 11
32 4 8 7 18

0 0 0 0 1


The characteristic polynomial is

χA(λ) = det(λI − A)

= λ5 − 11λ4 + 47λ3 − 97λ2 + 96λ− 36

= (λ− 1) · (λ− 3)2 · (λ− 2)2

So its eigenvalues are 1, 2, and 3.
Eigenvalue 1. We compute the nullspace of A− I. This turns out to be

the span of

v1 =


1
−3
2
−3
−1





6.3. MODULES 239

Eigenvalue 2. The nullspace of A− 2I is the span of
1
−1
−1
−4
0


Something odd happens here: the nullspace of (A− 2I)2 is two-dimensional:

1
0
−2
−4
0

 ,


0
1
−1
0
0


This is how we detect Jordan blocks: the nullspace of (A − λI)n expands
with increasing n — up to the dimension of the Jordan block. If we compute
the nullspace of (A− 2I)3 we get the same two-dimensional subspace. This
means the Jordan block for the eigenvalue 2 is two-dimensional. For a basis
of this, we’ll take

v2 =


0
1
−1
0
0


and

v3 = (A− 2I)v2 =


1
−1
−1
−4
0


Eigenvalue 3: The nullspace of A− 3I is the span of

1
−1
−3/2
−4
0


and the nullspace of (A− 3I)2 is the span of

1
0
−9/4
−9/2

0

 ,


0
1
−3/4
−3/2

0
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so we have another Jordan block of size 2. As its basis, we’ll take

v4 =


0
1
−3/4
−3/2

0


and

v5 = (A− 3I)v4 =


1
−1
−3/2
−4
0


If we assemble these basis vectors into an array (as columns), we get

P =


1 0 1 0 1
−3 1 −1 1 −1

2 −1 −1 − 3
4 − 3

2
−3 0 −4 − 1

2 −4
−1 0 0 0 0


and

P−1 AP =


1 0 0 0 0
0 2 0 0 0
0 1 2 0 0
0 0 0 3 0
0 0 0 1 3


which is the Jordan Canonical Form for A.

EXERCISES.

5. Show, using Jordan Canonical Form, that the “simple proof” of the
Cayley-Hamilton Theorem in exercise 15 on page 201 can always be made
to work.

6. If A is an n× n matrix, use the Jordan Canonical Form to show that

Tr (A) =
n

∑
i=1

λi

(see definition 6.2.53 on page 196) where the {λi} are the (not necessarily
distinct) n eigenvalues of A.

7. If λ ̸= 0, show that
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Jα(λ)
n =



λn 0 0 · · · 0

nλn−1 λn . . . . . .
...

0 nλn−1 . . . . . . 0
... · · · . . . λn 0
0 · · · 0 nλn−1 λn


where Jα(λ) is defined in equation 6.3.8 on page 237. It follows that powers
of Jordan blocks are not diagonal unless the block size is 1.

8. Use exercise 7 on the preceding page to get a closed-form expression
for the nth power of

A =


−5 −1 −2 −1 −4
−1 3 2 −1 0
21 2 5 4 11
32 4 8 7 18

0 0 0 0 1


9. If M is a square matrix over C with Mn = I for some positive integer

n, use theorem 6.3.26 on page 237 to show that M is diagonalizable and that
its eigenvalues have absolute value 1.

6.3.4. Prime decompositions. When a ring is not a PID, no simple clas-
sification for modules over it like theorem 6.3.23 on page 232 exists.

It is still possible to represent modules over a noetherian ring in terms
of prime ideals of that ring.

DEFINITION 6.3.27. Let m ∈ M be an element of a module over a ring,
R. Then the annihilator of m, denoted ann(m), is defined by

ann(m) =
{

r ∈ R
∣∣r ·m = 0

}
The annihilator of M is defined by

Ann(M) =
{

r ∈ R
∣∣∀m∈M r ·m = 0

}
=

⋂
m∈M

ann(m)

A prime ideal p ⊂ R is associated to M if it annihilates an element m ∈
M. The set of associated primes is denoted Assoc(M).

REMARK. It is not hard to see that ann(m), Ann(M) ⊂ R are always
ideals. The following properties are also easy to verify:

(1) If m ∈ M then ann(m) = R if and only if m = 0.
(2) If m ∈ M and s ∈ R, then ann(m) ⊆ ann(s ·m).

It is not at all obvious that any associated primes exist, since Ann(M) is
usually not prime.

In studying the structure of ideals that annihilate elements of a module,
we begin with:
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LEMMA 6.3.28. Let M be a finitely generated module over a noetherian ring
R. If I ⊂ R is an ideal that is maximal among ideals of R of the form ann(m) for
m ̸= 0 ∈ R, then I is prime.

REMARK. We will construct an ascending chain of ideals — the fact
that R is noetherian implies that this chain has a maximal element.

This shows that, for a finitely generated module over a noetherian ring,
at least one associated prime exists.

PROOF. Suppose r, s ∈ R and rs ∈ I but s /∈ I. Then we will show that
r ∈ I. We have

rs ·m = 0
but s ·m ̸= 0. It follows that (r) + I annihilates sm ∈ M. Since I is maximal
among ideals that annihilate elements of M, we have (r) + I ⊆ I so r ∈
I. □

We go from this to show that many associated primes exist:

COROLLARY 6.3.29. Let M be a finitely generated module over a noetherian
ring, R. If Z ⊂ R is the set of elements that annihilate nonzero elements of M,
then

Z =
⋃

p∈Assoc(M)

p

PROOF. The definition of Assoc(M) implies that⋃
p∈Assoc(M)

p ⊂ Z

If x ∈ Z, then x ·m = 0 for m ∈ M, m ̸= 0. The submodule R ·m ⊂ M has
an associated prime, p = ann(y ·m), by lemma 6.3.28 on page 242, which is
also an associated prime to M. Since x ·m = 0, it follows that xy ·m = 0 so
that x ∈ ann(y ·m) = p. □

Our main result classifying the structure of modules is

THEOREM 6.3.30. Let M be a finitely generated module over a noetherian
ring R. Then there exist a finite filtration

0 = M0 ⊊ M1 ⊊ · · · ⊊ Mn = M

such that each
Mi+1

Mi
∼= R

pi
for prime ideals pi ⊂ R.

REMARK. This sequence {Mi} is called the prime filtration of M, and
the primes {pi} that occur here are called the prime factors of M. Note that
the {pi} might not all be distinct — a given prime ideal may occur more
than once (see examples 6.3.31 on the facing page and 6.3.32 on the next
page).

The associated primes occur among the primes that appear in this de-
composition, so that Assoc(M) is finite (for finitely generated modules over
a noetherian ring)
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PROOF. Lemma 6.3.28 on the facing page states that the maximal ideal,
p, that annihilates an element m ∈ M is prime. Consider the submodule,
M0, generated by this m ∈ M, i.e., R ·m ⊂ M. We get a homomorphism of
modules

R → R ·m
r 7→ r ·m

Since p is in the kernel, we get a homomorphism of R-modules

g: R/p→ R ·m
Since p is maximal, any element in the kernel of g must lie in p, so

R
p
∼= R ·m = M1

Now, form the quotient M/M1 and carry out the same argument, forming
a submodule M′2 ⊂ M/M1 and its inverse image over the projection

M→ M/M1

is M2. We continue this process over and over until we get to 0. It must
terminate after a finite number of steps because M is finitely generated over
a noetherian ring (see definition 6.3.11 on page 226). □

EXAMPLE. If M = Z60 is regarded as a module over Z, then a maximal
ideal is of the form (p) ⊂ Z for some prime p. For instance, (2) annihilates
M1 = 30 ·Z60 and M/M1 = Z30. The ideal (2) annihilates M2 = 15 ·Z30
and we get M1/M2 = Z15. The ideal (3) annihilates 5 ·Z15 and we are
done (the final quotient is Z5). We can lift these modules up into M to get

0 ⊂ 30 ·Z60 ⊂ 15 ·Z60 ⊂ 5 ·Z60 ⊂ Z60

with prime factors, Z2, Z2, Z3 and Z5, respectively.

EXAMPLE 6.3.31. Returning to example 6.3.17 on page 229, let p ⊂ R be
a prime ideal that annihilates an element v ∈ V. Then p = (X − λ) and λ
must be an eigenvalue. The element, v, annihilated by p is the corresponding
eigenvector. A simple induction shows that all of the prime ideals we get in
the prime decomposition of V are of the form (X − λi) where the λi run
through the eigenvalues of A.

Here’s a much more detailed example:

EXAMPLE 6.3.32. Let R = C[X, Y]/a where

(6.3.9) a = (Y3, XY + Y, X2 + Y2 − 1) ⊂ C[X, Y]

Lemma 5.2.9 on page 114 implies that the prime ideals of R are images
under the projection

p: C[X, Y]→ C[X, Y]/a = R

of the prime ideals of C[X, Y] that contain a. We will skip ahead and use
theorem 12.2.3 on page 420 to conclude that the prime ideals of C[X, Y] are
either of the form ( f (X, Y)) for some irreducible polynomial, f , or of the
form (X − α, Y − β) for α, β ∈ C. We reject the possibility of a principal
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ideal because f (X, Y)|Y3 implies that f (X, Y) = Y but that does not divide
X2 + Y2 − 1.

If a ⊂ (X− α, Y− β), then equations like

p1(X, Y)(X− α) + q1(X, Y)(Y− β) = Y3

p2(X, Y)(X− α) + q2(X, Y)(Y− β) = XY + Y

p3(X, Y)(X− α) + q3(X, Y)(Y− β) = X2 + Y2 − 1

must hold, for some pi, qi ∈ k[X, Y]. The top equation forces β = 0 (i.e., set
X = α). This also satisfies the second equation since we can set p2 = 0 and
q2 = X + 1. The bottom equation becomes

p3(X, Y)(X− α) + q3(X, Y)Y = X2 + Y2 − 1

We simplify this by setting q3 = Y and subtracting to get

p3(X, Y)(X− α) = X2 − 1 = (X− 1)(X + 1)

which implies that α = ±1. It follows that P1 = (X − 1, Y) and P2 =
(X + 1, Y) are the only two ideals of the form (X− α, Y− β) that contain a.

Let x, y ∈ R be the images of X and Y, respectively under the projection,
p above — they clearly generate R as a ring. Then the prime ideals of R are
p1 = (x− 1, y) and p2 = (x + 1, y). In addition, lemma 5.2.10 on page 114
implies that

R
pi

=
C[X, Y]

Pi
= C

for i = 1, 2.
Now we will compute a prime filtration of R as a module over itself.

Since y2 · p2 = 0, we regard y2 · R as a candidate for R1. Let us compute
what happens to {1, x, y} when we multiply by y2

y2 · 1 = y2

y2 · x = y · (−y) = −y2 because of the relation xy + y = 0
in equation 6.3.9

y2 · y = 0 because of the relation y3 = 0
in equation 6.3.9

It follows that y2 · R = C · y2 = C and we get an isomorphism

R1 = y2 · R =
R
p2

= C · y2

Following the proof of theorem 6.3.30 on page 242, we form the quotient

(6.3.10) R′ =
R
R1

=
k[X, Y]

(Y3, Y2, XY + Y, X2 + Y2 − 1)

=
k[X, Y]

(Y2, XY + Y, X2 − 1)

— where we eliminated Y3 since (Y3) ⊂ (Y2) and eliminated the Y2 term
from X2 + Y2 − 1. Notice that p2 · y = 0. This suggests using y · R′ as
our second prime quotient. As before, we enumerate the effect of y· on the
generators of R′:
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y · 1 = y

y · x = −y because of the relation xy + y = 0
in equation 6.3.10

y · y = 0 because of the relation y2 = 0
in equation 6.3.10

Again, we conclude that y · R′ = C, generated by y, and get
R
p
= y · R′ = C · y

and we take the inverse image of y · R′ over the projection R→ R/R1 = R′

to get R2 = y · R and a partial prime filtration

0 ⊊ y2 · R ⊊ y · R
Continuing, we form the quotient again

(6.3.11) R′′ =
R′

C · y =
k[X, Y]

(Y2, Y, XY + Y, X2 − 1)
=

k[X, Y]
(Y, X2 − 1)

and notice that p2 · (x− 1) = 0. Computing (x− 1) · R′′ gives

(x− 1) · 1 = (x− 1)

(x− 1) · x = x2 − x = −(x− 1) because of the relation
x2 − 1 = 0 in equation 6.3.11

(x− 1) · y = 0 because of the relation y = 0
in equation 6.3.11

so (x− 1) · R′′ = C, generated by x− 1 and
R
p2

= (x− 1) · R′′ = C · (x− 1)

and this lifts to (x− 1) · R ⊂ R. In the final step, we get

R′′′ =
R′′

(x− 1) · R′′ =
k[X, Y]

(Y, X2 − 1, X− 1)
=

k[X, Y]
(Y, X− 1)

=
R
p1

(since (X2 − 1) ⊂ (X− 1)), so we get our complete prime filtration

0 ⊊ y2 · R ⊊ y · R ⊊ (x− 1) · R ⊊ R

The prime p2 occurs three times, and the last factor involves the prime p1.

Another interesting and useful result is called Nakayama’s Lemma —
it has a number of applications to algebraic geometry and other areas of
algebra:

LEMMA 6.3.33. Let M be a finitely-generated module over a commutative
ring, R. If a ⊂ R is an ideal with the property that

a ·M = M

then there exists an element r ∈ R such that r ≡ 1 (mod a) and

r ·M = 0
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REMARK. This result is named after Tadashi Nakayama who intro-
duced it in [78]. Special cases of it had been discovered earlier by Krull,
and Azumaya had published the general case in [7] before Nakayama’s pa-
per. The version for noncommutative rings is called the Krull-Azumaya
Theorem.

PROOF. Let m1 . . . , mk denote the generators of M over R so

M = R ·m1 + · · ·+ R ·mk

Since a ·M = M, we have

mi =
k

∑
j=1

Ai,jmj

for some k× k matrix A = [Ai,j] with entries in a. Subtracting gives

n

∑
j=1

(δi,j − Ai,j)mj = 0

where δi,j is the (i, j)th entry of the identity matrix, or

δi,j =

{
1 if i = j
0 otherwise

or

(I − A)

 m1
...

mk

 = 0

Cramer’s Rule (theorem 6.2.29 on page 177) implies that

det(I − A)mi = Ci = 0

for all i, where Ci is the determinant of the matrix one gets by replacing the
ithcolumn by 0’s. So r ∈ R in the statement of the lemma is just det(I − A).

We claim that det(I − A) = 1 + a for some a ∈ a. The determinant of
I − A is what one gets from the characteristic polynomial pA(x) by setting
x = 1. Since the characteristic polynomial is monic, one term is equal to 1
and the remaining terms are linear combinations of elements of a. □

Here’s a consequence of Nakayama’s lemma (a special case of the Krull
Intersection Theorem — see [63]):

LEMMA 6.3.34. Let m ⊂ R be a maximal ideal of a noetherian ring, R or an
arbitrary ideal of a noetherian domain. Then

∞⋂
j=1

mj = (0)

PROOF. Call this infinite intersection b. Since R is noetherian, b is
finitely generated as a module over R. Since

m · b = b
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Nakayama’s Lemma ( 6.3.33 on page 245) implies that b is annihilated by
an element x ∈ R such that x ≡ 1 (mod m) and such an element is a unit
so b = (0).

If R is an integral domain and m is an arbitrary ideal, x ̸= 0 and x · b = 0
implies b = 0 since R has no zero-divisors. □

We also get a result for local rings:

COROLLARY 6.3.35. Let R be a local ring (see definition 5.2.8 on page 113)
with unique maximal ideal m ⊂ R. If M is an R-module with the property that

m ·M = M

then M = 0.

PROOF. Nakayama’s lemma implies that there exists r ∈ R such that
r ≡ 1 (mod m) and r ·M = 0. Since R is a local ring, m is the only maximal
ideal and therefore equal to the intersection of all maximal ideals. Exer-
cise 10 on page 116 implies that this r is a unit, i.e., has a multiplicative
inverse, s ∈ R. Consequently

r ·M = 0 =⇒ s · r ·M = 0 =⇒ 1 ·M = 0

and the conclusion follows. □

EXERCISES.

10. If
0→ U → V →W → 0

is a short exact sequence of vector-spaces, show that

dim V = dim U + dim W

11. Prove this basic result in linear algebra:
A vector-space over an infinite field cannot be a finite
union of proper subspaces.

12. Give a counterexample to statement in exercise 11 if the field of
definition is finite.

13. If P and M are R-modules, with P projective and

f : M→ P

is a surjective homomorphism, show that there exists a homomorphism
g: P→ M such that f ◦ g = 1: P→ P.

14. If
0→ M1 → M2 → M3 → 0

is a short exact sequences of modules over a ring R, show that

Ann(M1) ·Ann(M3) ⊂ Ann(M2) ⊂ Ann(M1) ∩Ann(M3)
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15. Let

0→ U
q−→ V

p−→W → 0

be a short exact sequence of modules, and suppose there exists a homo-
morphism

h: W → V

such that p ◦ h = 1: W → W (such short exact sequences are said to be split
and h is called a splitting map). Show that there exists an isomorphism

V ∼= U ⊕W

16. Let

0→ U
q−→ V

p−→ P→ 0

be a short exact sequence of modules, and suppose that P is a projective
module. Show that there exists an isomorphism

V ∼= U ⊕ P

6.4. Rings and modules of fractions

We begin by defining multiplicative sets:

DEFINITION 6.4.1. A multiplicative set, S, is a set of elements of a ring,
R that:

(1) contains 1
(2) is closed under multiplication.

Our main application of multiplicative sets will be in constructing rings
and modules of fractions in section 6.4. We need this concept here, to
prove 12.2.8 on page 421.

EXAMPLE. For instance, if p ⊂ R is a prime ideal, then S = R \ p is a
multiplicative set.

We have a kind of converse to this:

PROPOSITION 6.4.2. If S ⊂ R is a multiplicative set in a commutative ring
with S−1R ̸= 0, then any ideal I ⊂ R with I ∩ S = ∅ that is maximal with
respect to this property is prime.

REMARK. “Maximal with respect to this property” means that, given
any other ideal J with J ∩ S = ∅ and I ⊂ J, then I = J — i.e. I is not
properly contained in J.

Such a maximal ideal always exists, by Zorn’s Lemma ( 14.2.12 on
page 465).
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PROOF. Let I be such a maximal ideal and assume it is not prime. The
there exist a, b ∈ R such that ab ∈ I and a /∈ I and b /∈ I. Then (a+I)∩ S ̸=
∅ and (b + I) ∩ S ̸= ∅. Let s1 ∈ (a + I) ∩ S and s2 ∈ (b + I) ∩ S. Then

s1s2 ∈ (a + I)(b + I) ⊂ ab + aI+ bI+ I2 ⊂ I

which is a contradiction. □

Given a multiplicative set, we can define the corresponding ring of frac-
tions:

DEFINITION 6.4.3. Let M be a module over a ring, R, and let S ⊂ R be a
multiplicative set. Then the module S−1M consists of pairs (s, m) ∈ S×M,
usually written m/s, subject to the relation

m1

s1
≡ m2

s2

if u · (s2 ·m1− s1 ·m2) = 0 for some u ∈ S and m1, m2 ∈ M. We make S−1M
a module by defining:

m1

s1
+

m2

s2
=

s2 ·m1 + s1 ·m2

s1 · s2

r · m1

s1
=

r ·m1

s1

for all m1, m2 ∈ M, s1, s2 ∈ S, and r ∈ R.
There exists a canonical homomorphism f : M→ S−1M that sends m ∈

M to m/1 ∈ S−1M.
If M = R as a module over itself, then S−1R is a ring with multiplica-

tion defined by
r1

s1
· r2

s2
=

r1 · r2

s1 · s2
for all r1, r2 ∈ R and s1, s2 ∈ S.

REMARK. The kernel of the canonical map M → S−1M consists of
elements of M that are annihilated by elements of S. If R is an integral
domain, the map R→ S−1R is injective.

This construction has a universal property described in
proposition 10.4.8 on page 355.

PROPOSITION 6.4.4. If a multiplicative set S ⊂ R contains elements s1, s2
with the property that s1s2 = 0, then S−1M = 0, for any R-module, M.

PROOF. Suppose m ∈ M. We claim that
m
1

=
0
1
∈ S−1M

In order for this to be true, we must have

s(m− 0) = 0

for some s ∈ S. But the fact that s1s2 = 0 implies that 0 ∈ S and we can just
set

0(m− 0) = 0
□



250 6. MODULES AND VECTOR SPACES

DEFINITION 6.4.5. Let R be a ring and let h ∈ R. Then
Sh = {1, h, h2, . . . } is a multiplicative subset of A and we define
Rh = S−1

h R.

REMARK. Every element of Rh can be written in the form a/hm and

a
hm =

b
hn ⇔ hJ(ahn − bhm) = 0

for some integer J ≥ 0.

LEMMA 6.4.6. For any ring A and h ∈ A, the map

∑ aixi 7→∑
ai

hi

defines an isomorphism
A[X]/(1− hX)→ Ah

PROOF. If h = 0, both rings are zero, so assume h ̸= 0. In the ring A′ =
A[X]/(1− hX), 1 = hX so h is a unit. Let α: A→ B be a homomorphism of
rings that α(h) is a unit in B.

The homomorphism

∑ aiXi 7→∑ α(ai)α(h)−i: A[X]→ B

factors through A′ because 1− hX 7→ 1− α(a)α(h)−1 = 0.
Because α(h) is a unit in B, this is the unique extension of α to A′. There-

fore A′ has the same universal property as Ah so the two are uniquely iso-
morphic.

When h|h′ so h′ = hg, there is a canonical homomorphism
a
b
7→ ag

h′
: Ah → Ah′

so the rings Ah form a direct system indexed by the set S. □

PROPOSITION 6.4.7. Suppose A is a ring and S ⊂ A is a multiplicative set.
Then:

� If S ⊂ A and b ⊂ A is an ideal, then S−1b is an ideal in S−1 A.
� If b contains any element of S, then S−1b = S−1 A.

It follows that

COROLLARY 6.4.8. The ideals in S−1 A are in a 1-1 correspondence with the
ideals of A that are disjoint from S.

DEFINITION 6.4.9. If p ⊂ A is a prime ideal, then S = A \ p is a multi-
plicative set. Define Ap = S−1 A.

REMARK. Since any ideal b ⊈ p intersects S, it follows that S−1p is the
unique maximal ideal in S−1 A.

S−1 A is, therefore, a local ring (a ring with a unique maximal ideal). The
word “local” is motivated by algebraic geometry (where it corresponds to
the geometric concept of “local”).

If a ring is not an integral domain, it has no field of fractions. Never-
theless we can define a “closest approximation” to it
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DEFINITION 6.4.10. If R is a ring and S is the set of non-zero-divisors
of R then

Q(R) = S−1R

is called the total quotient ring of R.

REMARK. If R is an integral domain, Q(R) is just the field of fractions
of R.

EXERCISES.

1. Suppose R is a ring with a multiplicative set S and a · s = 0 for a ∈ R
and s ∈ S. Show that

a
1
= 0 ∈ S−1R

2. Use the results of proposition 5.4.2 on page 122 to show that if R is
noetherian, so is S−1R for any multiplicative set S.

3. If R and S are rings, show that Q(R × S) = Q(R) × Q(S). Here,
R× S is the ring of pairs (r, s) with pairwise addition and multiplication:

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2)

(r1, s1) · (r2, s2) = (r1 · r2, s1 · s2)

4. If R is a ring and M is an R-module, show that an element m ∈ M
goes to 0 in all localizations Ma, where a ⊂ R runs over the maximal ideals
of R if and only if m = 0.

5. If R is a ring and M is an R-module, show that Ma = 0 for all
maximal ideals a ⊂ R if and only if M = 0.

6. Suppose k is a field and R = k[[X]] is the ring of power-series in X
(see definition 5.1.7 on page 109). If F = k((X)), the field of fractions of R,
show that every element of F can be written in the form

Xα · r
for some α ∈ Z and some r ∈ R.

6.5. Integral extensions of rings

The theory of integral extensions of rings is crucial to algebraic number
theory and algebraic geometry. It considers the question of “generalized
integers:”

If Z ⊂ Q is the subring of integers, what subring, R ⊂
Q[
√

2], is like its “ring of integers”?
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DEFINITION 6.5.1. If A ⊂ K is the inclusion of an integral domain in a
field, x ∈ K will be called integral over A if it satisfies an equation

xj + a1xj−1 + · · ·+ ak = 0 ∈ A

with the ai ∈ A (i.e., is a root of a monic polynomial).

REMARK. For instance, consider Z ⊂ Q. The only integral elements
over Z are in Z itself.

In the case of Z ⊂ Q(i), we get integral elements n1 + n2 · i where
n1, n2 ∈ Z — the ring of Gaussian Integers.

PROPOSITION 6.5.2. Let R ⊂ S be integral domains. The following state-
ments are equivalent

(1) An element s ∈ S is integral over R
(2) R[s] is a finitely-generated R-module (see definition 6.3.8 on page 225).
(3) s ∈ T for some subring of S with R ⊆ T ⊆ S and T is a finitely-

generated R-module.

REMARK. Note that being finitely generated as a module is very dif-
ferent from being finitely generated as a ring or field. For instance R[X] is
finitely generated as a ring over R but, as a module, it is

∞⊕
n=0

R · Xn

PROOF. 1 =⇒ 2. If s is integral over R, then

sn + an−1sn−1 + · · ·+ a0 = 0

with the ai ∈ R, so
sn = −an−1sn−1 − · · · − a0

This means that R[s] — the ring of polynomials in s will only have polyno-
mials of degree < n, so R[s] will be finitely generated as a module over R.
Compare this argument to that used in proposition 7.2.2 on page 266.

2 =⇒ 3. Just set T = R[s].
3 =⇒ 1. Suppose that t1, . . . , tn ∈ T is a set of generators of T as an

R-module. Then

sti =
n

∑
j=1

Ai,jtj

for some n× n matrix A, so
n

∑
j=1

(δi,js− Ai,j)tj = 0

where

δi,j =

{
1 if i = j
0 otherwise

Cramer’s Rule ( 6.2.29 on page 177) implies that

det(sI − A)ti = Ci = 0
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for all i, where Ci is the determinant of the matrix one gets by replacing the
ithcolumn by 0’s. It follows that s is a root of the monic polynomial

det(XI − A) = 0 ∈ R[X]

□

DEFINITION 6.5.3. If R ⊆ S is an inclusion of integral domains and
every element of S is integral over R, then S will be said to be integral over
R.

REMARK. It is not hard to see that this property is preserved in quo-
tients. If a ⊂ S is an ideal then S/a will be integral over R/a ∩ R because
the monic polynomials satisfied by every element of S over R will map to
monic polynomials in the quotients.

COROLLARY 6.5.4. Let f : R → S be an integral extension of integral do-
mains. If a ⊂ R is a proper ideal, then so is a · S ⊂ S.

PROOF. We will prove the contrapositive: If a · S = S, then a = R.
The statement that a · S = S and Nakayama’s Lemma 6.3.33 on page 245
imply that there exists r ∈ R with r ≡ 1 (mod a) with r · S = 0. Since S
is an integral domain, we must have r = 0 to 0 ≡ 1 (mod a) or 1 ∈ a, so
a = R. □

PROPOSITION 6.5.5. Suppose R ⊆ S are integral domains and let s, t ∈ S.
Then:

(1) If s and t are integral over R, so are t± s and st. Consequently integral
elements over R form a ring.

(2) Let T be a commutative ring with S ⊆ T. If T is integral over S and S
is integral over R, then T is integral over R.

PROOF. If s and t are integral over R, let

R[s] = Rs1 + · · ·+ Rsk

R[t] = Rt1 + · · ·+ Rtℓ
as R-modules. Then

R[s, t] = Rs1 + · · ·+ Rsk(6.5.1)
+Rt1 + · · ·+ Rtℓ

+
k,ℓ

∑
i=1,j=1

Rsitj

which contains s± t and st and is still a finitely generated R-module. This
proves the first statement.

To prove the second statement, suppose t ∈ T satisfies the monic poly-
nomial

tk + sk−1tk−1 + · · ·+ s0 = 0
with si ∈ S, and S[t] is a finitely generated S-module. Since S is integral
over R, R[si] is a finitely-generated R-module, and so is

R′ = R[s0, . . . , sk−1]
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— equation 6.5.1 on the preceding page gives some ideal of how one could
obtain a finite set of generators. The element t is also monic over R′, so R′[t]
is a finitely-generated R′-module and

R[s0, . . . , sk−1, t]

is a finitely-generated R-module. It follows that t is integral over R. □

This immediately implies:

COROLLARY 6.5.6. If R ⊂ S is an inclusion of integral domains and α ∈ S
is integral over R, then R ⊂ R[α] is an integral extension of rings.

Integral extensions of rings have interesting properties where fields are
concerned:

PROPOSITION 6.5.7. If R and S are integral domains, and S is an integral
extension of R, then S is a field if and only if R is a field.

PROOF. If R is a field, and s ∈ S is a nonzero element, then s ∈ R[s]
is a finitely generated module over R — i.e., a vector space. Since S is an
integral domain, multiplication by s induces a linear transformation of R[s]
whose kernel is 0. This means it is an isomorphism and has an inverse.

Conversely, if S is a field and r ∈ R. Then r−1 ∈ S and it satisfies a
monic polynomial over r:

r−n + an−1r−(n−1) + · · ·+ a0 = 0

with the ai ∈ R. If we multiply this by rn−1, we get

r−1 + an−1 + · · ·+ a0rn−1 = 0

□

DEFINITION 6.5.8. If K is a field containing an integral domain, R, the
ring of elements of K that are integral over R will be called the integral
closure of R in K. If K is the field of fractions of R and its integral closure is
equal to R itself, R will be called integrally closed or normal.

REMARK. Proposition 6.5.5 on the previous page shows that the set of
all integral elements over R form a ring — the integral closure of R.

PROPOSITION 6.5.9. Every unique factorization domain is integrally closed.

REMARK. This shows that Z is integrally closed in Q. It is possible
for R to be normal but not integrally closed in a field larger than its field of
fractions. For instance Z is integrally closed in Q but not in Q[

√
2].

PROOF. Let a/b be integral over A, with a, b ∈ A. If a/b /∈ A then there
is an irreducible element p that divides b but not a. As a/b is integral,

(a/b)n + a1(a/b)n−1 + · · ·+ an = 0, with ai ∈ A

Multiplying by bn gives

an + a1an−1b + · · ·+ anbn = 0

Now p divides every term of this equation except the first. This is a
contradiction! □
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A simple induction, using theorem 5.6.7 on page 148 shows that

COROLLARY 6.5.10. For any n > 0, the rings Z[X1, . . . , Xn],
F[[X1, . . . , Xn]], and F[X1, . . . , Xn], where F is any field, have unique
factorization and are integrally closed (see definition 6.5.8 on the preceding page)
in their respective fields of fractions.

REMARK. In most of these examples, the rings are not Euclidean.

Normality of a ring is a “local” property:

PROPOSITION 6.5.11. An integral domain, R, is normal if and only if its
localizations, Rp, at all primes are normal.

PROOF. If R is normal and S ⊂ R is any multiplicative set, the solution
to exercise 1 on page 259 implies that the integral closure of S−1R is S−1R.
The converse follows from the fact that

(6.5.2) R =
⋂

all primes p⊂R

Rp ⊂ F

□

The following result gives a test for an element being integral over a
ring

LEMMA 6.5.12. Let R be an integral domain with field of fractions, F, let
F ⊂ H be a finite extension of fields, and let α ∈ H be integral over R. Then

(1) all conjugates of α (in the algebraic closure of H) are integral over R,
(2) all coefficients of the characteristic polynomial, χα(X) ∈ F[X], are inte-

gral over R,
(3) the norm NH/F(α) ∈ F is integral over R.

REMARK. If R is normal, this implies that χα(X) ∈ R[X] and provides
a necessary and sufficient condition for α to be integral.

For instance, a + b
√

2 ∈ Q[
√

2] is integral over Z if and only if

χα(X) = X2 − 2aX + a2 − 2b2 ∈ Z[X]

This implies that all elements a + b
√

2 with a, b ∈ Z are integral over Z.
Since −2a ∈ Z, the only other possibility is for

a =
2n + 1

2

Plugging this into

(2n + 1)2

4
− 2b2 = m ∈ Z

or

b2 =
(2n + 1)2 − 4m

8
which is never an integer much less a square, giving a contradiction.
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PROOF. Let p(X) ∈ R[X] be a monic polynomial such that p(α) = 0. If
α′ is any conjugate of α, then the isomorphism

F[α]→ F[α′]

that leaves F and R ⊂ F fixed implies that p(α′) = 0 as well. The state-
ment about the characteristic polynomial follows from the fact that its co-
efficients are elementary symmetric functions of the conjugates of α (see
equation 5.5.12 on page 142), and the fact that the set of integral elements
form a ring (see proposition 6.5.5 on page 253).

The final statement about the norm follows from lemma 7.5.11 on
page 286. □

We conclude this section with a result on the behavior of integral clo-
sures under algebraic field extensions. To prove it, we will need the concept
of bilinear form:

DEFINITION 6.5.13. If V is a vector-space over a field, F, a bilinear form
on V is a function

b: V ×V → F
such that

(1) b(c · v1, v2) = b(v1, c · v2) = c · b(v1, v2) for all v1, v2 ∈ V and c ∈ F.
(2) b(v1 + w, v2) = b(v1, v2) + b(w, v2) for all v1, v2, w ∈ V.
(3) b(v1, w + v2) = b(v1, w) + b(v1, v2) for all v1, v2, w ∈ V.

A bilinear form, b(∗, ∗), is called symmetric if b(v1, v2) = b(v2, v1) for all
v1, , v2 ∈ V. If v = {v1, . . . , vn} is a basis for V, then the associated matrix of
b is M defined by

Mi,j = b(vi, vj)

A bilinear form, b(∗, ∗), is said to be degenerate if there exists a nonzero
vector v ∈ V such that b(v, w) = 0 for all w ∈W.

REMARK. If M is the associated matrix of b, then we can write b as

(6.5.3) b(u, v) = ut Mv

where u and v are vectors expanded in the basis used to compute M, and
ut is the transpose.

PROPOSITION 6.5.14. Let V be a vector space over a field, F, equipped with
a bilinear form

b: V ×V → F
Then b is nondegenerate if and only if its associated matrix is invertible.

PROOF. If M is invertible, then ut M ̸= 0 if u ̸= 0 and we can define
v = (ut M)t = Mtu in which case

b(u, v) = ∥ut M∥2 ̸= 0

by equation 6.5.3. If M is not invertible, it sends some nonzero vector u to
0 and

b(u, v) = 0
for all v ∈ V. □

We will be interested in nondegenerate bilinear forms because:
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PROPOSITION 6.5.15. Let V be a vector-space over a field F with basis
{u1, . . . , un} and suppose that

b: V ×V → F

is a nondegenerate bilinear form. Then there exists a dual basis {v1, . . . vn} of V
such that

b(ui, vj) =

{
1 if i = j
0 otherwise

PROOF. If M is the associated matrix (with respect to the u-basis), sim-
ply define

v = M−1u
The conclusion follows from equation 6.5.3 on the preceding page. □

Now we introduce a special bilinear form significant in studying field
extensions:

DEFINITION 6.5.16. Let F ⊂ H be a finite extension of fields. Then
define the trace form of H over F via

bH/F(h1, h2) = TH/F(h1 · h2)

(see section 7.3.1 on page 273 for information about TH/F).

REMARK. Lemma 7.3.3 on page 274 implies that trace form is bilinear,
and it is easy to see that it is also symmetric.

It is interesting to consider what happens if the trace form is degener-
ate. In this case, there exists h ∈ H such that bH/F(h, h′) = 0 for all h′ ∈ H,
in particular, when h′ = h−1. It follows that bH/F(h, h−1) = TH/F(1) = 0.
But lemma 7.5.11 on page 286 implies that

TH/F(1) = [H: F] · 1 = 0 ∈ F

The only way this can happen is if F has finite characteristic, p, and p|[H: F].
This happens when H is an inseparable extension of F (see definition 7.2.11
on page 269).

LEMMA 6.5.17. If F ⊂ H is a separable extension of fields, then the trace
form, bH/F, is nondegenerate.

REMARK. Note that “separable” implies “finite.”

PROOF. Since the extension is separable, theorem 7.2.13 on page 270
implies that there exists a primitive element α ∈ H such that H = F[α]. If
[H: F] = n, then {1, α, . . . , αn−1} are a basis for H over F.

We have bH/F(α
i, αj) = TH/F(α

i+j) and the associated matrix to bH/F
is given by

Mi,j = TH/F(α
i−1 · αj−1) = TH/F(α

i+j−2)

Let H̄ be the algebraic closure of H and let α = α1, . . . , αn be the conjugates
of α in H̄(see definition 7.5.10 on page 285). Lemma 7.5.11 on page 286
implies that

TH/F(α
j) =

n

∑
i=1

α
j
i
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Let V be the Vandermonde matrix V(α1, . . . , αn) — see exercise 12 on
page 145. It is defined by

Vi,j = α
j−1
i

Now, note that

Mi,j =
n

∑
ℓ=1

αi−1
ℓ · αj−1

ℓ

= (VTV)i,j

It follows that
det M = (det V)2 = ∏

1≤i<j≤n
(αj − αi)

2

which is nonzero since the αi are all distinct (because the field-extension
was separable). □

Now we can prove our main result regarding integral extensions:

LEMMA 6.5.18. Suppose that A is integrally closed domain whose field of
fractions is F. Let F ⊂ H be a separable extension of fields of degree n, and let B be
the integral closure of A in H. Then there exists a basis {v1, . . . , vn} for H over F
such that

B ⊆ {v1, . . . , vn} · A
If A is noetherian, this implies that B is a finitely generated module over A.

REMARK. Roughly speaking, this says that a finite extension of fields
induces a finite extension of integrally closed rings.

PROOF. Let {u1, . . . , un} be a basis for H over F. Each of the ui satisfies
an algebraic equation

anun
i + · · ·+ a0 = 0

and multiplying by an−1
n gives us a monic polynomial in (anui) so it is in-

tegral over A. It follows that anui ∈ B and — without loss of generality —
we may assume that the basis elements ui ∈ B.

This does not prove the result: we have only shown that every element
of H can be expressed in terms of B and F.

Let {v1, . . . , vn} be the dual basis defined by the trace form, via propo-
sition 6.5.15 on the previous page. This exists because the trace form is
nondegenerate, by lemma 6.5.17 on the preceding page.

If x ∈ B, let

(6.5.4) x =
n

∑
i=1

civi

, where the ci ∈ F. Note that x · ui ∈ B since x and each of the ui are in B.
We claim that

bH/F(x, ui) = TH/F(x · ui) ∈ A
This is because x · ui satisfies a monic polynomial with coefficients in A
— and TH/F(x · ui) is the negative of the coefficient of Xn−1 (see defini-
tion 7.3.2 on page 273 and the remark following it). We use the properties
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of the dual basis to conclude

TH/F(x · ui) = TH/F

((
n

∑
j=1

cjvj

)
· ui

)

=
n

∑
j=1

cj · TH/F(vj · ui)

= ci

So, in equation 6.5.4 on the preceding page, the ci were elements of A all
along and the conclusion follows. □

EXERCISES.

1. Let R ⊂ T be an inclusion of rings and let R̄ be its integral closure
in T. Show, for any multiplicative set S, that S−1R̄ is the integral closure of
S−1R in S−1T.

2. Suppose R is an integral domain with field of fractions F and H is a
finite extension of F. If x ∈ H show that there exists an element w ∈ R such
that r · x is integral over R.

3. Let R ⊂ T be an inclusion of rings with the property that T is a
finitely-generated module over R. Now let T ⊂ F where F is a field. Show
that the integral closure of T in F is the same as the integral closure of R in
F.





CHAPTER 7

Fields

“Cantor illustrated the concept of infinity for his students by
telling them that there was once a man who had a hotel with
an infinite number of rooms, and the hotel was fully occupied.
Then one more guest arrived. So the owner moved the guest in
room number 1 into room number 2; the guest in room number
2 into number 3; the guest in 3 into room 4, and so on. In that
way room number 1 became vacant for the new guest.

What delights me about this story is that everyone involved,
the guests and the owner, accept it as perfectly natural to carry
out an infinite number of operations so that one guest can have
peace and quiet in a room of his own. That is a great tribute to
solitude.”

— Smilla Qaavigaaq Jaspersen, in the novel Smilla’s Sense of
Snow, by Peter Høeg (see [57]).

7.1. Definitions

Field theory has a distinctly different “flavor” from ring theory due
to the fact that the only ideal a field has is the zero-ideal. This means that
homomorphisms of fields are always injective. Whereas we speak of hom-
omorphisms of rings, we usually speak of extensions of fields and often
denoted

Ω

F

We begin by recalling definition 5.1.2 on page 108:

DEFINITION 7.1.1. A field is a commutative integral domain whose
nonzero elements have multiplicative inverses. If F is a field, the set
of nonzero elements is denoted F× and is an abelian group (under
multiplication).

If we define m · 1 for m ∈ Z, m > 0 as the sum of m copies of 1, then
the smallest positive integral value of m such that m · 1 = 0 is called the
characteristic of the field. If m · 1 ̸= 0 for all values of m, the field is said to
be of characteristic 0. The subfield generated by elements of the form m · 1
is called the prime field of F.

REMARK. It follows that every field contains a subfield isomorphic to
Zp for some prime p, or Q.

261
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DEFINITION 7.1.2. If F ⊂ G is an extension of fields, then G is a vector
space over F (see definition 6.2.1 on page 165). The dimension of G as a
vector space (see proposition 6.2.8 on page 167) is called the degree of the
extension, denoted [G: F].

REMARK. For instance, R ⊂ C is an extension and {1, i} is a basis for
C as a vector-space over R.

PROPOSITION 7.1.3. If it is not 0, the characteristic of a field must be a prime
number.

PROOF. Suppose 0 < m is the characteristic of a field, F, and m =
a · b ∈ Z. Then a, b ̸= 0 ∈ F and a · b = 0 ∈ F, which contradicts the fact
that a field is an integral domain. □

DEFINITION 7.1.4. If F is a field, an algebra over F is a vector space V
over F that has a multiplication-operation

V ×V → V

The identity element 1 ∈ F defines an inclusion

F → V
x 7→ x · 1

REMARK. For instance the polynomials rings F[X1, . . . , Xn] are alge-
bras over F.

The complex numbers C are an algebra over R.
Strictly speaking, algebras over fields are not required to be commuta-

tive or even associative. For instance, the quaternions and Cayley numbers
are algebras over R — see section 9 on page 323.

An immediate consequence of definition 7.1.2 is:

PROPOSITION 7.1.5. If F is a finite field, the number of elements in F must
be pn, where p is some prime number and n is a positive integer.

PROOF. The characteristic of F must be some prime, p, by proposi-
tion 7.1.3. It follows that Zp ⊂ F so F is a vector space over Zp. If n =
[F: Zp], is the dimension of that vector space, then F has pn elements. □

Examples of fields are easy to find:
� The familiar examples: Q, R, and C. They are fields of character-

istic 0.
� If R is any integral domain and S = R \ {0}, then S is a multiplica-

tive set in the sense of definition 6.4.1 on page 248 and S−1R is a
field. This is called the field of fractions of R.

� If F is a field, the set of rational functions with coefficients in F,
denoted F(X), (with round rather than square brackets) is a field.
This is the field of fractions of the polynomial ring, F[X].

� If p is a prime, Zp is a field of characteristic p.
The following innocuous-looking result solved a great mystery of ancient
Greece:
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PROPOSITION 7.1.6. Let E ⊂ F and F ⊂ G be finite extensions of fields.
Then

[G: E] = [G: F] · [F: E]

PROOF. Let {x1, . . . , xn} ∈ G be a basis for it over F and let
{y1, . . . , ym} ∈ F be a basis for it over E. So every element of G can be
expressed as a linear combination of the xi

(7.1.1) g =
n

∑
i=1

fixi

with the fi ∈ F. Each of the fi is given by

(7.1.2) fi =
m

∑
j=1

ei,jyj

which means that
g = ∑

i=1,...,n
j=1,...,m

ei,jxiyj

which shows that the n · m elements {xi · yj} span G over F. To see that
they are linearly independent, set g = 0 in equation 7.1.1 on page 263. The
linear independence of the xi implies that fi = 0, i = 1, . . . , n. These, and
the linear independence of the yj imply that ei,j = 0 for i = 1, . . . , n and
j = 1, . . . , m which proves the result. □

DEFINITION 7.1.7. If F ⊂ G is an inclusion of fields, then α ∈ G is said
to be algebraic over F if it is a root of a polynomial with coefficients in F. If
α ∈ G is not algebraic, it is said to be transcendental.

The notation, F(α) ⊂ G, represents the field of rational functions of α.

REMARK. For instance, if we think of

Q ⊂ C

then
√

2 is algebraic over Q, but e is not (this is not obvious!).
In comparing F(α) with the ring F[α], it is not hard to see that:
(1) F(α) is the smallest subfield of G containing F and α.
(2) F(α) is the field of fractions of F[α].

PROPOSITION 7.1.8. Let F ⊂ G be an inclusion of fields and let f : F[X] →
G be the unique homomorphism that sends X to α ∈ G. Then α is algebraic over
F if and only if ker f ̸= 0, in which case ker f = (p(X)) and p(X) is called the
minimal polynomial of α.

The minimal polynomial is always irreducible.

REMARK. The minimal polynomial is the lowest-degree polynomial
such that f (α) = 0. If g(X) is any polynomial with the property that
g(α) = 0, then f (X)|g(X). See example 7.3.1 on page 272 for techniques
for computing it.

This result implies that α ∈ G is transcendental if and only if the hom-
omorphism f is injective.

The numbers π and e are well-known to be transcendental — see [43].
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PROOF. The kernel of f is just the polynomials that vanish when eval-
uated at α. This kernel is a principal ideal because F[X] is a principal ideal
domain — see corollary 5.3.10 on page 119.

If f (X) = p(X) · q(X) then

p(α)q(α) = 0

implies that p(α) = 0 or q(α) = 0. If p and q are of lower degree than f , it
would contradict the minimality of f (X). □

Consider
Q ⊂ C

and form the extension field
Q(
√

2)
which is the field of all possible rational functions

∑m
i=1 pi(

√
2)i

∑n
j=1 qj(

√
2)j

where the pi, qj ∈ Q — or the smallest subfield of C containing Q and
√

2.
Upon reflection, it becomes clear that we can always have n, m ≤ 1

since (
√

2)2 ∈ Q, so every element of Q(
√

2) is really of the form

a + b
√

2
c + d

√
2

with a, b, c, d ∈ Q.
We can even clear out the denominator because

a + b
√

2
c + d

√
2

=
a + b

√
2

c + d
√

2
· c− d

√
d

c− d
√

2
=

ac− 2bd +
√

2(bc− ad)
c2 − 2d2

=
ac− 2bd
c2 − 2d2 +

bc− ad
c2 − 2d2

√
2

We have just proved that

Q(
√

2) = Q[
√

2]

This is no accident — it is true for all finite algebraic extensions:

LEMMA 7.1.9. Let F ⊂ G be an extension of fields and suppose α ∈ G is
algebraic over F. Then

F(α) = F[α]
and [F(α): F] is equal to the degree of the minimal polynomial of α.

REMARK. Note: algebraic extensions can be infinite (see exercise 3 on
page 287).

PROOF. If α is algebraic over F, it has a minimal polynomial p(X) ∈
F[X] (see definition 7.1.8 on the previous page) which is irreducible so the
ideal (p(X)) is prime. Since the ring F[X] is a principal ideal domain (see
corollary 5.3.9 on page 119) the ideal (p(X)) is also maximal and

F[α] = F[X]/(p(X))

is a field (see proposition 5.3.2 on page 117), so it is equal to F(α). □
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EXAMPLE 7.1.10. Since 21/3 is algebraic over Q, we have Q[21/3] =
Q(21/3), a field. The quantity 21/3 is a root of the polynomial X3 − 2, and
Eisenstein’s Criterion (see theorem 5.6.8 on page 149) shows that this is
irreducible over Q (using p = 2), so it is the minimal polynomial of 21/3.

We can solve famous unsolved problems from ancient Greece:

EXAMPLE 7.1.11. Speaking of 21/3, one famous problem the ancient
Greek geometers puzzled over is that of doubling the cube — using straight-
edge and compass constructions. In other words, they wanted to construct
3
√

2 via their geometric techniques. It can be shown that ancient Greek
compass-and-straightedge techniques can construct

(1) all integers
(2) the square root of any number previously constructed (by draw-

ing a suitable circle).
(3) the sum, difference, product and quotient of any two numbers

previously constructed.
Consequently, the numbers they constructed all lay in fields of the form

(7.1.3) Fn = Q(
√

α1)(
√

α2) · · · (
√

αn)

where each αi is contained in the field to the left of it. Since the minimal
polynomial of

√
αi+1 is X2 − αi+1 ∈ Fi[X], lemma 7.1.9 on the preceding

page implies that [Fi+1: Fi] = 2 and proposition 7.1.6 on page 263 implies
that [Fn: Q] = 2n. But [Q( 3

√
2): Q] = 3 and 3 ∤ 2n for any n, so 3

√
2 /∈ Fn for

any n.
So the problem of constructing 3

√
2 is literally unsolvable by ancient

Greek techniques.

EXERCISES.

1. Suppose F ⊂ H is a finite extension of fields and α ∈ H. If n is the
degree of the minimum polynomial of α, show that n

∣∣ [H: F].

2. Show that the polynomial X3 + 3X + 3 ∈ Q[X] is irreducible so that
H = Q[X]/(X3 + 3X + 3) is a field. If a generic element of H is written as
a + bX + cX2, compute the product

(a + bX + cX2)(d + eX + f X2)

7.2. Algebraic extensions of fields

DEFINITION 7.2.1. An extension of fields, E ⊂ F, is said to be algebraic
if every element x ∈ F is algebraic over E. If an extension is not algebraic,
it is transcendental.
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REMARK. For instance, Q ⊂ Q(
√

2) is algebraic and Q ⊂ R and F ⊂
F(X) are transcendental extensions, where F is any field.

PROPOSITION 7.2.2. If E ⊂ F is a finite field extension, then it is algebraic.

PROOF. Suppose [F: E] = n and let x ∈ F. Then the powers

{1, x, x2, . . . , xn}
must be linearly dependent over E so we get a nontrivial algebraic equation

a1 + a1x + · · ·+ anxn = 0

with ai ∈ E. □

Extensions containing roots of polynomials always exist:

COROLLARY 7.2.3. Let F be a field and let f (X) ∈ F[X] be a polynomial.
Then there exists an extension F ⊂ Ω such that Ω contains a root of f .

PROOF. Factor f as

f (X) = p1(X)α1 · · · pk(X)αk

where the pi(X) are irreducible. This can be done (and is even unique) by
corollary 5.3.7 on page 118. As in the proof of 7.1.9 on page 264, the quotient

E = F[X]/(p1(X))

is a field containing F.
The image, α, of X under the quotient-mapping

F[X]→ F[X]/(p1(X)) = E

has the property that p1(α) = f (α) = 0. □

COROLLARY 7.2.4. Let F be a field and let f (X) ∈ F[X] be a polynomial.
Then there exists an extension F ⊂ Ω such that

f (X) =
deg( f )

∏
k=1

(X− αk) ∈ Ω[X]

REMARK. This extension, Ω, is called a splitting field for f (X). We can
write

Ω = F[α1, . . . , αd]

where d = deg f .
The solution to exercise 1 on page 287 shows that these splitting fields

are unique up to isomorphism.

PROOF. This follows by an inductive application of corollary 7.2.3. We
construct a field Ω1 that contains a root, α, of f (X). If f (X) splits into linear
factors in Ω1, we are done. Otherwise, factor f (X) as

f (X) = (X− α)k · g(X) ∈ Ω1[X]

where g(X) is relatively prime to X − α, and construct an extension Ω2 of
Ω1 that contains a root of g(X). Eventually this process terminates with a
field Ω that contains all of the roots of f (X). □

The following statement seems clear, but it should be said:
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COROLLARY 7.2.5. If F is a field, a polynomial p(X) ∈ F[X] of degree n has
at most n roots in F.

EXAMPLE 7.2.6. Consider the polynomial X3 − 1 over Q. It already
factors as

X3 − 1 = (X− 1)(X2 + X + 1)

and the second factor is irreducible by example 5.6.9 on page 150, so we
construct the extension-field Q[X]/(X2 + X + 1) and define α to be in the
image of X under the projection

Q[X]→ Q[X]/(X2 + X + 1) = G
X 7→ α

so that α ∈ G satisfies the identity α2 + α + 1 = 0. Since α is a root of
X2 + X + 1, we have

(X− α)
∣∣X2 + X + 1

In fact the quotient is

X +α + 1
X −α

)
X2 +X +1
X2 −αX

(1 + α)X +1
(1 + α)X −α(1 + α)

1 + α + α2

so we get the splitting in G

X3 − 1 = (X− 1)(X− α)(X + 1 + α)

Since a polynomial splits into linear factors in its splitting field, one
might expect the greatest common divisor of two polynomials to depend
on the field in which one computes it. It is interesting that this does not
happen:

PROPOSITION 7.2.7. Let F ⊂ Ω be an inclusion of fields and let
f (X), g(X) ∈ F[X] be polynomials. Then

gF(X) = gcd( f (X), g(X)) ∈ F[X]

is also their greatest common divisor in Ω[X].

REMARK. Since Ω could be the splitting field of f (X) and g(X), the
greatest common divisor of these polynomials (up to units) is

n

∏
i=1

(X− αi)

where the αi are all of the roots that f (X) and g(X) have in common. Some-
how this product always defines an element of F[X] (even though the αi are
not in F).



268 7. FIELDS

PROOF. Let us pass to a field K ⊃ Ω that is a splitting field for f and g.
Suppose f (X) and g(X) have the following common roots in K:

α1, . . . , αn

Then gF(X) also splits into linear factors and

(7.2.1) gF(X) =
t

∏
k=1

(X− αjk )

where {αj1 , . . . , αjt} is, possibly, a subset of {α1, . . . , αn} such that the prod-
uct in equation 7.2.1 lies in F[X]. If this product lies in F[X], it is also in
Ω[X], so the greatest common divisor calculated in this larger field will
have these factors, at least. We conclude that

gF(X)|gΩ(X)

where gΩ(X) is the greatest common divisor calculated in Ω[X].
On the other hand, the Euclidean algorithm (proposition 5.3.5 on

page 118) implies that there exist a(X), b(X) ∈ F[X] such that

a(X) · f (X) + b(X) · g(X) = gF(X)

so gΩ(X)|gF(X). □

There is an interesting result regarding repeated roots of a polynomial:

LEMMA 7.2.8. Let F be a field and let f (X) ∈ F[X] be a polynomial with a
splitting field Ω. Then f (X) has a repeated root in Ω if and only if

f (X), f ′(X)

have a common root. This occurs if and only if Res( f , f ′, X) = 0 (in the notation
of definition 6.2.41 on page 188) which happens if and only if

gcd( f (X), f ′(X)) ̸= 1

REMARK. This is interesting because the criteria, Res( f , f ′, X) = 0 or
gcd( f (X), f ′(X)) ̸= 1, make no direct reference to Ω.

Note that, in characteristic p ̸= 0, the derivative of Xp is 0.

PROOF. The first statement follows by the chain-rule and the product-
formula for derivatives. If

f (X) = (X− α)kg(X)

with α > 1, then

f ′(X) = k(X− α)k−1g(X) + (X− α)kg′(X)

which will share a root with f (X) regardless of whether the characteristic
of F divides k (for instance, the characteristic of F (and, therefore, Ω) might
be p and k might be a multiple of p).

The second statement follows from proposition 6.2.42 on page 189 and
the statement about the greatest common divisor follows from proposi-
tion 7.2.7 on the preceding page. □

This result tells us something important about irreducible polynomials:
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LEMMA 7.2.9. Let f (X) ∈ F[X] be an irreducible polynomial of degree n
with splitting field Ω, and suppose that F is of characteristic 0. Then, in the
factorization

f (X) =
n

∏
i=1

(X− αi) ∈ Ω[X]

the αi are all distinct.

REMARK. This argument fails if the characteristic of F is p ̸= 0. In
this case, we can have an irreducible polynomial, f (Xp), that has repeated
roots.

PROOF. Since the characteristic of F is 0, and f (X) is not constant,
f ′(X) ̸= 0.

If f (X) had a repeated factor, we would have

gcd( f (X), f ′(X)) = p(X) ̸= 1

with deg p(X) < deg f (X) since deg f ′(X) < deg f (X), which would con-
tradict the irreducibility of f (X). □

In characteristic p, it is possible to say exactly what may prevent an
irreducible polynomial from having distinct roots:

PROPOSITION 7.2.10. Let F be a field of characteristic p and suppose f (X) ∈
F[X] is an irreducible nonconstant polynomial with repeated roots. Then there
exists an irreducible polynomial g(X) ∈ F[X] whose roots are all distinct such
that

f (X) = g(Xpt
)

for some integer t > 0.

PROOF. If f (X) has repeated roots, then it has roots in common with
f ′(X). If f ′(X) ̸= 0, the greatest common divisor of f (X) and f ′(X) would
be a lower-degree polynomial that divides f (X) — contradicting its irre-
ducibility. It follows that f ′(X) = 0, which is only possible if all of the
exponents in f (X) are multiples of p (since p is a prime and the coefficients
of f are relatively prime to p). In this case,

g1(X) = f (X1/p)

is a well-defined polynomial that is still irreducible: any nontrivial factor-
ization of g1(X) implies one for f (X). If g′1(X) = 0, repeat this process.
Since each iteration lowers degree by a factor of p, after a finite number of
steps we arrive at an irreducible polynomial

gt(X) = g(X) = f (X1/pt
)

with g′(X) ̸= 0. □

DEFINITION 7.2.11. Let F be a field and f (X) ∈ F[X] be a polynomial.
Then f (X) will be called separable if it factors into a product of distinct linear
factors in a splitting field.

If F ⊂ Ω is an inclusion of fields and α ∈ Ω is algebraic over F, then
α will be called a separable element if its minimal polynomial is separable.
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The field Ω will be called a separable extension of F if every element of Ω is
separable over F.

REMARK. “Separable” = roots are separated. The whole question of sep-
arability is moot unless the fields in question have characteristic p ̸= 0.

DEFINITION 7.2.12. A field F is said to be perfect if every finite extension
of F is separable.

REMARK. This is equivalent to saying that all irreducible polynomial
have distinct roots. Most of the fields that we have dealt with have been
perfect. Perfect fields include:

� Any field of characteristic 0 (lemma 7.2.9 on the previous page).
� Finite fields (theorem 7.6.7 on page 289).
� Algebraically closed fields (definition 7.5.1 on page 283).

It is interesting that finite algebraic extensions of fields can always be
generated by a single element:

THEOREM 7.2.13. Let F ⊂ H be an extension of infinite fields and suppose
α1, . . . , αn ∈ H are algebraic over F. In addition, suppose α2, . . . , αn are separable
over F.

Then there exists an element β ∈ H such that

F[α1, . . . , αn] = F[β]

REMARK. The element β is called a primitive element and this result is
often called the primitive element theorem.

PROOF. We will prove it for n = 2 — a simple induction proves the
general case. We will show that F[α, β] = F[γ]

Let α, β have minimal polynomials f (X), g(X) ∈ F[X], respectively and
let Ω ⊃ H be a splitting field for f (X) and g(X). Then f (X) and g(X) have
roots

α = α1, . . . , αn

β = β1, . . . , βm

respectively, with the βi all distinct. For j ̸= 1, the equation

αi + Xβ j = α1 + Xβ1 = α + Xβ

has exactly one solution

xi,j =
αi − α

β− β j

If we choose c ∈ F different from any of these elements (using the fact that
F is infinite), we get

αi + cβ j ̸= α + cβ

unless i = j = 1. We claim γ = α + cβ will satisfy the hypotheses of this
theorem.
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The polynomials g(X) and h(X) = f (γ− cX) ∈ F[γ][X] have a β as a
common root:

g(β) = 0
h(β) = f (γ− cβ)

= f (α)
= 0

By the choice of c above, they will only have β as a common root because
γ− cβ j ̸= αi for any i ̸= 1 or j ̸= 1. It follows that

gcd(g(X), h(X)) = X− β

Proposition 7.2.7 on page 267 implies that the greatest common divisor
has its coefficients in the field in which the polynomials have theirs, so

β ∈ F[γ]

On the other hand, we also have α = γ− cβ ∈ F[γ] so

F[α, β] = F[γ]

□

EXERCISES.

1. If F is a field, show that

F(Y) → F(X)

Y 7→ X2

makes F(X) algebraic extension of F(X) of degree 2.

2. If F = Q(21/3), express

1
22/3 − 21/3 + 1

as a polynomial in 21/3 (see lemma 7.1.9 on page 264).

3. Find a primitive element for the field Q[
√

2,
√

3] over Q and find its
minimal polynomial.

4. Find the splitting field of X3 − 2 over Q.
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7.3. Computing Minimal polynomials

The Elimination Property of Gröbner bases is useful for algebraic com-
putations:

EXAMPLE 7.3.1. Suppose we have a field F = Q[
√

2,
√

3] (see
lemma 7.1.9 on page 264) and want to know the minimal polynomial
(see 7.1.8 on page 263) of α =

√
2 +
√

3. We regard F as a quotient

F = Q[X, Y]/(X2 − 2, Y2 − 3)

Now form the ideal s = (X2 − 2, Y2 − 3, A − X − Y) ⊂ Q[X, Y, A] and
eliminate X and Y by taking a Gröbner basis using lexicographic ordering
with

X ≻ Y ≻ A
The result is

(1− 10 A2 + A4,−11 A + A3 + 2 Y, 9 A− A3 + 2 X)

and we claim that the minimal polynomial of α is

α4 − 10α2 + 1 = 0

It is a polynomial that α satisfies and generates s∩ k[A], which is a principal
ideal domain (see corollary 5.3.10 on page 119), so any other polynomial
that α satisfies must be a multiple of it. Since the degree of this minimal
polynomial is the same as [F: Q] = 4 it follows that F = Q[α]. Indeed, the
second and third terms of the Gröbner basis imply that

√
2 =

α3 − 9α

2
√

3 = −α3 − 11α

2

so Q[α] = Q[
√

2,
√

3]. This is an example of the Primitive Element Theorem
( 7.2.13 on page 270).

Here’s a second example:
F = Q[21/3] and we want the minimal polynomial of

α =
1 + 21/3

1− 21/3

We create the ideal b = (X3 − 2, (1− X)A− 1− X) (the second term is a
polynomial that α satisfies) and take a Gröbner basis to get

b = (3 + 3 A + 9 A2 + A3, 1− 8 A− A2 + 4 X)

so the minimal polynomial of α is

α3 + 9α2 + 3α + 3 = 0

The second term of the Gröbner basis implies that

21/3 =
α2 + 8α− 1

4
so that Q[21/3] = Q[α].
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EXERCISES.

1. If F = Q[21/2, 21/3] find the minimum polynomial of α = 21/2 +
21/3.

7.3.1. Norm and trace. The norm of a field element is an important con-
cept that we have seen before in example 5.3.13 on page 119.

DEFINITION 7.3.2. If F ⊂ H is a finite extension of fields, then H is a
finite-dimensional vector space over F with basis {x1, . . . , xn} where n =
[H: F]. If α ∈ H, then

(1) mα = α · ∗: H → H, i.e. the matrix of the linear transformation of
H (as a vector-space over F) defined by multiplication by α, and
with respect to the basis {x1, . . . , xn},

(2) χα(X) = det(X · I−mα) ∈ F[X] is the characteristic polynomial of
mα (see definition 6.2.51 on page 195) and called the characteristic
polynomial of α,

(3) NH/F(α) = det mα ∈ F is the determinant of mα, and is called the
norm of α.

(4) TH/F(α) = Tr (mα) ∈ F is the trace of the matrix mα (see defini-
tion 6.2.53 on page 196), and is called the trace of α.

REMARK. See theorem 8.8.1 on page 318 for an alternate formulation
of these terms.

The terms are closely related

(7.3.1) χα(0) = (−1)nNH/F(α)

where n = [H: F]. To see this, just plug X = 0 into I · X − mα and take
the determinant. If the characteristic polynomial is of degree n, the trace is
−an−1, where an−1 is the coefficient of Xn−1.

For instance, suppose F = Q and H = Q[
√

2] with basis {1,
√

2}. Then
the effect of α = a + b

√
2 on this basis is

α · 1 = a + b
√

2
α ·
√

2 = 2b + a
√

2

so the matrix mα is

mα =

[
a 2b
b a

]
with characteristic polynomial

χα(X) = X2 − 2aX + a2 − 2b2

and norm
NH/F(α) = a2 − 2b2

and trace
TH/F(α) = 2a

The basic properties of matrices imply that
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LEMMA 7.3.3. Under the assumptions of definition 7.3.2 on the preceding
page, we have

(1) the characteristic polynomial, norm, and trace of an element do not de-
pend on the basis used to compute them,

(2) NH/F(1) = 1
(3) for all α, β ∈ H, NH/F(α · β) = NH/F(α) · NH/F(β)
(4) for all α, β ∈ H, TH/F(α + β) = TH/F(α) + TH/F(β
(5) for all α ∈ H, NH/F(α) = 0 if and only if α = 0

PROOF. See exercises 17 on page 201 and 18 on page 201.
In a splitting field for χα(X), the characteristic polynomial satisfies

χα(X) =
n

∏
j=1

(X− λj) = Xn + cn−1Xn−1 + · · ·+ c0

where the λj are the eigenvalues of mα, which do not depend on the basis.
The determinant is equal to (−1)nc0, so it is also independent of basis. The
same is true for the trace, since it is equal to −cn−1.

The second statement follows from the fact that m1 is the identity ma-
trix.

The third statement follows from the basic properties of determinants:
the composite of α and β, as linear transformations, is mα ·mβ = mα·β, and

det(mα ·mβ) = det(mα) · det(mβ)

The fourth statement follows from the fact that

mα+β = mα + mβ

And the fifth follows from the third and the fact that any nonzero ele-
ment α ∈ H has a multiplicative inverse α−1 so that

NH/F(α) · NH/F(α
−1) = 1

□

We can also say something about the characteristic polynomial of an
element

PROPOSITION 7.3.4. Under the assumptions of definition 7.3.2 on the previ-
ous page,

m∗: H → Mat(F, n)

is a homomorphism into the ring of n× n matrices with coefficients in F. It follows
that an element α ∈ H satisfies its characteristic polynomial, i.e.

χα(α) = 0

PROOF. We have already seen that mα · mβ = mα·β and it is not hard
to see that mα+β = mα + mβ, which proves the first statement. The sec-
ond follows from the first and the Cayley-Hamilton theorem (see 6.2.57 on
page 199), which states that χα(mα) = 0. □
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Clearly, if F ⊂ H is an extension of fields and α ∈ F, NH/F(α) = α[H:F].
Here’s another example of norms of field extensions:
Let F = Q and let H = Q[γ] where γ is a root of the polynomial

p(X) = X3 + X2 + X + 2

Eisenstein’s Criterion (see theorem 5.6.8 on page 149) shows that p(X) is
irreducible over Q so we can construct Q[γ] as the quotient

Q[X]/(p(X))

and γ is the element that X maps to under the projection to the quotient.
Our basis for Q[γ] is {1, γ, γ2}, where γ3 = −2− γ− γ2, and

γ4 = −2γ− γ2 − γ3 = 2− γ

A general element of this field is

α = a + bγ + cγ2

and the effect of this element on the basis is

α · 1 = a + bγ + cγ2

α · γ = aγ + bγ2 + cγ3

= −2c + (a− c)γ + (b− c)γ2

α · γ2 = aγ2 + bγ3 + cγ4

= 2(c− b)− (c + b)γ + (a− b)γ2

so we get the matrix

mα =

 a −2c 2(c− b)
b a− c −(c + b)
c b− c a− b


with determinant

NH/F(α) = a3 − a2b− ca2

+ 5 acb− 3 ac2 + ab2 + 2 cb2 − 2 b3 − 2 bc2 + 4 c3

and characteristic polynomial

χα(X) =

X3 − (3 a− b− c) X2 −
(

3 c2 − 5 cb− b2 − 3 a2 + 2 ca + 2 ab
)

X

− a3 + a2b + ca2 − 5 acb + 3 ac2 − ab2 − 2 cb2 + 2 b3 + 2 bc2 − 4 c3

and trace
TH/F(α) = 3a− b− c

Although an element of a field satisfies its characteristic polynomial,
this does not mean the characteristic polynomial is its minimal polynomial.

In fact:

LEMMA 7.3.5. Let F ⊂ H be a finite field-extension and let α ∈ H have
minimal polynomial p(X) ∈ F[X]. Then

χα(X) = p(X)[H:F[α]]
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PROOF. Let {xi} be a basis for H over F[α] and let {yj} be a basis for
F[α] over F. Then {xiyj} is a basis for H over F (see proposition 7.1.6 on
page 263). The effect of α on this basis is to act on the {yj} and leave the
{xi} fixed. This means

mα =


A 0 · · · 0

0 A
. . .

...
...

. . . . . . 0
0 · · · 0 A


where A = mα computed in F[α], and this block-matrix has [H: f [α]] rows
and columns.

In F[α], the characteristic polynomial is a polynomial that α satisfies,
hence is contained in the principal ideal (p(X)) ⊂ F[X] and is of the same
degree as p(X) so it is a multiple of p(X) by a unit u ∈ F. Since both
polynomials are monic, we must have u = 1.

The conclusion follows from the properties of a determinant of a block
matrix. □

EXERCISES.

2. If H = Q[21/3] compute the norm and characteristic polynomial of
a general element.

3. If H = Q[
√

2,
√

3] compute the norm and characteristic polynomial
of a general element.

7.4. Primitive roots of unity

7.4.1. Cyclotomic Polynomials . We begin this section with a discus-
sion of the cyclotomic1 polynomials. These are minimal polynomials of prim-
itive nth roots of unity.

DEFINITION 7.4.1. Let n ≥ 1 be an integer and define the nth cyclotomic
polynomial,

Φ1(X) = X− 1
if n = 1 and

Φn(X) = ∏
gcd(d,n)=1

1≤d<n

(
X− e2πid/n

)

1From Greek for “circle dividing.”
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if n > 1.
Compare this to the proof of lemma 4.3.5 on page 42.
Given the cyclic group Zn, and an integer d such that d

∣∣ n, let Φd be
the set of generators of the cyclic group of order d generated by n/d. Since
every element of Zn generates some cyclic subgroup, we get

(7.4.1) Zn =
⊔

d
∣∣ n

Φd

as sets. This is the essence of the proof of lemma 4.3.5 on page 42 (which
merely counts the sets).

We conclude that

THEOREM 7.4.2. If n > 0 is an integer, then

(7.4.2) Xn − 1 = ∏
d
∣∣ n

Φd(X)

It follows that the Φn(X) are monic polynomials with integer coefficients.

PROOF. Since the roots of Xn − 1 are all distinct (see lemma 7.2.8 on
page 268), it follows that, in C[X]

Xn − 1 =
n−1

∏
k=0

(
X− e2πik/n

)
= ∏

k∈Zn

(
X− e2πik/n

)
= ∏

d
∣∣ n

(
∏

k∈Φd

(
X− e2πik/n

))

by equation 7.4.1. To prove equation 7.4.2 note that Φd is the set of genera-
tors of the cyclic subgroup of Zn generated by n/d, i.e.,{

n
d

, . . . ,
n · j

d
, . . .

}
where 1 ≤ j ≤ d− 1 and gcd(j, d) = 1. It follows that

∏
k∈Φd

(
X− e2πik/n

)
= ∏

gcd(j,d)=1
1≤j<d

(
X− e2πi(jn/d)/n

)

= ∏
gcd(j,d)=1

(
X− e2πij/d

)
= Φd(X)

The final statement follows by induction. We know Φ1(X) = X − 1 is
monic with integer coefficients. The conclusion follows from

(1) The product of monic polynomials with integer coefficients is one
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(2) the division algorithm for polynomials and

Φn(X) =
Xn − 1

∏d
∣∣ n

d<n

Φd(X)

□

Here are the first few such polynomials:
Φ1(X) = X− 1
Φ2(X) = X + 1
Φ3(X) = X2 + X + 1
Φ4(X) = X2 + 1
Φ5(X) = X4 + X3 + X2 + X + 1
Φ6(X) = X2 − X + 1
If p is a prime

Φp(X) =
Xp − 1
X− 1

= 1 + X + · · ·+ Xp−1

LEMMA 7.4.3. Let f (X) ∈ Z[X] be a polynomial such that f (X)
∣∣Xn − 1

and let k be an integer such that gcd(k, n) = 1. If ξ is a root of f (X), then so is
ξk.

PROOF. We will show that, if p is a prime with p ∤ n, then ξ p is a root
of f (X), which will imply the conclusion (since k can be factored into a
product of powers of such primes).

We prove this by contradiction. Suppose f (ξ p) ̸= 0. Then

f (X) = (X− ξ1) · · · (X− ξk)

where the ξi are roots of unity and, therefore, powers of ω = e2πi/n and ξ p

is not included in this list. It follows that f (ξ p) is a product of differences
of powers of ω — and, therefore divides the discriminant, ∆, of Xn − 1 (see
definition 5.5.20 on page 144).

Exercise 10 on page 145 shows that ∆ = ±nn. On the other hand

f (Xp) = f (X)p (mod p)

see lemma 7.6.1 on page 287 and proposition 3.3.2 on page 22 (coupled with
the fact that ϕ(p) = p− 1, so ap = a (mod p)), which implies that

f (ξ p) = f (ξ)p = 0 (mod p)

This implies that p
∣∣ f (ξ p) which divides ∆ = ±nn in Z[ω].

Since p and ∆ are in Z, it implies that p
∣∣∆ in Z[ω] which also applies

in Z (see exercise 1 on the next page). This contradicts the assumption
p ∤ n. □

THEOREM 7.4.4. If n > 0 is an integer, then Φn(X) is irreducible over Q.

REMARK. This implies the claim made at the beginning of this section:
that Φn(X) is the minimal polynomial of a primitive nth root of unity.
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PROOF. If ξ is a root of Φn(X) and Φn(X)
∣∣Xn − 1, lemma 7.4.3 on the

facing page implies that ξk must also be a root of Φn(X) for all k ∈ Z×n .
Since ω = e2πi/n is a root of Φn(X) , ωk must also be a root of Φn(X) for all
0 < k < n with gcd(k, n) = 1. But these are precisely the roots of Φn(X)
— and no others. Since Φn(X) is minimal in this sense, it must be irreducible
(any proper factor would contain an incomplete set of roots). □

EXERCISES.

1. Fill in a detail in the proof of lemma 7.4.3 on the preceding page. If
α, β ∈ Z ⊂ Z[γ] (where γ is a primitive nth root of unity) and α

∣∣ β in Z[γ],
then α

∣∣ β in Z.

2. If ω is a primitive nth root of unity, what is [Q(ω): Q]?

7.4.2. Compass and straightedge constructions revisited. We’ll
revisit problems from ancient Greece begun in Example 7.1.11 on page 265
regarding compass and straightedge constructions. Recall that we showed
that one could only construct elements of fields described in equation 7.1.3
on page 265, i.e., fields F with

[F: Q] = 2k

for some integer k ≥ 0. This implied that doubling the cube was impossible
by compass and straightedge constructions since it would entail construct-
ing Q[ 3

√
2], with [Q[ 3

√
2]: Q] = 3 and 3 ∤ 2k for any k.

Here, we’ll be concerned with constructing angles. Bisecting an angle is
a well-known construction with a compass and straightedge but the prob-
lem of trisecting an angle was a famous unsolved problem of ancient Greek
mathematics.

Actually, we will concern ourselves with the more general questions of
constructing angles. It is clearly easy to construct 90◦ and 60◦angles (for the
latter, just construct an equilateral triangle).

What does it mean to construct an angle 360◦/n = 2π/n? If we con-
struct a line making this angle with the x-axis and intersect it with the unit
circle, we have constructed the point e2πi/n ∈ C, i.e. we have constructed a
primitive nth root of unity and the field

Q[e2πi/n]

The results of the previous section (and the solution of exercise 2) imply
that [

Q[e2πi/n]: Q
]
= ϕ(n)

so that the angle 360◦/n = 2π/n is constructible if and only if ϕ(n) = 2k

for some k.
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Recall equation 3.3.9 on page 25: If

n = pk1
1 · · · p

kt
t

where the pi are primes, then

ϕ(n) = pk1−1
1 (p1 − 1) · · · pkt−1

t (pt − 1)

If this is to divide 2k, we must have
(1) if pi ̸= 2 , then ki = 1.
(2) if pi ̸= 2, then pi − 1 = 2j for some j.

We conclude that 2π/n is constructible if and only if

n = 2k · p1 · · · pm

where pi is a prime with pi − 1 = 2ji for all i. This leads to the interesting
question of Fermat Numbers and Fermat Primes.

DEFINITION 7.4.5. If n > 0 is an integer, then n is a Fermat number if
n = 2k + 1 for some positive integer, k. It is a Fermat Prime if it is also a
prime number.

PROPOSITION 7.4.6. If n is a Fermat prime, then n = 22k
+ 1 for some

positive integer k.

REMARK. Fermat conjectured that all numbers of this form were
primes. in [38], Euler showed that 641

∣∣ F5 so it is not prime (he also
showed how to construct a regular 17-gon, thereby constructing the angle
2π/17).

PROOF. In the expression 2k + 1, suppose k has an odd factor b, so k =
a · b. Then

2k + 1 = 2ab + 1 = (2a + 1)
(

2a(b−1) − 2a(b−2) + · · ·+ 1
)

□

The first few Fermat Primes are
(1) F0 = 3
(2) F1 = 5
(3) F2 = 17
(4) F3 = 257
(5) F4 = 65537

It is conjectured that no higher Fermat Primes exist.
We conclude that

THEOREM 7.4.7. The angle 2π/n is constructible by straightedge and com-
pass if and only if

n = 2k · p1 · · · pt

where the pi are distinct Fermat primes.

This also resolves the question of trisecting an angle: if we can trisect
any angle, we can trisect (easily-constructed) 60◦, i.e. construct the angle
20◦ = 2π/18. But 18 = 2 · 32 so ϕ(18) = 6, which is not a power of 2.

� �
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7.4.3. Primes in arithmetic progression. In this section, we will explore
number-theoretic implications of the properties of cyclotomic polynomials.
Dirichlet’s theorem on primes in arithmetic progressions extends Euclid’s theorem
on the existence of an infinite number of primes.

Johann Peter Gustav Lejeune Dirichlet (1805 – 1859) was a German math-
ematician who made deep contributions to number theory (creating the
field of analytic number theory), and to the theory of Fourier series and
other topics in mathematical analysis; he is credited with being one of the
first mathematicians to give the modern formal definition of a function.

THEOREM 7.4.8 (Dirichlet’s Theorem). If n, m > 1 are integers with gcd(n, m) =
1, there exist an infinite number of primes, p, such that

p ≡ m (mod n)

In fact, Dirichlet also proved that the density of primes are equal for all m ∈ Z×n ,
i.e. that their statistical densities are all the same: 1/ϕ(n) — see [28]. Proof of this
involves analytic number theory and is beyond the scope of this book.

We will prove a limited special case (see [45] and [80]):

THEOREM 7.4.9. If n > 1 is an integer, there exist an infinite number of primes, p,
such that

p ≡ 1 (mod n)

REMARK. Actually, we will prove a slightly stronger result — that there are
an infinite number of primes in a kind of “geometric” progression, i.e., we get an
infinite sequence of primes {p1, . . . } such that for any j > 1 pj ≡ 1 (mod pi) for all
i < j, as well as pj ≡ 1 (mod n).

We begin with

LEMMA 7.4.10. Let k and n be positive integers, and let p be a prime. If p ∤ n and
p
∣∣Φn(k) then p ≡ 1 (mod n).

PROOF. Recall equation 7.4.2 on page 277:

Xn − 1 = ∏
d
∣∣ n

Φd(X)

Since p
∣∣Φn(k), we know that p

∣∣ kn − 1 so that kn ≡ 1 (mod p), and k ∈ Z×p . If d is
the order of k in Z×p , then d|n. Suppose n = d ·m. We will show that m = 1.

Let x̄ denote the image of x in Zp and f (X) denote the image of f (X) ∈ Z[X]
in Zp[X].

Suppose k ̸= 1. Since d is the order of k̄ in Z×p , we know that k̄d = 1 so that
p
∣∣ kd − 1. We get

(7.4.3) Xd − 1 = ∏
e|d

Φe(X)
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so that

Xn − 1 = Φn(X) ∏
j
∣∣ n

1<j<n

Φj(X)(7.4.4)

= Φn(X)h(X) ∏
e
∣∣ d

Φe(X)

= Φn(X)h(X)(Xd − 1)

where h(X) ∈ Z[X] represents the factors in equation 7.4.4 not also in equation 7.4.3
on the preceding page.

Since p
∣∣Φn(k), so Φn(k) = 0, then (X− k)

∣∣Φn(X). Since p
∣∣ kd − 1, we see

that Xd − 1 has k̄as a zero, so that X− k
∣∣Xn − 1. It follows that (X− k)

2 ∣∣ (Xn − 1)
and

(Xn − 1) = (X− k)2r(X)

If we take formal derivatives of both sides, we get

n̄Xn−1 = 2(X− k)r(X) + (X− k)2r′(X)

Since p ∤ n and p ∤ k we get nkn−1 ̸= 0. On the other hand, the right side of this
equation vanishes if we set X = k. This is a contradiction based on the assumption
that m > 1.

It follows that the order of k̄ in Z×p is n. Since the order of Z×p is p − 1, we
conclude that n

∣∣ p− 1 and p ≡ 1 (mod n). □

Now we are in a position to prove theorem 7.4.9 on the previous page.

CLAIM. If m is any positive integer

(7.4.5) gcd(Φm(km), m) = 1

for all k ≥ 1.

PROOF. Suppose q is any prime that divides both Φm(km) and m. Then km ∈
Zq[X] is a zero of Φm(X), so X− km

∣∣Φm(X). Since q also divides m we see that
km = 0 ∈ Zq so that X

∣∣Φm(X) or X
∣∣Φm(X) and equation 7.4.2 on page 277 implies

that X
∣∣Xm − 1 which is a contradiction. □

Now, note that if m > 1 then

|Φm(km)| > 1

for all sufficiently large integers k. If |Φm(km)| ≤ 1 for all k, then one of the polyno-
mials Φm(mX), Φm(mX)− 1, or Φm(mX) + 1 has infinitely many zeroes, so is the
zero-polynomial, which is a contradiction.

So, choose k1 large enough for |Φn(k1n)| > 1. Then some prime p1
∣∣Φn(k1n)

and equation 7.4.5 implies that p1 ∤ n. Lemma 7.4.10 on the preceding page implies
that p1 ≡ 1 (mod n). Next, choose k2 large enough that

∣∣Φnp1 (k1 p1n)
∣∣ > 1 and let

p2
∣∣Φnp1 (k1 p1n). Then p2 ∤ p1n and we conclude p2 ≡ 1 (mod np1) which implies

p2 ≡ 1 (mod n). In this fashion, we get an infinite sequence of primes p1, p2, . . .
that are all congruent to 1 modulo n. This proves theorem 7.4.9 on the previous
page.
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7.5. Algebraically closed fields

These fields play important parts in many areas of algebra and alge-
braic geometry.

DEFINITION 7.5.1. A field Ω is said to be algebraically closed if any poly-
nomial p(X) ∈ Ω[X] can be factored into linear terms

p(X) = f0 ·
deg p

∏
k=1

(X− αk) ∈ Ω[X]

with f0 ∈ Ω.

REMARK. This is equivalent to saying that p(x) has deg p roots in Ω.

EXAMPLE. The Fundamental Theorem of Algebra (see theorem 8.9.1
on page 321) implies that the field C is algebraically closed.

DEFINITION 7.5.2. Let F ⊂ Ω be an extension of fields. Then Ω is
defined to be an algebraic closure of F if

(1) Ω is algebraically closed.
(2) given any extension F ⊂ G with G algebraically closed, Ω is iso-

morphic to a subfield, Ω′ of G that contains F.

REMARK. The field of complex numbers is clearly the algebraic closure
of R.

If they exist, algebraic closures are essentially unique:

THEOREM 7.5.3. Let F be a field and let Ω1 and Ω2 be algebraic closures of
F. Then there exists an isomorphism

f : Ω1 → Ω2

such that f |F = 1: F → F.

PROOF. Define a pair (E, τ) to consist of a subfield E ⊂ Ω1 such that
F ⊂ E and a monomorphism τ: E → Ω2, such that τ|F = 1. At least one
such pair exists because we can simply define E = F ↪→ Ω2.

Define (E1, τ1) ≺ (E2, τ2) if E1 ⊂ E2 and τ2|E1 = τ1. Then every chain

(E1, τ1) ≺ (E2, τ2) ≺ · · ·
has a maximal element, (E, τ): Simply define

E =
⋃

i
Ei

and define τ|Ei = τi. It follows, by Zorn’s lemma (see lemma 14.2.12 on
page 465) that we can find a maximal element among all of the (E, τ). Call
this (Ē, τ̄). We claim that Ē = Ω1. If not, we could find a nontrivial alge-
braic extension Ē[α] with minimal polynomial p(x) and extend τ̄ to a map

g: Ē[α] → Ω2

α 7→ β

where β ∈ Ω2 is a root of τ̄(p(x)). This is a contradiction. We also claim
that τ̄(Ω1) = Ω2 since its image will be an algebraically closed subfield of
Ω2. □
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It turns out that every field has an algebraic closure. We will fix a field
F and explicitly construct its algebraic closure using a construction due to
Artin (see [69]).

We need a lemma first:

LEMMA 7.5.4. Let F be a field and let f1(X), . . . , fk(X) ∈ F[X] be polyno-
mials. Then there exists an extension F ⊂ Ω such that Ω contains a root of each
of the fi(X).

PROOF. This follows from corollary 7.2.3 on page 266 and induction.
□

DEFINITION 7.5.5. Let S denote the set of all monic, irreducible poly-
nomials in F[x] — this is infinite (just mimic Corollary 3.1.10 on page 16).

Form the polynomial ring F[{S f }] with an indeterminate, S f , for each
f ∈ S and form the ideal M = ({ f (S f )}) — generated by indeterminates
representing monic irreducible polynomials plugged into those very polyno-
mials.

PROPOSITION 7.5.6. The ideal, M ⊂ F[{S f }], defined in 7.5.5 is proper.

PROOF. We will show that 1 /∈M. Let

x =
n

∑
k=1

ak · fk(S fk
) ∈M

be some element, where fk ∈ S. We will set x = 1 and get a contradiction.
Let Ω denote an extension of F containing one root, αk, of each of the n

polynomials fk(S fk
). Now define a homomorphism

F[{S f }] → Ω

S fk
7→ αk(7.5.1)

S f ′ 7→ 0(7.5.2)

for k = 1, . . . , n, where f ′ /∈ { f1, . . . , fn}. This is clearly possible since the
S fk

are all indeterminates. The equation x = 1 maps to 0 = 1, a contradic-
tion. □

REMARK. This argument is delicate: The existence of the mapping in
equation 7.5.1 requires a separate indeterminate for each monic irreducible
polynomial.

THEOREM 7.5.7. An algebraic closure, Ω, exists for F. If the cardinality of F
is infinite, then the cardinality of Ω is equal to that of F.

REMARK. The Fundamental Theorem of Algebra (theorem 8.9.1 on
page 321) implies that the algebraic closure of R is C.

PROOF. Let M ⊂ F[{S f }] be as in proposition 7.5.6. Since M is proper,
proposition 5.2.11 on page 115 implies that it is contained in some maximal
ideal M′. Define

Ω1 = F[{S f }]/M′
This will be a field, by lemma 5.3.2 on page 117. This field will contain roots
of all monic irreducible polynomials in F[X]. If it is algebraically closed, we
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are done. Otherwise, continue this construction to form a field Ω2 contain-
ing Ω1 and all roots of monic irreducible polynomials in Ω1[X].

We obtain a (possibly infinite) chain of fields

F ⊂ Ω1 ⊂ Ω2 ⊂ · · ·
If any of the Ωk are algebraically closed, then

Ωn = Ωk

for all n > k since the only monic irreducible polynomials in Ωk will be
linear ones.

Define

Ω =
∞⋃

i=1

Ωi

We claim that this is algebraically closed. Any polynomial f (X) ∈ Ω[X]
is actually contained in Ωk[X] for some value of k, and its roots will be
contained in Ωk+1.

The statement about cardinalities follows from the corresponding
property of each of the Ωi[{S f }]. □

EXAMPLE 7.5.8. The Fundamental Theorem of Algebra ( 8.9.1 on
page 321) implies that C is algebraically closed. It follows that it is the
algebraic closure of R and that the only nontrivial algebraic extension of R

is C.

When we deal with the rationals, things become much more compli-
cated:

EXAMPLE 7.5.9. The algebraic closure of Q is called the algebraic num-
bers and written Q̄. It cannot equal C because it is countable, by theo-
rem 7.5.7 on the preceding page. The structure of Q̄ is extremely complex
and not well understood.

The uniqueness of algebraic closures have some interesting
consequences:

DEFINITION 7.5.10. Let F be a field and let α ∈ F̄ be an element of the
algebraic closure of F. Then the minimal polynomial f (X) of α splits into
linear factors

f (X) =
deg f

∏
i=1

(X− αi)

with α1 = α. The {αi} are called the conjugates of α.

REMARK. The conjugates of α are uniquely determined by α because F̄
is uniquely determined up to an isomorphism.

The characteristic polynomial of α in F[α] is the minimal polynomial (it
is of the same degree and α satisfies it) and the discussion following 7.3.4
on page 274 shows that the conjugates of α are just the eigenvalues of the
matrix mα in definition 7.3.2 on page 273.
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For instance, if z = a + bi ∈ C, then the minimal polynomial of z is its
characteristic polynomial over R (see 7.3.2 on page 273), namely

X2 − 2aX + a2 + b2

and the other root of this polynomial is a− bi, the usual complex conjugate.
The conjugates of an algebraic element are related to its norm:

LEMMA 7.5.11. Let F ⊂ H be a finite extension of fields and let α ∈ H. Then

NH/F(α) =

(
m

∏
j=1

αj

)[H:F[α]]

TH/F(α) = [H: F[α]] ·
m

∑
j=1

αj

where the {αj} run over the conjugates of α (with α = α1).

PROOF. Let the minimal polynomial of α be p(X) ∈ F[X], of degree m.
Then, in an algebraic closure of F

p(X) = Xm + cn−1Xm−1 + · · ·+ c0 =
m

∏
j=1

(X− αj)

from which it follows that

c0 = (−1)m
m

∏
j=1

αj

The conclusion follows from lemma 7.3.5 on page 275 and equation 7.3.1
on page 273. The statement about the trace follows from the fact that the
trace of a matrix is the sum of its eigenvalues. □

Here is another interesting property of conjugates of an algebraic ele-
ment:

LEMMA 7.5.12. If F is a field and α ∈ F̄ is an element of the algebraic closure
of F, then there exists isomorphisms of fields

F[α] → F[α′]
f 7→ f for all f ∈ F
α 7→ α′

where α′ is any conjugate of α.

REMARK. To make this more precise: regard F[α] as a vector-space with
F-basis {1, α, α2, . . . , αn−1} (if the minimal polynomial of α is of degree n).
Then map vector-spaces F[α]→ F[α′] via the change of basis

αj 7→ (α′)j

for j = 0, . . . , n− 1. This lemma says that this defines a field-isomorphism.
This elementary result is the basis of a deep field of mathematics called

Galois Theory — see chapter 8 on page 297.
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PROOF. Each conjugate of α satisfies the same minimal polynomial,
p(X) ∈ F[X], as α and we have

F[α] = F[X]/(p(X)) = F[α′]

□

EXERCISES.

1. If F is a field and f (X) ∈ F[X] is a polynomial, show that any two
splitting fields, G1, G2 of f (X) are isomorphic via isomorphism

g: G1 → G2

whose restriction to F ⊂ G1 is the identity map. Consequently, we can
speak of the splitting field of f (X).

2. Compute the conjugates of an element γ = a + b 21/3 ∈ Q[21/3].

3. Can an algebraic extension be of infinite degree?

4. Are the conclusions of lemma 7.1.9 on page 264 true for the extension
Q ⊂ Q̄?

7.6. Finite fields

Finite fields can be completely classified — one of those rare areas of
mathematics that have an exhaustive solution.

We begin with a lemma:

LEMMA 7.6.1. Let F be a ring or field of characteristic p. If α, β ∈ F then

(α + β)p = αp + βp

A simple induction shows that

(α + β)pk
= αpk

+ βpk

PROOF. This follows from the binomial theorem

(α + β)p =
p

∑
ik=1

p!
(p− k)! · k!

αkβp−k

so all terms except the first and the last have a factor of p in the numerator
that is not canceled by any factor in the denominator. □

We know, from proposition 7.1.3 on page 262 that the characteristic of
a finite field is a prime p and proposition 7.1.5 on page 262 implies that the
size of a finite field is pk for some k > 0.

We first show that finite fields of order pk exist for all primes p and all
integers k ≥ 1:
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LEMMA 7.6.2. Let gk(X) = Xpk − X ∈ Zp[X]. Then the roots of gk(X) in
the algebraic closure, Z̄p, of Zp form a field of order pk.

PROOF. First note that g′k(X) = −1 ∈ Zp[X] so it has no repeated roots,
by lemma 7.2.8 on page 268 — meaning it has pk roots in Z̄p. Note that

(1) 0, 1 ∈ Z̄p are in the set of roots, and if α and β are two such roots
then:

(2) αpk
= α and βpk

= β, so
(a) (α · β)pk

= αpk · βpk
= α · β, so α · β also satisfies gk(α · β) = 0

and the set of roots is closed under multiplication,
(b) (α + β)pk

= αpk
+ βpk

by lemma 7.6.1 on the previous page,
so gk(α + β) = 0 and the set of roots is closed under addition.

(3) multiplying all nonzero roots by a fixed root, α ̸= 0, merely per-
mutes them because

α · β1 = α · β2 =⇒ β1 = β2

because Z̄p is an integral domain. So there exists a root γ such
that α · γ = 1.

It follows that the set of pk roots of gk(X) constitute a field. □

Now that we know fields of order pk exist, we prove that they are
unique:

LEMMA 7.6.3. Let F be any field of order pk and let α ∈ F be any element.
Then

αpk − α = 0
It follows that F is isomorphic to the field of order pk constructed in lemma 7.6.2.

PROOF. This is just Lagrange’s theorem, applied to the multiplicative
group, F∗, of F. In other words, take the product of all nonzero elements of
F

δ =
pk−1

∏
i=1

αi

and multiply each element by α to get

αpk−1 · δ =
pk−1

∏
i=1

α · αi

Since multiplication by α simply permutes the elements of F∗, we get

αpk−1 · δ = δ

or αpk−1 = 1. □

DEFINITION 7.6.4. The unique field of order pk is denoted Fpk .

REMARK. So Fp = Zp. The notation GF(pk) (“Galois Field”) is some-
times used for Fpk in honor of Galois who is responsible for all of the ma-
terial in this section.
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DEFINITION 7.6.5. The Frobenius map, Fp: Fpk → Fpk is defined to send
α ∈ Fpk to αp ∈ Fpk .

PROPOSITION 7.6.6. The Frobenius map is an automorphism of finite fields.

PROOF. By the definition, it clearly preserves multiplication.
If α, β ∈ Fpk note that F k

p(α) = αpk
= α because α is a root of Xpk −

X ∈ Zp[X] in the algebraic closure of Zp, so Fp(α) = Fp(β) implies that
F k

p(α) = F k
p(β) = α = β. It follows that Fp is a injective. In addition,

Fp(α + β) = (α + β)p = αp + βp = Fp(α) +Fp(β)

by lemma 7.6.1 on page 287, so it also preserves addition.
Since Fpk is finite, Fp must be 1− 1. □

Note that Fpk ⊂ Fpℓ if and only if k|ℓ, since Fpℓ must be a vector-
space over Fpk and both are vector-spaces over Fp = Zp. With this in
mind, we can explicitly describe the algebraic closure of all finite fields of
characteristic p:

THEOREM 7.6.7. Let p be a prime number. Then the algebraic closure of all
finite fields of characteristic p is

F̄p =
∞⋃

k=1

Fpk!

The Frobenius map
Fp: F̄p → F̄p

is an automorphism and the finite field Fpℓ ⊂ Fpℓ! ⊂ F̄p is the set of elements of
F̄p fixed by F ℓ

p (i.e. elements x ∈ F̄p such that F ℓ
p(x) = x).

REMARK. Note that F̄p is an infinite field since it contains subfields of
order pk for all k. This implies:

All algebraically closed fields are infinite.

PROOF. If f (X) ∈ Fpk [X] is a polynomial, it splits into linear factors in
some finite extension, G, of Fpk , by corollary 7.2.4 on page 266. It follows
that G is a finite field that contains Fpk — i.e. Fpℓ for some ℓ that is a
multiple of k. Consequently f (X) splits into linear factors in F̄p. It follows
that F̄p is algebraically closed and it is the smallest field containing all of
the Fpk , so it must be the algebraic closure of all of them.

Since the Frobenius map is an automorphism of all of the Fpk it must

be an automorphism of F̄p. The statement that F ℓ
p(x) = x implies that x is

a root of Xpℓ − X = 0 so the final statement follows from lemma 7.6.2 on
the preceding page. □

LEMMA 7.6.8. If G is a finite group of order n with the property that the
equation xk = 1 has at most k solutions, then G is cyclic.
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REMARK. In a non-cyclic group, the equations xk = 1 can have more
than k solutions. For instance, in the group Z3 ⊕Z3, the equation 3x = 0
(written additively) has 9 solutions.

PROOF. If d|n and an element, x, of order d exists, then it generates a
cyclic subgroup (x) = {1, x, . . . , xd−1} — which has ϕ(d) distinct genera-
tors. The hypothesis implies that all solutions to the equation xd = 1 are
elements of (x). It follows that all elements of order d are generators of (x)
and that there are ϕ(d) of them. For each d|n the set of elements of order d
is either

� empty, if there are no elements of order d,
� nonempty with ϕ(d) members.

Equation 4.3.2 on page 42 implies that the number of elements of G is < n
unless elements of order d exist for all d|n — including n itself. An element
of order n generates G and implies it is cyclic. □

THEOREM 7.6.9. If Fpn is a finite field, its multiplicative group, F×pn , is cyclic
of order pn − 1.

PROOF. If x ∈ F×pn , the solution to exercise 1 on page 121 implies that

the equation xk = 1 has, at most k solutions for all integers k > 0. The
conclusion follows immediately from lemma 7.6.8 on the preceding page.

□

Among other things, this implies the Primitive Element Theorem (see the-
orem 7.2.13 on page 270) for finite fields.

The minimum polynomial of a generator of F×pn over Zp is called a
primitive polynomial and such polynomials are heavily used in cryptography
(see [87]).

EXERCISES.

1. Let p = x6 + x2 + 1 and q = x3 + x + 1 be two elements of the finite
field F28 = Z2[x]/(x8 + x4 + x3 + x + 1). Compute p · q.

2. Let f = x3 + x + 1 be an elements of the finite field
F28 = Z2[x]/(x8 + x4 + x3 + x + 1). Compute f−1. Hint: use the extended
Euclidean algorithm to find polynomials R(x) and S(x) such that

f · R(x) + (x8 + x4 + x3 + x + 1) · S(x) = 1

Such polynomials exist because x8 + x4 + x3 + x + 1 is irreducible over Z2.
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7.7. Transcendental extensions

We will characterize transcendental extensions of fields and show that
they have transcendence bases similar to the way vector spaces have bases
(see table 7.7.1 on the following page). A great deal of this material origi-
nated in the work of the German mathematician, Ernst Steinitz (1871–1928)
in his seminal paper, [102].

DEFINITION 7.7.1. Consider an inclusion of fields F ⊂ Ω. Elements
α1, . . . , αm ∈ Ω will be called algebraically independent over F if the natural
map

F[X1, . . . Xm] → Ω
Xi 7→ αi

is injective. If they aren’t independent, they are said to be algebraically de-
pendent over F.

REMARK. In other words, the α1, . . . , αm ∈ Ω are algebraically depen-
dent if there exists a polynomial f with coefficients in F such that

f (α1, . . . , αn) = 0

in Ω.
They are algebraically independent if any equation of the form

∑ ci1,...,im αi1
1 · · · αim

m = 0

implies that all of the {ci1,...,im} vanish. Note the similarity between this
condition and the definition of linear independence in linear algebra. As
we will see, this is not a coincidence, and the theory of transcendence bases
is similar to that of bases of vector spaces.

EXAMPLE.
(1) A single element α ∈ Ω is algebraically independent if it is tran-

scendental over F.
(2) The numbers π and e are probably algebraically independent over

Q but this has not been proved.
(3) An infinite set {αi} is independent over F if and only if every finite

subset is independent.
(4) If α1, . . . , αn are algebraically independent over F, then

F[X1, . . . , Xn] → F[α1, . . . , αn]

f (X1, . . . , Xn) 7→ f (α1, . . . , αn)

is injective, hence an isomorphism. This isomorphism extends to
the fields of fractions. In this case, F(α1, . . . , αn) is called a pure
transcendental extension of F.

(5) The Lindemann–Weierstrass theorem (see [43] and [12]) proves
that if α1, . . . , αn are algebraic numbers that are linearly indepen-
dent over Q, then eα1 , . . . , eαn are algebraically independent over
Q.

We can characterize algebraic elements of a field extension:
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LEMMA 7.7.2. Let f ⊂ Ω be an extension of fields with γ ∈ Ω and let
A ⊂ Ω be some set of elements. The following conditions are equivalent:

(1) γ is algebraic over F(A).
(2) There exist β1, . . . , βt ∈ F(A) such that γt + β1γt−1 + · · ·+ βt = 0.
(3) There exist β0, . . . , βt ∈ F[A] such that β0γt + β1γt−1 + · · ·+ βt = 0.
(4) There exists an f (X1, . . . , Xm, Y) ∈ F[X1, . . . , Xm, Y]

and α1 · · · , αm ∈ A such that f (α1, . . . , αm, Y) ̸= 0 but
f (α1, . . . , αm, γ) = 0.

PROOF. Clearly statement 1 =⇒ statement 2 =⇒ statement 3 =⇒
statement 1 — so those statements are equivalent.

Statement 4 =⇒ statement 3: Write f (X1, . . . , Xm, Y) as a polynomial
in Y with coefficients in F[X1, . . . , Xm], so

f (X1, . . . , Xm, Y) = ∑ fi(X1, . . . , Xm)Yi

Then statement 3 holds with βi = fi(α1, . . . , αm).
Statement 3 =⇒ statement 4: The βi in statement 3 can be expressed

as polynomials in a finite number of elements α1, . . . , αm ∈ A

βi = fi(α1, . . . , αm)

and we can use the polynomial

f (X1, . . . , Xm, Y) = ∑ fi(X1, . . . , Xm)Yi

in statement 4. □

When γ satisfies the conditions in the lemma, it is said to be algebraically
dependent on A over F.

Table 7.7.1 illustrates the many similarities the theory of transcendence
bases has with linear algebra.

Linear algebra Transcendence
linearly independent algebraically independent

A ⊂ Span(B) A algebraically
dependent on B

basis transcendence basis
dimension transcendence degree

TABLE 7.7.1. Analogy with linear algebra

Continuing our analogy with linear algebra, we have the following re-
sult, which shows that we can swap out basis elements:

LEMMA 7.7.3. EXCHANGE LEMMA:Let {α1, . . . , αt} be a subset of Ω. If
β ∈ Ω is algebraically dependent on {α1, . . . , αt} but not on {α1, . . . , αt−1}, then
αt is algebraically dependent on {α1, . . . , αt−1, β}.

REMARK. Compare this with the argument in proposition 6.2.8 on
page 167.
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PROOF. Since β is algebraically dependent on {α1, . . . , αt}, there exists
a polynomial f (X1, . . . , Xi, Y) with coefficients in F such that

f (α1, . . . , αt, Y) ̸= 0 f (α1 . . . , αt, β) = 0

Write f as a polynomial in Xt:

f (X1, . . . , Xt, Y) = ∑ zi(X1, . . . , Xt−1, Y)Xi
t

Because f (α1, . . . , αt, Y) ̸= 0 at least one of the zi, say zi0(α1, . . . , αt−1, Y)
is not the zero polynomial.

Because β is not algebraically dependent on {α1, . . . , αt−1}, it follows
that zi0(α1, . . . , αt−1, β) ̸= 0. Therefore f (α1, . . . , αt−1, Xt, β) ̸= 0.

But, because f (α1, . . . , αt−1, αt, β) = 0, it follows that αt is algebraically
dependent on {α1, . . . , αt−1, β}. □

LEMMA 7.7.4. If C is algebraically dependent on B and B is algebraically
dependent on A, then C is algebraically dependent on A.

PROOF. If γ is algebraic over a field E that is algebraic over F, then γ is
algebraic over F. Apply this with E = F(A ∪ B) and F = F(A). □

Now we are ready to prove the main result

THEOREM 7.7.5. Let F ⊂ Ω be an extension of fields, let A = {α1, . . . , αt}
and B = {β1, . . . , βm} be two subsets of Ω, and suppose

(1) A is algebraically independent over F.
(2) A is algebraically dependent on B over F.

Then t ≤ m.

PROOF. Let ℓ be the number of elements A and B have in common. If
this is t, the conclusion follows, so assume it is < t.

Write
B = {α1, . . . , αℓ, βℓ+1, . . . , βm}

Since αℓ+1 is algebraically dependent on B, but not on {α1, . . . , αt},
there will be a β j with ℓ + 1 ≤ j ≤ m such that αℓ+1 is algebraically de-
pendent on {α1, . . . , αℓ, βℓ+1, . . . , β j} but not on {α1, . . . , αℓ, βℓ+1, . . . , β j−1}.

The Exchange lemma 7.7.3 on the preceding page shows that β j is alge-
braically dependent on

B1 = B ∪ {αℓ+1} \ {β j}
So B is algebraically dependent on B1 and A is algebraically dependent on
B1. Now we have ℓ+ 1 elements in common between A and B1.

If ℓ+ 1 < t repeat this process, using the Exchange property to swap
elements of A for elements of B. We will eventually get ℓ = t, and t ≤
m. □

THEOREM 7.7.6. Let F ⊂ Ω be an inclusion of fields. Then there exists
a (possibly infinite) set of elements {α1, . . . , αk} ∈ Ω such that the set
{α1, . . . , αk} is algebraically independent over F, and Ω is an algebraic
extension of F(α1, . . . , αk)

The number k is uniquely determined by Ω and is called the transcendence
degree of Ω over F.
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PROOF. All chains
A1 ⊂ A2 ⊂ · · ·

of sets of algebraically independent elements have an upper bound, namely
their union. Zorn’s lemma ( 14.2.12 on page 465) implies that there exists a
maximal set of algebraically independent elements. If this set is finite and

{α1, . . . , αs}
and

{β1, . . . , βt}
are two maximal algebraically independent sets, theorem 7.7.5 on the pre-
vious page implies that s ≤ t and t ≤ s so s = t. □

EXAMPLE. The Lindemann–Weierstrass theorem (see [43] and
[12]) proves that if α1, . . . , αn are algebraic numbers that are linearly
independent over Q, then Q(eα1 , . . . , eαn) has transcendence degree n over
Q.

DEFINITION 7.7.7. A transcendence basis for Ω over F is an algebraically
independent set A, such that Ω is algebraic over F(A).

If there is a finite set A ⊂ Ω such that Ω is algebraic over F(A), then Ω
has a finite transcendence basis over F. Furthermore, every transcendence
basis of Ω over F is finite and has the same number of elements.

EXAMPLE 7.7.8. Let p1, . . . , pm be the elementary symmetric polynomi-
als in X1, . . . Xm.

CLAIM. The field F(X1, . . . , Xm) is algebraic over F(p1, . . . , pm).

Consider a polynomial f (X1, . . . , Xn) ∈ F(X1, . . . , Xm). Theorem 5.5.18
on page 142 shows that the product

∏
σ∈Sn

(T − f (Xσ(1), . . . , Xσ(n)))

over all permutations of the variables, is a polynomial with coefficients in
F(p1, . . . , pm).

It follows that the set {p1, . . . , pm} must contain a transcendence basis
for F(X1, . . . , Xm) over F.

Since the size of a transcendence basis is unique, the {p1, . . . , pm}must
be a transcendence basis and F(X1, . . . , Xm) must be an algebraic extension
of F(p1, . . . , pm).

Here’s an example from complex analysis:

EXAMPLE 7.7.9. Let Ω be the field of meromorphic functions on a com-
pact complex manifold.

The only meromorphic functions on the Riemann sphere are the ratio-
nal functions in z. It follows that Ω is a pure transcendental extension of C

of transcendence degree 1.
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EXERCISES.

1. Use the Lindemann–Weierstrass theorem to prove that π is transcen-
dental.

2. Show that the extension
C

Q

has an uncountable degree of transcendence.





CHAPTER 8

Galois Theory

“Galois at seventeen was making discoveries of epochal signifi-
cance in the theory of equations, discoveries whose consequences
are not yet exhausted after more than a century. ”

— E. T. Bell.

8.1. Before Galois

Galois Theory involves studying when one can solve polynomial equa-
tions

(8.1.1) anXn + an−1Xn−1 + · · ·+ a1X + a0 = 0

via radicals — a term that will be made clear.
The first case to be solved was with n = 2

X2 + bX + c = 0

with roots given by the Quadratic Formula — familiar to all students

X =
−b±

√
b2 − 4a

2

Note that
√

b2 − 4a is a radical — a quantity easily computed with algebraic
properties that are easy to understand (i.e., its square is b2 − 4a).

The Quadratic Formula dates to 830 A. D. or, depending on one’s point
of view, millennia earlier1.

The solutions of this problem for n = 3 and n = 4 were some of the
great mathematical triumphs of the Italian Renaissance. In renaissance
Italy, there were public mathematical contests, “bills of mathematical chal-
lenge” (cartelli di matematica disfida). They were public written or oral con-
tests modeled after knightly duels, with juries, notaries, and witnesses. The
winner often received a cash prize, but the real prize was fame and the
promise of paying students.

Like magicians, mathematicians often closely guarded their secret
methods.

In 1539, Niccolò Tartaglia revealed his solution to the cubic equation

X3 + aX2 + bX + c = 0

1Purely geometric solutions were known to the ancient Greeks and, possibly, the ancient
Egyptians. The process of completing the square dates to around 830 A. D. in a treatise by Al
Khwarizmi.

297
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to Gerolamo Cardano, a Milanese physician and mathematician — whom
he swore to secrecy. This involved a complex series of transformations
Tartaglia detailed in a poem2:

(1) First, substitute X = y− a
3 to get

y3 + y
(

b− a2

3

)
+

2a3

27
− ba

3
+ c = 0

where the quadratic term has been eliminated. Incidentally, this
is a general operation that kills off the n − 1st term in equations
like 8.1.1 on the previous page.

(2) Now substitute

y = w− 1
3w

(
b− a2

3

)
to get

w3 +
1

w3

(
a2b2

27
− ba4

81
− b3

27
+

a6

729

)
+

2a3

27
− ab

3
+ c = 0

If we multiply this by w3, we get a quadratic equation in w3 which
we can solve in the usual way.

(3) Then we take the cube root of w3 and do all the inverse substitutions
to get x. To get all three roots of the original cubic equation, we
must take all three cube roots of w3, namely

w, w ·
(
−1

2
+ i
√

3
2

)
, w ·

(
−1

2
− i
√

3
2

)
Again, we have a solution involving radicals: square roots and cube roots.

Niccolò Fontana Tartaglia (1499/1500 – 1557) was a mathematician, archi-
tect, surveyor, and bookkeeper in the then-Republic of Venice (now part of
Italy). Tartaglia was the first to apply mathematics to computing the tra-
jectories of cannonballs, known as ballistics, in his Nova Scientia, “A New
Science.”
He had a tragic life. As a child, he was one of the few survivors of the
massacre of the population of Brescia by French troops in the War of the
League of Cambrai. His wounds made speech difficult or impossible for
him, prompting the nickname Tartaglia (“stammerer”).

When Cardano broke his oath of secrecy by publishing the formula in
his book Ars Magna, a decade-long rivalry between him and Tartaglia en-
sued. To this day, the method outlined above is called Cardano’s Formula
— even though Cardano credited it to Tartaglia in his book.

This solution of the cubic equation is notable because it requires the use
of complex numbers — even in cases where the roots are all real (in such
cases, the imaginary parts cancel out at the end).

2Modeled on Dante’s Divine Comedy.
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Gerolamo Cardano (1501 – 1576) was an Italian mathematician, physician,
biologist, physicist, chemist, astrologer, astronomer, philosopher, writer,
and gambler. He was one of the most influential mathematicians of the
Renaissance. He wrote more than 200 works on science.

The case n = 4 was solved by Lodovico Ferrari in 1540 and published
in 1545. We present Descartes’s treatment of the solution:

Given a general quartic equation

X4 + aX3 + bX2 + cX + d = 0

we first set X = x− a
4 to eliminate the X3-term:

x4 + qx2 + rx + s = 0

Now we write

(8.1.2) x4 + qx2 + rx + s = (x2 + kx + ℓ)(x2 − kx + m)

— this is possible because there is no x3-term in the product.
Equating equal powers of x in equation 8.1.2 gives

ℓ+ m− k2 = q

k(m− ℓ) = r
ℓm = s

The first two equations imply that

2m = k2 + q + 2r/k

2ℓ = k2 + q− 2r/k

If we plug these into ℓm = s, we get

k6 + 2qk4 + (q2 − 4s)k2 − r2 = 0

Since this is cubic in k2, we can use the method for solving cubic equations
and determine k, m, and ℓ. At this point the solution of quadratic equations
gives the four roots of our original problem — all of which are algebraic
expressions involving radicals.

If this solution is written down as an equation, it takes up more than
five pages.

The reader might wonder what alternatives exist to solving equations
by radicals. There are purely numeric methods for finding the roots of a
polynomial to an arbitrary accuracy. The problem is that the roots’ struc-
tural algebraic properties are impossible to determine.

Expressions involving radicals are even our preferred way of writing
down irrational algebraic numbers.

Although many mathematicians studied the cases where n ≥ 5, they
made no significant progress. The problem would remain open for more
than 250 years — until Abel, Ruffini, and Galois.
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8.2. Galois

We will explore the life-work of Évariste Galois, much of which he
wrote down days before he died.

Évariste Galois (1811 – 1832) was a French mathematician who, while still
in his teens, was able to determine a necessary and sufficient condition for
a polynomial to be solvable by radicals. His work laid the foundations for
Galois theory, group theory, and two major branches of abstract algebra.
He died at age 20 from wounds suffered in a duel.

Given a field extension
E

F
Galois theory studies the group of automorphisms of E that leave F fixed.
This group of automorphisms has powerful mathematical properties, clas-
sifying all of the subfields of F, for instance.

We begin with a definition

DEFINITION 8.2.1. The Galois group of an extension

E

F

denoted Gal(E/F) is defined by

Gal(E/F) = {x ∈ Aut(E)|x( f ) = f , for all f ∈ F}
EXAMPLE 8.2.2. For instance, consider the extension

C

R

Complex conjugation is known to be a automorphism of C that fixes R that
generates the Galois group, so

Gal(C/R) = Z2

In fact, elements of the Galois group of a field-extension can be re-
garded as generalizations of complex conjugation.

8.3. Isomorphisms of fields

PROPOSITION 8.3.1. Let g: F1 → F2 be an isomorphism of fields, with in-
duced isomorphism of polynomial rings σ̄: F1[X] → F2[X]. Let f (X) ∈ F1[X] be
an irreducible polynomial and f̄ (X) = σ̄( f (X)) ∈ F2[X]. If α1 is a root of f (X)
and α2 is a root of f̄ (X), there exists a unique isomorphism G: F1(α1) → F2(α2)
extending g:

F1(α1)
G // F2(α2)

F1 g
// F2
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REMARK. Suppose F1 = F2 = Q and g is the identity map. Since X2− 2
is irreducible over Q (see theorem 5.6.8 on page 149) with roots ±

√
2, this

result implies that the map

Q(
√

2) → Q(
√

2)√
2 7→ −

√
2

defines an isomorphism of fields. It is true that Gal(Q(
√

2)/Q) = Z2,
generated by this automorphism.

PROOF. The isomorphism σ̄: F1[X] → F2[X] carries the ideal ( f (X))
isomorphically to the ideal ( f̄ (X)) so it induces an isomorphism

F1[X]

( f (X))
→ F2[X]

( f̄ (X))

We define G to be the composite

F1(α1)
∼=−→ F1[X]

( f (X))
→ F2[X]

( f̄ (X))

∼=−→ F2[α2]

This is unique because every element of F1(α1) = F1[α1] is a polynomial in
α1 with coefficients in F1. Its coefficients are mapped via g, and its image
under G is uniquely determined by the way α1 is mapped. □

PROPOSITION 8.3.2. Let g: F1 → F2 be an isomorphism of fields, with in-
duced isomorphism of polynomial rings ḡ: F1[X]→ F2[X]. Let f (X) ∈ F1[X] be a
polynomial and f̄ (X) = ḡ( f (X)) ∈ F2[X]. In addition, let E1 be a splitting field
for f (X) and E2be a splitting field for f̄ (X). Then

(1) there exists an isomorphism G: E1 → E2 extending g,
(2) if f (X) is separable (see definition 7.2.11 on page 269), there exist

[E1: F1] distinct extensions G.

REMARK. Lemma 7.2.9 on page 269 implies that all polynomials are
separable if F has characteristic zero.

PROOF. We prove these statements by induction on [E1: F1].
If [E1: F1] = 1, then f (X) already splits into linear factors in F1[X] and

it follows that f̄ (X) also does, so that E2 = F2.
If [E1: F1] > 1, let p(X) be an irreducible factor of f (X) of degree ≥ 2,

and let p̄(X) = ḡ(p(X)). If α1 is a root of p(X) and α2 is a root of p̄(X),
proposition 8.3.1 on the facing page implies that there exists an isomor-
phism ϕ: F1(α1) → F2(α2) extending g. Since E1 is also a splitting field for
f (X) over F1(α1),

[E1: F] = [E1: F1(α1)] · [F(α1): F]

and [F(α1): F] = deg p(X) ≥ 2, induction implies that there exists an iso-
morphism G extending ϕ.

We prove the second statement by induction too. If [E1: F1] = 1, then
E1 = F1 and there is clearly only one extension of g: G = g. So we assume
[E1: F1] > 1. Let p(X) be an irreducible factor of f (X). If deg p(X) =
1, then p(X) contributes nothing new to E1 and we may replace f (X) by
f (X)/p(X) and continue.
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If deg p(X) = d > 1, let α be a root of p(X) and let p̄(X) = ḡ(p(X)) ∈
F2[X]. In this case,

[E1: F1] = [E1: F1(α)] · [F1(α): F1]

and proposition 8.3.1 on page 300 implies that there are d distinct isomor-
phisms (this is where we use separability of f (X))

β: F1(α)→ F2(ᾱ)

extending g, where ᾱ is a root of p̄(X). Since
[E1: F1(α)] = [E1: F1]/d < [E1: F1], the induction hypothesis
implies that each of these β’s is covered by [E1: F1]/d distinct
isomorphisms G: E1 → E2, giving a total of d · ([E1: F1]/d) = [E1: F1]
isomorphisms covering g. □

We will compute some splitting fields and Galois groups:

EXAMPLE 8.3.3. If ω = e2πi/3 , we know that ω3 − 1 = 0. The polyno-
mial X3 − 1 ∈ Q[X] is not irreducible. It factors as

X3 − 1 = (X− 1)(X2 + X + 1)

and the factor X2 + X + 1 is irreducible over Q (if not, its factors would be
linear and imply that the cube roots of 1 are rational) — also see section 7.4.1
on page 276. It follows that

Q(ω)

Q

is of degree 2, with Q-basis {1, ω}. The identity ω2 + ω + 1 = 0 above,
implies that ω2 = −1−ω.

The Galois group is Z2, with a generator that swaps ω with ω2 = ω−1.
With respect to the Q-basis given, it is[

1 −1
0 −1

]
Now we consider the polynomial X3 − 2 ∈ Q[X]. Its roots are

21/3, 21/3ω, 21/3ω2 = −21/3 − 21/3ω. Since

ω = (21/3)221/3ω/2

we conclude that its splitting field is Q[ω, 21/3]. The Galois group of
Q[ω, 21/3] over Q is generated by α, given by

ω 7→ −1−ω

−1−ω 7→ ω

21/3 7→ 21/3
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and β, given by

ω 7→ ω

21/3 7→ 21/3ω

22/3 7→ −22/3 − 22/3ω

21/3ω 7→ −21/3 − 21/3ω

22/3ω 7→ 22/3

EXERCISES.

1. Suppose F is a field with an extension H = F(α1, . . . , αk) and sup-
pose f : H → H is an automorphism such that

a. f (β) = β for all β ∈ F
b. f (αi) = αi for i = 1, . . . , n

Show that f is the identity map. It follows that, if f , g: H → H are two
automorphisms that fix F and map the αi in the same way, then f = g.

8.4. Roots of Unity

Since we are exploring solutions of polynomials via radicals, we are
interested in extensions of the form F(α1/n). Since we are also interested
in splitting fields, we also need to understand extensions of the form Q(ω)
where ω = e2πi/n.

DEFINITION 8.4.1. If ω is an nth root of unity — i.e., if ωn = 1 — then
ω is primitive if ωi ̸= 1 for all 0 < i < n.

REMARK. For example, e2πi/n ∈ C is a primitive nth root of unity, as is
e2πik/n ∈ C for k ∈ Z×n , while e2πi(n/2)/n is not (assuming n is even).

We consider the Galois groups of simple field extensions in two cases:

THEOREM 8.4.2. If F is a field and E = F(ω), with ω a primitive nth root of
unity, then Gal(E/F) is isomorphic to a subgroup of Z×n , hence is finite abelian.

PROOF. Exercise 1 implies that an automorphism

f : E→ E

that fixes F is completely determined by its effect on ω. Let σi(ω) = ωi. For
this to define an automorphism of ⟨ω⟩, we must have gcd(i, n) = 1 so that
i ∈ Z×n . We define a map

g: Gal(E/F)→ Z×n
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that sends σi to i ∈ Z×n . This is a homomorphism because

(σi ◦ σj)(ω) = σi(ω
j) = ωij = σij(ω)

□

If a field already has roots of unity and we form the splitting field of a
simple polynomial, we get

THEOREM 8.4.3. If F contains a primitive nth root of unity, f (X) = Xn −
a ∈ F[X], and H is the splitting field of f (X), then there exists an injective
homomorphism

α: Gal(H/F)→ Zn

REMARK. In both cases, the Galois group is finite abelian — hence a
direct sum of suitable cyclic groups.

PROOF. If ω is a primitive nth root of unity and β is a root of f (X), then
all the roots are

{β, βω, . . . , βωn−1}
If σ ∈ Gal(H/F), then σ(β) = βωi, and this defines a map α(σ) = i ∈ Zn.
If γ ∈ Gal(H/F), then γ(ω) = ω since ω ∈ F. If γ1(β) = βωi1 and
γ2(β) = βωi2 , then

γ1γ2(β) = γ1(βωi2) = βωi1 ωi2 = βωi1+i2

which implies that
α(γ1γ2) = i1 + i2

so that α is a homomorphism. That this is an injection follows from exer-
cise 1 on the preceding page. □

COROLLARY 8.4.4. If p is a prime, F is a field with a primitive pth root of
unity, and f (X) = Xp − a ∈ F[X] has splitting field E, then

� Gal(E/F) = 1 or
� Gal(E/F) = Zp

PROOF. In both cases, theorem 8.4.3 implies that Gal(E/F) ⊂ Zp. The
only subgroups of Zp are {1} and Zp (see proposition 4.3.2 on page 41). □

8.5. Group characters

We will study properties of isomorphisms and automorphisms of fields.

DEFINITION 8.5.1. If G is a group and F is a field, a character from G to
F is a homomorphism of groups

σ: G → F×

REMARK. We could have defined c as a homomorphism σ: G → F but,
if c(g) = 0 for any g ∈ G, then σ(h) = 0 for all h ∈ G, so σ would not be
very interesting.

This is a group-representation of degree-1 and defines a simple appli-
cation of group-representation theory. See chapter 11 on page 387 for more
on this subject.
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DEFINITION 8.5.2. A set of characters σ1, . . . , σk: G → F× are said to be
dependent if there exist α1, . . . , αk ∈ F not all equal to 0, such that

α1σ1(g) + · · ·+ αkσk(g) = 0

for all g ∈ G. Otherwise, they are said to be independent.

REMARK. Compare this to the notion of linear independence for vec-
tors (see 6.2.2 on page 165).

Clearly, if σi = σj for any i ̸= j, then the set is dependent because we
can write αj = −αi with all of the other α’s equal to 0. It is quite remarkable
that is the only way a set of characters can be dependent:

PROPOSITION 8.5.3. If G is a group, F is a field and

σ1, . . . , σk

are distinct characters from G to F then they are independent.

REMARK. Two distinct vectors can easily be dependent, but the same
is not true of distinct characters.

PROOF. Clearly, a single character must be independent, since it must
be nonzero. Suppose we have proved that all sets of < n distinct characters
are independent and we have a dependency relation

α1σ1(g) + · · ·+ αnσn(g) = 0

for all g ∈ G. Note that we can assume that all of the α’s are nonzero since
the vanishing of any of them would imply a dependency relation of a set
of < n distinct characters. Multiplying by α−1

n gives us

(8.5.1) β1σ1(g) + · · ·+ σn(g) = 0

where βi = α−1
n · αi. Since σ1 ̸= σn, there exists an element h ∈ G such that

σ1(h) ̸= σn(h). Replace g in equation 8.5.1 by h · g to get

β1σ1(h · g) + · · ·+ σn(h · g) = 0

β1σ1(h)σ1(g) + · · ·+ σn(h)σn(g) = 0

and multiplying by σn(h)−1 gives

(8.5.2) β1σn(h)−1 · σ1(h)σ1(g) + · · ·+ σn(g) = 0

Since σ1(h) ̸= σn(h) , it follows that σn(h)−1 · σ1(h) ̸= 1 and β1σn(h)−1 ·
σ1(h) ̸= β1. If we subtract equation 8.5.2 from equation 8.5.1 we get

(β1σn(h)−1 · σ1(h)− β1)σ1(g) + · · ·+ 0 = 0

where we know that β1σn(h)−1 · σ1(h) − β1 ̸= 0. This is a dependency
relation with < n terms and a contradiction. □

COROLLARY 8.5.4. Every set of distinct automorphisms of a field is indepen-
dent.

PROOF. Automorphisms of a field are characters from the multiplica-
tive group of the field into it. □
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DEFINITION 8.5.5. If E is a field and G = Aut(E) is the group of auto-
morphisms. If H ⊂ G is a subset, define

EH = {e ∈ E|h(e) = e for all h ∈ H}
called the fixed field of H .

REMARK. Note that we require H to fix elements of EH pointwise rather
than preserving the set EH .

It is not hard to see that EH is a subfield of E. It is also not hard to see
that H1 ⊂ H2 implies that

EH2 ⊂ EH1

Consider the following situation: G = {g1, . . . , gn} is a set of distinct
automorphisms of a field, E, and EG is the fixed subfield. Now let x ∈
E \ EG. Since x is mapped non-trivially by G, and the set G is independent,
intuition suggests that

{g1(x), . . . , gn(x)}
will be linearly independent for a suitable x.

This is indeed the case:

LEMMA 8.5.6. If E is a field and G = {g1, . . . , gn} is a set of distinct auto-
morphisms of E, then

[E: EG] ≥ n

PROOF. We prove it by contradiction. Suppose [E: EG] = k < n and
let {e1, . . . , ek}be a basis for E over EG. Consider the system of k linear
equations over E in n unknowns

g1(e1)x1 + · · ·+ gn(e1)xn = 0
...

g1(ek)x1 + · · ·+ gn(ek)xn = 0(8.5.3)

Since k < n, there exists a nonvanishing solution (x1, . . . , xn). For and
e ∈ E, we have e = ∑k

i=1 ciei . For i = 1, . . . , k, multiply the ith row of
equation 8.5.3 on page 306 by ci to get

c1g1(e1)x1 + · · ·+ c1gn(e1)xn = 0
...

ckg1(ek)x1 + · · ·+ ckgn(ek)xn = 0(8.5.4)

or

g1(c1e1)x1 + · · ·+ gn(c1e1)xn = 0
...

g1(ckek)x1 + · · ·+ gn(ckek)xn = 0(8.5.5)

and add up all the rows of the result to get

g1(e)x1 + · · ·+ gn(e)xn = 0

for an arbitrary e ∈ E. This contradicts the independence of the gi. □
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The alert reader may wonder whether strict inequality can occur, i.e.
whether it is possible for [E: EG] > n. The answer is yes for the following
reason:

If g1, g2 ∈ G, then the composite, g1 ◦ g2, will also fix EG since each of
the gi fixes it. If g1 ◦ g2 /∈ G, let G′ = G ∪ {g1 ◦ g2} so that |G′| = n + 1,
then

EG = EG′

and the previous result shows that

[E: EG] = [E: EG′ ] ≥ n + 1

It turns out that this is the only way we can have [E: EG] > n:

THEOREM 8.5.7. If E is a field and G = {g1, . . . , gn} is a set of distinct
automorphisms of E that form a group (i.e. composites and inverses of elements of
G are in G), then

[E: EG] = n

PROOF. It will suffice to show that [E: EG] ≤ n, which we will prove
by contradiction. Let {e1, . . . , en+1} be linearly independent elements of E
over EG (i.e. linearly independent vectors with coefficients in EG).

Now consider the system of n equations in n + 1 unknowns:

g1(e1)x1 + · · ·+ g1(en+1)xn+1 = 0(8.5.6)
...

g1(e1)x1 + · · ·+ g1(en+1)xn+1 = 0

where the xi ∈ EG. Since there are more unknowns than equations, the
system has nontrivial solutions. Choose a solution with the least number
of nonzero components and re-index the ei so that the nonzero components
come first. We get a solution like

(x1, . . . , xk, 0, . . . , 0)

where all of the xi are nonzero. We will assume that xk = 1 (multiplying
the equations by x−1

k , if necessary). We also note that k > 1 since k = 1
implies that gi(e1) = 0.

We also conclude that not all of the xi ∈ EG, since the row correspond-
ing to 1 ∈ G (which exists since G is a group) would contradict the linear
independence of the ei. Again, by re-indexing the ei, if necessary, assume
that x1 /∈ EG.

It follows that there exists a gα such that gα(x1) ̸= x1.
If

gi(e1)x1 + · · ·+ gi(ek) = 0
is an arbitrary row of the system in 8.5.6, act on it via gα to get

(8.5.7) gα · gi(e1)gα(x1) + · · ·+ gα · gi(ek) = 0

Now note that there exists a β ∈ {1, . . . n}, with gα · gi = gβ ∈ G, and that
there is a βth row of the system in 8.5.6:

gβ(e1)x1 + · · ·+ gβ(ek) = 0
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If we subtract equation 8.5.7 on the preceding page from this (using the fact
that gα · gi = gβ, so that gα · gi(ek)− gβ(ek) = 0) we get

gβ(e1)(gα(x1)− x1) + · · ·+ gβ(ek−1)(xk−1 − gα(xk−1)) = 0

Since {g1, . . . , gn} = {gα · g1, . . . , gα · gn}, as sets, the result of performing
this construction on all rows of equation 8.5.6 on the previous page, repro-
duces these rows (permuting them) — and the entire system.

It follows that there is a solution of the system 8.5.6 on the preceding
page with≤ k− 1 nonzero components, contracting the minimality of k. □

In many cases, the fixed fields of groups of automorphisms determine
the automorphisms fixing them:

COROLLARY 8.5.8. If E is a field and G1 and G2 are finite subgroups of
Aut(E) with EG1 = EG2 , then G1 = G2.

PROOF. Clearly, G1 = G2 implies that EG1 = EG2 . Conversely, assume
EG1 = EG2 and g ∈ G1. Then g fixes EG2 . If g /∈ G2 then EG2 is fixed by
|G2|+ 1 distinct automorphisms, namely element of G2 and g. Lemma 8.5.6
on page 306 implies that

[E: EG2 ] ≥ |G2|+ 1

while theorem 8.5.7 on the preceding page implies that

[E: EG2 ] = |G2|
a contradiction. It follows that any g ∈ G1is also in G2, and symmetry
implies that every element of G2 is also in G1. □

8.6. Galois Extensions

We will be concerned with a particularly “well-behaved” class of field-
extensions.

DEFINITION 8.6.1. Let
E

F
be an extension of fields with Galois group G (see definition 8.2.1 on
page 300). The definition of Galois group implies that

F ⊂ EG

If F = EG, we will call the field extension a Galois extension or a normal
extension.

REMARK. Both terms (Galois and normal) are used equally often, so
the reader should be familiar with both.

It is possible to completely characterize when extensions are Galois:

LEMMA 8.6.2. Let
E

F
be a finite extension of fields. The following conditions are equivalent:
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(1) If G = Gal(E/F), then F = EG — i.e. the extension is Galois.
(2) Every irreducible polynomial in F[X] with a root in E is separable and

has all of its roots in E.
(3) E is the splitting field of some separable polynomial in F[X].

REMARK. A polynomial f ∈ F[X] is separable if it factors into distinct
linear factors in the algebraic closure.

PROOF. We prove 1 =⇒ 2. If p(X) ∈ F[X] is irreducible with a root
α ∈ E, let αi = gi(α) ∈ E where gi ∈ G are all the distinct values that result
when gi runs over the elements of G. Let

f (X) =
n

∏
i=1

(X− αi)

The coefficients of f (X) are symmetric functions of the {αi}(see
equation 5.5.13 on page 142). Since elements of G permute the αi, they
fix the coefficients of f (X) and statement 1, implies that these coefficients
are in F. Since every root of f (X) is also one of p(X), it follows that they
have nontrivial factors in common. Since p(X) is irreducible, it follows
that p(X)| f (X). This implies that

(1) p(X) is separable (its factors occur once), since f (X) is (by construc-
tion)

(2) all roots of p(X) lie in E.
Now we show that 2 =⇒ 3. If α ∈ E \ F, let p1(X) be its minimal poly-
nomial (see definition 7.1.8 on page 263). This is irreducible, and statement
2 implies that all of its roots lie in E. If its roots in E are {α1 = α, . . . , αk},
let F1 = F[α1, . . . , αk] ⊂ E. If F1 = E, we are done. If not, let β ∈ E \ F1
with minimal polynomial p2(X) and continue the argument above. The
process terminates in a finite number, t, of steps, and E is the splitting field
of p1(X) · · · pt(X).

Suppose that E is the splitting field of a separable polynomial f (X) ∈
F[X]. The implication 3 =⇒ 1 follows from proposition 8.3.2 on page 301,
which implies that the identity map of F has precisely [E: F] extensions to
E. These are, of course, the automorphisms of E that fix F, or elements of
G = Gal(E/F).

Now, note that (by theorem 8.5.7 on page 307 and proposition 7.1.6 on
page 263):

[E: F] = |G| = [E: EG] · [EG: F]
so that [EG: F] = 1 and EG = F. □

Here’s a very simple example:

EXAMPLE 8.6.3. The polynomial X2 − 2 ∈ Q[X] splits into

X2 − 2 = (X−
√

2)(X +
√

2)

in Q[
√

2] = Q(
√

2) and the Galois group of the extension

Q(
√

2)

Q
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is Z2, where the nontrivial operation is the map
√

2 7→ −
√

2

A more subtle example is:

EXAMPLE 8.6.4. Suppose k is a field and consider the symmetric group,
Sn, acting on E = k[X1, . . . , Xn] by permuting the Xi. These actions de-
fine automorphisms of E and we know that ESn = F (see section 5.5.6 on
page 142) where

F = k[σ1, . . . , σn]

and the σi are the elementary symmetric polynomials on the Xj — see equa-
tions 5.5.13 on page 142. On the face of it, we don’t know whether the
corresponding extension of fields of fractions

E

F

is Galois — we don’t know whether Gal(E/F) = Sn. Although it must be
a subgroup of some symmetric group, there might, conceivably, exist more
automorphisms of E over F.

This extension is, indeed, Galois because E is the splitting field of the
polynomial in F[T]:

Tn − σ1Tn−1 + σ2Tn−1 + · · ·+ (−1)nσn =
n

∏
i=1

(T − Xi)

over F. Since any permutation of the Xi fixes F we conclude that
Gal(E/F) = Sn .

COROLLARY 8.6.5. If
E

F
is a Galois extension and F ⊂ B ⊂ E is an intermediate subfield of E, then

E

B

is a Galois extension and Gal(E/B) ⊂ Gal(E/F) is the subgroup of automor-
phisms that fix B (pointwise3) as well as F.

REMARK. It is not hard to see that the subgroup, Gal(E/B), uniquely
determines B, since B = EGal(E/B).

PROOF. The hypothesis implies that there exists a separable polyno-
mial f (X) ∈ F[X] such that E is its splitting field. It is not hard to see that
f (X) ∈ B[X] as well, with splitting field E, so lemma 8.6.2 on page 308
implies the conclusion. The statement about Galois groups is clear. □

3I.e., the automorphisms fix each element of B.
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COROLLARY 8.6.6. Let
E

F
be a Galois extension. Then there exists a finite number of subfields of E containing
F.

PROOF. This is because Gal(E/F) has a finite number of subgroups.
□

Given two intermediate fields we can define a relation between them:

DEFINITION 8.6.7. Let E be a field with subfields F, B1, and B2 with
F ⊂ B1 ∩ B2. If there exists an element g ∈ Gal(E/F) such that g(B1) = B2,
we say that B1 and B2 are conjugates.

PROPOSITION 8.6.8. Let
E

F
be a Galois extension with conjugate subfields B1, and B2, and suppose g(B1) =
B2 for g ∈ Gal(E/F). Then Gal(E/B2) = Gal(E/B1)

g (see definition 4.4.5 on
page 44).

PROOF. If x ∈ Gal(E/B1), then xg−1 maps B2 to B1 and gxg−1 is an au-
tomorphism of E that fixes B2 — i.e., an element of Gal(E/B2). Conversely,
a similar argument shows that g−1yg ∈ Gal(E/B1) if y ∈ Gal(E/B2) and
that these operations define a 1-1 correspondence between the two Galois
groups. □

THEOREM 8.6.9. If
E

B

F
is a Galois extension with intermediate field B, the following conditions are equiv-
alent:

(1) B is equal to its conjugates (i.e., it has no nontrivial conjugates).
(2) If x ∈ Gal(E/F), then x|B ∈ Gal(B/F).
(3) The extension

B

F
is Galois.

In all of these cases, restriction defines a surjective homomorphism

Gal(E/F)→ Gal(B/F)

with kernel Gal(E/B) so that

Gal(E/B) ◁ Gal(E/F)
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and

Gal(B/F) ∼= Gal(E/F)
Gal(E/B)

PROOF. 1 =⇒ 2 is clear.
Assuming 2, we note that restriction defines a group homomorphism

(8.6.1) f : Gal(E/F)→ Gal(B/F)

Since E is Galois over B, lemma 8.6.2 on page 308 implies that E is the split-
ting field of some polynomial in B[X], and proposition 8.3.2 on page 301
implies that every automorphism of B extends to one (in fact, to [E: B] of
them) of E.

This means the homomorphism f in 8.6.1 is surjective. It follows that

BGal(B/F) = BGal(E/F) ⊂ EGal(E/F) = F

The definition of Galois group implies that

F ⊂ BGal(B/F)

always, so we conclude that BGal(B/F) = F and the conclusion follows from
definition 8.6.1 on page 308.

Now we show that 3 =⇒ 1. Since B is a Galois extension of F,
lemma 8.6.2 on page 308 implies that

B = F(α1, . . . , αn)

where the αi are all the roots of a polynomial, f (X), in F[X]. If
g ∈ Gal(E/F) and α ∈ B is any root of f (X), we claim that g(α) is also a
root of f (X): if f (X) is

Xn + bn−1Xn−1 + · · ·+ b0

with bi ∈ F, then
αk + bk−1αk−1 + · · ·+ b0 = 0

and, if we apply g to it, we get

g(α)k + bk−1g(α)k−1 + · · ·+ b0 = 0

since g(bi) = bi, so g(α) is a root of f (X). It follows that g permutes the αi
(since they are all the roots of f (X)) via a permutation σ ∈ Sn and

g(B) = F(g(α1), . . . , g(αn)) = F(ασ(1), . . . , ασ(n)) = B

As for the final statements,

Gal(E/B) ◁ Gal(E/F)

follows from proposition 8.6.8 on the preceding page, which implies that
Gal(E/B)g = Gal(E/B) for all g ∈ Gal(E/F).

Restriction induces a surjective map

Gal(E/F)→ Gal(B/F)

and the kernel is precisely the elements that fix B, namely Gal(E/B). The
final statement follows from proposition 4.4.8 on page 45. □

We will be particularly interested in a certain class of field-extensions:
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DEFINITION 8.6.10. If m ≥ 2 is an integer, a field extension

E

F

is a pure extension of type m if E = F(α), where αm ∈ F. A tower of extensions

F = E0 ⊂ E1 ⊂ · · · ⊂ Ek

is a radical tower if Ei ⊂ Ei+1 is pure for all i. In this case, Ek is called a radical
extension of F.

EXERCISES.

1. If F ⊂ E is a radical extension, show that there exists a tower of pure
extensions

F ⊂ E1 ⊂ · · · ⊂ Ek = E
such that each extension Ei ⊂ Ei+1 is pure of type pi, where pi is a prime.
Hint: Look at the solution to exercise 2 on page 87.

2. If
E

F
is a finite field extension, show that there exists a field extension

G

E

that is the splitting field of a polynomial f (X) ∈ F[X].

3. Suppose we are given an extension

E

F

If B and C are subfields of E, their compositum B ∨ C is the intersection
of all the subfields of E containing B and C. Show that if α1, . . . , αn ∈ E,
then

F(α1) ∨ · · · ∨ F(αn) = F(α1, . . . , αn)

4. Show that the splitting field constructed in exercise 2 is given by

K = E1 ∨ · · · ∨ En

where each Ei is isomorphic to E via an isomorphism that fixes F.

5. In exercise 2, if
E

F
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is a radical extension, then so is

G

F

8.7. Solvability by radicals

In this section, we can give a group-theoretic necessary condition for a
polynomial to be solvable by radicals.

DEFINITION 8.7.1. If F is a field, f (X) ∈ F[X] is a polynomial, then
f (X) is said to be solvable by radicals if there exists a radical extension

E

F

such that E contains a splitting field of f (X).

REMARK. This simply means that one can write all of the roots of f (X)
as algebraic expressions involving radicals.

LEMMA 8.7.2. Let F be a field of characteristic 0, let f (X) ∈ F[X] be solvable
by radicals, and let E be a splitting field of f (X). Then

(1) there is a radical tower

F ⊂ R1 ⊂ · · · ⊂ RN

with E ⊂ RN and RN the splitting field of some polynomial over F, and
with each Ri ⊂ Ri+1 a pure extension of type pi where pi is prime.

(2) If F contains the pth
i roots of unity for all i, then the Galois group

Gal(E/F) is solvable.

PROOF. Exercise 2 on the previous page implies that there is an exten-
sion

E ⊂ S
where S is the splitting field of a polynomial F(X) ∈ F[X], and exercise 5
on the preceding page implies that

F ⊂ S = RN

is a radical extension. Exercise 1 on the previous page implies that each
stage of this extension is pure of type pj, where pj is a prime. Since F con-
tains the pth

i roots of unity, and exercise 8.4.3 on page 304 implies that each
extension

(8.7.1) Ri ⊂ Ri+1

is the splitting field of a polynomial. Lemma 8.6.2 on page 308 implies that
extension 8.7.1 is Galois.

Let
Gi = Gal(RN/Ri)
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We get a subnormal series

GN = 1 ⊂ GN−1 ⊂ · · · ⊂ G0

and theorem 8.6.9 on page 311 implies that

Gi/Gi−1

is a cyclic group, so that GN is solvable. Since E ⊂ GN , Gal(E/F) is a
quotient of Gal(GN/F) (by theorem 8.6.9 on page 311) hence also solvable
(by exercise 5 on page 87). □

We can eliminate the hypotheses involving roots of unity:

THEOREM 8.7.3. If F is a field of characteristic 0 and f (X) ∈ F[X] that is
solvable by radicals and the splitting field of f is H, then Gal(H/F) is a solvable
group.

PROOF. The hypothesis implies that

F ⊂ R1 ⊂ · · · ⊂ RN

with each Ri ⊂ Ri+1 a pure extension of type a prime pi and with H ⊂ RN ,
and RN is the splitting field of a polynomial g(X) ∈ F[X]. If t is the least
common multiple of the pi and ω is a primitive tth root of unity, then RN(ω)
is the splitting field of (Xt − 1)g(X).

We get a new tower

(8.7.2) F ⊂ F(ω) ⊂ R1(ω) ⊂ · · · ⊂ RN(ω)

Theorem 8.6.9 on page 311

Gal(RN(ω)/F(ω)) ◁ Gal(RN(ω)/F)

and

Gal(F(ω)/F) ∼= Gal(RN(ω)/F)
Gal(RN(ω)/F(ω))

which is an abelian group, by theorem 8.4.2 on page 303.
Theorem 8.4.3 on page 304 implies that

Gal(Ri+1(ω)/F)
Gal(Ri(ω)/F)

∼= Gal(Ri+1(ω)/Ri(ω))

are cyclic groups for all i. Theorem 8.4.2 on page 303 implies that
Gal(F(ω)/F) is finite abelian, hence a direct sum of cyclic groups.

Exercise 2 on page 87 implies that Gal(RN(ω)/F) is solvable. Since
Gal(H/F) is a quotient of Gal(RN(ω)/F), it must also be solvable. □

Now we consider whether there exists a “formula” for the roots of a
polynomial.

Recall the field extension

k(X1, . . . , Xn)

k(σ1, . . . , σn)
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discussed in Example 8.6.4 on page 310. If this extension is solvable by radi-
cals, an expression for the roots of

f (T) = Tn − σ1Tn−1 + σ2Tn−1 + · · ·+ (−1)nσn =
n

∏
i=1

(T − Xi)

involving radicals of coefficients (i.e., the σi) is a formula for them since one
can plug arbitrary values into the indeterminates.

THEOREM 8.7.4 (Abel-Ruffini). If n ≥ 5, there exists no general formula
(involving radicals) for the roots of a polynomial of degree n.

REMARK. This is also known as Abel’s Impossibility Theorem. Ruffini
gave an incomplete proof in 1799 and Niels Hendrik Abel proved it in 1824.

PROOF. If such a formula exists, Sn must be a solvable group. If it is,
then exercise 5 on page 87 implies that the subgroup

An ◁ Sn

is also solvable. Theorem 4.5.15 on page 55 implies that this is not so. □

Niels Henrik Abel (1802 – 1829) was a Norwegian mathematician who
made contributions to a variety of fields. His most famous single result
is the first complete proof of the impossibility of solving the general quintic
equation in radicals. This question had been unresolved for 250 years. He
also did research in elliptic functions, discovering Abelian functions.
Abel made his discoveries while living in poverty and died at the age of 26.

Paolo Ruffini (1765 – 1822) was an Italian mathematician and philosopher.
He is most well-known for his attempts to prove that polynomials of degree
five are not solvable by radicals. He was a professor of mathematics at the
University of Modena and a medical doctor who conducted research on
typhus.

Galois Theory carries the Abel-Ruffini Theorem several steps further,
as the following example shows

EXAMPLE 8.7.5. The polynomial

(8.7.3) f (X) = X5 − 80X + 5 ∈ Q[X]

is irreducible by Eisenstein’s Criterion (theorem 5.6.8 on page 149) with the
prime 5. If H is the splitting field of f (X), we claim that Gal(H/Q) = S5.
The plot
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shows that it has three real roots and a pair of complex conjugate roots, say
{α, ᾱ, β1, β2, β3}. Let τ ∈ Gal(H/Q) be complex conjugation. Since f (X) is
of degree 5, we have 5

∣∣ [H: Q] and 5
∣∣ |Gal(H/Q)|.

Sylow’s First Theorem ( 4.8.1 on page 81), implies that it has a nontrivial
Sylow 5-group, which has an element of order 5. The only elements of order
5 in S5 are 5-cycles (i1, . . . , i5).

By relabeling elements, if necessary, we can assume
(1, 2, 3, 4, 5) ∈ Gal(H/Q) ⊂ S5, and exercise 6 on page 58 implies that
Gal(H/Q) = S5.

This is an odd and even disturbing result: not only is there no general
formula for the roots of f (X); one cannot even write down these roots in
radical notation (if one magically found out what they were). In other words,
no expression of the form

3

√
1 +

4
√

2 +
√

10

however complicated — will equal these roots.
This leads to deep questions on how one can do concrete calculations

with algebraic numbers. In general, the most one can say is that

“This number is a root of a certain irreducible polynomial.”
This isn’t saying much — for instance, these roots can have wildly different
properties (three of the roots of equation 8.7.3 on the preceding page are
real, two are complex).

Radical notation allows one to compute numerical values with arbi-
trary accuracy and allows one to deduce algebraic properties of numbers.

8.8. Galois’s Great Theorem

In this section we will prove a converse to theorem 8.7.3 on page 315: if
a polynomial’s splitting field has a solvable Galois group, the polynomial
is solvable by radicals.

We first need a result involving the characteristic polynomial of field ele-
ments (first mentioned in definition 7.3.2 on page 273.
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THEOREM 8.8.1. Let

(8.8.1) E

F

be a finite Galois extension with Galois group G = Gal(E/F). If α ∈ E, then

χα(X) = ∏
σ∈G

(X− σ(α))

In particular
NE/F(α) = ∏

σ∈G
σ(α)

and
TE/F(α) = ∑

σ∈G
σ(α)

PROOF. Let p(X) be the minimal polynomial (see definition 7.1.8 on
page 263) of α over F, and let d = [E: F(α)].

Lemma 7.3.5 on page 275 implies that

χα(X) = p(X)d

and lemma 8.6.2 on page 308 implies that all of the roots of p(X) lie in E.
Furthermore, proposition 8.3.1 on page 300 implies that G maps a fixed root
of p(X) to all of the others, so we get

p(X) = ∏
σi∈G

(X− σi(α))

where the σi ∈ G are the elements that send α to distinct images — there are
deg p(X) of them.

A given σ ∈ G has σ(α) = σi(α) if and only if σ ∈ σi H where H =
Gal((E/F(α)), and |H| = d. It follows that

∏
σ∈G

(X− σ(α)) =

(
∏

σi∈G
(X− σi(α))

)d

= p(X)d = χα(X)

□

The properties of the norm are well-known — see lemma 7.3.3
on page 274. In the setting of equation 8.8.1, the norm defines a
homomorphism

NE/F: E× → F×

The following result says something about the kernel of this homo-
morphism:

THEOREM 8.8.2 (Hilbert’s Theorem 90). Let

(8.8.2) E

F
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be a finite Galois extension with Galois group G = Gal(E/F) that is cyclic of
order n with generator σ ∈ G. If α ∈ E×, then NE/F(α) = 1 if and only if there
exists β ∈ E× such that

α = β · σ(β)−1

REMARK. This first appeared in a treatise on algebraic number theory
by David Hilbert (available in English translation in [53]).

See theorem 13.3.3 on page 456 for a cohomological statement of this the-
orem.

PROOF. First, we verify that

NE/F(β · σ(β)−1) = NE/F(β) · NE/F(σ(β)−1)

= NE/F(β) · NE/F(σ(β))−1

= NE/F(β) · NE/F(β)−1

= 1

Conversely, suppose NE/F(α) = 1 .
Define

δ0 = α

δ1 = ασ(α)

...

δi+1 = ασ(δi)

so that
δn−1 = ασ(α)σ2(α) · · · σn−1(α)

which, by theorem 8.8.1 on the preceding page, is equal to NE/F(α) = 1.
Since the characters {1, σ, σ2, . . . , σn−1} are independent (see defini-

tion 8.5.2 on page 305 and proposition 8.5.3 on page 305_, there exists γ ∈ E
such that

β = δ0γ + δ1σ(γ) + · · ·+ δn−2σn−2(γ) + σn−1(γ) ̸= 0

since δn−1 = 1. If we act on this via σ, we get

σ(β) = σ(δ0)σ(γ) + · · ·+ σ(δn−2)σ
n−1(γ) + σn(γ)

= α−1
(

δ1σ(γ) + · · ·+ δn−2σn−2(γ) + δn−1σn−1(γ)
)
+ γ

= α−1
(

δ1σ(γ) + · · ·+ δn−2σn−2(γ) + δn−1σn−1(γ)
)
+ α−1δ0γ

= α−1β

□

We apply this to

COROLLARY 8.8.3. If
E

F
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is a Galois extension of degree p, a prime, and F has a primitive pth root of unity,
then E = F(β), where βp ∈ F.

PROOF. If ω is a primitive pth root of unity, ω ∈ F and NE/F(ω) =
ωp = 1.

Since Gal(E/F) ̸= {1}, corollary 8.4.4 on page 304 implies that
Gal(E/F) ∼= Zp — let σ be a generator. Then theorem 8.8.2 on page 318
implies that there exists β ∈ E such that

ω = β · σ(β)−1

or σ(β) = β ·ω−1. This implies that σ(βp) = βp ·ω−p = βp. It follows that
βp ∈ F. The fact that ω ̸= 1 implies that β /∈ F.

Since [E: F] = p, a prime, there are no intermediate fields between E
and F, so E = F(β). □

LEMMA 8.8.4. Let E be the splitting field of a polynomial f (X) ∈ F[X], and
let F̄ be an extension of F. If Ē is the splitting field of f (X) in F̄ then restriction
defines an injective homomorphism

Gal(Ē/F̄)→ Gal(E/F)

PROOF. Let E = F(α1, . . . αk) and Ē = F̄((α1, . . . αk). Any automor-
phism of Ē that fixes F̄ also fixes F, and so is determined by its effect on the
αi (see exercise 1 on page 303). It follows that the homomorphism

Gal(Ē/F̄)→ Gal(E/F)

defined by σ 7→ σ|E is injective. □

We come to the main object of this section:

THEOREM 8.8.5 (Galois). Let F be a field of characteristic 0 and let

E

F

be a Galois extension. Then Gal(E/F) is a solvable group if and only if there exists
a radical extension R of F with E ⊂ R.

A polynomial f (X) ∈ F[X] has a solvable Galois group if and only if it is
solvable by radicals.

PROOF. Theorem 8.7.3 on page 315 gives the “if” part of the statement.
Suppose G = Gal(E/F) is solvable. We will proceed by induction on

[E: F]. Since G is solvable, it contains a normal subgroup H ◁ G such that
[G: H] = p, a prime (see exercise 1 on page 87).

Since G is a solvable group, H = Gal(E/EH) ⊂ G is a solvable group
and induction implies that there exists a tower of subfields

(8.8.3) EH ⊂ R1 ⊂ · · · ⊂ RN

where each term is pure of type some prime.
Consider EH ⊂ E. Since H ◁ G, EH is a Galois extension of F. If we

assume F contains a primitive pth root of unity, then corollary 8.8.3 on the
previous page implies that F ⊂ EH is pure of type p and we can splice it
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onto equation 8.8.3 on the facing page to get the required tower of field-
extensions.

If F does not contain a primitive pth root of unity, let F̄ = F(ω), where
ω is a primitive pth root of unity, and let Ē = E(ω). Note that F ⊂ Ē
is a Galois extension because, if E is the splitting field of f (X), the Ē is
the splitting field of f (X)(Xp − 1). It also follows that F̄ ⊂ Ē is a Galois
extension and lemma 8.8.4 on the preceding page implies that

Gal(Ē/F̄) ⊂ Gal(E/F)

and is, therefore, a solvable group. Induction implies the existence of a
tower of pure extensions

(8.8.4) F̄ ⊂ R̄1 ⊂ · · · ⊂ R̄N

with E ⊂ Ē ⊂ R̄N . Since F ⊂ F̄ = F(ω) is a pure extension, we can splice
this onto equation 8.8.4 to get the required result. □

EXERCISES.

1. If G is a finite p-group, show that G is solvable.

8.9. The fundamental theorem of algebra

As an application of Galois theory, we will prove

THEOREM 8.9.1 (Fundamental Theorem of Algebra). If p(X) ∈ C[X] is
a nonconstant polynomial, then

p(X) = 0

has a solution in the complex numbers.

REMARK. In other words, the field, C, is algebraically closed. This
also implies that the algebraic closure of R is C, and that the only proper
algebraic extension of R is C.

This is usually proved using complex analysis. We will need a little bit
of analysis

FACT 8.9.2 (Intermediate value property). If f (X) ∈ R[X] and f (x1) <
0 and f (x2) > 0, there exists a value x with x ∈ (x1, x2) and f (x) = 0.

COROLLARY 8.9.3. If α ∈ R with α > 0, then α has a square root.

PROOF. Consider the polynomial X2 − α and set x1 = 0 and x2 = α +
1. □

COROLLARY 8.9.4. If α ∈ C, then α has a square root.
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PROOF. If x = a + bi, let r =
√

a2 + b2 (which exists by corollary 8.9.3
on the previous page) and write

α = reiθ

The required square root is
√

r · eiθ/2. □

COROLLARY 8.9.5. The field, C, has no extensions of degree 2.

PROOF. If F = C[α] is a degree-2 extension, the minimal polynomial of
α is quadratic, which means its roots exist in C — by corollary 8.9.4 on the
preceding page. □

LEMMA 8.9.6. Every polynomial f (X) ∈ R[X] of odd degree has a real root.

PROOF. This is a variation on the proof of corollary 8.9.3 on the pre-
vious page. If f (X) = Xn + an−1Xn−1 + · · · + a0, where n is odd, set
t = 1 + ∑n−1

i=0 |ai|. We claim that f (t) > 0 and f (−t) < 0. Since |ai| ≤ t− 1
for all i, we get

|an−1tn−1 + · · ·+ a0| ≤ (t− 1)(tn−1 + · · ·+ 1)
= tn − 1 < tn

It follows that f (t) > 0 because the term tn dominates all the others. The
same reasoning shows that f (−t) < 0. □

COROLLARY 8.9.7. There are no field extensions of R of odd degree > 1.

PROOF. Let R ⊂ E be an extension. If α ∈ E, then the minimal polyno-
mial of α must have even degree, by lemma 8.9.6. It follows that [R(α): R]
is even which means that [E: R] = [E: R(α)][R(α): R] is also even. □

Now we are ready to prove theorem 8.9.1 on the previous page.
We claim that it suffices to prove every polynomial in R[X] has a com-

plex root. If f (X) ∈ C[X], then f (X) · f (X) ∈ R[X], and has complex roots
if and only if f (X) does.

If f (X) ∈ R[X] is irreducible, let E be a splitting field of f (X)(X2 +
1) containing C. Then R ⊂ E is a Galois extension (see lemma 8.6.2 on
page 308). Let G = Gal(E/R) and let |G| = 2nm where m is odd.

Theorem 4.8.1 on page 81 implies that G has a subgroup, H, of order
2n. Let F = EH be the fixed field.

Corollary 8.6.5 on page 310 implies that [E: F] = 2n with Galois group
H. It follows that [E: R] = [E: F] · [F: R] = 2nm, so that [F: R] = m.

Corollary 8.9.7 implies that m = 1, so that |G| = 2n. Let S ⊂ G be the
subgroup corresponding to Gal(E/C). If 2n > 1, it follows that n ≥ 1 so
that |S| > 1. This is also a 2-group, so it is solvable by exercise 1 on the
preceding page. It follows that it has a subgroup, T, of index 2, and ET is
an extension of C of degree 2 — which contradicts corollary 8.9.5.

We conclude that E = C.



CHAPTER 9

Division Algebras over R

“The next grand extensions of mathematical physics will, in all
likelihood, be furnished by quaternions.”

— Peter Guthrie Tait, Note on a Quaternion Transformation,
1863

9.1. The Cayley-Dickson Construction

Algebras are vector-spaces with a multiplication defined on them. As
such they are more and less general than rings:

� more general in that they may fail to be associative.
� less general in that they are always vector-spaces over a field.

DEFINITION 9.1.1. An algebra over a field, F, is a vector space, V, over
F that is equipped with a form of multiplication:

µ: V ×V → V

that is distributive with respect to addition and subtraction
(1) µ(x + y, z) = µ(x, z) + µ(y, z)
(2) µ(x, y + z) = µ(x, y) + µ(x, z)

for all x, y, z ∈ V, and is also well-behaved with respect to scalar multiplica-
tion: µ(kx, y) = µ(x, ky) = kµ(x, y) for k ∈ F.

An algebra is called a division algebra if
� it contains an identity element, 1 ∈ V such that µ(1, x) = x =

µ(x, 1) for all x ∈ V.
� Given any nonzero x, y ∈ V, there exists unique elements q1, q2 ∈

V such that y = µ(q1, x) = µ(x, q2).
An involution over an algebra is a homomorphism (with respect to ‘+′)

ι: V → V

with ι2 = 1: V → V.

REMARK. Division algebras have left and right quotients which may
differ (if they are non-associative). For associative algebras, the condition
of being a division algebra is equivalent to elements having multiplicative
inverses.

There are several inequivalent definitions of division algebras in the
literature: one defines them as algebras without zero-divisors, and another
defines them as algebras for which nonzero elements have multiplicative
inverses. If an algebra is finite-dimensional, some of these become equiva-
lent — see exercise 5 on the following page.

323
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In this chapter, we will several explore division algebras over R — in
fact, all of them.

Given an algebra with an involution, the Cayley-Dickson Construction
creates one of twice the dimension that also has an involution:

DEFINITION 9.1.2 (Cayley-Dickson Construction). Let A be an algebra
with an involution given by ι(x) = x∗ for all x ∈ A. Then we can impose
an algebra structure on A⊕ A — all ordered pairs of elements (a, b) with
a, b ∈ A with addition defined elementwise — and multiplication defined
by

(9.1.1) (a, b)(c, d) = (ac− d∗b, da + bc∗)

This has an involution defined by

(9.1.2) (a, b)∗ = (a∗,−b)

If we apply this construction to the real numbers (as a one-dimensional
algebra over R) and with the trivial involution (i.e., the identity map), we
get a two-dimensional algebra over the real numbers — the complex numbers
(see definition 2.1.1 on page 6).

EXERCISES.

1. If A is an algebra over R with involution ∗: A → A, let B = A⊕ A
be the Cayley-Dickson construction on A. Show that

a. if xx∗ ∈ R for all x ∈ A, then yy∗ ∈ R for all y ∈ B, and y has a
right inverse, i.e. there exists y−1 such that yy−1 = 1.

b. if x∗x ∈ R for all x ∈ A, then y∗y ∈ R for all y ∈ B, and y has a left
inverse.

c. if xx∗ = x∗x for all x ∈ A, then yy∗ = y∗y for all y ∈ B
d. if xx∗ ≥ 0 ∈ R for all x ∈ A and xx∗ = 0 =⇒ x = 0, then the

same is true for all y ∈ B.

2. Let A be an algebra with an involution, ∗: A → A, over R and B be
the result of the Cayley-Dickson construction on A. Show that, if

(9.1.3) (xy)∗ = y∗x∗

for all x, y ∈ A, then
(uv)∗ = v∗u∗

for all u, v ∈ B.

3. How is it possible for an algebra to simultaneously have:
� multiplicative inverses for all nonzero elements
� zero-divisors?

4. Show that an algebra with the properties described in exercise 3 can-
not be a division algebra.

5. If A is a finite-dimensional algebra over R with no zero-divisors,
show that every nonzero element has a multiplicative inverse.
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6. If A is an n-dimensional algebra over R, we can represent each ele-
ment, x ∈ A, by an n× n matrix mx: Rn → Rn that represents the action of
x by left-multiplication. If A is associative, show that mx·y = mxmy (matrix-
product) — so matrices faithfully represent the multiplication on A.

If A is not associative, what is the relationship between mx·y and mxmy?

9.2. Quaternions

For years, Hamilton tried to find an analogue to complex numbers for
points in three-dimensional space. One can easily add and subtract points in
R3— but multiplication and division remained elusive.

In a 1865 letter from Hamilton to his son Archibald, he wrote (see [60]):
. . . Every morning in the early part of the above-cited
month1, on my coming down to breakfast, your (then)
little brother William Edwin, and yourself, used to ask
me: “Well, Papa, can you multiply triplets?” Whereto I
was always obliged to reply, with a sad shake of the head:
“No, I can only add and subtract them.”. . .

The answer came to him in October 16, 1843 while he walked along the
Royal Canal with his wife to a meeting of the Royal Irish Academy: It
dawned on him that he needed to go to four dimensions. He discovered
the formula

(9.2.1) i2 = j2 = k2 = i · j · k = −1

and — in a famous act of vandalism — carved it into the stone of Brougham
Bridge as he paused on it. A plaque commemorates this inspiration today.

What he discovered was:

DEFINITION 9.2.1. The quaternions, denoted H, is an algebra over R

whose underlying vector-space is R4. An element is written

x = a + b · i + c · j + d · k ∈ R4

where i, j, k are called the quaternion units, and multiplication is defined by
the identities

(9.2.2) i2 = j2 = k2 = −1

(9.2.3) i · j = k, j · k = i, k · i = j

(9.2.4) u · v = −v · u
where u, v = i, j, k, the quaternion units. The quantity a ∈ R is called the
scalar part of x and b · i + c · j + d · k ∈ R3 is called the imaginary part, or the
vector-part.

1October, 1843.
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If a ∈ R and v =

 v1
v2
v3

 ∈ R3, the vector notation (a, v) represents the

quaternion

a + v = a + v1i + v2 j + v3k ∈H

REMARK. Note that, unlike complex multiplication, quaternion-
multiplication is not commutative — as shown in equation 9.2.4 on
the previous page. It is left as an exercise to the reader to derive
equations 9.2.3 on the preceding page and 9.2.4 on the previous page from

i2 = j2 = k2 = i · j · k = −1

We can formulate quaternion multiplication in terms of the vector form:

PROPOSITION 9.2.2. If a+ v, b+w ∈H are two quaternions in their vector
form, then (see definitions 6.2.62 on page 208 and 6.2.71 on page 211)

(9.2.5) (a + v)(b + w) = ab− v •w + a ·w + b · v + v×w

PROOF. We will prove the claim in the case where a = b = 0. The
general case will follow by the distributive laws: statements 1 and 2 in
definition 9.1.1 on page 323.

(0 + v)(0 + w) = vw1i2 + v2w2 j2 + v3w3k2 + v1w2ij + v1w3ik
+ v2w1 ji + v2w3 jk
+ v3w1ki + v3w2kj

= −v •w + v1w2k− v1w3 j
− v2w1k + v2w3i
+ v3w1 j− v3w2i

= −v •w + i(v2w3 − v3w2)

+ j(v3w1 − v1w3) + k(v1w2 − v2w1)

= −v •w + v×w

— see 6.2.71 on page 211. □

DEFINITION 9.2.3. Let x = a + b · i + c · j + d · k ∈ H be an element.
Define its conjugate, denoted x∗, by

x∗ = a− b · i− c · j− d · k

REMARK. Compare this with complex conjugation.

Conjugation is well-behaved with respect to multiplication:

PROPOSITION 9.2.4. If x, y ∈H, with x = a + b · i + c · j + d · k, then

(1) x · x∗ = x∗x = a2 + b2 + c2 + d2 ∈ R

(2) (x · y)∗ = y∗ · x∗ (note the order-reversal!).
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PROOF. If x = a + v, with v =

 b
c
d

 ∈ R3, then x∗ = a − v and

equation 9.2.5 on the facing page implies that

x · x∗ = a2 + v • v + av− av + v× v (see proposition 6.2.72 on page 212)

= a2 + ∥v∥2

= a2 + b2 + c2 + d2

If x = a + v, y = b + w, then

(xy)∗ = ab− v •w− a ·w− b · v− v×w

and x∗ = a− v, y = b−w so

y∗x∗ = ab− v •w− b · v− a ·w + w× v
= ab− v •w− a ·w− b · v− v×w

□

DEFINITION 9.2.5. If x ∈ H, then the norm of x, denoted ∥x∥ ∈ R, is
defined by

∥x∥ =
√

x · x∗

We immediately have

PROPOSITION 9.2.6. If x, y ∈ H, then ∥x∥ = 0 if and only if x = 0 and
∥x · y∥ = ∥x∥ · ∥y∥.

PROOF. The first statement follows immediately from proposition 9.2.4
on the preceding page. The second follows from

∥x · y∥2 = x · y · (x · y)∗
= x · y · y∗ · x∗

= ∥y∥2x · x∗

= ∥y∥2∥x∥2

□

The discovery of quaternions was regarded as a major breakthrough
in the mid 1800’s. Many physical laws, including Maxwell’s equations for
electromagnetic fields were stated in terms of quaternions. This initial en-
thusiasm faded when people realized:

(1) most applications do not need the multiplicative structure of
quaternions,

(2) unlike vectors, quaternions are limited to three or four dimen-
sions2.

2Depending on one’s point of view.
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The ebbs and flows of history are fascinating and ironic: What Hamilton
and his colleagues regarded as his crowning achievement — quaternions
— faded in importance, while his “lesser” discoveries like Hamiltonian
energy-functions turned out to be vital to the development of quantum me-
chanics.

In the late 20th century, quaternions found new applications with the
advent of computer graphics: unit quaternions express rotations in R3 more
efficiently than any other known representation. They are widely used in
computer games and virtual reality systems3.

In quantum mechanics, the state of a system is given by a wave func-
tion whose values lie in C — see [48]. In Dirac’s relativistic wave-equations,
the wave function takes its values in H — see [27] (a reprint of Dirac’s orig-
inal book). Those equations apply to electrons and other spin-1/2 particles,
and predicted the existence of positrons (or anti-electrons) long before the
particles were observed.

Now we will focus on the relationship between quaternions and rota-
tions in R3.

Proposition 9.2.6 on the preceding page immediately implies that:

PROPOSITION 9.2.7. The set of quaternions, x ∈ H with ∥x∥ = 1 forms a
group called S3.

REMARK. The quaternion group, Q, defined on page 106, consists of
{±1,±i,±j,±k} ⊂ S3.

Since ∥x∥ = 1, it follows that ∥x∥2 = x · x∗ = 1 so that x−1 = x∗.
If x = a + bi + cj + dk, the condition ∥x∥ = 1 implies that

a2 + b2 + c2 + d2 = 1

which is the equation of a 3-dimensional sphere in R4. This is the reason
for the name S3.

We need another version of the Euler formula:

THEOREM 9.2.8 (Quaternionic Euler Formula). Let u ∈ R3 be a unit-
vector and let α ∈ R be a scalar. Then

eα·u = cos α + sin α · u
PROOF. By equation 9.2.5 on page 326,

(9.2.6) (α · u)2 = −α2

since u × u = 0 (see proposition 6.2.72 on page 212) and u • u = 1. It
follows that

(α · u)2k = (−1)kα2k

(α · u)2k+1 = (−1)kα2k+1 · u
The conclusion follows by plugging these equations into the power-series
for ey — equation 2.1.3 on page 7. □

3Most such systems hide the quaternions they use. In the OpenSimulator and
Second Life virtual-reality systems, rotations are explicitly called quaternions (somewhat
inaccurately).
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Now we will explore the relation between quaternions and rotations in
R3. If we think of R3 as the subspace of imaginary quaternions, we run
into trouble:

v · (cos α + sin α · u) = − sin α · v • u + cos α · v + sin α · v× u

which is no longer in R3 since it has a scalar component, namely − sin α · v •
u.

We next try conjugating v by eα·u

eα·u · v · e−α·u = cos2 α · v
+ sin α cos α (uv− vu)− sin2 αuvu

To simplify this, we note that

(9.2.7) uv− vu = 2u× v

(see equation 9.2.5 on page 326) and

uvu = u (−v • u + v× u)

= − (v • u) u− u • (v× u) + u× (v× u)

= − (v • u) u + v(u · u)− u(u · v) (see exercise 25 on page 214)

= −2 (v • u) u + v

It follows that

eα·u · v · e−α·u = cos2 α · v + 2 sin α cos α · u× v

− sin2 α (−2 (v • u) u + v)

=
(

cos2 α− sin2 α
)
· v + 2 sin α cos α · u× v

+ 2 sin2 α · (v • u) u

= cos(2α) · v + sin(2α) · u× v + (1− cos(2α)) · (v • u) u

= (v • u) u + cos(2α) (v− (v • u)) + sin(2α) · u× v

The last equation is identical to equation 6.2.43 on page 214 so we conclude:
The conjugation eα·u · v · e−α·u is the result of rotating v on
the axis defined by u by an angle of 2α.

and we get our result

THEOREM 9.2.9. If v, u ∈ R3 ⊂ H are vectors with ∥u∥ = 1, then the
result of rotating v by an angle θ around the axis defined by u is the conjugation
in H

r = e(θ/2)·u · v · e−(θ/2)·u ∈ R3 ⊂H

REMARK. There are several advantages of using quaternions over 3× 3
orthogonal matrices (see corollary 6.2.69 on page 210) in computer graphics
systems:

(1) Quaternions have four data-values rather than nine.
(2) Multiplying unit quaternions requires fewer operations than mul-

tiplying matrices. Computer graphics systems often require many
composites of rotations.
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(3) Continuously varying rotations are easy to implement in
quaternions:

a(t) + b(t)i + c(t)j + d(t)k
∥a(t) + b(t)i + c(t)j + d(t)k∥

These are widely used in computer games, virtual reality systems,
and avionic control systems. This is relatively difficult to do with
other ways of defining rotations (like orthogonal matrices or ro-
tations defined in terms of unit vectors and angles — using equa-
tion 6.2.43 on page 214).

(4) Quaternions do not have the gimbal problem — which often hap-
pens when one defines rotations in terms of angles. Certain val-
ues of these angles cause singularities: For instance, at latitudes
of ±90◦ (the Earth’s north and south poles), all longitudes are the
same. If you vary longitude and latitude continuously, the process
locks up whenever the latitude reaches ±90◦.

(5) It is easy to correct for round-off errors in working with quater-
nions. In performing computations with unit quaternions, round-
off errors often give quaternions whose length is not quite 1. One
can simply divide these by their norms and produce valid rota-
tions. The same is not true of orthogonal matrices. Round off error
can give matrices that are only approximately orthogonal. There is
no simple way to find the actual orthogonal matrix “closest” to
one of these.

Ferdinand Georg Frobenius (1849 – 1917) was a German mathematician,
best known for his contributions to the theory of elliptic functions, differ-
ential equations, number theory, and group theory.

Next, we will discuss a remarkable result4:

THEOREM 9.2.10 (Frobenius’s Theorem). The only associative division al-
gebras over R are R, C, and H.

REMARK. There are several famous theorems called “Frobenius’s The-
orem,” including one in differential topology.

PROOF. Let A be an associative division algebra over R. This is a vec-
tor space over R, so suppose its basis is b = {v1 = 1, . . . , vn}— here 1 ∈ A
generates a one-dimensional sub-algebra R ⊂ A.

If n = 1, then A = R and we’re done. Consequently, we’ll assume
n > 1.

For any d ∈ A \R, let R ⟨d⟩ denote the two-dimensional vector space
over R spanned by 1 and d.

CLAIM 9.2.11. R ⟨d⟩ is the maximal commutative subset of all elements
of A that commute with d. Furthermore, it is isomorphic to C.

4The proof given here is due to Palais in [88]. It is shorter than the original.
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PROOF. Let F ⊂ A be the subspace of maximal dimension of elements
which includes R ⟨d⟩ and is commutative. If x ∈ A commutes with every-
thing in F, then F + R · x is commutative, so must equal F. It follows that
x ∈ F — so everything that commutes with F is in F. If x ̸= 0 ∈ F then x−1

commutes with everything in F because xy = yx =⇒ x−1y = yx−1. It
follows that x−1 ∈ F so that F is a field.

Since [F: R] is finite (it is ≤ n), proposition 7.2.2 on page 266 implies
that the field-extension R ⊂ F is algebraic. The Fundamental Theorem of
Algebra ( 8.9.1 on page 321) and example 7.5.8 on page 285 imply that F ∼=
C. □

Since F is isomorphic to C, we can select an element i ∈ F such that
i2 = −1.

It follows that A is also a vector space over C (and that n had to be an
even number), with the action of C on A being given by left-multiplication.
If n = 2, A = C and we are done.

If n > 2, regard right-multiplication by i ∈ F as defining a linear trans-
formation T: A→ A:

Tx = x · i ∈ A
Since T2 = −I, its eigenvalues are ±i with corresponding eigenspaces

A±.
(1) If x ∈ A+, then Tx = ix so that ix = xi.
(2) If x ∈ A−, then Tx = −ix, so that ix = −xi.
(3) A = A+ + A−. This follows from the fact that, for all x ∈ A,

x =
1
2
(x− ixi) +

1
2
(x + ixi)

where x− ixi ∈ A+ and x + ixi ∈ A−.
(4) A = A+⊕ A−. This follows from the preceding statement and the

fact that: A+ ∩ A− = 0.
(5) A+ = C and x, y ∈ A− implies that xy ∈ A+ — because of state-

ment 2 above and

(9.2.8) (xy)i = x(yi) = −x(iy) = −(xi)y = (ix)y = i(xy)

(6) dimC A− = 1. If x ∈ A− is any nonzero element, statement 5
implies that multiplication by x defines an isomorphism5 x·: A− →
A+, so they must have the same dimension over C. We claim that
x2 ∈ R and x2 < 0. Claim 9.2.11 on the preceding page implies
that R ⟨x⟩ is a field isomorphic to C, so it contains x2. In addition,
statement 5 implies that x2 ∈ A+ = C so it is in C ∩R ⟨x⟩. Since
x /∈ C, C ∩ R ⟨x⟩ = R. If x2 > 0, it would have square roots
±
√

x2 ∈ R, and a total of three square roots in the field R ⟨x⟩,
which contradicts corollary 7.2.5 on page 267.

(7) A suitable multiple of x ∈ A−, called j, has the property that j2 =
−1. If k = ij, then j and k form a basis for A− and the set

{1, i, j, k}
5Because x has an inverse — since A is a division algebra.
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forms a basis for A over R. It is easy to verify that these satisfy the
identities for the quaternion units of H — so we are done.

□

EXERCISES.

1. If α, β ∈ R and u1, u2 ∈ R3 ⊂ H, is the equation eα·u1 · eβ·u2 =
eα·u1+β·u2 valid?

2. Where did the proof of theorem 9.2.10 on page 330 use the fact that
A was associative?

3. Show that the quaternions are the result of applying the Cayley-
Dickson construction (definition 9.1.1 on page 324) to the complex num-
bers, where the involution on C is complex-conjugation.

4. Given a unit-quaternion

x = a + b · i + c · j + d · k
with

x−1 = a− b · i− c · j− d · k
Compute the orthogonal matrix for the rotation defined by y 7→ xyx−1.
Recall that

a2 + b2 + c2 + d2 = 1

5. Show that the quaternionic conjugate can be expressed as an alge-
braic equation (in sharp contrast to the complex conjugate):

q∗ = −1
2
(q + i · q · i + j · q · j + k · q · k)

9.3. Octonions and beyond

� � Hamilton’s success in constructing quaternions inspired
mathematicians to research possibilities of higher-dimension division

algebras over R. Frobenius’s Theorem implies that these cannot possibly be
associative.

In 1843, John T. Graves, a friend of Hamilton’s, discovered an
eight-dimensional division algebra over R that he called octaves (now called
octonions). Cayley independently discovered this algebra and published slightly
earlier — causing many to call them Cayley Numbers.

DEFINITION 9.3.1. The octonions, O, consists of R-linear combinations of the 8
octonion units

{1 = e0, . . . , e7}
where multiplication is distributive over addition and octonion units multiply via
the table
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e3 e5

e6

e7

e1e4

e2

FIGURE 9.3.1. Fano Diagram

× e1 e2 e3 e4 e5 e6 e7

e1 −1 e4 e7 −e2 e6 −e5 −e3
e2 −e4 −1 e5 e1 −e3 e7 −e6
e3 −e7 −e5 −1 e6 e2 −e4 e1
e4 e2 −e1 −e6 −1 e7 e3 −e5
e5 −e6 e3 −e2 −e7 −1 e1 e4
e6 e5 −e7 e4 −e3 −e1 −1 e2
e7 e3 e6 −e1 e5 −e4 −e2 −1

REMARK. As with quaternions, we have e2
i = −1 and eiej = −ejei for i ̸= j.

Unlike quaternions

(e3e4)e1 = e5 ̸= e3(e4e1) = −e5

so the octonions are not associative.

One way to represent this multiplication table in compact form involves the
Fano Diagram in figure 9.3.1.

Every pair (ei, ej) lies on one of the lines in this diagram (where we regard the
circle in the center as a “line”). The third e-element on the line is the product —
with the sign determined by whether one must traverse the line in the direction of
the arrows (giving a positive result) or in the opposite direction. The lines are also
interpreted as cycles, with ends wrapping around to the beginnings.

The bottom line of figure 9.3.1 implies that e5e2 = e3, and e5e3 = −e2. In the
second case, we interpret the end of the line as wrapping around to the beginning
— and we must traverse it in a direction opposite to the arrows.

Since octonions are non-associative, we consider “flavors of associativity.”

DEFINITION 9.3.2. An algebra, A, is defined to be

(1) power-associative if any single element generates an associative subalge-
bra,

(2) alternative if any pair of elements generate an associative subalgebra.

REMARK. Associative algebras clearly satisfy both of these conditions.
Power-associative algebras are ones where expressions like x4 are well-defined

— otherwise, one would have to provide brackets specifying the order of the prod-
ucts, like ((xx)(xx)).
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THEOREM 9.3.3 (Artin’s Theorem). An algebra, A, is alternative if and only if

(aa)b = a(ab)
(ba)a = b(aa)

for all a, b ∈ A.

PROOF. If A is alternative, the two equations given in the statement will be
true.

Conversely, assume these two equations are true. Since a and b are arbitrary,
we conclude that (aa)a = a(aa) and (bb)a = b(ba).

Linearity implies that

(a− b)((a− b)a) = a((a− b)a)− b((a− b)a)

= a(aa)− a(ba)− b(aa) + b(ba)

The hypothesis implies that this is equal to

((a− b)(a− b))a = (aa)a− (ab)a− b(aa) + (bb)a

We compare the two to get

a(aa)− a(ba)− b(aa) + b(ba) = (aa)a− (ab)a− b(aa) + (bb)a

and cancel b(aa) to get

a(aa)− a(ba) + b(ba) = (aa)a− (ab)a + (bb)a

subtract off a(aa) = (aa)a and b(ba) = (bb)a to get

−a(ba) = −(ab)a

so a(ba) = (ab)a. This implies that multiplication of all possible combinations of
a’s and b’s is associative. We conclude that the algebra generated by a and b is
associative. □

THEOREM 9.3.4. Let A be an associative algebra with involution ∗: A → A, and let
B = A⊕ A be the Cayley-Dickson construction applied to A. If

aa∗ = a∗a and a + a∗

commute with all elements of A, and (ab)∗ = b∗a∗ for all elements a, b ∈ A, then B is an
alternative algebra.

PROOF. We verify the hypotheses of theorem 9.3.3. If x = (a, b) and y = (c, d),
the

xx = (aa− b∗b, ba + ba∗) = (aa− b∗b, b(a + a∗))
and

(xx)y = ((aa− b∗b)c− d∗b(a + a∗), daa− db∗b + b(a + a∗)c∗)

= (aac− b∗bc− d∗b(a + a∗), daa− db∗b + b(a + a∗)c∗)(9.3.1)

Since
xy = (ac− d∗b, da + bc∗)

we get

x(xy) = (a(ac− d∗b)− (da + bc∗)∗b, (da + bc∗)a + b(ac− d∗b)∗)

= (a(ac− d∗b)− (cb∗ + a∗d∗)b, (da + bc∗)a + b(c∗a∗ − b∗d))

= (aac− ad∗b− cb∗b− a∗d∗b, daa + bc∗a + bc∗a∗ − bb∗d)

= (aac− (a + a∗)d∗b− cb∗b, daa + bc∗(a + a∗)− bb∗d)(9.3.2)

Now we simply compare the right sides of equations 9.3.1 and 9.3.2, using the fact
that bb∗ = b∗b and a + a∗commute with all elements of A to see that they are equal.



9.3. OCTONIONS AND BEYOND 335

Another tedious computation verifies the second condition in theorem 9.3.3 on the
facing page. □

As with quaternions, we define

DEFINITION 9.3.5. If x = a0 + a1e1 + · · ·+ a7e7 ∈ O with the ai ∈ R, then its
conjugate, x∗ is defined by

x∗ = a0 − a1e1 − · · · − a7e7

LEMMA 9.3.6. The result of performing the Cayley-Dickson construction (defini-
tion 9.1.2 on page 324) on the quaternions is isomorphic to the octonions. We conclude
that O is an alternative algebra.

PROOF. It suffices to prove the first statement for the units, following the cor-
respondence

1↔ (1, 0)

e1 ↔ (i, 0)

e7 ↔ (−j, 0)

e3 ↔ (k, 0)

e6 ↔ (0, 1)

e5 ↔ (0,−i)

e2 ↔ (0, j)

e4 ↔ (0,−k)

Then, it is just a matter of checking that the Cayley-Dickson product matches the
table in definition 9.3.1 on page 332.

Exercises 1 on page 324 and 2 on page 324 imply that xx∗ ∈ R for all x ∈ O and
(xy)∗ = y∗x∗ for all x, y ∈ O. In addition, the definition of the involution implies
that x + x∗ ∈ R for all x ∈ O. The conclusion follows from theorem 9.3.4 on the
preceding page. □

As with the complex numbers and quaternions,

DEFINITION 9.3.7. If x ∈ O, define ∥x∥ =
√

xx∗, the norm of x. If ∥x∥ = 0, then
x = 0.

REMARK. Exercise 1 on page 324 implies that xx∗ > 0 for all x ̸= 0.

LEMMA 9.3.8. If x, y ∈ O then there exists an associative subalgebra Sx,y ⊂ O with
x, y, x∗, y∗ ∈ Sx,y.

PROOF. Write

ℜ(x) =
x + x∗

2
∈ R

ℑ(x) =
x− x∗

2
The subalgebra of O generated by ℑ(x) and ℑ(y) is associative because O is alter-
native. Define Sx,y to be this subalgebra plus R. Since the elements of R commute
and associate with everything in O, we conclude that Sx,y is associative.

Since ℜ(x) ± ℑ(x), ℜ(y) ± ℑ(y), are in Sx,y, it follows that x, y, x∗, y∗ ∈ Sx,y.
□

This norm is well-behaved in the sense that:

PROPOSITION 9.3.9. If x, y ∈ O, then ∥x · y∥ = ∥x∥ · ∥y∥.
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REMARK. John T. Graves originally proved this using brute-force computation
from the table in definition 9.3.1 on page 332.

This has an interesting number-theoretic implication: if we set all the coeffi-
cients in x and y to integers, it implies that a product of two sums of eight perfect
squares is also a sum of eight perfect squares.

PROOF. If we try to mimic the proof of proposition 9.2.6 on page 327, we wind
up with

∥x · y∥2 = (x · y) · (x · y)∗

= (x · y) · (y∗ · x∗)
Lemma 9.3.8 on the previous page implies that we can continue the proof of propo-
sition 9.2.6 on page 327 to get

(x · y) · (y∗ · x∗) = x · (y · y∗) · x∗

= ∥y∥2x · x∗

= ∥y∥2∥x∥2

□

COROLLARY 9.3.10. The octonions have no zero-divisors.

PROOF. If x, y ∈ O are both nonzero, ∥x∥ ̸= 0 and ∥y∥ ̸= 0, so x · y has a
nonzero norm and cannot be 0. □

We finally have:

THEOREM 9.3.11. The octonions constitute a division algebra.

PROOF. Given nonzero x, y ∈ O, we have

y−1 =
y∗

yy∗

and x = (x · y−1)y = x(y−1y) since x, y, y∗ lie in an associative subalgebra
(lemma 9.3.8 on the previous page). □

Octonions are not as well understood as quaternions and complex numbers.
They have applications to string-theory — see [11].

It turns out that R, C, H, and O are all possible division-algebras over
R: Using advanced algebraic topology, Hopf proved that the dimension of a
finite-dimensional division algebra over R must be a power of 2 — see [54].

In 1958, Bott and Milnor extended this result by proving that division algebras
over R must have dimension 1, 2, 4, or 8 — see the later account in [16]. The book
[5] contains the shortest proof the author has ever seen. Hurwitz proved (among
other things) that an 8-dimensional division algebra over R is isomorphic to O.

If we apply the Cayley-Dickson Construction to the octonions, we get a sixteen-
dimensional algebra over R called the sedenions. Nonzero sedenions have multi-
plicative inverses but the algebra also has zero-divisors, so it is not a division alge-
bra (see exercise 4 on page 324).
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EXERCISES.

1. In equation 9.2.6 on page 328, u is a purely imaginary unit quater-
nion. What happens if it isn’t a unit quaternion?

2. Prove an octonionic Euler Formula similar to theorem 2.1.2 on
page 7.

Hint: Use the Cayley-Dickson construction (definition 9.1.2 on
page 324).

Is this a special case of an Euler Formula for algebras of dimension 2n

that result from applying the Cayley-Dickson construction n-times to R?





CHAPTER 10

A taste of category theory

“The language of categories is affectionately known as ‘abstract
nonsense,’ so named by Norman Steenrod. This term is essen-
tially accurate and not necessarily derogatory: categories refer to
‘nonsense’ in the sense that they are all about the ‘structure,’ and
not about the ‘meaning,’ of what they represent.”

— Paolo Aluffi, Algebra: Chapter 0

10.1. Introduction

Category theory is a field as general as set theory that can be applied
to many areas of mathematics. It is concerned with the patterns of map-
pings between mathematical structures and the types of conclusions one
can draw from them.

Eilenberg and MacLane developed it with applications to algebraic
topology in mind, see [31]. Today, it has applications to many other fields,
including computer science — [90]

Once derided as “general nonsense,” it has gained acceptance over
time. Readers who want more than the “drive-by” offered here are invited
to look at MacLane’s classic, [71].

Here is an example of the kind of reasoning that category theory uses:
Suppose you want to define the product of two mathematical objects, A

and B. One way to proceed is to say that A× B has the following universal
property:

(1) There exist maps from A × B to A and B (projections to the fac-
tors).

(2) Given any maps f : Z → A and g: Z → B, there is a unique map

f × g: Z → A× B

compatible with the maps from Z to A, B.
This is more succinctly stated with commutative diagrams. In a diagram like

(10.1.1) U r //

t ��

V
s��

W
b
// X

the arrows represent maps. We will say this diagram commutes if, when-
ever one can reach a node along different paths, the composite maps one
encounters are equal. For instance, the statement that diagram 10.1.1 com-
mutes is equivalent to saying s ◦ r = b ◦ t.

DEFINITION 10.1.1. We can define A× B by saying that,

339
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(1) it has projection-maps p1: A× B→ A and p2: A× B→ B
(2) whenever we have a diagram with solid arrows

(10.1.2) A× B

p1

��

p2

��

A Z
f

oo
g
//

f×g

OO

B

where Z is an arbitrary “object” that maps to A and B — the dotted
of arrow exists, is unique, and makes the whole diagram commute.

In other words, we define A× B by a general structural property that
does not use the inner workings or A or B.

DEFINITION 10.1.2. A category, C , is a collection of objects and mor-
phisms, which are maps between objects. These must satisfy the conditions:

(1) Given objects x, y ∈ C , homC (x, y) denotes the morphisms from
x to y. This may be an empty set.

(2) Given objects x, y, z ∈ C and morphisms f : x → y and g: y → z,
the composition g ◦ f : x → z is defined. In other words a dotted
arrow exists in the diagram

y

g

��
x

f

DD

g◦ f
// z

making it commute.
(3) Given objects x, y, z, w ∈ C and morphisms f : x → y,g: y → z,

h: z → w, composition is associative, i.e., h ◦ (g ◦ f ) = (h ◦ g) ◦
f : x → w. This can be represented by a commutative diagram:

x

f

��

h◦(g◦ f )=(h◦g)◦ f
//

g◦ f

��

w

y g
//

h◦g

??

z

h

OO

(4) Every object, x ∈ C , has an identity map 1x: x → x such that, for
any f : x → y, f ◦ 1x = 1y ◦ f = f : x → y. This is equivalent to
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saying that the diagram

x

1x

��

f

��
x

f
//

f

��

y

1y

��
y

commutes.

After defining something so general, it is necessary to give many ex-
amples:

(1) The category, V , of vector-spaces and linear transformations
(when defining a category, one must specify the morphisms as
well as the objects). Given two vector spaces, V and W, the set of
morphisms, homV (V, W), is also a vector-space.

(2) The category, D , of vector-spaces where the only morphisms are
identity maps from vector spaces to themselves. Categories in
which the only morphisms are identity maps are called discrete.
Discrete categories are essentially sets of objects.

(3) The category, R, of rings where the morphisms are
ring-homomorphisms.

(4) The category, N , whose objects are positive integers and where
the morphisms

m→ n
are all possible n × m matrices of real numbers. Composition of
morphisms is just matrix-multiplication. This is an example of a
category in which the morphisms aren’t maps.

(5) The category, S , of sets with the morphisms functions mapping
one set to another.

(6) The category, T , of topological spaces where the morphisms are
continuous maps.

(7) The category, R-mod of modules over a ring, R. If M, N ∈ R-mod,
the set of morphisms, homR-mod(M, N) is usually written
homR(M, N).

DEFINITION 10.1.3. A category, C , is called concrete if
(1) its objects are sets (possibly with additional structure)
(2) morphisms that are equal as set-mappings are equal in C .

REMARK. All of the examples given above except N are concrete.

We will also need the dual concept of coproduct. A coproduct of a set
of objects is essentially their union. So why not just call it the union? Well
the categorical definition below is essentially the same as that of the prod-
uct, except that all of the arrows in definition 10.1.1 on page 339 are reversed
(hence, hardcore category-theorists insist that it is the coproduct):
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DEFINITION 10.1.4. An object Z in a category is a coproduct of A and B
if

(1) there exist maps i1: A→ Z, i2: B→ Z, and
(2) Any maps f1: A → W f2: B → W induce a unique map g: Z → W

making the diagram

W

A

f1

>>

i1
// Z

g

OO

B

f2

__

i2
oo

commute. If this is true, we write

Z = A ⨿ B

REMARK. Note that the symbol for a coproduct is an inverted product-
symbol — which looks vaguely like a union-symbol. This is appropriate
since coproducts have the structural properties of a union. As before, the
universal property of coproducts imply that if they exist, they are unique.

Products map to their factors, and coproducts have maps from their fac-
tors. In some cases, products and coproducts are the same.

Coproducts are special cases of something called a push-out:

DEFINITION 10.1.5. Given a diagram

A
i1 //

i2
��

B

C

an object, Z, is called a push-out if it fits into a diagram

A
i1 //

i2
��

B

p1

��

C p2
// Z

with the following universal property:
Whenever there exist morphisms v1 and v2 making the diagram

A
i1 //

i2
��

B

v1

��

C v2
// Q
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commute, there exists a unique morphism j: Z → Q making the diagram

A
i1 //

i2
��

B

p1

�� v1

��

C p2
//

v2 ..

Z
j

��

Q

commute.

We also have the dual concept of pull-back — essentially reverse all
arrows:

DEFINITION 10.1.6. Given a diagram

A B
p1

oo

C

p2

OO

an object, Z, is called a pull-back if it fits into a diagram

A B
p1

oo

C

p2

OO

Z

v1

OO

v2
oo

with the following universal property:
Whenever there exist morphisms r1 and r2 making the diagram

A B
p1

oo

C

p2

OO

Q

r1

OO

r2
oo

commute, there exists a unique morphism h: Q→ Z making the diagram

A B
p1

oo

C

p2

OO

Z

v1

OO

v2
oo

Q

r1

aa

r2

\\

h

__

commute.
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EXAMPLE 10.1.7. Products, coproducts, push-outs, and pull-backs de-
pend strongly on the category (many categories do not even have these con-
structions):

(1) In the category of sets, the union is a coproduct. The Cartesian
product is the product, so coproducts and products are very dif-
ferent.

(2) In the category of modules over a ring, the direct sum is the co-
product as well as the product.

(3) In the category of groups, the free product is the coproduct.

Category theory expresses the familiar concepts of monomorphism
and epimorphism in “arrow-theoretic” terms:

DEFINITION 10.1.8. A morphism f : A → B between objects of a cate-
gory is:

(1) a monomorphism if, for any other object C and any two morphisms
g1, g2: C → A

f ◦ g1 = f ◦ g2 =⇒ g1 = g2

(2) an epimorphism if, for any other object C and any two morphisms
g1, g2: B→ C

g1 ◦ f = g1 ◦ f =⇒ g1 = g2

EXERCISES.

1. If A and B are objects of a category C , show that, for any object
W ∈ C

homC (W, A× B) = homC (W, A)× homC (W, B)

2. Prove the statement above that in the category of modules over a
ring, the product and coproduct of two modules V and W is V ⊕W. Is the
same thing true for infinite products and coproducts?

3. In a category C , if

f : A→ B

is a monomorphism, show that

homC (C, A)
homC (1, f )−−−−−−→ homC (C, B)

is a monomorphism in the category of sets.

4. If A b is the category of abelian groups, show that a map is a
monomorphism if and only if it is injective (in the usual sense) and is an
epimorphism if and only if it is surjective.
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5. In the category of modules over a commutative ring, show that
push-outs exist, i.e. that the push-out of

M
i1 //

i2
��

N

W

is

M
i1 //

i2
��

N

p1

��

W p2
// Z

where

Z =
N ⊕W
i(M)

and
i = (i1,−i2): M→ N ⊕W

6. In the category of modules over a commutative ring, show that pull-
backs exist, i.e. that the pull-back of

M N
p1

oo

W

p2

OO

is

M N
p1

oo

W

p2

OO

Z

v1

OO

v2
oo

where
Z = {(n, w) ∈ N ⊕W|p1(n) = p2(w) ∈ M}

10.2. Functors

A functor from one category to another is a kind of function of objects
and morphisms.

DEFINITION 10.2.1. Let C and D be categories. A functor

f : C → D



346 10. A TASTE OF CATEGORY THEORY

is a function from the objects of C to those of D — i.e., if x ∈ C then
f (x) ∈ D with the following additional property:

If h: x → y is a morphism in C , then f defines, either
� a morphism f (h): f (x) → f (y) in D — in which case f is called a

covariant functor or just a functor, or
� a morphism f (h): f (y) → f (x) in D — in which case f is called a

contravariant functor.
In addition f (1x) = 1 f (x) and f (j ◦ h) = f (j) ◦ f (h), if f is covariant or
f (j ◦ h) = f (h) ◦ f (j) is f is contravariant.

REMARK. Functors play an extremely important part in algebraic
topology, particularly contravariant ones.

Here are some examples:
(1) a functor f : S → S from the category of sets to itself. If x ∈ S ,

f (x) = 2x, the power-set or set of all subsets of x. If d: x → y
is a set-mapping and z ⊂ x is a subset, then d|z: z → y is a set-
mapping whose images is a subset of y. It follows that d induces a
natural map

2d: 2x → 2y

and this is what we define f (d) to be.
(2) We can define f : V → V to send a real vector-space, x ∈ V to its

dual, x∗ — the vector-space of all linear transformations η: x → R.
If m: x → y is a linear transformation, and µ: y → R is an

element of y∗, the composite η ◦m: x → R is an element of x∗. We
get a natural map m∗: y∗ → x∗ and we set f (m) = m∗. It follows
that f is a contravariant functor.

(3) If F is the category of finite dimensional vector spaces, it is well-
known that x∗∗ = x ∈ F , so the functor f defined in statement 2
above actually is a contravariant isomorphism of categories

f : F → F

(4) If G is the category of groups and R is that of commutative rings,
we can define a functor

gn: R → G

that sends a commutative ring r ∈ R to GLn(r), the group of n× n
matrices whose determinant is a unit of r. Since homomorphisms
of rings send units to units, it follows that any homomorphism of
rings

h: r → s

induces a natural homomorphism of groups
gn(h): GLn(r)→ GLn(s).

We can classify functors in various ways:

DEFINITION 10.2.2. A functor f : C → D is:
(1) an isomorphism if it is a bijection of objects and morphisms,
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(2) full if it is “surjective on morphisms” — i.e., every morphism
g: f (c1) → f (c2) ∈ D is of the form f (t) where t is a morphism
t: c1 → c2 (if f is covariant). In the contravariant case, reverse the
arrows in C or D (but not both).

(3) faithful if it is “injective on morphisms” — i.e., given morphisms
m1, m2: c1 → c2 f (m1) = f (m2) always implies that m1 = m2.

For instance, concrete categories are commonly defined as categories
that have a faithful functor to the category of sets.

Isomorphism of categories is too stringent a condition in practice.
Equivalence of categories is slightly weaker but very useful. To define it,
we need:

DEFINITION 10.2.3. Suppose C is a category and f : C → C is a functor
such that f (x) is isomorphic to x for all x ∈ C . A natural isomorphism

jx: x → f (x)

is an isomorphism defined for all objects x ∈ C with the property that, for
any morphism g: x → y the diagram

x
jx
//

g

��

f (x)

f (g)

��

y
jy
// f (y)

commutes.

REMARK. The thing that makes an isomorphism natural is that it is
defined for all objects and in a way compatible with all maps between them.
Prior to the introduction of category theory, it was common to call certain
maps natural without giving any precise definition.

This is a special case of a natural transformation of functors:

DEFINITION 10.2.4. If C , D are categories and f , g: C → D are func-
tors, a natural transformation

t: f → g

is a morphism
t(x): f (x)→ g(x)

defined for all x ∈ C , such that, for any morphism m: x → y the diagram

f (x)
t(x)

//

f (m)

��

g(x)

g(m)

��

f (y)
t(y)

// g(y)

commutes.
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REMARK. In the notation of definition 10.2.3 on the previous page, a
natural isomorphism is a natural transformation from the identity functor to
f .

It is possible to form a category out of all of the functors between two
categories. Natural transformations are the morphisms in this “category of
functors.”

Here’s an example of a natural isomorphism:

EXAMPLE 10.2.5. If V is a vector-space, there is a morphism of vector-
spaces

V → V∗∗

that sends v ∈ V to the linear function, t ∈ V∗∗, on V∗ with t(r) = r(v)
for r ∈ V∗. It clearly commutes with all maps of vector-spaces. This is
well-known to be an isomorphism if V is finite-dimensional.

And here is one of a natural transformation:

EXAMPLE 10.2.6. If V is a vector-space, define

f (V) = V ⊕V
g(V) = V

Now, for every vector-space, V, define

t(V): f (V)→ g(V)

to be the homomorphism that sends (v1, v2) ∈ V ⊕V to v1 + v2 ∈ V. This
is easily verified to be a natural transformation.

In considering when two categories are “equivalent,” it turns out that
requiring them to be isomorphic is usually too restrictive. Instead, we re-
quire them to be equivalent in the following sense:

DEFINITION 10.2.7. Given categories C and D , a pair of functors

f : C → D

g: D → C

define an equivalence of categories if there exist natural isomorphisms

jx: x → g ◦ f (x)

for all x ∈ C and
ky: y→ f ◦ g(x)

for all y ∈ D .
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EXERCISES.

1. Let f be the functor defined in statement 2 on page 346 above and
suppose we have a morphism

m: V1 → V2

between vector spaces that is represented by a matrix, A. Describe the
matrix-representation of

f (m): V∗2 → V∗1
2. If F is the category of finite-dimensional vector-spaces, show that

the functor f defined in statement 2 on page 346 above is an equivalence of
categories

f : F → F

Why isn’t it an isomorphism?

3. Find a functor from the category of sets to itself that does not always
send injective maps to injective maps.

10.3. Adjoint functors

Adjoint functors are ones that complement each other in a certain sense.
They occur naturally in many settings — Daniel Kan was the first to recog-
nize these patterns (see [59]) and develop a general concept.

As often happens in category theory, the definition is very cryptic with-
out several examples:

DEFINITION 10.3.1. Given two categories, A and B, functors

f : A → B

g: B → A

are said to be adjoint if there exists a natural isomorphism

(10.3.1) homA (x, g(y)) = homB( f (x), y)

for all x ∈ A and y ∈ B. In this situation, f is called a left-adjoint to g
and g is called a right-adjoint to f . The collection, ( f , g, A , B) is called an
adjunction.

REMARK. Note that (with rare exceptions) f and g are not inverses of
each other.

Our terminology was taken from Hilbert space theory: U1 and U2 are
adjoint operators if

⟨U1x, y⟩ = ⟨x, U2y⟩
in the Hilbert space, where ⟨∗, ∗⟩ is the inner product1. Kan was inspired by
this equation’s similarity (in appearance, not function!) to equation 10.3.1
on page 349 to name his constructs “adjoints”. Hilbert-space adjoints are
not adjoints in our sense except in certain odd settings (see [10]).

1In finite dimensions, U1 and U2 are matrices, and U2 is the conjugate-transpose of U2.
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Here is an example of a common pattern — where one of the func-
tors forgets extra structure an object has and regards it as something more
primitive (these are called forgetful functors):

EXAMPLE 10.3.2. Let Vk be the category of vector-spaces over a field, k,
and let S be the category of sets. The functor

g: Vk → S

simply maps a vector space onto the set of its elements — it forgets the extra
structure a vector-space has. The functor

f : S → Vk

maps a set x ∈ S to
f (x) =

⊕
y∈x

k · x

— the vector-space with basis x. Any set-mapping t: x → f (V) extends
uniquely to a vector-space homomorphism

f (t): f (x)→ V

since a homomorphism of vector-spaces is determined by its effect on basis-
elements. On the other hand, any homomorphism of vector-spaces is a
unique map of their nonzero elements (regarded as sets) so we get a natural
equality

homS (x, g(y) = homVk
( f (x), y)

for all y ∈ Vk and x ∈ S .

Here’s another example of adjoint functors where forgetful functors are
not involved:

EXAMPLE 10.3.3. Suppose C is some category and assume that the cat-
egorical product (defined in 10.1.1 on page 339) in C exists. Strictly speak-
ing, it is a functor

∏: C × C → C

where C × C is the category of pairs (x, y) for x, y ∈ C and morphisms are
defined in a similar way. Now consider the diagonal functor

(10.3.2) ∆: C → C × C

that sends every x ∈ C to (x, x) ∈ C × C . The definition of product, and
diagram 10.1.2 on page 340 implies that every pair of morphisms

x → y
x → z

induces a unique morphism x → y ∏ z. Such pairs of morphisms are really
morphisms

∆x → (y, z) ∈ C × C

so we get an equivalence

homC×C (∆x, (y, z)) = homC (x, y ∏ z)

which implies that ∏ is a right-adjoint to ∆. In this case, the adjunction
involves a functor of two variables.
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EXERCISES.

1. Example 10.3.3 on the facing page shows that the diagonal functor

∆: C → C × C

in equation 10.3.2 on the preceding page is a left-adjoint to the product
functor

∏: C × C → C

Show that it is a right-adjoint to the coproduct functor (definition 10.1.4 on
page 342), showing that a functor can be a left-adjoint to one functor and a
right-adjoint to another.

10.4. Limits

Limits in category theory are universal constructions somewhat like
the union construction in the introduction. We will look at something sim-
ilar but more complex:

DEFINITION 10.4.1. Suppose C is a category and I is a partially ordered
set of indices. Suppose {Xα}, for α ∈ I, is a sequence of objects of C .
Whenever α ≤ β suppose there is a morphism

fα,β: Xα → Xβ

and whenever α ≤ β ≤ γ the diagram

Xα

fα,β
//

fα,γ
  

Xβ

fβ,γ

��

Xγ

commutes. Then the direct limit, lim−→ Xα has

(1) morphisms ϕα: Xα → lim−→ Xα that make the diagrams

(10.4.1) Xα

fα,β
//

ϕα
""

Xβ

ϕβ

��

lim−→ Xα

commute for all α, β ∈ I with α ≤ β.
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(2) the universal property that whenever there is an object Z ∈ C and
morphisms hα: Xα → Z for all α ∈ I that make the diagrams

Xα

fα,β
//

hα
  

Xβ

hβ

��

Z

commute for all α ≤ β, then there exists a unique morphism
u: lim−→ Xα → Z that makes the diagrams

Xα
ϕα
//

hα

""

lim−→ Xα

u

��

Z

commute for all α ∈ I.

REMARK. To roughly summarize: whenever the X’s map to some ob-
ject, Z, in a way compatible with the fα,β’s, the direct limit also maps to
Z.

Some authors require I to be a directed set, i.e., for any α, β ∈ I there
exists some γ ∈ I with α ≤ γ and β ≤ γ.

Suppose we have two objects K1 and K2 that satisfy all of the conditions
listed above. Then statement 2 above implies the existence of unique maps

K1
f−→ K2

K2
g−→ K1

The composites

K1
g◦ f−−→ K1

K2
f ◦g−−→ K2

are also unique maps satisfying all of the conditions in definition 10.4.1 on
the preceding page. But the respective identity maps satisfy these condi-
tions, so we must have

g ◦ f = 1K1

f ◦ g = 1K2

Note that the word “unique” is crucial to this discussion. Also note
that we have not promised that direct limits exist — only that if they exist,
they are unique (up to isomorphism). Whether they exist depends on the
category.

Hardcore category-theorists prefer the term “filtered colimit” for direct
limit. It is also sometimes called the inductive limit. The term “direct limit”
seems to be favored by algebraists.

In the case where C is a concrete category (see definition 10.1.3 on
page 341) we can explicitly construct the direct limit.
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PROPOSITION 10.4.2. Let C be a concrete category (see definition 10.1.3 on
page 341) and assume the notation of definition 10.4.1 on page 351. Then

(10.4.2) lim−→ Xα = ⨿
α∈I

Xα/∼

the coproduct (see definition 10.1.4 on page 342) or union modulo an equivalence
relation, ∼, defined by

xα ∼ xβ

for xα ∈ Xα, xβ ∈ Xβ if and only if there exists a γ ∈ I with α ≤ γ and β ≤ γ
and

fα,γ(xα) = fβ,γ(xβ)

The maps ϕα: Xα → lim−→ Xα are the composites

(10.4.3) Xα →⨿
α∈I

Xα →⨿
α∈I

Xα/∼

REMARK. So the maps fα,β “glue together” the pieces, Xα, in the union.
Elements of the Xα are equivalent if they eventually get glued together.

Concrete categories include the category of rings, vector spaces, and
sets. Coproducts of sets are just their union. Coproducts of vector spaces are
their direct sum (see exercise 2 on page 344). Coproducts of rings are more
complicated and so is the corresponding definition of direct limit.

PROOF. Checking the commutativity of diagrams 10.4.1 on page 351 is
straightforward.

If we have morphisms hα: Xα → Z for all α ∈ I, the disjoint union also
maps to Z:

⨿ hα: ⨿
α

Xα → Z

and in a unique way compatible with the inclusions Xα ↪→ ⨿α Xα. The
commutativity of the diagrams

Xα

fα,β
//

hα
  

Xβ

hβ

��

Z

implies that equivalent elements under ∼ will map to the same element of Z
via

⊔
hα, so that we get a well-defined map

u = ⨿ hα/∼: ⨿
α

Xα/∼→ Z

that is unique (because
⊔

hα was). Since our construction has the same uni-
versal property as the direct limit, it must be isomorphic to it (in a unique
way). □

The reader may still find the concept of direct limit hard to grasp. We
claim that direct limits are a kind of “generalized union,” something im-
plied the following:
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PROPOSITION 10.4.3. Assuming the notation of definition 10.4.1 on
page 351 and that C is a concrete category, we have

(10.4.4) lim−→ Xα =
⋃
α∈I

ϕα(Xα)

If all of the maps fα,β are injective, then the maps ϕα: Xα → lim−→ Xα are also
injective.

REMARK. If the fα,β are injective, the direct limit is literally a union of
the Xα.

If they are not injective, and C is a category of groups, rings, or vector-
spaces, the direct limit essentially divides out by the kernels of the fα,β —
“forcing them” to be injective — and then takes the union.

PROOF. Equation 10.4.4 follows immediately from equations 10.4.2
and 10.4.3 on the preceding page.

If all of the fα,β are injective, then the only way two elements x1, x2 ∈
Xα can become equivalent is for x1 = x2 ∈ Xα. □

EXAMPLE 10.4.4. Suppose I is the set of positive integers and i ≤ j is
i|j. Let

Rn = Z

[
1
n

]
Then

fn,m: Rn → Rm

when n|m, is defined to send
1
n
7→ k

m
where k = m/n. We claim that lim−→ Rn = Q. The maps fn,m are all injective
and each Rn ⊂ Q so

lim−→ Rn =
∞⋃

n=1

Rn ⊂ Q

Since every possible denominator occurs in some Rn this inclusion must
actually be an equality.

DEFINITION 10.4.5. In the notation of definition 10.4.1 on page 351, a
subset I′ ⊂ I is said to be cofinal, if for every α ∈ I, there exists a β ∈ I′ such
that α ≤ β.

REMARK. Cofinal subsets are important because they determine colim-
its and limits:

PROPOSITION 10.4.6. In the notation of definition 10.4.1 on page 351, if
I′ ⊂ I is a cofinal subset then

lim−→ Xβ = lim−→ Xα

where α runs over I and β runs over I′.

REMARK. This is significant because direct limits are sometimes easier
to compute with cofinal subsets.
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PROOF. This follows immediately from the universal properties: since
all Xβ map to lim−→ Xα, we get a unique map

lim−→ Xβ → lim−→ Xα

Since every α ∈ I is ≤ β for some β(α) ∈ I′, we get unique maps from all
of the Xα → Xβ(α) inducing a unique map to

lim−→ Xα → lim−→ Xβ

□

Recall the concept of rings of fractions in definition 6.4.3 on page 249.
We can define this in terms of a universal property:

PROPOSITION 10.4.7. In the category, R, of commutative rings the pair
(S−1 A, ι) has the universal property: every element of S maps to a unit in S−1 A,
and any other homomorphism f : A → B with this property factors uniquely
through ι:

A ι //

f
""

S−1 A

β

��

B

PROOF. If β exists

s
a
s
= a =⇒ β(s)β

( a
s

)
= β(a) = f (a)

so just define

β
( a

s

)
= f (a) f (s)−1

Now
a
s
=

b
t

=⇒ z(at− bs) = 0 for some z ∈ S

and this implies
f (a) f (t)− f (b) f (s) = 0

since f (z) is a unit. □

Modules of fractions also have a universal property:

PROPOSITION 10.4.8. If M is a module over a ring A with multiplicative
set S ⊂ A and N is a module over S−1 A then N is also a module over A via the
standard inclusion ι: A→ S−1 A. Any homomorphism

f : M→ N

over A extends uniquely to a homomorphism of S−1 A modules

f̄ : S−1M→ N



356 10. A TASTE OF CATEGORY THEORY

that makes the diagram

S−1M
f̄

// N

M

OO

f
// N

OO

where the vertical maps are homomorphisms of modules covering the map ι: A →
S−1 A.

PROOF. Left as an exercise to the reader. □

One bonus of this approach is the following (this is very similar to ex-
ample 10.4.4 on page 354):

COROLLARY 10.4.9. Suppose A is a commutative ring with a multiplicative
set S ⊂ A. Define an order on the elements of S via:

s1 ≤ s2 if there exists an element x ∈ R, such that s2 = x · s1.
Define maps fs,t: As → At for s, t ∈ S with t = x · s by

a
s
7→ a · x

t
Then

S−1 A = lim−→ As

REMARK. Recall the notation Ah in definition 6.4.5 on page 250.
The proof below almost seems like “cheating” — we ignore algebraic

subtleties and give an “arrow-theoretic” argument. This was one of the
early complaints against category theory (and [31]).

The philosophy of category theory is that if one can prove something
merely by analyzing patterns of mappings, one should do so.

PROOF. The ring of fractions, S−1 A, and the direct limit, lim−→ As, have
the same universal property. □

If we reverse all of the arrows that occur in the diagrams of defini-
tion 10.4.1 on page 351, we get another important construction — the in-
verse limit:

DEFINITION 10.4.10. Suppose C is a category and I is a partially or-
dered set of indices. Suppose {Xα}, for α ∈ I, is a sequence of objects of C .
Whenever α ≤ β suppose there is a morphism

fα,β: Xα ← Xβ

and whenever α ≤ β ≤ γ the diagram

Xα Xβ

fα,β
oo

Xγ

fβ,γ

OO

fα,γ

``

commutes. Then the inverse limit, lim←− Xα has
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(1) morphisms πα: Xα ← lim←− Xα that make the diagrams

(10.4.5) Xα Xβ

fα,β
oo

lim−→ Xα

πβ

OO

πα

bb

commute for all α, β ∈ I with α ≤ β.
(2) the universal property that whenever there is an object Z ∈ C and

morphisms hα: Xα ← Z for all α ∈ I that make the diagrams

Xα Xβ

fα,β
oo

Z

hβ

OO

hα

``

commute for all α ≤ β, then there exists a unique morphism
u: lim←− Xα ← Z that makes the diagrams

Xα lim−→ Xα
παoo

Z

u

OO

hα

bb

commute for all α ∈ I.

REMARK. So anything that maps to all of the X’s in a way compatible
with the maps fα,β also maps to the inverse limit.

Since the inverse limit has a universal property, it is unique up to iso-
morphism (if it exists at all!). Hardcore category-theorists prefer the term
“limit” for the inverse limit.

As with the direct limit, we have an explicit construction of the inverse
limit in categories of groups, rings, and vector-spaces:

PROPOSITION 10.4.11. Let C be a category of groups, rings, or vector-spaces
and assume the notation of definition 10.4.10 on the preceding page. Then

lim←− Xα ⊂∏
α∈I

Xα

is the subset of (possibly infinite) sequences

(. . . , xα, . . . )

where xα ∈ Xα for all α ∈ I, and with the property that, whenever α ≤ β,
fα,β(xβ) = xα.

The maps πβ: Xβ ← lim−→ Xα are the composites

lim←− Xα ↪→∏
α∈I

Xα → Xβ

where ∏α∈I Xα → Xβ is just projection to a factor.
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REMARK. Whereas the direct limit glues together the X’s via the fα,β,
the inverse limit selects infinite sequences compatible with the fα,β. If C is
a category of groups, rings, or vector-spaces, then fα,β will preserve this
structure and the inverse limit will also have it.

PROOF. We only have to verify that this construction has the same uni-
versal property as the inverse limit. If Z ∈ C and has maps hβ: Z → Xβ for
all β ∈ I, then we get a unique map

∏ hα: Z →∏
α∈I

Xα

—see the definition of product in diagram 10.1.2 on page 340 and extend it
to an arbitrary number of factors. The commutativity of the diagrams

Xα Xβ

fα,β
oo

Z

hβ

OO

hα

``

implies that the image of ∏ hα will actually lie within lim←− Xα ⊂ ∏ Xα. This
verifies the universal property. □

As we noted earlier, direct limits are “generalized unions”. Under
some circumstances, inverse limits are like “generalized intersections:”

PROPOSITION 10.4.12. Under the assumptions of proposition 10.4.11, sup-
pose the fα,β: Xβ → Xα are injective for all α, β ∈ I. Then so is

πβ: lim←− Xα → Xβ

for all β ∈ I.
If there exists X ∈ C such that

Xα ⊂ X

for all α ∈ I and α ≤ β if and only if Xβ ⊂ Xα where fα,β: Xβ → Xα is the
inclusion, then

lim←− Xα =
⋂
α∈I

Xα

PROOF. If all of the fα,β are injective, then a sequence

(. . . , xα, . . . )

is uniquely determined by its αth member: the βth element, xβ, to the right
of xα will be f−1

α,β (xα), and this is unique. It follows that the projection map

lim←− Xβ → Xα

is injective. Its image is the set of all xα ∈ Xα of the form fα,β(xβ) for all β
with α ≤ β.

Moving on to the second statement, we have proved that

lim←− Xα ⊂
⋂
α∈I

Xα

Equality follows from both objects having the same universal property. □
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From the proof of proposition 10.4.12 on the preceding page, it is clear
that xβ = f−1

α,β (xα) (if it exists). If fα,β is not injective, all elements of f−1
α,β (xα)

give rise to new sequences from the β-position on. For instance:

PROPOSITION 10.4.13. Under the assumptions of proposition 10.4.11, sup-
pose that the set of indices, I, is the disjoint union of {Ij} — i.e. no α ∈ Ij is
comparable with any β ∈ Ik with j ̸= k. Then

lim←− Xα︸ ︷︷ ︸
α∈I

= ∏
j

lim←− Xβ︸ ︷︷ ︸
β∈Ij

PROOF. Since the Ij are disjoint they have no influence over each other
— all sequences from Ij are paired with all sequences from Ik, j ̸= k. □

It follows that lim←− Xα can be very large indeed:

EXAMPLE 10.4.14. Let I be positive integers ordered in the usual way,
let p ∈ Z be a prime, and let Xn = Zpn for all n. The maps fn,m: Zpm → Zpn

are reduction modulo pn (where n ≤ m).
Then

Z(p) = lim←− Xn

is called the p-adic integers and its field of fractions is called the p-adic num-
bers, Q(p). Reduction modulo pn (for all n) defines an injection

Z ↪→ Z(p)

and, like R, Z(p) is uncountable for all p. These rings were first described
by Hensel in 1897 (see [52]), with a definition wildly different from ours.
Hensel showed that one could define infinite series in Q(p) like that for ex

with many number-theoretic applications.
Technically, elements of Z(p) are “infinite series”

n0 + n1 · p + n2 · p2 + · · ·
such that 0 ≤ ni < p for all i. The image Z ⊂ Z(p) consists of the “series”
that terminate after a finite number of terms. Two such “series” are equal
if all corresponding ni’s are equal. Define a metric on Z via the p-adic
valuation defined in 15.1.3 on page 468

d(m1, m2) =

(
1
2

)vp(m1−m2)

so vp(m1 −m2) is the highest power of p such that

pk|(m1 −m2)

Then Z(p) is the completion of Z in this metric, and two elements, P, Q of
Z(p) are equal if and only if

lim
i→∞

d(Pi, Qi) = 0

where Pi and Qi are, respectively, the ith partial sums of P and Q.
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Kurt Wilhelm Sebastian Hensel (1861 – 1941) was a German mathematician
born in Königsberg. He is known for work in number theory, including the
introduction of p-adic numbers.

Here’s another interesting example:

EXAMPLE 10.4.15. Let A be a ring and let m = (X) ⊂ A[X] be an ideal.
Then

A[[X]] = lim←− A[X]/mn

On the other hand, if there is a top index in I, the inverse limit is well-
behaved:

PROPOSITION 10.4.16. Under the assumptions of proposition 10.4.11 on
page 357, suppose there exists γ ∈ I such that α ≤ γ for all α ∈ I. Then

lim←− Xα = Xγ

PROOF. We could do an algebraic analysis of this statement, but it is
easier to “cheat,” so our proof is: they both have the same universal prop-
erty. □

EXERCISES.

1. In the category of groups, free groups can be defined using a uni-
versal property. What is it?

2. Let C be a category and let C∞ be the category of infinite sequences

· · · → x2 → x1

of morphisms of objects of C . Then

lim←− ∗: C∞ → C

is a functor. Show that this is an adjoint of the functor

∆∞: C → C∞

x 7→ · · · 1−→ x 1−→ x

3. Suppose {Xα}, for α ∈ I, is a sequence of objects of a concrete cate-
gory, C . Whenever α ≤ β suppose there is a morphism

fα,β: Xα → Xβ

and whenever α ≤ β ≤ γ the diagram

Xα

fα,β
//

fα,γ
  

Xβ

fβ,γ

��

Xγ

commutes. If x, y ∈ Xα map to the same element of lim−→ Xα, show that there
exists a β ≥ α such that fα,β(x) = fα,β(y).
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4. Show that Prüfer group (see example 4.1.10 on page 38) is given by
the direct limit

Z/p∞ = lim−→ Z/pnZ

where Z/pnZ ↪→ Z/pn+1Z multiplies elements by p. Contrast this with
example 10.4.14 on page 359.

10.5. Abelian categories

An abelian category is essentially one in which morphisms of objects
have kernels and cokernels. The standard example is the category of mod-
ules over a commutative ring. The official definition is:

DEFINITION 10.5.1. A category A is abelian if:
(1) it has products and coproducts of all pairs of objects,
(2) it has a zero object (which behaves like an identity for products and

coproducts),
(3) all morphisms have a kernel and cokernel:

(a) if A
f−→ B is a morphism, there exists a monomorphism K m−→

A such that f ◦ m = 0, and if C
g−→ A is any morphism with

f ◦ g = 0, there exists a unique morphism v: C → K such that

C
g
//

v
��

A

K

m

OO

commutes.
(b) if A

f−→ B is a morphism, there exists an epimorphism B e−→ E
such that e ◦ f = 0, and if g: B → D is any morphism with
g ◦ f = 0, then there exists a unique morphism v: E→ D such
that

B
g
//

e
��

D

E

v

OO

(4) the set of morphisms between two objects, homA (A, B), has the
structure of an abelian group for which composition is distributive
over sums.

If F: A → A ′ is a functor between abelian categories, F is said to be additive
if, whenever we have morphisms g1, g2: M→ N in A ,

F(g1 + g2) = F(g1) + F(g2): F(M)→ F(N)
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REMARK. Since kernels and cokernels are defined by universal prop-
erties, they are unique up to isomorphism. Also note that the kernel and
cokernel defined here are “arrow-theoretic” versions of the more familiar
algebraic concepts — i.e., morphisms.

Examples of additive functors include M ⊗Z ∗ and homA (M, ∗). The
functor F: A b → A b that sends an abelian group G to G⊗Z G is an exam-
ple of a functor that is not additive (it is “quadratic”).

The concept of a projective module is well-defined for an abelian cate-
gory

DEFINITION 10.5.2. If A, B ∈ A are objects of an abelian category with
f : A→ B an epimorphism (see definition 10.1.8 on page 344), an object P is
projective if, for any morphism g: P → B, there exists a morphism ℓ: P → A
that fits into a commutative diagram

A

f

��

P

ℓ

??

g
// B

The category A will be said to have enough projectives if, for any object A
there exists a projective object P and an epimorphism P→ A.

REMARK. For instance, the category of modules over a ring always has
enough projectives because every module is the surjective image of a free
module.

If we reverse all of the arrows in 10.5.2, we get a definition of injective
objects:

DEFINITION 10.5.3. If A, B ∈ A are objects of an abelian category with
f : B → A a monomorphism (see definition 10.1.8 on page 344), an object I
is injective if, any morphism g: B→ I, there exists a morphism e: A→ I that
fits into a commutative diagram

B
f
//

g

��

A

e
��

I
The category A will be said to have enough injectives if, for any object A
there exists an injective object I and a monomorphism A→ I.

REMARK. Homomorphisms into injective objects extend to other ob-
jects containing them.

The categorical property of a product in definition 10.1.1 on page 339
implies that arbitrary products of injective objects are injective.

EXAMPLE 10.5.4. Theorem 4.6.20 on page 70 shows that injective ob-
jects in the category of abelian groups are precisely the divisible abelian
groups, like Q, R, or Q/Z.
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Over the category of modules, we have a criterion for injectivity:

PROPOSITION 10.5.5 (Baer’s Criterion). If R is a commutative ring, an R-
module, I is injective if and only if every homomorphism J → I from an ideal
J ⊂ R extends to a homomorphism R→ I.

REMARK. In other words, in the category of modules over a ring, in-
jectivity only has to be verified for ideals of the ring.

PROOF. The only-if part follows from the definition of injective mod-
ules.

Conversely, suppose A ⊂ B are R-modules and f : A → I is a homo-
morphism and we consider extensions to submodules B′ with

A ⊂ B′ ⊆ B

These extensions are partially ordered by inclusion. Zorn’s lemma ( 14.2.12
on page 465) implies that there is a maximal one, B′ say. If B′ ̸= B, we will
get a contradiction. If b ∈ B \ B′ then J(b) = {r ∈ R|r · b ∈ B′} is an ideal

of R and J(b) ·b−→ B′
f−→ I defines a homomorphism into I. The hypotheses

imply that this extends to all of R, so b ∈ B′. □

Since all abelian groups are modules over Z and all ideals of Z are of
the form (m) for m ∈ Z, Baer’s Criterion implies that

PROPOSITION 10.5.6. An abelian group, G, is injective if and only if it is
divisible (see definition 4.6.17 on page 69).

Since quotients of divisible groups are divisible (see proposition 4.6.18
on page 69), we conclude:

PROPOSITION 10.5.7. Any quotient of an injective object in A b is injective
in A b.

EXAMPLE 10.5.8. In the category of abelian groups, A b, Q and Q/Z

are injective.

This allow us to conclude that the category of abelian groups has
enough injectives (see [8]):

PROPOSITION 10.5.9. If A is an abelian group and

A =
F
K

where F is a free abelian group, then F⊗Z Q is injective and

A ↪→ F⊗Z Q

K
is an injective abelian group containing A so the category of abelian groups, A b,
has enough injectives.

It is interesting that this result immediately extends to the category of
modules over an arbitrary ring (see [30]):
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PROPOSITION 10.5.10. If R is a ring and M is an R-module and I is an
injective abelian group, then

I(R) = homA b(R, I)

is an injective R-module — with R acting on the first factor via

(r′ · φ)(r) = φ(r′ · r)
for φ ∈ homA b(R, I). In addition, there exists an injective R-module N and an
inclusion

M ↪→ N

so that the category of modules over R, MR, has enough injectives.

PROOF. Suppose A ⊂ B is an inclusion of R-modules and g: A →
homA b(R, I) is a homomorphism. We will show that this extends to B.
Define a natural map

ι: I(R) → I
f 7→ f (1)

The composite ι ◦ g: A → I, regarded as a map of abelian groups, ex-
tends to ḡ: B→ I and we define

G: B → homA b(R, I)
b 7→ (r 7→ ḡ(r · b))

— a homomorphism of R-modules and the desired extension.
To prove the second statement, note the existence of a monomorphism

f : M → homA b(R, M)

m 7→ (r 7→ r ·m)

of R-modules. If we “forget” the module structure of M and regard it only
as an abelian group, there exists an injective abelian group and a morphism

g: M→ I

The composite

M
f−→ homA b(R, M)

homA b(1,g)−−−−−−−→ homA b(R, I)

is a monomorphism (see exercise 4 on the facing page). □

EXERCISES.

1. If M and N are modules over a ring, show that there is a natural
isomorphism

M⊕ N ∼= N ⊕M

2. If A is an abelian group, show that hom(A, Q/Z) = 0 if and only if
A = 0.
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3. Show that if we have a monomorphism

f : A→ B

where A is injective, there exists a map

g: B→ A

such that g ◦ f = 1: A→ A.

4. If A is an abelian category and

0→ A r−→ B s−→ C → 0

is an exact sequence — i.e., r = ker s and s = coker r, show that

0→ homA (D, A)
homA (1,r)−−−−−−→ homA (D, B)

homA (1,s)−−−−−−→ homA (D, C)

is exact.

10.6. Direct sums and Tensor products

The standard example of an abelian category is MR — the category of
modules over a commutative ring, R.

There are various operations with modules that are most easily under-
stood in terms of category theory. The simplest is the direct sum

DEFINITION 10.6.1. If M1, M2 ∈ MR, the direct sum,
M1 ⊕M2 ∈ R-mod, is the module of pairs

(m1, m2) ∈ M1 ⊕M2

with R acting via
r · (m1, m2) = (r ·m1, r ·m2)

for all r ∈ R, m1 ∈ M1 and m2 ∈ M2.

REMARK. This is just a straightforward generalization of the concept
of direct sum of vector-spaces — and the direct sum is a product and co-
product in the category of R-modules.

For instance, the free module Rn is a direct sum

Rn = R⊕ · · · ⊕ R︸ ︷︷ ︸
n factors

The direct sum is a functor of two variables:

PROPOSITION 10.6.2. If f1: M1 → N1 and f2: M2 → N2 are morphisms
in R-mod, then there is an induced morphism

f1 ⊕ f2: M1 ⊕M2 → N1 ⊕ N2

(m1, m2) 7→ ( f1(m1), f2(m2))

for all m1 ∈ M1 and m2 ∈ M2. In addition, ker( f1 ⊕ f2) = ker f1 ⊕ ker f2.
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PROOF. The only thing that needs to be proved is the statement about
the kernels. Clearly ker f1 ⊕ ker f2 ⊂ ker( f1 ⊕ f2). If (m1, m2) maps to 0 in
N1 ⊕ N2, we must have f1(m1) = f2(m2) = 0 so this proves ker( f1 ⊕ f2) ⊂
ker f1 ⊕ ker f2. □

The following concept also originated with linear algebra, but is more
complex than the direct sum. It is another functor of two variables:

DEFINITION 10.6.3. If M1, M2 ∈ R-mod, then define the tensor product
of M1 and M2 over R

M1 ⊗R M2

to be the R-module that is a quotient of the free R-module generated by
symbols {m1 ⊗m2} with m1 ∈ M1, m2 ∈ M2 subject to the identities

(1) (r ·m1)⊗m2 = m1⊗ (r ·m2) = r · (m1⊗m2) (defines the R-action
on M1 ⊗R M2) for all r ∈ R, m1 ∈ M1, m2 ∈ M2,

(2) (m1 + m′1)⊗m2 = m1 ⊗m2 + m′1 ⊗m2 for all m1, m′1 ∈ M1, m2 ∈
M2,

(3) m1 ⊗ (m2 + m′2) = m1 ⊗m2 + m1 ⊗m′2 for all m1 ∈ M1, m2, m′2 ∈
M2.

REMARK. Rule 1 implies that 0⊗ m2 = m1 ⊗ 0 = 0. Here is another
way to define the tensor product:

Form the free abelian group Z[M1×M2]. Its elements are formal linear
combinations of symbols [m× n] for all m ∈ M1 and n ∈ M2. Then M1 ⊗R
M2 = Z[M1×M2]/W, where W ⊂ Z[M1×M2] is the subgroup generated
by

(1) [r ·m1 ×m2]− [m1 × (r ·m2)], [e ·m1 ×m2]− e · [m1 ×m2], for all
e ∈ Z, r ∈ R, m1 ∈ M1, and m2 ∈ M2

(2) [(m1 + m′1) × m2] − [m1 × m2] − [m′1 × m2], for all m1, m′1 ∈ M1,
m2 ∈ M2,

(3) [m1 × (m2 + m′2)] − [m1 ⊗ m2] − [m1 ⊗ m′2] for all m1 ∈ M1,
m2, m′2 ∈ M2.

The R-module structure is defined by setting r · [m1 × m2] = [r · m1 × m2]
for all r ∈ R, m1 ∈ M1, m2 ∈ M2

EXAMPLE 10.6.4. If M ∈ R-mod, then

R⊗R M
∼=−→ M

r⊗m 7→ r ·m
Clearly this map is surjective. If r⊗m is in the kernel, then r ·m = 0 ∈ M.
In this case, rule 1 in definition 10.6.3 implies that

r · 1⊗m ∼ 1⊗ r ·m = 0

In the category-theoretic sense, M⊗R N is neither a product nor a co-
product. It does have a universal property, though:

PROPOSITION 10.6.5. Let M, N, and T be modules over a commutative ring,
R, and let

f : M× N → T
be a mapping with the property that
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(1) f |m× N → T is an R-module-homomorphism for any m ∈ M
(2) f |M× n→ T is an R-module homomorphism for any n ∈ N
(3) f (r ·m, n) = f (m, r · n) for all m ∈ M,n ∈ N, and r ∈ R

Then there exists a unique map

g: M⊗R N → T

that makes the diagram

M× N c //

f
''

M⊗R N
g
��

T

commute, where c(m, n) = m⊗ n, for all m ∈ M and n ∈ N.

REMARK. Here M × N is simply a Cartesian product of sets. A map
satisfying statements 1 and 2 above is said to be bilinear.

The canonical map

c: M× N → M⊗R N

is not surjective in general since M ⊗R N consists of formal linear combina-
tions of symbols m ⊗ n. Elements of M ⊗R N in the image of c are called
decomposable tensors or elementary tensors. The paper [49] gives criteria for
elements of M⊗R N to be decomposable when R is a field.

This result implies that an decomposable tensor m⊗ n vanishes if and
only if every bilinear map

F: M× N → T

sends m× n to 0.

PROOF. The only map Z[M× N]→ T compatible with f is

Z[M× N] → T
m× n 7→ f (m, n)

for all m ∈ M and n ∈ N. The defining relations for M ⊗R N and the
conditions on the map f imply that this gives a well-defined map

M⊗ N → T
m⊗ n 7→ f (m, n)

for all m ∈ M and n ∈ N. Since any such map must lift to a map Z[M×
N]→ T, this must be unique. □

Tensor-products are functors of two variables:

PROPOSITION 10.6.6. Let f : V1 → V2 and g: W1 →W2 be homomorphisms
of vector-spaces. Then there is a natural map

f ⊗ g: V1 ⊗k W1 → V2 ⊗k W2

( f ⊗ g)(v⊗ w) = f (v)⊗ g(w)

REMARK. Exercise 5 on page 377 gives some idea of what the homo-
morphism f ⊗ g looks like.
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Tensor products are distributive over direct sums, a property that al-
lows us to do many computations:

PROPOSITION 10.6.7. Let M, N, T be modules over the commutative ring R.
Then there are standard isomorphisms

M⊗R (N ⊕ T) = M⊗R N ⊕M⊗R T

and
(M⊕ N)⊗R T = M⊗R T ⊕ N ⊗R T

PROOF. We will prove the first case: the second is similar. We could
use a detailed algebraic argument, but it is easier to “cheat” and use the
universal property of a tensor product.

We will show that, given any bilinear map z: M× (N⊕ T)→ Z, where
Z is an R-module, there exists a unique homomorphism d: M⊗R N⊕M⊗R
T → Z making the diagram

(10.6.1) M× (N ⊕ T) b //

z
**

M⊗R N ⊕M⊗R T

d
��

Z

commute. Here, b is a bilinear map taking the place of the c map in 10.6.5
on page 366. This will show that M⊗R N⊕M⊗R T has the same universal
property as M⊗R (N ⊕ T) so it must be isomorphic to it.

We begin by constructing a bilinear map b: M× (N⊕ T)→ M⊗R N⊕
M⊗R T via b(m, (n, t)) = (m⊗ n, m⊗ t) for all m ∈ M, n ∈ N, and t ∈ T.
This is easily verified to be bilinear:

(1) for any fixed m0 ∈ M, ℓ(n, t) = b(m0, (n, t)) = (m0 ⊗ n, m0 ⊗ t)
for all n ∈ N and t ∈ T, defines an R-module homomorphism

ℓ: N ⊕ T → M⊗R N ⊕M⊗R T

since the composites

N → m0 ⊗ N ⊂ M⊗R N
T → m0 ⊗ T ⊂ M⊗R T

are module-homomorphisms.
(2) a similar argument shows that for any fixed n0 ∈ N and t0 ∈ T,

the map ℓ(m) = b(m, (n0, t0)), for all m ∈ M defines a module
homomorphism

ℓ: M→ M⊗R N ⊕M⊗R T

Now, suppose we have a bilinear map

z: M× (N ⊕ T)→ Z

We will show that there exists a unique map

d: M⊗R N ⊕M⊗R T → Z

that makes diagram 10.6.1 commute.
We define d on the direct summands of M⊗R N ⊕M⊗R T:
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(1) d1: M⊗R N → Z must send m⊗ n to z(m, (n, 0)) ∈ Z for all m ∈ M
and n ∈ N so we define d1(m⊗ n) = z(m, (n, 0)). The bilinearity
of z implies that d1|M⊗ n0: M → Z is a module homomorphism
for any fixed n0 ∈ N and d1|m0 ⊗ N: N → Z is also a module
homomorphism. It follows that d1 is a module homomorphism.

(2) We define d2: M⊗R T → Z by d2(m⊗ t) = z(m, (0, t)). This is the
only definition compatible with z and an argument like that used
above shows that it is a module-homomorphism.

We set
d = d1 + d2: M⊗R N ⊕M⊗R T → Z

This is a module-homomorphism that makes diagram 10.6.1 on the preced-
ing page commute. It is unique because it is uniquely determined on the
two summands. □

COROLLARY 10.6.8. If M ∈ R-mod, R, then

M⊗R Rn = M⊕ · · · ⊕M︸ ︷︷ ︸
n times

and
Rn ⊗R Rm = Rn·m

PROOF. This follows from example 10.6.4 on page 366,
proposition 10.6.7 on the preceding page and induction on n. □

If R is an algebra over another ring S, we can define the structure of an
R-module on A⊗S B by f · (a⊗ b) = (r · a⊗ r · b), for r ∈ R. We can also
define an R-action on groups of homomorphisms:

DEFINITION 10.6.9. If M and N are R-modules, where R is an
S-algebra, then

HomR(M, N)

denotes morphisms that are R-linear (i.e. morphisms of R-mod) and

HomS(M, N)

are morphisms of S-mod, i.e. morphisms that are S-linear. Then we can
equip HomS(M, N) with the structure of an R-module via the rule

If f ∈ HomS(M, N) is such that f (m) = n, then
(r · f )(m) = f (r ·m).

We have important relations between homS and homR:

PROPOSITION 10.6.10. If A, B, C ∈ R-mod, where R is an S-algebra, then
there exists a unique isomorphism

s: HomR(A, HomS(B, C))→ HomR(A⊗S B, C)

REMARK. This is clearly natural with respect to all homomorphisms of
A, B, or C.
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PROOF. We define the map by s(φ)(a ⊗ b) = φ(a)(b). If s(φ) = 0,
if is the 0-map for all b or a, so it vanishes in HomR(A, HomS(B, C)). It
follows that s is injective. If f ∈ HomR(A⊗S B, C) then f (a, ∗) for a fixed
a ∈ A defines a function B → C which is S-linear. This implies that s is
surjective. □

Suppose a ⊂ R is an ideal and M is a module over R. Then it is easy to
see that a ·M ⊂ M is a submodule and we have

PROPOSITION 10.6.11. If M ∈ R-mod and a ⊂ R is an ideal, there exists a
natural isomorphism:

q: M⊗R

(
R
a

)
→ M

a ·M
m⊗ r 7→ R ·m (mod a ·M)

PROOF. It is not hard to see that q is surjective. Consider the composite

M = M⊗R R
1⊗p−−→ M⊗R

(
R
a

)
where p: R → R/a is the projection. The surjectivity of q implies that
ker 1⊗ p ⊂ a · M. On the other hand, if x ∈ a, x · m ⊗ 1 ∼ m ⊗ x · 1 =
0 ∈ M⊗R (R/a), by rule 1 in definition 10.6.3 on page 366. This shows that
a ·M ⊂ ker 1⊗ p and that q is also injective. □

We can use tensor-products to convert modules over one ring into
modules over another:

PROPOSITION 10.6.12. Let M be a module over a commutative ring R and
let f : R→ S be a homomorphism of rings. Then S is a module over R and

M⊗R S

is a module over S with S-action given by

t ·m⊗ s = m⊗ st

for all s, t ∈ S and m ∈ M.

REMARK. This operation is called a change of base. If R ↪→ S is an
inclusion, it is called extension of scalars, the idea being that the action of
R on M is “extended” to the larger ring, S.

Recall the concept of a module of fractions, defined in section 6.4 on
page 248.

PROPOSITION 10.6.13. If M ∈ R-mod and S ⊂ R is a multiplicative set,
then

S−1M ∼= M⊗R (S−1R)

is a module over S−1R. If p ⊂ R is a prime ideal and S = R \ p, then S−1R = Rp

and
Mp
∼= M⊗R Rp

and is a module over Rp.
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REMARK. As defined in definition 6.4.3 on page 249, S−1M is a module
over R. Proposition 10.6.12 on the preceding page shows that S−1M is also
a module over S−1R. If S−1R is the field of fractions, then S−1M is a vector
space over that field.

PROOF. The map

f : M⊗R (S−1R)→ S−1M

is defined by f (m ⊗ s−1r) = r · m/s for all m ∈ M, s ∈ S, and r ∈ R. If
r1/s1 ≡ r2/s2 ∈ S−1R, then u · (s2r1 − s1r2) = 0 for some u ∈ S, and

u · (s2r1 ·m− s1r2 ·m) = u · (s2r1 − s1r2) ·m = 0

so f is well-defined. The inverse map

g: S−1M→ M⊗R (S−1R)

is defined by g(m/s) = m⊗ s−1. If m1/s1 ≡ m2/s2 ∈ S−1M then

u · (s2 ·m1 − s1 ·m2) = 0

for some u ∈ S, or us2 ·m1 = us1 ·m2, so

us2 ·m1 ⊗ u−1s−1
1 s−1

2 = us1 ·m2 ⊗ u−1s−1
1 s−1

2

By rule 1 of definition 10.6.3 on page 366, both sides of this equation are
equal to

us2 ·m1 ⊗ u−1s−1
1 s−1

2 = m1 ⊗ s−1
1

us1 ·m2 ⊗ u−1s−1
1 s−1

2 = m2 ⊗ s−1
2

It follows that g(m1/s1) = g(m2/s2), so g is well-defined and clearly the
inverse of f . □

It is easy to verify that tensor products preserve surjectivity of maps:

PROPOSITION 10.6.14. If M ∈ R-mod and f : N → T is a surjective mor-
phism in R-mod, then

1⊗ f : M⊗R N → M⊗R T

is also surjective.

REMARK. If
0→ A→ B→ C → 0

is an exact sequence of modules and we take the tensor product of this with
M, the resulting sequence is exact on the right

M⊗R A→ M⊗R B→ M⊗R C → 0

and we say that the functor M⊗R ∗ is right-exact. This sequence might not
be exact on the left — M⊗R A → M⊗R B might not be an inclusion. For
instance if

f = ×2: Z→ Z

and M = Z2, then

f ⊗ 1 = 0: Z⊗Z Z2 = Z2 → Z⊗Z Z2 = Z2
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PROOF. If ∑ mi ⊗ ti ∈ M⊗R T then it is the image of ∑ mi ⊗ ni, where
f (ni) = ti. □

This leads to another consequence of Nakayama’s Lemma:

COROLLARY 10.6.15. Let R be a noetherian local ring with maximal ideal
m, let M be a finitely generated R-module, and let

f : M→ M
m ·M = M⊗R

(
R
m

)
be the projection to the quotient. If {m1, . . . mt} ∈ M are elements with the prop-
erty that { f (m1), . . . , f (mt)} generate M/m ·M, then {m1, . . . mt} generate M.

REMARK. Note that R/m is a field so that M/m ·M is a vector space.

PROOF. Let M′ ⊂ M be the submodule generated by {m1, . . . mt}.
Then M/M′ is a finitely generated R module with the property that(

M
M′

)
⊗R

(
R
m

)
= 0

which implies that

m ·
(

M
M′

)
=

(
M
M′

)
Corollary 6.3.35 on page 247 implies that M/M′ = 0. □

We also get the interesting result

COROLLARY 10.6.16. If R is a noetherian local ring with maximal ideal m,
then finitely generated projective modules over R are free.

PROOF. Let P be a projective module over R and let p1, . . . , pn ∈ P be
a set of elements with the property that their image in

P⊗R

(
R
m

)
=

P
m · P = V

generate the vector-space V. Corollary 10.6.15 implies that p1, . . . , pn gen-
erate P. If Rn is a free module on generators x1, . . . , xn, the homomorphism

f : Rn → P

that sends xi to pi for i = 1, . . . , n is surjective. If K = ker f , we get a short
exact sequence

0→ K → Rn f−→ P→ 0

Since P is projective, this is split and we get an isomorphism

Rn ∼= K⊕ P

(see exercise 16 on page 248). Now take the tensor product with R/m to get

Rn ⊗R

(
R
m

)
∼= P⊗R

(
R
m

)
⊕ K⊗R

(
R
m

)
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Since Rn⊗R

(
R
m

)
and P⊗R

(
R
m

)
are both n-dimensional vector-spaces over

R/m, it follows that

K⊗R

(
R
m

)
=

K
m · K = 0

This implies that K = m · K and corollary 6.3.35 on page 247 implies that
K = 0 and P = Rn. □

DEFINITION 10.6.17. A module M ∈MR will be called flat if the functor
M⊗R ∗ preserves injections as well as surjections. In other words, M is flat
if, whenever

N → T
is an injective homomorphism of R-modules, so is

M⊗R N → M⊗ T

REMARK. For instance, R is a flat module over itself, as example 10.6.4
on page 366 shows. In general, every free module, Rn, is flat over R, by
proposition 10.6.7 on page 368.

The term flat module first appeared in Serre’s paper, [98].

Flat modules are very useful because:

PROPOSITION 10.6.18. Let R be a commutative ring and let A be a flat R-
module. If

· · · fn+1−−→ Mn+1
fn−→ Mn

fn−1−−→ Mn−1 → · · ·
is an exact sequence in MR, then so is

· · · 1⊗ fn+1−−−−→ A⊗R Mn+1
1⊗ fn−−−→ A⊗R Mn

1⊗ fn−1−−−−→ A⊗R Mn−1 → · · ·
PROOF. The exactness of the (long) sequence above is equivalent to

saying that the short sequences

0→ im fn → Mn → im fn−1 → 0

are exact (see definition 6.3.7 on page 224) for all n. Since tensor prod-
ucts preserve surjections (proposition 10.6.14 on page 371), we know that
im (1⊗ fn) = A⊗R (im fn) for all n (and this is for any module, A, not just
a flat one). The conclusion follows by the fact that flat modules preserve
injections as well as surjections (definition 10.6.17). □

The following result describes a very important class of flat modules:

LEMMA 10.6.19. Let R be a commutative ring and let S be a multiplicative
set. Then S−1R is a flat module over R.

PROOF. If f : N → T is an injective homomorphism of R-modules, we
will show that

S−1R⊗R N → S−1R⊗R T
is also injective. We replace these tensor products by modules of fractions,
using proposition 10.6.13 on page 370, to get the equivalent map

S−1N → S−1T
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Extend this to
N → S−1N → S−1T

An element n ∈ N maps to zero in S−1T if and only if s · n = 0 for some
s ∈ S (see definition 6.4.3 on page 249). If this happens, n also maps to 0 in
S−1N so the map is injective. □

We know that free modules are flat by proposition 10.6.7 on page 368.
It turns out that

PROPOSITION 10.6.20. Projective modules are flat.

REMARK. Projective modules over Z have elements that are not mul-
tiples of 2. On the other hand, lemma 10.6.19 on the previous page shows
that Q is a flat module over Z that cannot be projective since all of its ele-
ments are divisible by 2.

PROOF. Let P be a projective module over a ring R and let Q be another
(projective) module such that P⊕Q = Rn. If

f : M→ N

is an injective homomorphism, we know that

f ⊗ 1: M⊗R Rn → N ⊗R Rn

is also injective, and is equal to

f ⊗ 1: M⊗R (P⊕Q)→ N ⊗R (P⊕Q)

which is equal to

( f ⊗ 1P)⊕ ( f ⊗ 1Q): M⊗R P⊕M⊗R Q→ N ⊗R P⊕ N ⊗R Q

where 1P and 1Q are the identity maps of P and Q, respectively. Since
( f ⊗ 1P)⊕ ( f ⊗ 1Q) is injective, proposition 10.6.2 on page 365 implies that
f ⊗ 1P and f ⊗ 1Q must be injective too. □

It is interesting to see what forming modules of fractions does to prime
filtrations:

COROLLARY 10.6.21. Let M be a module over a ring R and let S ⊂ R be a
multiplicative set. Let

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

with
Mi+1

Mi
∼= R

pi
for prime ideals pi ⊂ R, be the prime filtration of M. Then the prime filtration of
S−1R⊗R M is

0 = S−1R⊗R Mj0 ⊂ S−1R⊗R Mj1 ⊂ · · · ⊂ S−1R⊗R Mjt = S−1R⊗R M

where
S−1R⊗R Mji+1

S−1R⊗R Mji

∼= S−1R
pji · S−1R

where {pj0 , . . . , pjt} ⊆ {p0, . . . , pn} is the subset of prime ideals that do not con-
tain any elements of S.
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PROOF. Since S−1R is flat over R, every short exact sequence

0→ R
pi
→ Mi → Mi+1 → 0

gives rise to

0→ S−1R⊗R

(
R
pi

)
→ S−1R⊗R Mi → S−1R⊗R Mi+1 → 0

and the short exact sequence

0→ S−1R⊗R pi → S−1R⊗R R→ S−1R⊗R

(
R
pi

)
→ 0

where S−1R ⊗R pi = pi · S−1R and S−1R ⊗R R = S−1R. If pi contains an
element of S, pi · S−1R = S−1R and the quotient

S−1R⊗R

(
R
pi

)
will be the trivial ring. It follows that those primes do not participate in the
prime filtration of S−1R⊗R M. □

We conclude this section with a converse to lemma 10.6.19 on page 373:

LEMMA 10.6.22. Let R be a noetherian ring and let A be a finitely-generated
R-module. Then Am is a free Rm-module for all maximal ideals m ⊂ R if and only
if A is projective.

REMARK. In other words, locally free modules are projective.

PROOF. Since A is finitely-generated, there exists a finitely-generated
free module, F, and a surjective homomorphism

f : F → A

inducing surjective homomorphisms

fm = 1⊗ f : Fm → Am

Since Am is free, there exist splitting maps

gm: Am → Fm
with fm ◦ gm = 1: Am → Am for all maximal ideals m ⊂ R. Since A is
finitely-generated, there exists an element sm ∈ R \ m for each maximal
ideal such that

sm · fm ◦ gm(A) ⊂ A ⊂ Am

i.e., sm “clears the denominators” of fm ◦ gm(A). Let S denote the ideal
generated by all of the sm. Since R is noetherian, S is generated by some
finite set of the sm

S = (sm1 , . . . , smt)

If S ⊊ R, then it is contained in some maximal ideal, which contradicts the
fact that it contains an element not in every maximal ideal. We conclude
that S = R and that there exist elements {x1, . . . , xt} such that

t

∑
i=1

xi · smi = 1
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If we define

g =
t

∑
i=1

xi · fmi ◦ gmi : A→ F

and f ◦ g = 1: A→ A, so A is a direct summand of F and is projective.
The only if part comes from corollary 10.6.16 on page 372. □

We conclude this section with a generalization of the dual of a module:

DEFINITION 10.6.23. If M is a module over a ring, R, define M∗ =
homR(M, R) — the dual of M. It is also a module over R (just let R act on
it by multiplying the values of homomorphisms).

REMARK. Clearly, R∗ = R since a homomorphism R → R is deter-
mined by its effect on 1 ∈ R. It is also not hard to see that the dual of a
finitely generated free module is free of the same rank. If F is a free mod-
ule, the isomorphism between F and F∗ is not natural.

There is a natural isomorphism

F → F∗∗

where we map x ∈ F to the homomorphism F∗ → R given by f (x) for
f ∈ F∗.

This and the way hom behaves with direct sums implies that:

COROLLARY 10.6.24. Let P be a finitely generated projective module over a
commutative ring R. Then P∗ is also a finitely generated projective module and

P = P∗∗

EXERCISES.

1. Suppose M is a module with submodules R and S, such that M =
R + S and R ∩ S = 0. Show that

M ∼= R⊕ S

2. Suppose M is a module over a ring, R, and N ⊂ M is a submodule.
If A is a flat module over R, show that A⊗R N is a submodule of A⊗R M
and

A⊗R M
A⊗R N

= A⊗R

(
M
N

)
3. If M, N, T are modules over a ring, R, show that there are natural

isomorphisms

M⊗R (N ⊗R T) ∼= (M⊗R N)⊗R T
M⊗R N ∼= N ⊗R M

4. Let V be a vector space over a field, k, with basis {e1, . . . , en} and let
W be a vector space with basis { f1, . . . , fn}. Show that

V ⊗k W



10.6. DIRECT SUMS AND TENSOR PRODUCTS 377

is n ·m dimensional, with basis

{ei ⊗ f j}
i = 1, . . . , n and j = 1, . . . , m.

Show that {ei ⊗ f j} are a basis for V ⊗k W even if they are infinite di-
mensional.

5. Suppose k is a field and f : kn → km and g: ks → kt are given by m× n
and t× s matrices A and B, respectively. What is the matrix representing
A⊗ B?

6. If M and N are finite-dimensional vector-spaces over a field, k, show
that there is a natural isomorphism

homk(M, N) ∼= M∗ ⊗ N

7. If a, b ⊂ R are two ideals in a commutative ring, show that

R
a
⊗R

R
b
=

R
a+ b

This implies that
Zn ⊗Z Zm = Zgcd(n,m)

8. If R is a ring and M is a flat R-module. Show that

a⊗R M = a ·M
for all ideals a ⊂ R.

9. Show that tensor products commute with direct limits, i.e. if

M0
f0−→ · · · fn−1−−→ Mn

fn−→ · · ·
is a direct system of modules over a ring R and N is an R-modules, show
that (

lim−→ Mj

)
⊗R N = lim−→

(
Mj ⊗R N

)
10. If {Ai, ai}, {Bi, bi}, and {Ci, ci} are three systems of homomorph-

isms of modules such that the diagram

0 // Ai+1
fi+1

// Bi+1
gi+1

// Ci+1 // 0

0 // Ai

ai

OO

fi

// Bi

bi

OO

gi
// Ci

ci

OO

// 0

commutes for all i and each row is exact, show that

0→ lim−→ Ai
lim−→ fi−−−→ lim−→ Bi

lim−→ gi−−−→ lim−→ Ci → 0

is an exact sequence.

11. Suppose f : R → S is a homomorphism of rings with the property
that S is a flat module over R. If α ∈ R is a non-zero-divisor, show that
f (α) ∈ S is a non-zero-divisor.



378 10. A TASTE OF CATEGORY THEORY

12. Suppose f : R → S is a homomorphism of rings and M is a flat
module over R. Show that M⊗R S is a flat module over S.

13. Let Z-mod be the category of modules over Z (otherwise known
as abelian groups, A b), the set, homZ-mod(A, B), is naturally a module over
Z. For any A, B, C ∈ Z-mod, show that there exists a natural isomorphism

homZ-mod(A⊗Z B, C) ∼= homZ-mod(A, homZ-mod(B, C))

so that the functors ∗ ⊗Z B and homZ-mod(B, ∗) are adjoints.

14. Let M, N ∈ R-mod and let S ⊂ R be a multiplicative set. Show that

S−1R⊗R (M⊗R N) = (S−1R⊗R M)⊗S−1R (S−1R⊗R N)

15. If M is a finitely generated projective module, show that M∗ is also
a finitely generated projective module.

10.7. Tensor Algebras and variants

In this section, we will discuss several algebras one can construct from
modules over a ring. The most general case is the tensor algebra, with the
symmetric and exterior algebras being quotients.

Historically, the first of these to appear were exterior algebras, described
in [47] by Hermann Grassmann. Grassmann developed exterior algebras
in the context of vector spaces — and many linear algebra constructs (like
determinants) have elegant formulations in terms of exterior algebras2.

Tensor algebras appeared later, in the context of category theory and
are more general than exterior algebras.

DEFINITION 10.7.1. If R is a commutative ring and M is an R-module,
define:

M⊗n = M⊗R · · · ⊗R M︸ ︷︷ ︸
n times

with M⊗0 = R and M⊗1 = M. Given this definition, we define the tensor
algebra over M:

T(M) = R⊕M⊕M⊗2 ⊕M⊗3 ⊕ · · ·
This is a (noncommutative) algebra over R by defining

(m1 ⊗ · · · ⊗ms) · (n1 ⊗ · · · ⊗ nt) = m1 ⊗ · · · ⊗ms ⊗ n1 ⊗ · · · ⊗ nt

and extending this to all of T(M) R-linearly.

REMARK. Tensor algebras are often called free algebras. Any module
homomorphism

f : M→ N
induces a unique algebra-homomorphism

T( f ): T(M)→ T(N)

2Often called Grassmann algebras
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Furthermore, if A is any algebra over R and g: M→ A is a homomorphism
of R-modules, there exists a unique homomorphism of R-algebras

T(M)→ A

whose restriction to M = M⊗1 is g. If AR is the category of R-algebras and
MR that of R-modules, let

F: AR →MR

be the forgetful functor that maps an R-algebra to its underlying R-module
(forgetting that we can multiply elements of this module), we get a natural
isomorphism

(10.7.1) homAR(T(M), A) ∼= homR(M, FA)

making T(∗) and F adjoints (compare with example 10.3.2 on page 350).
The tensor algebra is an example of a graded ring (see definition 15.3.1

on page 471) with
T(M)n = M⊗n

Corollary 10.6.8 on page 369 immediately implies that

PROPOSITION 10.7.2. If M is a free module of rank t (see example 6.3.2 on
page 223) over a ring R, then Tn(M) is a free module of rank tn.

We also have:

PROPOSITION 10.7.3. If M is any module over a commutative ring, R, and
S ⊂ R is any multiplicative set, then

T(S−1R⊗R M) = S−1R⊗R T(M)

PROOF. This follows immediately from the solution to exercise 14 on
the preceding page. □

There are two important variants on tensor algebras that we need:

DEFINITION 10.7.4. Let M be a module over a commutative ring, R,
and let s ⊂ T(M) be the (two-sided) ideal generated by elements

x⊗ y− y⊗ x

for all x, y ∈ M. The quotient, S(M) = T(M)/s, is called the symmetric
algebra on M.

REMARK. This is clearly a commutative ring. Since T(M) is not com-
mutative, the ideal s must be two-sided — it is the sum

∑
x,y∈M

T(M) · (x⊗ y− y⊗ x) · T(M)

Symmetric algebras also have a defining universal property:

PROPOSITION 10.7.5. Let CR denote the category of commutative algebras
over a (commutative) ring R and let MR denote the category of R-modules. There
is a forgetful functor

f : CR →MR

that “forgets” the multiplication operation in an R-algebra (so it becomes a mere
module). The symmetric algebra is an adjoint to f in the sense that

homR(M, f (A) = homCR(SM, A)
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PROOF. We already know that

(10.7.2) homAR(T(M), A) ∼= homR(M, FA)

If A is a commutative algebra, then the map

T(M)→ A

factors through SM:
T(M)→ SM→ A

□

It is not hard to see that

PROPOSITION 10.7.6. If M is a free module of rank t over a commutative
ring, R, then

S(M) = R[X1, . . . , Xt]

PROOF. Suppose {e1, . . . , et} is a free basis for M. It is straightforward
to see that

e⊗n1
j1
⊗ · ⊗ e⊗nℓ

jℓ
with ∑ ni = n and j1 < · · · < jℓ is a free basis for Sn(M) — and these are
in a 1-1 correspondence with monomials in the Xi of total degree n. □

The second variant of tensor algebras is called exterior algebras or Grass-
mann algebras in honor of Hermann Grassmann (since he first described
them in [47]). For our purposes, they are more interesting than symmet-
ric algebras and have more applications. Although Grassman originally
defined them for vector-spaces over fields, this definition can easily be ex-
tended to modules over a commutative ring:

DEFINITION 10.7.7. If M is a module over a commutative ring, R, the
exterior algebra over M is defined to be

Λ M = T(M)/a

where a is the two-sided ideal generated by elements {x⊗ x} for all x ∈ M.
This is a graded ring with

Λn M = M⊗n/M⊗n ∩ a

The product-operation is written x ∧ y for x, y ∈ ∧M.

REMARK. If x, y ∈ M, then

(x + y) ∧ (x + y) = 0

because of how the ideal a is defined. The distributive laws implies that

(x + y) ∧ (x + y) = x ∧ x + x ∧ y + y ∧ x + y ∧ y
= x ∧ y + y ∧ x

so x ∧ y = −y ∧ x for elements of M. The level Λn M is generated by all
expressions of the form

x1 ∧ · · · ∧ xn

for x1, . . . , xn ∈ M .
Exterior algebras have applications to fields as varied as differential

geometry (see [101]), partial differential equations (see [19]) and physics
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(see [89]) — besides algebraic geometry. Grassmann’s original definition
was axiomatic, using axioms based on linearity, associativity, and
anti-commutativity — and only for vector-spaces.

We have some direct-sum relations:

PROPOSITION 10.7.8. If M and N are modules over R then
(1) T(M⊕N) = T(M)⊗R T(N)⊗R T(M)⊗R · · · — as graded algebras

(see definition 15.3.2 on page 472), i.e.,

T(M⊕ N)m =
⊕

∑∞
j=1(ij+nj)=m

T(M)i1 ⊗R T(N)n1 ⊗R · · ·

(2) S(M⊕ N) = S(M)⊗R S(N) — as graded algebras, so

S(M⊕ N)m =
⊕

i+j=m
S(M)i ⊗R S(N)j

(3) Λ (M⊕ N) ∼= Λ (M)⊗R Λ (N) — as graded algebras, so

Λm (M⊕ N) ∼=
⊕

i+j=m
Λi (M)⊗R Λj (N)

REMARK. Note that, in line 1 all but a finite number of the ij, nj must
be 0.

PROOF. The first statement follows from the general properties of the
tensor product.

The second statement follows from the first and the fact that the com-
mutativity relations between T(M) and T(N) reduces the “infinite tensor
product” to T(M)⊗R T(N). Imposing the commutativity relations within
T(M) and T(N) gives S(M)⊗R S(N).

The third statement follows by a similar argument except that we may
have to permute factors in an expression like n1 ∧m2 ∧ . . . ,∧mi so that all
of the m-factors occur to the left of the n-factors. This multiplies by ±1, so
we get an isomorphism. □

Here’s an example of computations in an exterior algebra:

EXAMPLE. Let M be a free module over R on a free basis {e1, e2, e3}
and let v = 2e1 + e2 − e3 and w = e1 − 3e2 + e3. Then

v ∧ w = (2e1 + e2 − e3) ∧ (e1 − 3e2 + e3)

= 2e1 ∧ (e1 − 3e2 + e3) + e2 ∧ (e1 − 3e2 + e3)

−e3 ∧ (e1 − 3e2 + e3)

= 2e1 ∧ e1 − 2e1 ∧ 3e2 + 2e1 ∧ e3

+e2 ∧ e1 − 3e2 ∧ e2 + e2 ∧ e3

−e3 ∧ e1 + 3e3 ∧ e2 − e3 ∧ e3

Here, we have used the distributive rule several times. After applying the
annihilation and linearity conditions, we get

v ∧ w = −6e1 ∧ e2 + 2e1 ∧ e3 + e2 ∧ e1 + e2 ∧ e3

−e3 ∧ e1 + 3e3 ∧ e2
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And after “standardizing” by replacing any ej ∧ ei by −ei ∧ ej whenever
j > i, we get

v ∧ w = −7e1 ∧ e2 + 3e1 ∧ e3 − 2e2 ∧ e3

Clearly, the set {e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} forms a free basis for Λ2 V (any
relation between them would imply a relation between basis elements of
T2(M)).

In general, we have:

PROPOSITION 10.7.9. Let M be a free module over R with free basis
{e1, . . . , en}. Then Λk M has a free basis consisting of symbols

{ei1 ∧ · · · ∧ eik}
for all sequences 1 ≤ i1 < i2 < · · · < ik ≤ n. Consequently, the rank of Λk V is
(n

k), and
∧k V = 0 whenever k > n.

PROOF. By definition, Λk V consists of all sequences v1 ∧ · · · ∧ vk and,
using the linearity and distributivity properties, we can write these as linear
combinations of all length-k sequences of basis elements

{ej1 ∧ · · · ∧ ejk}
The annihilation property implies that any such sequence with two equal
indices will vanish. It also implies that we can arrange these indices in
ascending order (multiplying terms by −1 if necessary). □

Proposition 10.7.3 on page 379 and the fact that S−1R is flat over R (see
lemma 10.6.19 on page 373) imply that

PROPOSITION 10.7.10. Let M be a module over a commutative ring, R, and
let S ⊂ R be a multiplicative set. Then∧

(S−1R⊗R M) = S−1R⊗R
∧

M

S(S−1R⊗R M) = S−1R⊗R S(M)

PROOF. The fact that S−1R is flat over R implies that

S−1R⊗R

(
T(M)

a

)
=

S−1R⊗R T(M)

S−1R⊗R a
=

T(S−1R⊗R M)

a′

where a′ is the form of a in T(S−1R⊗R M). It follows that
∧
(S−1R⊗R M) =

S−1R⊗R
∧

M. The proof for the symmetric algebra is entirely analogous.
□

We will often be interested in certain elements of
∧

M with an espe-
cially simple structure (particularly when we study Grassmannians):

DEFINITION 10.7.11. If M is a module over a commutative ring, ele-
ments of Λk M of the form

m1 ∧ · · · ∧mk

for mi ∈ M will be said to be decomposable.
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REMARK. An exterior algebra consists of formal linear combinations
of decomposable elements. If x ∈ Λk M is decomposable then

x ∧ x = (m1 ∧ · · · ∧mk) ∧ (m1 ∧ · · · ∧mk)

= 0

because of the annihilation condition. Suppose M is a free module on the
free basis {e1, e2, e3, e4} and

x = e1 ∧ e2 + e3 ∧ e4

Then
x ∧ x = 2e1 ∧ e2 ∧ e3 ∧ e4 ̸= 0

so this x is not decomposable.

For the rest of this section, we will assume that R is a field so that mod-
ules over R are vector-spaces. The following result is key to understanding
the geometric meaning of Λk V:

LEMMA 10.7.12. Let v1, . . . , vk ∈ V be vectors in a vector space. Then, in
Λk V,

v1 ∧ · · · ∧ vk = 0

if and only if the set {v1, . . . , vk} is linearly dependent.

PROOF. If they are linearly independent, they are part of a basis for V
and proposition 10.7.9 on the preceding page implies that their wedge-
product is part of a basis for Λk V, hence nonzero.

Suppose they are linearly dependent and, without loss of generality,
suppose

v1 =
k

∑
j=2

ajvj

Then

v1 ∧ · · · ∧ vk =
k

∑
j=2

ajvj ∧ v2 ∧ · · · ∧ vk

= 0

since each term in the sum on the right will have vj equal to one of the
vectors in v2 ∧ · · · ∧ vk. □

COROLLARY 10.7.13. Let W ⊂ V be a k-dimensional subspace with basis
{w1, . . . , wk}. Then the element

w̄ = w1 ∧ · · · ∧ wk ∈ Λk V

determines W uniquely. In fact the kernel of the linear map

w̄ ∧ ∗: V → Λk+1 V

is precisely W.
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REMARK. This gives a kind of geometric interpretation of a wedge-
product like w1 ∧ · · · ∧ wk: it represents a k-dimensional subspace of V,
and Λk V is “all formal linear combinations” of such subspaces.

In three dimensions, the cross-product is really a wedge-product in dis-
guise, i.e. v × w is the wedge-product, v ∧ w, that represents the plane
spanned by v and w. It “looks like” a vector because in R3 there is a 1-1
correspondence between planes and normal vectors to those planes. This
is a special case of something called Hodge duality: if V is n-dimensional, a
fixed element α ̸= 0 ∈ Λn V defines an isomorphism

Λk V∗ → Λn−k V

where V∗ is the dual of V (see 2 on page 346) — also n-dimensional.

PROOF. Lemma 10.7.12 on the previous page implies that, for any v ∈
V, w̄ ∧ v = 0 if and only if the set of vectors {w1, . . . , wk, v} is linearly
dependent. Since the set {w1, . . . , wk} is linearly independent, it follows
that w̄ ∧ v = 0 if and only if v ∈W. □

We get a cool way to compute determinants:

LEMMA 10.7.14. Suppose V is a vector space with basis {e1, . . . , en} and A
is an n× n matrix. If the columns of A are vectors {v1, . . . , vn} then

v1 ∧ · · · ∧ vn = det A · e1 ∧ · · · ∧ en

PROOF. We do induction on n. If n = 1, there is nothing to prove. Sup-
pose the result is true for (n− 1)× (n− 1) matrices and n− 1-dimensional
vector spaces, and we are computing

v1 ∧ · · · ∧ vn

Let v = ∑n
i=1 ai · ei and plug this into the formula. We get

v1 ∧ · · · ∧ vn =
n

∑
i=1

ai · ei ∧ v2 ∧ · · · ∧ vn

Consider the ith term of this, ai · ei ∧ v2∧ · · · ∧ vn. The vectors in v2∧ · · · ∧ vn
will also be linear combinations of the ej but the presence of ei in the wedge
product will annihilate all of their terms containing ei, i.e.

ai · ei ∧ v2 ∧ · · · ∧ vn = aiei ∧ v′2 ∧ · · · ∧ v′n
where v′j = vj − (its ith component). In other words, v′j will be a vector in
an (n− 1)-dimensional vector space that is the result of deleting ei from V.
By induction, we get

v′2 ∧ · · · ∧ v′n = Mi,1(A) · e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ en

where Mi,1(A) is the (i, 1)th minor — see definition 6.2.36 on page 184. We
get

ai · ei ∧ v2 ∧ · · · ∧ vn = ai Mi,1(A)ei ∧ e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ en

Shifting ei into its proper place multiplies this by (−1)i+1 so we get

ai · ei ∧ v2 ∧ · · · ∧ vn = (−1)i+1ai Mi,1(A) · e1 ∧ · · · ∧ en
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and

v1 ∧ · · · ∧ vn =

(
n

∑
i=1

(−1)i+1ai Mi,1(A)

)
· e1 ∧ · · · ∧ en

= det A · e1 ∧ · · · ∧ en

see proposition 6.2.37 on page 184. □

COROLLARY 10.7.15. Let V be an n-dimensional vector space with
k-dimensional subspace W, and suppose

{b1, . . . , bk}
is a basis for W. If

A: W →W

is a change of basis, to a basis
{c1, . . . , ck}

then
c1 ∧ · · · ∧ ck = det A · b1 ∧ · · · ∧ bk

PROOF. Extend the bases for W to bases for all of V, i.e.

{b1, . . . , bk, ek+1, . . . , en}
and

{c1, . . . , ck, ek+1, . . . , en}
The change of basis can be represented by an n × n matrix that is A ex-
tended by the identity matrix, i. e.,

A′ =
[

A 0
0 I

]
Lemma 10.7.14 on the facing page implies that

c1 ∧ · · · ∧ ck ∧ ek+1 ∧ · · · ∧ en

= det A′ · b1 ∧ · · · ∧ bk ∧ ek+1 ∧ · · · ∧ en

= det A · b1 ∧ · · · ∧ bk ∧ ek+1 ∧ · · · ∧ en

so
(c1 ∧ · · · ∧ ck − det A · b1 ∧ · · · ∧ bk) ∧ ek+1 ∧ · · · ∧ en = 0

The conclusion follows from lemma 10.7.12 on page 383 since

x = c1 ∧ · · · ∧ ck − det A · b1 ∧ · · · ∧ bk

is not in the span of z = ek+1 ∧ · · · ∧ en so that x ∧ z = 0 implies x = 0. □
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EXERCISES.

1. If
0→ U

f−→ V
g−→W → 0

is an exact sequence of k-vector-spaces of dimensions, respectively, u, w, w,
show that

Λv V ∼= Λu U ⊗k Λw W
and if the diagram

0 // U1

a
��

f1
// V1

b
��

g1
// W1

c
��

// 0

0 // U2 f2

// V2 g2
// W2 // 0

commutes and columns that are isomorphisms, then the diagram

Λv V1

Λw b
��

∼= // Λu U1 ⊗k Λw W1

Λu a⊗kΛw c
��

Λv V2
∼= // Λu U2 ⊗k Λw W2

also commutes (so it is natural with respect to isomorphisms of exact se-
quences).

2. If V is 3-dimensional with basis {e1, e2, e3}, compute

(2e1 + 3e2 − e3) ∧ (e1 − e2 + e3)

3. Compute the determinant of
0 0 2 0
1 0 0 1
0 3 0 0
2 0 0 −1


using exterior products.



CHAPTER 11

Group Representations, a Drive-by

“Wigner’s discovery about the electron permutation group
was just the beginning. He and others found many similar
applications and nowadays, group theoretical methods —
especially those involving characters and representations,
pervade all branches of quantum mechanics.”

— George Whitelaw Mackey, Proceedings of the American
Philosophical Society.

11.1. Introduction

Group-representations are a kind of dual to group-presentations in sec-
tion 4.10.2 on page 89: a presentation maps a free group onto a group; repre-
sentation theory maps the group into or onto something else. This “something
else” is a group of linear transformations of a vector space.

We use knowledge of linear algebra to understand groups.
This is a vast subject that could fill several volumes thicker than the

present book.
Here is the classical definition:

DEFINITION 11.1.1. Given a vector-space, V, over a field, k, a represen-
tation of a group G over V is a pair (ρ, V), where ρ is a homomorphism

ρ: G → GL(V)

— see definition 6.2.58 on page 202.
Given two representations

ρ1: G → GL(V1)

ρ2: G → GL(V2)

a homomorphism of representations is a homomorphism of vector spaces

f : V1 → V2

such that
ρ2(g) = f−1 ◦ ρ1(g) ◦ f

for all g ∈ G. This is an isomorphism if f is an isomorphism of vector
spaces.

A representation, ρ: G → GL(V), is called faithful if the homomorph-
ism, ρ, is injective. If U ⊂ V is a sub-vector-space with the property that

ρ(g)(U) ⊂ U

387
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then ρ: G → GL(U) is called a sub-representation of G. A representation is
irreducible or simple if it has no sub-representations (other than itself and the
0-map).

The vector-space, V, is called the representation space. The dimension of
V is called the dimension of the representation.

We’ll look at some examples of group-representations.

EXAMPLE. The trivial representation

ρ: G → GL(V)

that maps every element of G to the identity matrix.

EXAMPLE 11.1.2. Degree-1 representations are just
group-homomorphisms

ρ: G → GL(k) = k×

They are just group-characters in the sense of definition 8.5.1 on page 304. In
fact, the proofs in chapter 8 on page 297 can be regarded as simple applica-
tions of group-representation theory. It’s important to note that the word
‘character’ is often used in group-representation theory in a very different
sense than that definition. The only time the two meanings of ‘character’
coincide is with degree-1 representations.

If G = Z3 = {0, 1, 2}, we have the trivial representation, ρ0, and

ρ1: G → C×

with ρ1(1) = e2πi/3, so ρ1(2) = e4πi/3. We could also define ρ2(1) = e4πi/3,
in which case, ρ2(2) = e8πi/3 = e2πi/3.

The following is simple but significant:

EXAMPLE 11.1.3. We also have a representation sgn: Z2 → R× defined
by

0 7→ 1
1 7→ −1

— called the sign-representation.

REMARK. Given any group, G, with a homomorphism

f : G → Z2

we get an induced sign representation of G:

sgn ◦ f : G → R×

Here’s an example of a degree-2 representation:
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EXAMPLE 11.1.4. Let G = S3 and define

ρ(1) =
[

1 0
0 1

]
ρ((1, 2)) =

[
− 1

2

√
3

2√
3

2
1
2

]

ρ((1, 3)) =

[
− 1

2 −
√

3
2

−
√

3
2

1
2

]

ρ((2, 3)) =
[

1 0
0 −1

]
ρ((1, 2, 3)) =

[
− 1

2 −
√

3
2√

3
2 − 1

2

]

ρ((1, 3, 2)) =

[
− 1

2

√
3

2
−
√

3
2 − 1

2

]

This has a geometric interpretation: Let ω = e2πi/3 = − 1
2 +

√
3

2 be a prim-
itive cube root of 1. Then the three cube roots of 1 are {1, ω, ω2} and form
a triangle in C, which we identify with R2. If we number these three roots,
1, 2, and 3, respectively, S3 permutes these points via the matrices given
above.

We can also give representations for Sn:

EXAMPLE 11.1.5. Let V be a vector space over k with basis-elements
{b1, . . . , bn}. Then we can define a representation for Sn by having it per-
mute the basis elements. This representation has two sub-representations,
V1 and T given by

V1 =

{
n

∑
i=1

aibi

∣∣∣∣ai ∈ k and a1 = a2 = · · · = an

}

Tn =

{
n

∑
i=1

aibi

∣∣∣∣ai ∈ k and
n

∑
i=1

ai = 0

}
Tn is called the standard representation of Sn.

To give a more modern definition of group-representations, we need to
recall the concept of a group-ring — see 5.1.6 on page 109, in our case the
group-ring kG and modules (see section 6.3 on page 222). Since k is a field,
these are also algebras as in definition 7.1.4 on page 262 and often called
group-algebras.

DEFINITION 11.1.6. Let kG-mod and Vk be the categories of left kG-
modules and vector-spaces over k, respectively. Define the forgetful functor
(see example 10.3.2 on page 350) that maps a kG-module to its underlying
vector-space over k:

g: kG-mod→ Vk
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Given a vector-space, V, over a field, k, a representation of a group G over V
is a (left) kG-module, M, with g(M) = V. A homomorphism of representations
is just a kG-module homomorphism

f : M1 → M2

An isomorphism is a homomorphism that is an isomorphism of vector
spaces. A representation, M, is faithful if it contains a submodule isomor-
phic to kG. An irreducible representation, M, has no sub-modules, other
than M and the 0-submodule.

REMARK. Note that any module over kG is automatically a vector-
space over k.

DEFINITION 11.1.7. If

ρ: G → GL(V)

is a representation of a group, G, define

VG = {x ∈ V|ρ(g)(x) = x for all g ∈ G}
the G-stable subspace of V.

REMARK. Compare this with definition 13.3.1 on page 455.

We immediately have:

LEMMA 11.1.8 (Schur’s Lemma). If f : M1 → M2 is a homomorphism of
irreducible representations of a group, G, over a field, k, then f is either an iso-
morphism or the 0-map. If follows that the ring, HomkG(M1, M1) = D, is a
division ring. If k is algebraically closed then HomkG(M1, M1) = k, so every
homomorphism f : M1 → M1 is multiplication by a scalar in k.

PROOF. The kernel of f is a submodule of M1. Since M1 is irreducible,
this must either be the 0-module or all of M1. If it is not all of M1, then its
image in M2 is a submodule. Therefore its image must be all of M2. This
also implies that any homomorphism f : M1 → M1 must be the zero-map
or an isomorphism, which implies that HomkG(M1, M1) is a division-ring
(multiplication is composition, and every nonzero element has an inverse).

If k is algebraically closed, f has an eigenvalue, λ, in k and

f − λ · I: M1 → M1

is a homomorphism that has a kernel. The first part of this lemma implies
that f − λ · I = 0, so f = λ · I. □

Issai Schur, 1875 – 1941, was a Russian mathematician who worked in Ger-
many for most of his life. He studied at the University of Berlin.
As a student of Ferdinand Georg Frobenius, he worked on group represen-
tations, but also in combinatorics and number theory and even theoretical
physics. He is best known for his result on the existence of the Schur de-
composition and for his work on group representati ons (lemma 11.1.8).

In analogy with group theory (definition 4.4.14 on page 47), we define
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DEFINITION 11.1.9. Given a kG-module, M, the socle of M, denoted
Soc(M) is the sum of its irreducible submodules, i.e.,

Soc(M) = ∑ N ⊂ M, where N is irreducible

Given group-representations, there are several operations we can per-
form with them. Essentially, they are the functors laid out in sections 10.6
on page 365 — all of which can be applied to group-representations. We
focus on three of them:

DEFINITION 11.1.10. Given a field k, group, G, and two kG-modules
M1and M2 we can form

(1) the direct sum, M1 ⊕M2, with kG module structure given in defi-
nition 10.6.1 on page 365, and

(2) the tensor product, M1 ⊗k M2, with kG module structure given in
definition 10.6.3 on page 366 and

g · (m1 ⊗m2) = (g ·m1)⊗ (g ·m2)

for all m1 ∈ M1, m2 ∈ M2, and g ∈ G.
(3) the Hom-functor, Homk(M1, M2) of linear transformations. Its kG

module structure is defined by
for all f ∈ hom(M1, M2) and x ∈ M1, then (g ·
f )(x) = g · f (g−1 · x) for all g ∈ G

REMARK. An interesting special case of the hom functor is the dual of
a representation: M∗ = hom(M, k), where k is the trivial representation.

It is important to describe the effects of these constructions on represen-
tations as in definition 11.1.1 on page 387. Proofs will be left as an exercise
to the reader (see the material in section 10.6 on page 365).

If (ρi, Vi), i = 1, 2 are representations of a group G and g ∈ G is an
arbitrary element with ρ1(g) = A, an n × n and ρ2(g) = B, an m × m
matrix, then

(1)

(11.1.1) (ρ1 ⊕ ρ2)(g) =
[

A 0
0 B

]
— the (n + m)× (n + m) block-matrix.

(2) If

A =

 A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n


then

(11.1.2) (ρ1 ⊗ ρ2)(g) =

 A1,1B · · · A1,nB
...

. . .
...

An,1B · · · An,nB


— the nm× nm Kronecker product. See exercise 5 on page 377.
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(3)

(11.1.3) Homk(ρ1, ρ2)(g) =

 Â1,1B · · · Â1,nB
...

. . .
...

Ân,1B · · · Ân,nB


— a Kronecker product, where Â =

(
A−1)t, the transpose of the

inverse.

DEFINITION 11.1.11. A representation (or module) is called semisimple
if it is a direct sum of simple (i.e., irreducible) representations. A ring, R, is
called left-semisimple if all left R-modules are semisimple.

EXERCISES.

1. Show that the definitions 11.1.1 on page 387 and 11.1.6 on page 389
are mathematically equivalent.

2. Suppose M is a simple (i.e., irreducible) module over a ring, R. Show
that M is generated by a single element.

3. Show that the representations of S3 in example 11.1.4 on page 388
and T3 in example 11.1.5 on page 389 (done over C) are isomorphic.

4. Show that the representations of S3 in example 11.1.4 on page 388
and T3 in example 11.1.5 on page 389 (done over C) are irreducible.

5. If G is a finite group and (ρ, V) is a representation over C, show that
ρ(g) is a diagonalizable matrix for every g ∈ G and its eigenvalues have
absolute value 1.

6. Prove equation 11.1.3.

7. Suppose G is a group, k is a field, and M1 and M2 are two kG-
modules. Show that

Homk(M1, M2)
G = HomkG(M1, M2)

In other words, the stabilizer of the Hom-functor of two representations is
the group of homomorphisms of the representations.

8. Let V be a finite-dimensional vector space with a subspace W and
suppose

P: V →W

is a projection onto W with the property that P|W = 1: W → W. Show that
Tr (P) = dim W.

9. Suppose ρ1, ρ2: G → GL(V) are two faithful representations of a
group G. If they are isomorphic, show that ρ1(G) and ρ2(G) are conjugate
subgroups of GL(V).
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10. Suppose ρ1, ρ2: G → GL(V) are two faithful representations of a
group G. such that ρ1(G) and ρ2(G) are conjugate subgroups of GL(V).
Show that there is an automorphism φ: G → G such that ρ1 is isomorphic
to ρ2 ◦ φ.

11. Suppose a module M has two irreducible submodules U1, U2 such
that

M = U1 + U2

Show that
M ∼= U1 ⊕U2

12. Show that a module, M, is semisimple if and only if every sub-
module N ⊂ M has a complement, i.e. if there exists another module U such
that

M ∼= N ⊕U

13. If a module, M, is semisimple and N ⊂ M is a submodule, show
that N and M/N are semisimple.

14. If R is a ring that is semisimple as a left R-module, show that all left
R-modules are semisimple.

11.2. Finite Groups

Representation-theory for finite groups is a vast subject, so we will
barely scratch the surface!

EXAMPLE 11.2.1. Consider the dihedral group, D2n with elements
{1, f , · · · , f n−1, r, r f , . . . , r f n−1}, where f is rotation by 2π/n and r is
reflection of the x-coordinate. We have representations over R:

� the trivial representation that maps its 2n elements to 1.
� the sign representation that maps f k to 1 and r f k to −1, for k =

1, . . . , n− 1.
� and a two-dimensional representation, ρ, from its geometric de-

scription in example 4.5.16 on page 57:

ρ( f k) =

[
cos 2πk

n − sin 2πk
n

sin 2πk
n cos 2πk

n

]
ρ(r f k) =

[ − cos 2πk
n sin 2πk

n
sin 2πk

n cos 2πk
n

]
We begin with

THEOREM 11.2.2 (Maschke’s Theorem). Let G be a finite group and let k
be a field with the property that |G| is invertible in k. If M ⊂ N is an inclusion of
left kG-modules, then there exists a submodule U ⊂ N with the property that

N ∼= M⊕U
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It follows that all representations of G over k are direct sums of irreducible repre-
sentations.

REMARK. The condition on |G| and the field, k means that k must be of
characteristic 0 or, if it is of characteristic p ̸= 0, that p ∤ |G|.

The submodule (or sub-representation) U is called a complement of M
in N.

This result implies that, to classify all representations, it is only neces-
sary to classify the irreducible ones.

PROOF. Note that M ⊂ N is an inclusion of vector-spaces. Theo-
rem 6.2.6 on page 166 implies that we can find a basis, {b1, . . . , bm} of M
that extends to one, {b1, . . . , bm, c1, . . . , ck},for N. It is easy to define a linear
map of vector-spaces

f : N → M
whose restriction to M is the identity map: just map the {bi}to themselves
and map each {cj} to an arbitrary {bi} or 0. Now we define

f̂ (x) =
1
|G| ∑

g∈G
g−1 · f (g · x)

for all x ∈ N. First of all, f̂ |M is still the identity map: if x ∈ M, we have
g · x ∈ M because M is a sub-kG module and f (g · x) = g · x so g−1g · x = x.

We claim that f̂ is a kG-module homomorphism, i.e., we claim that, for
any h ∈ G f̂ (h · x) = h · f̂ (x).

First, note that,

f̂ (x) =
1
|G| ∑

g∈G
g−1 · f (g · x) = 1

|G| ∑
g∈G

h−1g−1 · f (gh · x)

for any fixed element h ∈ G. This is because, as g cycles through all the
elements of G, so will gh. We have

f̂ (h · x) = 1
|G| ∑

g∈G
g−1 · f (gh · x)

= h
1
|G| ∑

g∈G
h−1g−1 · f (gh · x)

= h · f̂ (x)

It follows that we have a kG-module homomorphism

f̂ : N → M

with f̂ |M = 1: M → M. If U = ker f̂ , then ĝ = 1− f̂ : N → U is a kG-
module homomorphism with ĝ|U = 1: U → U. It is not hard to see that

M ∩U = 0

and we get an isomorphism

( f̂ , ĝ)N → M⊕U

The conclusion follows from exercise 12 on the preceding page. □
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Heinrich Maschke (1853 – 1908) was a German mathematician whose most
well-known accomplishment was Maschke’s theorem.
He earned his Ph.D. degree from the University of Göttingen in 1880. He
came to the United States in 1891, and took up an Assistant Professor posi-
tion at the University of Chicago in 1892

The condition that the order of the group be invertible is necessary:

EXAMPLE 11.2.3. Let G = Zp, generated by g with gp = 1, and con-
sider the two-dimensional representation on the vector-space, Zp ⊕ Zp,
given by

ρ(g) =
[

1 0
x 1

]
where x ∈ G and not equal to the identity. This has an invariant subspace[

0
1

]
so it is not irreducible. On the other hand, it is not the direct sum of this
invariant subspace with any other one-dimensional representation so it vi-
olates Maschke’s Theorem.

Given the importance of irreducible representations, we should have a
criterion for irreducibility:

PROPOSITION 11.2.4. A representation, M, of a (not necessarily finite)
group, G is irreducible if and only if, for every nonzero v ∈ M, the set of vectors

S = {g · v|∀g ∈ G}
spans M.

PROOF. If x ∈ G, we claim that x · Span(S) = Span(S). This is because,
if g runs over all the elements of G so does x · g. It follows that Span(S) is a
sub-representation (or submodule). If Span(S) ̸= M, then M has a proper
sub-representation and is not irreducible. □

DEFINITION 11.2.5. If V is a vector-space, ρ: G → GL(V) is a represen-
tation, and n ∈ Z≥0,define

V⊕n =

{
0 if n = 0⊕n

i=1 V otherwise
or

ρ⊕n =

{
0 if n = 0⊕n

i=1 ρ otherwise

Maschke’s Theorem shows that representations can be “factored”:

PROPOSITION 11.2.6. If G is a finite group, let {ιj} be a list of its irreducible
representations over C. If ρ: G → GL(V) is a finite-dimensional representation of
G over C, there exists an isomorphism

(11.2.1) ρ→ ι⊕m1
1 ⊕ ι⊕m2

2 ⊕ · · ·
for some integers mi ∈ Z≥0.
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PROOF. If ρ is irreducible, we’re done. Otherwise, Maschke’s Theorem
( 11.2.2 on page 393) implies that ρ = ρ1 ⊕ ρ2. If we repeatedly apply this
reasoning to the summands, we eventually get a direct sum of irreducible
representations. Exercise 1 on page 364 implies that we can rearrange these
summands to the form in equation 11.2.1 on the previous page. □

The reasoning used in Schur’s Lemma ( 11.1.8 on page 390) implies that

LEMMA 11.2.7. Let ξ be a representation of a group, let ι be an irreducible
representation of the same group, and let

f : ι→ ξ

be a homomorphism. Then there are two possibilities:
(1) f is an isomorphism of ι with an imbedded sub-representation ι ⊂ ξ,or
(2) f is the zero-map.

This implies that the factorization in proposition 11.2.6 on the previous
page is unique:

COROLLARY 11.2.8. If G is a finite group, let {ιj} be a list of its irreducible
representations over C. The representations ι⊕m1

1 ⊕ ι⊕m2
2 ⊕ · · · and ι⊕n1

1 ⊕ ι⊕n2
2 ⊕

· · · are isomorphic if and only if mi = ni for all i.

PROOF. Let pi: ι⊕n1
1 ⊕ ι⊕n2

2 ⊕ · · · → ι
⊕mi
i be the projection.

Lemma 11.2.7 implies that, given any homomorphism

f : ι⊕m1
1 ⊕ ι⊕m2

2 ⊕ · · · → ι⊕n1
1 ⊕ ι⊕n2

2 ⊕ · · ·

the composite pi ◦ f |ι⊕mj
j = 0: ι

⊕mj
j → ι

⊕mi
i whenever i ̸= j. This means

that f
(

ι
⊕mj
j

)
⊂ ι
⊕nj
j for all j. This can be an isomorphism if and only if

mj = nj. □

The following result will be useful in characterizing group-rings:

LEMMA 11.2.9. If R is a ring,

HomR(R, R) ∼= Rop

where Rop is the opposite ring to R — it has the same elements as R but r1 · r2 in
Rop is equal to r2 · r1 in R.

REMARK. Of course (Rop)op = R.

PROOF. A homomorphism f ∈ HomR(R, R) is completely determined
by where it sends 1 ∈ R — i.e., f (x) = x · f (1). We define

g: HomR(R, R)→ Rop

f 7→ f (1)

We need Rop because
f1 ◦ f2 7→ f2(1) · f1(1)

It is straightforward to verify that g is an isomorphism. □

This leads to an interesting structural result:
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THEOREM 11.2.10 (Artin-Wedderburn). Suppose R is a finite-dimensional
algebra over a field, k, with the property that

R = ι⊕n1
1 ⊕ · · · ⊕ ι⊕nm

m

where the {ιj} are pairwise non-isomorphic irreducible left R-modules (left-ideals
of R). Then there is an isomorphism

R ∼= Mn1(D1)⊕ · · · ⊕Mnm(Dm)

where the {Dj = HomR(ιj, ιj)
op} are division-algebras and Mn(D) is the ring of

n× n matrices with entries in D — see example 5.1.5 on page 109.
If k is algebraically closed, all the Di are equal to k, and

dimk ιj = nj

PROOF. We will use lemma 11.2.9 on the facing page and compute
HomR(R, R)op = R. Note that, in any homomorphism

ι⊕n1
1 ⊕ · · · ⊕ ι⊕nm

m → ι⊕n1
1 ⊕ · · · ⊕ ι⊕nm

m

the image of any summand ι
⊕nj
j will lie entirely in ι

⊕nj
j , by Schur’s Lemma

( 11.1.8 on page 390). Lemma 11.2.9 on the facing page implies that

Rop = HomR(R, R) = HomR(ι
⊕n1
1 , ι⊕n1

1 )⊕ · · · ⊕HomR(ι
⊕nm
m , ι⊕nm

m )

Furthermore
HomR(ι

⊕nj
j , ι

⊕nj
j )

is the ring of nj × nj matrices with entries in HomR(ιj, ιj) = Dop
j by Schur’s

Lemma again. The (j, i)th entry in this matrix will be a map from the ith

summand in the domain to the jthsummand in the range. We get

Rop ∼= Mn1(Dop
1 )⊕ · · · ⊕Mnk (Dop

k )

The result follows by taking the opposite of everything in sight and noting
that Mni (Dop

i )op = Mni (Di).
The final statement follows from

dimk Mnj(k) = n2
j = nj · dimk ιj

□

The reasoning used in solving exercise 14 on page 393 implies that:

COROLLARY 11.2.11. Suppose R is a finite-dimensional semisimple algebra
over a field, k, with the property that

R = ι⊕n1
1 ⊕ · · · ⊕ ι⊕nm

m

where the {ιj} are pairwise non-isomorphic irreducible left R-modules (left-ideals
of R). Then the set {ι1, . . . , ιm} is a complete set of irreducible (simple) modules
over R. If k is algebraically closed, we have nj = dimk ιj and

dimk R = n2
1 + · · ·+ n2

m
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REMARK. Maschke’s Theorem ( 11.2.2 on page 393) implies that the
hypotheses are satisfied if R = kG for some finite group, G, and k is a field
of characteristic that doesn’t divide |G|. If k is also algebraically closed, the
last formula implies that

|G| = n2
1 + · · ·+ n2

m

which limits the number of possible irreducible representations and their
dimensions.

PROOF. All R-modules are quotients of free R-modules
(proposition 6.3.10 on page 225), which are direct sums of copies of R. It
follows that all of the irreducible modules that can occur in any R-module
must already be present in R itself. □

EXERCISES.

1. If k is a field and Mn(k) is the ring of n × n matrices over k, show
that

Mn(k) ∼= Mn(k)op

2. Show that the opposite of a matrix ring over a division-algebra is
also a matrix-ring over a division algebra. Conclude that a left-semisimple
algebra is also right-semisimple, so we may simply call them semisimple.

11.3. Characters

Now we will explore invariants of representations. These are easily-
computed quantities that can characterize a representation up to isomor-
phism.

EXERCISE 11.3.1. Show that the standard representation of Sn in exam-
ple 11.1.5 on page 389 is irreducible.

Given a matrix, A, representing a linear transformation

f : V → V

note that the trace (see definition 6.2.53 on page 196), Tr (A), is a well-
defined invariant of f . In other words, it does not depend on the basis
for V used to compute Tr (A) . This is because Tr

(
P−1 AP

)
= Tr (A) for any

invertible matrix P — see exercise 18 on page 201.
With this in mind, we define

DEFINITION 11.3.2. Given a vector-space, V, over a field, k, and a rep-
resentation of a group G , (ρ, V), define the character of the representation
to be a function

ξ: G → k
given by ξ(g) = Tr (ρ(g)).
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REMARK. The character of a representation is almost never a homo-
morphism (unless the representation is of degree 1)!

Isomorphic representations have the same characters (again, consider
exercise 18 on page 201).

Recall the equivalence relation of conjugacy defined in
proposition 4.7.11 on page 78. This results in a group, G, being subdivided
into conjugacy classes as in equation 4.7.2 on page 78

G =
⊔

Ci

where all elements in each of the Ci are conjugate to each other.

DEFINITION 11.3.3. Let G be a finite group, let S = {C1, . . . , Cn} be its
conjugacy classes, and let k be a field. A class function of G is just a function

f : S→ k

Exercise 18 on page 201 immediately implies that

PROPOSITION 11.3.4. Characters of group-representations are class func-
tions.

EXAMPLE 11.3.5. Consider the representation of S3 in example 11.1.4
on page 388. Since conjugacy in Sn is determined by cycle-structure (see
corollary 4.5.12 on page 54 and exercise 3 on page 58) we have three conju-
gacy classes in S3

C0 = {1}
C1 = {(1, 2), (1, 3), (2, 3)}
C3 = {(1, 2, 3), (1, 3, 2)}

and the character of that representation is given by

ξ(C0) = 2

ξ(C1) = 0

ξ(C2) = −1

DEFINITION 11.3.6. A finite group’s character table has rows corre-
sponding to irreducible representations and columns corresponding to con-
jugacy classes.

EXAMPLE 11.3.7. Here’s a character table for S3:
C0 = {1} C1 = {(1, 2), (1, 3), (2, 3)} C2 = {(1, 2, 3), (1, 3, 2)}

triv 1 1 1
sgn 1 −1 1
std 2 0 −1
Here,
� triv is the one-dimensional trivial representation that sends all ele-

ments of S3 to the identity,
� sgn is the one-dimensional sign-representation, and
� std is the two-dimensional standard representation in

examples 11.1.4 on page 388 and 11.1.5 on page 389.



400 11. GROUP REPRESENTATIONS, A DRIVE-BY

REMARK. It isn’t obvious (but true) that these are all of the irreducible
representations of S3. We can make other observations that turn out not to
be mere coincidences:

� (dim triv)2 + (dim sgn)2 + (dim std)2 = 1 + 1 + 4 = |S3|. Com-
pare this to the Artin-Wedderburn Theorem, 11.2.10 on page 397.

� If ξ1, ξ2 are two distinct representations from the character table
above, then

∑
g∈S3

ξ1(g)ξ2(g) = 0

The reasoning used in Maschke’s Theorem can be generalized

LEMMA 11.3.8. Let ρ: G → GL(V) be a representation of a finite group and
define

T =
1
|G| ∑

g∈G
ρ(g)

Then
T: V → VG

is a projection onto the stable subspace of V (see definition 11.1.7 on page 390).

PROOF. If x ∈ V is in the image of T then there exists y ∈ V such that

x =
1
|G| ∑

g∈G
ρ(g)(y)

and

ρ(h)(x) = ρ(h)
1
|G| ∑

g∈G
ρ(g)(y)

=
1
|G| ∑

g∈G
ρ(h)ρ(g)(y)

=
1
|G| ∑

g∈G
ρ(hg)(y)

= x

since hg runs over all the elements of G. On the other hand, it is not hard
to see that x ∈ VG implies that T(x) = x, so the conclusion follows. □

COROLLARY 11.3.9. Let ρ: G → GL(V) be a representation of a finite group
with character ξ: G → C. Then

1
|G| ∑

g∈G
ξ(g) = dim VG

PROOF. We use lemma 11.3.8 and the conclusion of exercise 8 on
page 392 to conclude that

1
|G| Tr

(
1
|G| ∑

g∈G
ρ(g)

)
= dim VG
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But

Tr

(
1
|G| ∑

g∈G
ρ(g)

)
=

1
|G| ∑

g∈G
Tr (ρ(g))

=
1
|G| ∑

g∈G
ξ(g)

□

For the remainder of this chapter, we’ll assume that k = C and define

DEFINITION 11.3.10. If, ξ1, ξ2, are characters of representations of a fi-
nite group, G, over C, we define the inner product

⟨ξ1, ξ2⟩ =
1
|G| ∑

g∈G
ξ1(g)ξ2(g)

=
1
|G| ∑

c∈S
|c| · ξ1(c)ξ2(c)(11.3.1)

where S is the set of conjugacy-classes in G and |s| is the number of ele-
ments in the conjugacy-class, s.

REMARK. Note that
|c|
|G| =

1
|ZG(c)|

where |ZG(c)| is the the number elements that commute with g (the central-
izer of g) — see corollary 4.7.13 on page 79. We can rewrite equation 11.3.1
as

(11.3.2) ⟨ξ1, ξ2⟩ = ∑
c∈S

ξ1(c)ξ2(c)
|ZG(c)|

To understand the significance of this inner product, we need

PROPOSITION 11.3.11. Let ρ1, ρ2 be two representations of a finite group G
over C with characters ξ1, ξ2, respectively. Then the character of Homk(ρ1, ρ2) is

ξ1 · ξ2

PROOF. Equation 11.1.3 on page 392 implies that the matrix for
Homk(ρ1, ρ2)(g) is the Kronecker product of the transpose of the inverse
of the matrix for ρ1(g) with that of ρ2(g) for all g ∈ G. It follows that the
traces satisfy

Tr (Hom(ρ1, ρ2)(g)) = Tr
(

ρ1(g)−1
)
· ξ2(g)

since transposing leaves the trace unchanged. Exercise 214 on page 513
shows that ρ1(g) is diagonalizable and that its eigenvalues, {λ1, . . . , λk}are
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on the complex unit circle. We have

Tr (Hom(ρ1, ρ2)(g)) =

(
k

∑
i=1

λ−1
i

)
· ξ2(g)

=

(
k

∑
i=1

λi

)
· ξ2(g)

=

(
k

∑
i=1

λi

)
· ξ2(g)

= ξ1 · ξ2

□

This immediately leads to an interpretation of the inner product:

COROLLARY 11.3.12. Given two representations over C of a finite group, G
,

ρ1: G → GL(V1)

ρ2: G → GL(V2)

with respective characters, ξ1, ξ2, we have

⟨ξ1, ξ2⟩ = dim HomCG(V1, V2) = dim HomCG(ρ1, ρ2)

PROOF. The character of HomCG(ρ1, ρ2) is ξ1 · ξ2 so corollary 11.3.9 on
page 400 implies that

⟨ξ1, ξ2⟩ = dim Homk(V1, V2)G = dim Homk(V1, V2)
G

and exercise 7 on page 392 implies the conclusion. □

Schur’s Lemma ( 11.1.8 on page 390) immediately implies that

COROLLARY 11.3.13. If ξ1 and ξ2 are characters of distinct irreducible rep-
resentations of G over C, then

⟨ξ1, ξ2⟩ = 0

and
⟨ξ1, ξ1⟩ = ⟨ξ2, ξ2⟩ = 1

PROOF. The second statement follows from the fact that C

is algebraically closed (see theorem 8.9.1 on page 321) so that a
homomorphism from ξ1 to itself is multiplication by a scalar, c ∈ C which
implies that

HomCG(ξ1, ξ1) = C

□

REMARK. This has a number of fascinating consequences. For one
thing, it shows that an irreducible representation is completely determined
by its character: just form its inner product with characters of all the irre-
ducible representations and pick the one that gives a nonzero result.

It also limits the number of possible irreducible representations: Since
the rows of a character table must be orthogonal, they must number less
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than or equal to the number of columns — i.e., the number of conjugacy
classes.

In fact we can say a great deal more:

THEOREM 11.3.14. If G is a finite group and ρ1, ρ2 are two
finite-dimensional representations over C with respective characters, ξ1, ξ2, then
ρ1 is isomorphic to ρ2 if and only if ξ1 = ξ2.

If

ρ1 =
n⊕

j=1

ι
⊕mj
j

then ⟨ξ1, ξ1⟩ = ∑n
i=1 m2

i and ρ1 is simple if and only if

⟨ξ1, ξ1⟩ = 1

PROOF. Clearly, ρ1
∼= ρ2 implies that ξ1 = ξ2.

Now suppose {ιk} is a list of all irreducible representations of G over C

with respective characters {ηk}. Corollary 11.2.8 on page 396 implies that
there is a unique expression

ρ1 =
n⊕

j=1

ι
⊕mj
j

where mj ∈ Z≥0 is the number of times ιj occurs in the big direct sum.
Clearly, the {mj} determine ρ1 up to isomorphism.

The character of ρ1 will satisfy

ξ1 =
n

∑
j=1

mj · ηj

so that corollary 11.3.13 on the preceding page implies that

mj =
〈
ξ1, ηj

〉
It follows that we can reconstruct ρ1 completely from the numbers

〈
ξ1, ηj

〉
.

It follows that if ξ1 = ξ2 the coefficients {mk} will be the same. □
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EXAMPLE 11.3.15. Consider the permutation-representation, η, of S3
over C:

()→
 1 0 0

0 1 0
0 0 1


(1, 2)→

 0 1 0
1 0 0
0 0 1


(1, 3)→

 0 0 1
0 1 0
1 0 0


(2, 3)→

 1 0 0
0 0 1
0 1 0


(1, 2, 3)→

 0 1 0
0 0 1
1 0 0


(1, 3, 2)→

 0 0 1
1 0 0
0 1 0


The corresponding character is:

C0 = {1} C1 = {(1, 2), (1, 3), (2, 3)} C2 = {(1, 2, 3), (1, 3, 2)}
3 1 0

and we compute (using the character table in example 11.3.7 on
page 399):

ξ · triv = 1
ξ · sign = 0

ξ · std = 1

so η = triv⊕ std.
Consider the representation std⊗ std. It has a character table

C0 = {1} C1 = {(1, 2), (1, 3), (2, 3)} C2 = {(1, 2, 3), (1, 3, 2)}
4 0 1

and we compute

(std⊗ std) · triv = 1

(std⊗ std) · sign = 1

(std⊗ std) · std = 1

so std⊗ std = triv⊕ sign⊕ std.
If we consider the regular representations of S3 on CS3, we get a char-

acter
C0 = {1} C1 = {(1, 2), (1, 3), (2, 3)} C2 = {(1, 2, 3), (1, 3, 2)}

1 0 0
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so CS3 = triv⊕ sign⊕ std⊕ std.

Our next project will be to determine the number of isomorphism
classes of irreducible representations. We begin by extending the concept
of center from group-theory (definition 4.4.9 on page 46) to ring-theory:

DEFINITION 11.3.16. If R is a ring, the center of R, denoted Z(R) is the
set of elements that commute with all elements of R, i.e.

Z(R) = {r ∈ R|sr = rs, for ∀s ∈ R}
We leave the proof of the following as an exercise to the reader:

PROPOSITION 11.3.17. If G is a finite group and k is a field, then

Z(kG) =
{

r ∈ kG|g−1rg = r, for ∀g ∈ G
}

COROLLARY 11.3.18. Let G be a finite group, let k be a field, let S =
{C1, . . . , Cn} be the conjugacy classes of G, and let

σi = ∑
g∈Ci

g

Then σi ∈ Z(kG) for i = 1, . . . n. It follows that

dimk Z(kG) ≥ n

— the number of conjugacy classes.

PROOF. Since all the elements of Ci are conjugate to each other, conju-
gating them by group-elements just permutes them and leaves the sum un-
changed. Since distinct σi are linearly independent (for instance, Ci ∩ Cj =
∅ for i ̸= j), the conclusion follows. □

It’s easy to characterize the center of a matrix-ring:

PROPOSITION 11.3.19. Let k be a field and let n > 0 be an integer. Then

Z(Mn(k)) = k · I
— scalar multiples of the identity matrix.

PROOF. Let Ei,j be the n × n matrix with 1 in position i, j and 0 else-
where. If A is an arbitrary n× n matrix, then

Ei,j A = matrix whose ith-row is the jth row of A

AEi,j = matrix whose ith-column is the jth column of A

The only way these can be equal is if every row and column of A has, at
most, a single nonzero element — and these elements (in distinct rows and
columns) are equal. □

Now we can prove our main result:

THEOREM 11.3.20. If G is a finite group, then

dimk Z(CG) = the number of distinct simple representations of G
= the number of conjugacy classes of G

It follows that character-tables are always square. Furthermore, the {σi} defined
in corollary 11.3.18 are a basis for Z(kG).
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PROOF. The Artin-Wedderburn Theorem ( 11.2.10 on page 397) implies
that

CG ∼= Mn1(C)⊕ · · · ⊕Mnm(C)

where each matrix-ring corresponds to a simple representation of G. Tak-
ing centers (and referring to proposition 11.3.19 on the preceding page)
gives the first statement. Corollary 11.3.18 on the previous page implies
that dimk Z(CG) ≥ c where c is the number of conjugacy classes of G.
Corollary 11.3.13 on page 402 and the fact that distinct characters are or-
thogonal implies that the number of distinct simple representations (which
is equal to dimk Z(CG)) is ≤ c. These inequalities imply that the number
of distinct simple representations is actually equal to c. □

Since character-tables are square, we conclude that

PROPOSITION 11.3.21. The complex characters of a finite group form a basis
for all complex-valued class functions of that group.

We conclude by considering the standard representation of a finite
group: CG as a left module over itself with character ξCG. Since
the diagonal entries correspond to elements fixed by the action of a
group-element, we get

ξCG(g) =

{
|G| if g = 1
0 otherwise

We have a decomposition

CG =
n⊕

j=1

ι
⊕mj
j

where the {ιj} are all the simple complex representations. If ξ j is the char-
acter of ιj then we get a formula

ξCG =
n

∑
j=1

mjξ j

We have proved

LEMMA 11.3.22. If G is a finite group and {ξ1, . . . , ξn} are characters of its
simple representations over C, {ι1, . . . , ιn}, where dimC ιj = mj = ξ j(1) then,
for any g ∈ G

n

∑
j=1

mjξ j(g) =

{
|G| if g = 1
0 otherwise

Just as rows of a character table are orthogonal, so are the columns (as
in the remarks following example 11.3.7 on page 399):

THEOREM 11.3.23. Let {χi}i=1..k be characters of simple representations of
a finite group G and let {1 = g1, g2, . . . gk} be representatives of the conjugacy-
classes of G. Then

(11.3.3)
k

∑
i=1

χi(gu)χi(gv) =

{
0 if u ̸= v
|ZG(gu)| otherwise
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Here, ZG(gj) is the centralizer of gj in G — see definition 4.7.12 on page 79.

PROOF. Let X be the k × k matrix for the character-table and let Z be
the k× k diagonal matrix

Z =


|ZG(g1)| 0 · · · 0

0 |ZG(g2)| · · ·
...

...
...

. . . 0
0 · · · 0 |ZG(gk)|


Equation 11.3.2 on page 401 is equivalent to

X̄C−1Xt = I

where X̄ is the complex conjugate. Since all matrices here are invertible, we
can write (

X̄C−1
)−1

= Xt = CX̄−1

so that
XtX̄ = C

which is equation 11.3.3 on the facing page. □

Recall the concept of integral elements of a field developed in sec-
tion 6.5 on page 251.

PROPOSITION 11.3.24. If G is a finite group the center, Z(ZG), is integral
over Z. If {g1 = 1, . . . , gk} are representatives of the conjugacy-classes of G then
ĝi ∈ Z(ZG) are integral over Z, where ĝ is the sum of all the elements conjugate
to g. If λ1, . . . , λk are algebraic integers over Z, then

k

∑
i=1

λi ĝi

is an algebraic integer over Z. If f : G → C is a class function then

z = ∑
g∈G

f (g) · g

is in Z(CG).

REMARK. In light of definition 6.5.1 on page 252, this means it’s a
root of a monic polynomial with integer coefficients. Proposition 6.5.5 on
page 253 shows that algebraic integers form a ring.

PROOF. That elements of Z(ZG) are integral over Z follows from the
fact that ZG is a finitely-generated Z-module, and Z(ZG) is a submodule,
so also finitely generated — see proposition 6.5.2 on page 252. The state-
ment about the ĝi follows from proposition 11.3.17 on page 405. The second
statement follows from the fact that algebraic integers form a ring — again,
see proposition 6.5.2 on page 252.

The statement about z follows from the fact that we can rewrite z as
k

∑
i=1

f (gi) · ĝi

since f is constant over elements of a conjugacy class. □
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PROPOSITION 11.3.25. If ρ is a d-dimensional simple representation of a
finite group, G, over C and x ∈ Z(CG) then

ρ(x) = λ · I
for some λ ∈ C. in fact

ρ(x) =
1
d

Tr (ρ(x)) · I
If x = ∑g∈G αgg, then

ρ(x) = ∑
g∈G

αgχ(g) · I

where χ is the character of ρ.

PROOF. Since x commutes with every element of G, ρ(x) commutes
with all of ρ(g) for any g ∈ G — therefore the homomorphism

ρ(x): Cd → Cd

of vector-spaces is actually a homomorphism of CG-modules. Schur’s
Lemma, 11.1.8 on page 390, implies that it is of the form λ · I. The final
conclusion follows from the fact that

Tr (λ · I) = d · λ
□

We also conclude that

THEOREM 11.3.26. The degrees of the simple complex representations of a
finite group all divide the order of the group.

PROOF. Let χ be the character of a degree-d simple complex represen-
tation, ρ. The final statement of proposition 11.3.24 on the preceding page
implies that

x = ∑
g∈G

χ(g−1)g

is in Z(CG). Proposition 11.3.25 implies that

ρ(x) =
1
d ∑

g∈G
χ(g−1)χ(g) · I = 1

d

(
∑

g∈G
1

)
I =
|G|
d
· I

Since x is integral over Z (by Proposition 11.3.24 on the preceding page)
and |G|/d ∈ Q, we conclude that |G|/d ∈ Z so d

∣∣ |G|. □
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EXERCISES.

1. If G is a finite group and ρ: G → Ck is a representation, show that
ρ(g) is diagonalizable for any g ∈ G.

2. If G is a finite group and ρ: G → Ck is a representation with character
χ, and g ∈ G is of order n, show that χ(g) is a sum of nth roots of unity
(including roots whose order divides n).

3. If G is a finite group and ρ: G → Ck is a representation with char-
acter χ, and |χ(1)| = |χ(g)| for some element g ∈ G, show that ρ(g) is
multiplication by a scalar (root of unity)

4. If χ is the character of a complex representation of a finite group, G,
show that χ(g−1) = χ(g) for all g ∈ G.

5. Show that, if every element of a finite group G is conjugate to its
inverse, every complex character is real-valued. Conversely, show that if
every complex character of G is real-valued, then every element of G is
conjugate to its inverse.

11.4. Examples

We have seen a character-table for S3 in example 11.3.7 on page 399.
Now we will do S4. It is well-known that conjugacy-class of an element

of a symmetric group is determined by its cycle-structure — see exercise 3
on page 58. Our table will look like

() (∗, ∗) (∗, ∗)(∗, ∗) (∗, ∗, ∗) (∗, ∗, ∗, ∗)
size 1 6 3 8 6
triv 1 1 1 1 1
sgn 1 −1 1 1 −1

where the second row is the size of the respective conjugacy classes.
We consider the representation where S4 acts on C4 by permuting the

axes. The character is equal to the number of axes fixed by a given permu-
tation, so we get

() (∗, ∗) (∗, ∗)(∗, ∗) (∗, ∗, ∗) (∗, ∗, ∗, ∗)
size 1 6 3 8 6

perm 4 2 0 1 0
This representation is not simple: it contains an invariant subspace iso-

morphic to the trivial representation. It is the representation that permutes
the axes in the three-dimensional subspace of C4 with ∑4

i=1 xi = 0. We
subtract the trivial character from perm to get

() (∗, ∗) (∗, ∗)(∗, ∗) (∗, ∗, ∗) (∗, ∗, ∗, ∗)
size 1 6 3 8 6
std 3 1 −1 0 −1
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The computation ⟨std, std⟩ = 1 shows that it is simple (see
theorem 11.3.14 on page 403). It is not hard to see that

⟨std⊗ sgn, std⊗ sgn⟩ = 1

so our character-table has 4 rows
() (∗, ∗) (∗, ∗)(∗, ∗) (∗, ∗, ∗) (∗, ∗, ∗, ∗)

size 1 6 3 8 6
triv 1 1 1 1 1
sgn 1 −1 1 1 −1
std 3 1 −1 0 −1

std⊗ sgn 3 −1 −1 0 1
To get the fifth representation, note that the subgroup

K = {1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} ⊂ S4

is normal1. The quotient is isomorphic to S3 and the projection p: S4 → S3
is given by

() 7→ ()

(1, 2) 7→ (1, 2)

(1, 2)(3, 4) 7→ ()

(1, 2, 3, 4) 7→ (1, 3)

(1, 2, 3) 7→ (1, 2, 3)

Any representation ρ: S3 → GL(V) gives rise to a representation of S4 by
composition p ◦ ρ. It follows that the representation in the bottom row of
the table in example 11.3.7 on page 399 gives rise to one of S4:

() (∗, ∗) (∗, ∗)(∗, ∗) (∗, ∗, ∗) (∗, ∗, ∗, ∗)
size 1 6 3 8 6
ξp◦æ 2 0 2 −1 0

A simple computation shows that〈
ξp◦æ, ξp◦æ

〉
= 1

so it is irreducible (or simple). We could also have come to this conclusion
using the fact that the representation of S3 was simple.

This completes our character-table for S4:
() (∗, ∗) (∗, ∗)(∗, ∗) (∗, ∗, ∗) (∗, ∗, ∗, ∗)

size 1 6 3 8 6
triv 1 1 1 1 1
sgn 1 −1 1 1 −1
std 3 1 −1 0 −1

std⊗ sgn 3 −1 −1 0 1
ξp◦æ 2 0 2 −1 0

Based on the representations in example 11.2.1 on page 393, we get part
of a character table over R for the dihedral group, D2n:

1Conjugation leaves its cycle-structure intact.
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f k r f k

triv 1 1
sgn 1 −1

ρ 2 cos 2πk
n 0

11.5. Burnside’s Theorem

We conclude our drive-by of representation theory with an application.

THEOREM 11.5.1 (Burnside’s Theorem). If G is a group of order paqb,
where p and q are distinct prime numbers and a and b are nonnegative integers,
then G is solvable.

REMARK. It follows that a finite simple group must have an order di-
visible by at least three distinct primes.

PROOF. We prove this by contradiction. Suppose paqb is the order of
the smallest counterexample, G.

Claim 1: G is a simple group and a > 0.
If there existed a normal subgroup H ◁ G then H and G/H would be

smaller than G, hence solvable (since G is the smallest non-solvable group
whose order is of the form paqb). This implies that G is solvable too (see
exercise 6 on page 87). Since G is simple, Z(G) = {1}.

If a = 0, then G is a finite q-group and is solvable by exercise 1 on
page 321.

Claim 2: There is an element g ∈ G that has qdconjugates, for some d > 0.
The first Sylow Theorem (see theorem 4.8.1 on page 81) implies that

there’s a subgroup H ⊂ G of order pa. Since this is a p-group, its center is
nontrivial (see theorem 4.7.14 on page 79). Pick a nontrivial element g ∈
Z(H). This is not central in G because the center of G is trivial (it’s a simple
group). Regard G as acting on elements of G by conjugation, and recall the
material in section 4.7 on page 73. Let ZG(g) ⊂ G be the stabilizer of g
under this action (see definition 4.7.4 on page 74), i.e. the subgroup of all
elements of G that commute with g.

Since H ⊂ Sg, [G: Sg]|[G: H] = qb. It follows that

|Orbit(g)| = [G: Sg] =
|G|
|Sg|

= qd

(see proposition 4.7.7 on page 75 and corollary 4.7.13 on page 79) where the
orbit of g is the number of distinct elements in the group-action, i.e. the
number of distinct conjugates. The inverse, g−1, also has this number of
distinct conjugates.

Claim 3: There exists a nontrivial irreducible representation, ρ, of G such that
its dimension m is not divisible by q and whose character, χ, has the property that
χ(g) ̸= 0.

Recall that the dimension of the representation, m, is equal to χ(1).
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Let {χ1, . . . , χk} denote the irreducible characters of G, where χ1 is the
trivial character. Theorem 11.3.23 on page 406 implies that

k

∑
i=1

χi(1)χi(g) = 0 = 1 +
k

∑
i=2

χi(1)χi(g) = 1 +
k

∑
i=2

χi(1)χi(g−1)

If all of the algebraic integers χi(g−1) are divisible by q then

−1
q
=

k

∑
i=2

1
q

χi(1)χi(g−1)

would be an algebraic integer, which it clearly isn’t.
Claim 4: The complex number qdχ(g)/m is an algebraic integer.
The number of conjugates of g is qd. Let ĝ be the sum of all these conju-

gates; we have ĝ ∈ Z(CG), by proposition 11.3.24 on page 407 and propo-
sition 11.3.25 on page 408 implies that

ρ(ĝ) =
1
m ∑

h∼g
χ(h) · I

=
qdχ(g)

m
· I

(where h ∼ g means h is conjugate to g) and this is integral over Z.
Claim 5: The complex number χ(g)/m is an algebraic integer.
This is due to the fact that d ∤ m, so we can find integers a and b such

that
aqd + bm = 1

(see lemma 3.1.5 on page 14) which gives

χ(g)
m

= a
qdχ(g)

m
+ bχ(g)

a sum of algebraic integers.
Claim 6: |χ(g)| = m.
Set ξ = χ(g)/m. Then the algebraic conjugates (see definition 3.1.5

on page 14) of ξ are all algebraic integers so their product N(ξ) (see
lemma 7.5.11 on page 286) is also an algebraic integer. Since it is ± the
constant term of the minimal polynomial of ξ over Q, it is rational, hence
0 ̸= N(ξ) ∈ Z.

Now χ(g) is the sum of the m eigenvalues of ρ(g), each of which is a
root of unity. The triangle inequality implies that |χ(g)| ≤ m, and Galois
theory implies that this is true of each of the algebraic conjugates of χ(g),
so that all the algebraic conjugates of ξ have absolute value ≤ 1.

Consequently 0 ̸= |N(ξ)| ≤ 1. Since it must be an integer, we have
|N(ξ)| = 1, which proves the claim.

Consider the set

H = {h ∈ G||χ(h)| = m}
Exercise 3 on page 409 implies that ρ(h) is multiplication by a scalar

(root of unity). This implies that H is a subgroup of G. Furthermore, it’s
a normal subgroup since matrices λ · I commute with all other matrices. In
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fact, H/ ker ρ is abelian since it is equal to the image of H under ρ in the
ring of matrices — and diagonal matrices commute with each other.

Since H contains the element g, it is nontrivial. The simplicity of G then
implies that H = G. Since ρ is not a trivial representation, the simplicity of
G implies that ker ρ = 1. This implies that G = H/ ker ρ is abelian, which is
a contradiction. □





CHAPTER 12

A little algebraic geometry

“Algebraic geometry seems to have acquired the reputation of
being esoteric, exclusive, and very abstract, with adherents who
are secretly plotting to take over all the rest of mathematics. In
one respect this last point is accurate.”

—David Mumford in [77].

12.1. Introduction

Algebraic geometry concerns itself with objects called algebraic varieties.
These are essentially solution-sets of systems of algebraic equations.

Although restricting our attention to algebraic varieties might seem
limiting, it has long been known that more general objects like compact
smooth manifolds are diffeomorphic to real varieties — see [79]1 and [104].
The paper [1] even shows that many piecewise-linear manifolds, including
ones with no smooth structure are homeomorphic to real varieties.

The reader interested in more than a little bit of algebraic geometry is
invited to look at [99].

We begin with algebraic sets, whose geometric properties are completely
characterized by a basic algebraic invariant called the coordinate ring. The
main objects of study — algebraic varieties — are the result of gluing to-
gether multiple affine sets.

Throughout this discussion, k will denote a fixed algebraically closed
field (see definition 7.5.1 on page 283). In classical algebraic geometry
k = C.

DEFINITION 12.1.1. An n-dimensional affine space, An = kn, regarded as
a space in which geometric objects can be defined. An algebraic set, V (S), in
kn is the set of common zeros of some set S of polynomials in k[X1, . . . , Xm]:

V (S) = {(a1, . . . , an) ∈ An| f (a1, . . . , an) = 0 for all f (X1, . . . , Xn) ∈ S}
REMARK. It is not hard to see that if the set of polynomials is larger,

the set of common zeros will be smaller, i.e.,

S ⊂ S′ =⇒ V (S) ⊃ V
(
S′
)

If a is the ideal generated by the polynomials in S, we have
V (a) = V (S) so algebraic sets are described as V (a) for some ideal
a ⊆ k[X1, . . . , Xm] (see definition 5.2.3 on page 111).

Recall that all ideals in k[X1, . . . , Xn] are finitely generated by
theorem 5.4.4 (the Hilbert Basis Theorem).

1Written by John Nash, the character of the film “A beautiful mind.”

415
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FIGURE 12.1.1. An elliptic curve

EXAMPLE. For instance, we have

(1) If S is a system of homogeneous linear equations, then V (S) is a
subspace of An.

(2) If S consists of the single equation

Y2 = X3 + aX + b where 4a3 + 27b2 ̸= 0

then V (S) is an elliptic curve. The quantity, 4a3 + 27b2 is the dis-
criminant (see definition 5.5.20 on page 144) of the cubic poly-
nomial Y2 = X3 + aX + b. Its non-vanishing guarantees that
the polynomial has no repeated roots — see corollary 5.5.21 on
page 144. Figure 12.1.1 shows the elliptic curve Y2 = X3− 2X + 1.
Elliptic curves over finite fields form the basis of an important
cryptographic system.

(3) For the zero-ideal, V ((0)) = An.
(4) V ((1)) = ∅,
(5) The algebraic subsets of k = A1 itself are finite sets of points since

they are roots of polynomials.
(6) The special linear group, SL(n, k) ⊂ An2

— the group of n× n matri-
ces with determinant 1. This is an algebraic set because the deter-
minant is a polynomial of the matrix-elements — so that SL(n, k)
is the set of zeros of the polynomial, det(A)− 1 for A ∈ An2

. This
is an example of an algebraic group, an algebraic set that is also a
group under a multiplication-map that can be expressed as poly-
nomial functions of the coordinates.

(7) If A is an n×m matrix whose entries are in k[X1, . . . , Xt] and r ≥ 0
is an integer, then define R(A, r), the rank-variety (also called a
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determinantal variety),

R(A, r) =

{
At if r ≥ min(n, m)

p ∈ At such that rank(A(p)) ≤ r

This is an algebraic set because the statement that the rank of A is
≤ r is the same as saying the determinants of all (r + 1)× (r + 1)
sub-matrices are 0.

Here are some basic properties of algebraic sets and the ideals that generate
them:

PROPOSITION 12.1.2. Let a, b ⊂ k[X1, . . . , Xn] be ideals. Then
(1) a ⊂ b =⇒ V (a) ⊃ V (b)
(2) V (ab) = V (a∩ b) = V (a) ∪ V (b)
(3) V (∑ ai) =

⋂ V (ai)

PROOF. For statement 2 note that

ab ⊂ a∩ b ⊂ a, b =⇒ V (a∩ b) ⊃ V (a) ∪ V (b)

For the reverse inclusions, let x /∈ V (a) ∪ V (b). Then there exist f ∈ a
and g ∈ b such that f (x) ̸= 0 and g(x) ̸= 0. Then f g(x) ̸= 0 so x /∈
V (ab). □

It follows that the algebraic sets in An satisfy the axioms of the closed
sets in a topology.

DEFINITION 12.1.3. The Zariski topology on An has closed sets that are
algebraic sets. Complements of algebraic sets will be called distinguished
open sets.

REMARK. Oscar Zariski originally introduced this concept in [110].
This topology has some distinctive properties:
� every algebraic set is compact in this topology.
� algebraic maps (called regular maps) are continuous. The converse

is not necessarily true, though. See exercise 4 on page 426.

The Zariski topology is also extremely coarse i.e, has very “large” open
sets. To see this, recall that the closure, S̄ of a subset S ⊂ X of a space is the
smallest closed set that contains it — i.e., the intersection of all closed sets
that contain S.

Now suppose k = C and S ⊂ A1 = C is an arbitrarily line segment, as
in figure 12.1.2 on the next page. Then we claim that S̄ = C in the Zariski
topology.

Let I ⊂ C[X] be the ideal of all polynomials that vanish on S. Then
the closure of S is the set of points where the polynomials in I all vanish —
i.e., V (I). But nonzero polynomials vanish on finite sets of points and S is
infinite. It follows that I = (0) i.e., the only polynomials that vanish on S
are identically zero. Since V ((0)) = C, we get that the closure of S is all of
C, as is the closure of any infinite set of points.
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FIGURE 12.1.2. Closure in the Zariski topology

DEFINITION 12.1.4. For a subset W ⊆ An, define

I(W) = { f ∈ k[X1, . . . , Xn]| f (P) = 0 for all P ∈W}
It is not hard to see that:

PROPOSITION 12.1.5. The set I(W) is an ideal in k[X1, . . . , Xn] with the
properties:

(1) V ⊂W =⇒ I(V) ⊃ I(W)
(2) I(∅) = k[X1, . . . , Xn]; I(kn) = 0
(3) I(⋃Wi) =

⋂ I(Wi)
(4) The Zariski closure of a set X ⊂ An is exactly V (I(X)).

EXERCISES.

1. Show that the Zariski topology on A2 does not coincide with the
product-topology of A1 ×A1 (the Cartesian product).

2. If V ⊂ An is an algebraic set and p /∈ V is a point of An, show
that any line, ℓ, through p intersects V in a finite number of points (if it
intersects it at all).

3. If
0→ M1 → M2 → M3 → 0

is a short exact sequence of modules over k[X1, . . . , Xn], show that

V (Ann(M2)) = V (Ann(M1)) ∪ V (Ann(M3))

(see definition 6.3.27 on page 241 for Ann(∗)).
4. If V = V

(
(X2

1 + X2
2 − 1, X1 − 1)

)
, what is I(V)?

5. If V = V
(
(X2

1 + X2
2 + X2

3)
)
, determine I(V) when the characteristic

of k is 2.

6. Find the ideal a ⊂ k[X, Y] such that V (a) is the union of the
coordinate-axes.
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7. Find the ideal a ⊂ k[X, Y, Z] such that V (a) is the union of the three
coordinate-axes.

8. If V ⊂ A2 is defined by Y2 = X3, show that every element of k[V]
can be uniquely written in the form f (X) + g(X)Y.

12.2. Hilbert’s Nullstellensatz

12.2.1. The weak form. Hilbert’s Nullstellensatz (in English,
“zero-locus theorem”) was a milestone in the development of algebraic
geometry, making precise the connection between algebra and geometry.

David Hilbert (1862–1943) was one of the most influential mathematicians
in the 19th and early 20th centuries, having contributed to algebraic and
differential geometry, physics, and many other fields.

The Nullstellensatz completely characterizes the correspondence be-
tween algebra and geometry of affine varieties. It is usually split into two
theorems, called the weak and strong forms of the Nullstellensatz. Consider
the question:

When do the equations

g(X1, . . . , Xn) = 0, g ∈ a

have a common zero (or are consistent)?
This is clearly impossible if there exist fi ∈ k[X1, . . . , Xn] such that ∑ figi =
1 — or 1 ∈ a, so a = k[X1, . . . , Xn]. The weak form of Hilbert’s Null-
stellensatz essentially says that this is the only way it is impossible. Our
presentation uses properties of integral extensions of rings (see section 6.5
on page 251).

LEMMA 12.2.1. Let F be an infinite field and suppose f ∈ F[X1, . . . , Xn],
n ≥ 2 is a polynomial of degree d > 0. Then there exist λ1, . . . , λn−1 ∈ F such
that the coefficient of Xd

n in

f (X1 + λ1Xn, . . . , Xn−1 + λn−1Xn, Xn)

is nonzero.

PROOF. If fd is the homogeneous component of f of degree d
(i.e., the sum of all monomials of degree d), then the coefficient of
xd

n in f (X1 + λ1Xn, . . . , Xn−1 + λn−1Xn, Xn) is fd(λ1, . . . , λn−1, 1).
Since F is infinite, there is a point (λ1, . . . , λn−1) ∈ Fn−1 for which
fd(λ1, . . . , λn−1, 1) ̸= 0 (a fact that is easily established by induction on the
number of variables). □

The following result is called the Noether Normalization Theorem
or Lemma. It was first stated by Emmy Noether in [83] and further
developed in [84].
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THEOREM 12.2.2. Let F be an infinite field and suppose A = F[r1, . . . , rm] is
a finitely generated F-algebra that is an integral domain with generators r1 . . . , rm.
Then for some q ≤ m, there are algebraically independent elements y1, . . . , yq ∈ A
such that the ring A is integral (see definition 6.5.3 on page 253) over the polyno-
mial ring F[y1, . . . , yq].

REMARK. Recall that an F-algebra is a vector space over F that is also
a ring. The ri generate it as a ring (so the vector space’s dimension over F
might be > m).

PROOF. We prove this by induction on m. If the ri are algebraically
independent, simply set yi = ri and we are done. If not, there is a nontrivial
polynomial f ∈ F[x1, . . . , xm], say of degree d such that

f (r1, . . . , rm) = 0

and lemma 12.2.1 on the previous page that there a polynomial of the form

rd
m + g(r1, . . . , rm) = 0

If we regard this as a polynomial of rm with coefficients in F[r1, . . . , rm−1]
we get

rd
m +

d−1

∑
i=1

gi(r1, . . . , rm−1)ri
m = 0

which implies that rm is integral over F[r1, . . . , rm−1]. By the inductive
hypothesis, F[r1, . . . , rm−1] is integral over F[y1, . . . , yq], so statement 2 of
proposition 6.5.5 on page 253 implies that rm is integral over F[y1, . . . , yq]
as well. □

We are now ready to prove:

THEOREM 12.2.3 (Hilbert’s Nullstellensatz (weak form)). The maximal
ideals of k[X1, . . . , Xn] are precisely the ideals

I(a1, . . . , an) = (X1 − a1, X2 − a2, . . . , Xn − an)

for all points
(a1, . . . , an) ∈ An

Consequently every proper ideal a ⊂ k[X1, . . . , Xn] has a 0 in An.

REMARK. See proposition 5.2.4 on page 112 and lemma 5.3.2 on
page 117 for a discussion of the properties of maximal ideals.

PROOF. Clearly

k[X1, . . . , Xn]/I(a1, . . . , an) = k

The projection

k[X1, . . . , Xn]→ k[X1, . . . , Xn]/I(a1, . . . , an) = k

is a homomorphism that evaluates polynomial functions at the point
(a1, . . . , an) ∈ An. Since the quotient is a field, the ideal I(a1, . . . , an) is
maximal (see lemma 5.3.2 on page 117).

We must show that all maximal ideals are of this form, or equivalently,
if

m ⊂ k[X1, . . . , Xn]
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is any maximal ideal, the quotient field is k.
Suppose m is a maximal ideal and

K = k[X1, . . . Xn]/m

is a field. If the transcendence degree of K over k is d, the Noether Normal-
ization Theorem 12.2.2 on the facing page implies that K is integral over

k[y1, . . . , yd]

where y1, . . . , yd are a transcendence basis. Proposition 6.5.7 on page 254
implies that k[y1, . . . , yd] must also be a field. The only way for this to hap-
pen is for d = 0. So K must be an algebraic extension of k, which implies
that it must equal k because k is algebraically closed.

The final statement follows from the fact that every proper ideal is con-
tained in a maximal one, say I(a1, . . . , an) so its zero-set contains at least
the point (a1, . . . , an). □

12.2.2. The strong form. The strong form of the Nullstellensatz gives
the precise correspondence between ideals and algebraic sets. It implies
the weak form of the Nullstellensatz, but the two are usually considered
separately.

DEFINITION 12.2.4. If a is an ideal in a ring K, define the radical of a,√
a to be

{ f | f r ∈ a, for some r > 0}
PROPOSITION 12.2.5. The radical of an ideal has the following properties
�
√
a is an ideal

�
√√

a =
√
a

PROOF. If a ∈ √a, then ar ∈ a so f rar = ( f a)r ∈ a so f a ∈ √a for all
f ∈ K. If a, b ∈ √a and ar, bs ∈ a. The binomial theorem expands (a + b)r+s

to a polynomial in which every term has a factor of ar or bs.
If ar ∈ √a then ars ∈ a. □

DEFINITION 12.2.6. An ideal is called radical if it equals its own radical.
Equivalently, a is radical if and only if K/a is a reduced ring — a ring

without nonzero nilpotent elements. Since integral domains are reduced,
prime ideals (and maximal ideals) are radical.

It is not hard to see that intersections of radical ideals are radical. Since
f r(P) = ( f (P))r, f r vanishes wherever f vanishes. It follows that IV (a) ⊃√
a. We conclude this section with study of the nilpotent elements of a ring.

DEFINITION 12.2.7. An element x ∈ R of a commutative ring is called
nilpotent if xk = 0 for some integer k. The set of all nilpotent elements of a
ring forms an ideal, N(R) =

√
(0), called the nilradical.

REMARK. We leave the proof that the set of all nilpotent element forms
an ideal as an exercise.

THEOREM 12.2.8. If I ⊂ R is an ideal in a commutative ring, then
√
I =

⋂
pi
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where the intersection is taken over all prime ideals that contain I. Consequently,
N(R) is equal to the intersection of all prime ideals.

REMARK. Every ideal is contained in a maximal ideal (see proposi-
tion 5.2.11 on page 115) which is prime by proposition 5.2.4 on page 112, so
there is always at least one prime in this intersection.

PROOF. Suppose x ∈
√
I and I ⊂ p where p is prime. Then xn =

x · xn−1 ∈ I ⊂ p. If xn−1 /∈ p then x ∈ p. Otherwise, a simple downward
induction on n proves that x ∈ p. It follows that

√
I ⊆

⋂
pi

where we take the intersection over all prime ideals of R.
If x ∈ R \

√
I, we will construct a prime ideal that does not contain x.

Note that S = {xn, n = 1, . . . } is a multiplicative set. Proposition 6.4.2 on
page 248 show that the maximal ideal that does not intersect S is prime. □

Hilbert’s strong Nullstellensatz describes which ideals in k[X1, . . . , Xn]
occur as I(P) when P is an algebraic set.

PROPOSITION 12.2.9. For any subset W ⊂ An, V (IW) is the smallest al-
gebraic subset of An containing W. In particular, V (IW) = W if W is algebraic.

REMARK. In fact, V (IW) is the Zariski closure of W.

PROOF. Let V = V (a) be an algebraic set containing W. Then a ⊂
I(W) and V (a) ⊃ V (IW). □

THEOREM 12.2.10 (Hilbert’s Nullstellensatz). For any ideal
a ∈ k[X1, . . . , Xn], IV (a) =

√
a (see definition 12.2.4 on the previous page). In

particular, IV (a) = a if a is radical.

PROOF. If f n vanishes on V (a), then f vanishes on it too so that
IV (a) ⊃ √a. For the reverse inclusion, we have to show that if h vanishes
on V (a), then hr ∈ a for some exponent r.

Suppose a = (g1, . . . , gm) and consider the system of m + 1 equations
in n + 1 variables, X1, . . . , Xm, Y:

gi(X1, . . . , Xn) = 0
1−Yh(X1, . . . , Xn) = 0

If (a1, . . . , an, b) satisfies the first m equations, then (a1, . . . , am) ∈ V(a).
Consequently h(a1, . . . , an) = 0 and the equations are inconsistent.

According to the weak Nullstellensatz (see theorem 12.2.3 on page 420),
the ideal generated by the left sides of these equations generate the whole
ring k[X1, . . . , Xn, Y] and there exist fi ∈ k[X1, . . . , Xn, Y] such that

1 =
m

∑
i=1

figi + fm+1(1−Yh)

Now regard this equation as an identity in k(X1, . . . , Xn)[Y] — polyno-
mials in Y with coefficients in the field of fractions of k[X1, . . . , Xn]. After
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substituting h−1 for Y, we get

1 =
m

∑
i=1

fi(X1, . . . , Xn, h−1)gi(X1, . . . Xn)

Clearly

f (X1, . . . , Xn, h−1) =
polynomial in X1, . . . , Xn

hNi

for some Ni.
Let N be the largest of the Ni. On multiplying our equation by hN , we

get
hN = ∑(polynomial in X1, . . . , Xn) · gi

so hN ∈ a. □

Hilbert’s Nullstellensatz precisely describes the correspondence
between algebra and geometry:

COROLLARY 12.2.11. The map a 7→ V (a) defines a 1-1 correspondence
between the set of radical ideals in k[X1, . . . , Xn] and the set of algebraic subsets of
An.

PROOF. We know that IV (a) = a if a is a radical ideal and that
V (IW) = W if W is an algebraic set. It follows that V (∗) and I(∗) are
inverse maps. □

COROLLARY 12.2.12. The radical of an ideal in k[X1, . . . , Xn] is equal to the
intersection of the maximal ideals containing it.

REMARK. In general rings, the radical is the intersections of all prime
ideals that contain it (corollary 12.2.12). The statement given here is true
for algebras over algebraically closed fields.

PROOF. Let a ⊂ k[X1, . . . Xn] be an ideal. Because maximal ideals are
radical, every maximal ideal containing a also contains

√
a, so

√
a ⊂

⋂
m⊃a

m

For each P = (a1, . . . , an) ∈ kn, mP = (X1 − a1, . . . , Xn − an) is a maxi-
mal ideal in k[X1, . . . , Xn] and

f ∈ mP ⇔ f (P) = 0

so
mP ⊃ a⇔ P ∈ V(a)

If f ∈ mP for all P ∈ V (a), then f vanishes on V(a) so f ∈ IV (a) =√
a.

It follows that √
a ⊃

⋂
P∈V(a)

mP

□

REMARK. This result allows us to directly translate between geometry
and algebra:
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FIGURE 12.2.1. An intersection of multiplicity 2

(1) “Since V (a) is the union of the points contained in it,
√
a is the

intersection of the maximal ideals containing it.”
(2) Because V ((0)) = kn

I(kn) = IV ((0)) =
√

0 = 0

— only the zero polynomial vanishes on all of kn.
(3) The 1-1 correspondence is order-inverting so the maximal proper

radical ideals correspond to the minimal nonempty algebraic sets.
(4) But the maximal proper radical ideals are the maximal ideals and

the minimal nonempty algebraic sets are one-point sets.
(5) Let W and W ′ be algebraic sets. Then W ∩W ′ is the largest alge-

braic subset contained in W and W ′ — so I(W ∩W ′) must be the
smallest radical ideal containing both I(W) and I(W ′). It follows
that

I(W ∩W ′) =
√
I(W) + I(W ′)

EXAMPLE 12.2.13. Let W = V
(
X2 −Y

)
and W ′ = V

(
X2 + Y

)
.

Then I(W ∩W ′) =
√
(X2, Y) = (X, Y) (assuming the characteristic of

k is ̸= 2).
So W ∩W ′ = {(0, 0)}.
When considered at the intersection of Y = X2 and Y = −X2 it has

multiplicity 2.

LEMMA 12.2.14. If V is an algebraic subset of An, then
(1) The points of V are closed in the Zariski topology (thus V is a T1-space).
(2) Every ascending chain of open subsets U1 ⊂ U2 ⊂ · · · of V eventu-

ally becomes constant — hence every descending chain of closed sets
eventually becomes constant.

(3) Every open covering has a finite subcovering.
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REMARK. Topological spaces satisfying Condition 2 above are called
noetherian. This is equivalent to:

“Every nonempty set of closed subsets of V has a minimal
element.”

Spaces satisfying condition 3 are called compact (although the Bourbaki
group requires compact spaces to be Hausdorff, so they call such spaces
quasicompact).

PROOF. Let {(a1, . . . , an)} be the algebraic set defined by the ideal
(X1 − a1, . . . , Xn − an).

A sequence V1 ⊃ V2 ⊃ . . . gives rise to a sequence of radical ideals
I(V1) ⊂ I(V2) ⊂ · · · which must eventually become constant by theo-
rem 5.4.4 on page 123.

Let V =
⋃

i∈I Ui. If V ̸= U1, there exists an i1 ∈ I such that U1 ⫋
U1 ∪Ui1 . If V ̸= U1 ∪Ui1 , continue this process. By statement 2, this must
stop in a finite number of steps. □

DEFINITION 12.2.15. A function f : An → Am is a regular mapping if it
is of the form

f (X1, . . . Xn) =

 F1(X1, . . . , Xn)
...

Fm(X1, . . . , Xn)


for F1, . . . , Fm ∈ k[X1, . . . , Xn].

If V ⊂ An and W ⊂ Am are algebraic sets and f : An → Am is a regular
mapping such that

f (V) ⊂W

then we call f̄ = f |V: V →W a regular mapping from V to W.

Although the Zariski topology is very coarse — implying that it is dif-
ficult for a map to be continuous in this topology — there is an important
class of continuous maps:

PROPOSITION 12.2.16. If f : V ⊂ An → W ⊂ Am is a regular map of
algebraic sets, then f is continuous in the Zariski topology.

PROOF. The map, f , is continuous if f−1(K) ⊂ An is a closed set when-
ever K ⊂ Am is closed. Let

f (X1, . . . Xn) =

 F1(X1, . . . , Xn)
...

Fm(X1, . . . , Xn)


A closed set K ⊂ Am, in the Zariski topology, is defined by a finite set of
equations

g1(X1, . . . , Xm) = 0
...

gt(X1, . . . , Xm) = 0
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where the gi are polynomials. f−1(K) is defined by

g1(F1, . . . , Fm)(X1, . . . , Xn) = 0
...

gt(F1, . . . , Fm)(X1, . . . , Xn) = 0

which is a closed set in An. □

EXERCISES.

1. if R is a principal ideal domain and x = pn1
1 · · · p

nk
k is a factorization

into primes, show that √
(x) = (p1 · · · pk)

2. Show that prime ideals are radical.

3. Show that the strong form of the Nullstellensatz implies the weak
form.

4. Give an example of a map f : An → Am that is continuous in the
Zariski topology but not regular.

5. Suppose f =

 f1(X1, . . . , Xn)
...

fn(X1, . . . , Xn)

 : An → An is a regular map and

Ai,j =
∂ fi
∂Xj

suppose that z = det Ai,j is never 0. Show that it must be a nonzero con-
stant.

The Inverse function theorem in calculus implies that f has a smooth
inverse in a neighborhood of every point.

Jacobi’s Conjecture states that such an f has an global inverse that is a
regular map.

The only cases that have been proved are when k = C and n = 2. It has
been shown that proving it for n = 3 would prove it for all n when k = C

— see [35] as a general reference.

6. Find the irreducible components of the algebraic set X2 − YZ =
XZ− Z = 0 in A3.

7. If a = (Y3, X−Y), is X + Y ∈ √a? If so, what power of it is in a?
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12.3. The coordinate ring

The coordinate ring is one of the central concepts of algebraic geometry
— particularly the theory of affine algebraic sets. It is the ring of algebraic
functions on an algebraic set. and it determines all geometric properties.

DEFINITION 12.3.1. Let V ⊂ An be an algebraic set and let a = I(V).
Then the coordinate ring of V is defined by

k[V] = k[X1, . . . , Xn]/a

(where the Xi are indeterminates). It is the ring of polynomial functions of
An restricted to V (or the algebraic functions on V).

EXAMPLE 12.3.2. Let V ⊂ A2 be the hyperbola defined by XY = 1
or XY − 1 = 0. It is easily checked that

√
(XY− 1) = (XY − 1) so the

defining ideal is (XY− 1). The coordinate ring is

k[X, Y]/(XY− 1) = k[X, X−1]

the ring of so-called Laurent polynomials.

PROPOSITION 12.3.3. The coordinate ring, k[V], of an algebraic set, V, has
the following properties:

(1) The points of V are in a 1-1 correspondence with the maximal ideals of
k[V].

(2) The closed sets of V are in a 1-1 correspondence with the radical ideals of
k[V].

(3) If f ∈ k[V] and p ∈ V with corresponding maximal ideal mp, then
the result of evaluating f at p is the same as the image of f under the
canonical projection

π: k[V]→ k[V]/mp = k

In other words, f (p) = π( f ).

PROOF. Let V ⊂ An be an algebraic set. If

π: k[X1, . . . , Xn]→ k[V]

is the canonical projection, and b ⊂ k[V] is an ideal, then lemma 5.2.9 on
page 114 implies that

b 7→ π−1(b)

is a bijection from the set of ideals of k[V] to the set of ideals of k[X1, . . . , Xn]
containing a. Prime, and maximal ideals in k[V] correspond to prime, and
maximal ideals in k[X1, . . . , Xn] containing a. The fact that radical ideals are
intersections of maximal ideals (see corollary 12.2.12 on page 423) implies
that this correspondence respects radical ideals too.

If p = (a1, . . . , , an) ∈ V ⊂ An is a point, the maximal ideal of functions
in k[X1, . . . , Xn] that vanish at p is

P = (X1 − a1, . . . , Xn − an) ⊂ k[X1, . . . , Xn]

and this gives rise to the maximal ideal π(P) ⊂ k[V].
Clearly

V
(

π−1(b)
)
= V (b) ⊂ V
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so b 7→ V (b) is a bijection between the set of radical ideals in k[V] and the
algebraic sets contained within V.

To see that f (p) = π( f ), note that the corresponding statement is true
in k[X1, . . . , Xn], i.e., the image of f (X1, . . . , Xn) under the map

g: k[X1, . . . , Xn]→ k[X1, . . . , Xn]/P = k

is just f (a1 . . . , an).
Let h: k[X1, . . . , Xn] → k[X1, . . . , Xn]/a = k[V] be the canonical projec-

tion. Then mp = h(P) and the diagram

k[X1, . . . , Xn]
h //

g
��

k[V]

π
��

k k

commutes by lemma 5.2.10 on page 114. □

PROPOSITION 12.3.4. Let V ∈ An and W ∈ Am be algebraic sets and let
f : V →W be a regular map. Then f induces a homomorphism

f ∗: k[W]→ k[V]

of coordinate rings (as k-algebras).

PROOF. The fact that f is regular implies

f =

 F1
...

Fm


for F1, . . . , Fm ∈ k[Y1, . . . , Yn] and these polynomials induce a map

F∗: k[X1, . . . , Xm] → k[Y1, . . . , Yn]

g(X1, . . . , Xm) 7→ g(F1, . . . , Fm)

Since f (V) ⊂ W we must have F∗(I(W)) ⊂ I(V). But this means that F∗

induces a homomorphism of k-algebras

f ∗: k[X1, . . . , Xm]/I(W) = k[W]→ k[Y1, . . . , Yn]/I(V) = k[V]

□

EXAMPLE 12.3.5. Suppose V ⊂ A2 is the parabola y = x2. Then pro-
jection to the x-axis

f : A2 → A1

(x, y) 7→ x

is a regular map. There is also a regular map g: A1 → V

g: A1 → A2

x 7→ (x, x2)

It is interesting that we have a converse to proposition 12.3.4:
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PROPOSITION 12.3.6. Let V ⊂ An and W ⊂ Am be algebraic sets. Any
homomorphism of k-algebras

f : k[W]→ k[V]

induces a unique regular map

f̄ : V →W

REMARK. This and proposition 12.3.4 on the preceding page imply
that the coordinate ring is a contravariant functor (see definition 10.2.1 on
page 345) from the category of algebraic sets to that of k-algebras.

PROOF. We have a diagram

k[X1, . . . , Xm]

��

k[Y1, . . . , Yn]

��

k[X1, . . . , Xm]/I(W) k[y1, . . . , yn]/I(V)

k[W]
f

// k[V]

and we can map each Xi ∈ k[X1, . . . , Xm] to k[Y1, . . . , Yn] to make

(12.3.1) k[X1, . . . , Xm]

��

r // k[Y1, . . . , Yn]

��

k[X1, . . . , Xm]/I(W) k[Y1, . . . , Yn]/I(V)

k[W]
f

// k[V]

commute as a diagram of k-algebras. Suppose r(Xi) = gi(Y1, . . . , Yn). We
claim that

f̄ =

 g1
...

gm

 : An → Am

is the required regular map. If p = (k1, . . . , kn) ∈ V ⊂ An so

v(p) = 0

for any v ∈ I(V), then w( f (p)) = f (w)(p) = 0 for any w ∈ I(W) implying
that f̄ (V) ⊂W.

If we replace r in diagram 12.3.1 by a map r′ that still makes it commute,
the induced f̄ ′ will differ from f by elements of I(V) so

f̄ |V = f̄ ′|V
implying that the map f̄ : V →W is unique. □



430 12. A LITTLE ALGEBRAIC GEOMETRY

DEFINITION 12.3.7. Let V ⊂ An and W ⊂ Am be algebraic sets. Then
V and W are said to be isomorphic if there exist regular maps

f : V → W
g: W → V

such that f ◦ g = 1: W →W and g ◦ F = 1: V → V.

REMARK. We may regard isomorphic algebraic sets as equivalent in
every way. Then example 12.3.5 shows that parabola y = x2 ⊂ A2 is
isomorphic to A1.

We have proved:

COROLLARY 12.3.8. Algebraic sets V ⊂ An and W ⊂ Am are isomorphic
if and only if k[V] and k[W] are isomorphic as k-algebras.

REMARK. This proves the claim made earlier: the coordinate ring de-
fines all of the significant geometric properties of an algebraic set, including
its isomorphism class.

We can characterize the kinds of rings that can be coordinate rings of
algebraic sets:

DEFINITION 12.3.9. Given an algebraically closed field k, an affine k-
algebra is defined to be a finitely generated k-algebra that is reduced, i.e.√
(0) = (0). If A and B are affine k-algebras, the set of homomorphisms

f : A→ B is denoted
homk−alg(A, B)

REMARK. The requirement that the ring be reduced is equivalent to say-
ing that it has no nilpotent elements. This is equivalent to saying that the
intersection of its maximal ideals is 0 — see theorem 12.2.8 on page 421.

If k is an algebraically closed field, Hilbert’s Nullstellensatz
(theorem 12.2.10 on page 422) implies that affine k-algebras (see
definition 12.3.9) are Jacobson rings (see definition 5.7.2 on page 154).

EXERCISES.

1. Suppose the characteristic of the field k is ̸= 2 and V is an algebraic
set in A3 defined by the equations

X2 + Y2 + Z2 = 0

X2 −Y2 − Z2 + 1 = 0

Decompose V into its irreducible components.

2. Prove that the statements:
a. X is connected if and only if the only subsets of X that are open

and closed are ∅ and X,
b. X is connected if, whenever X = X1 ∪ X2 with X1, X2 closed

nonempty subsets of X, then X1 ∩ X2 ̸= ∅.
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are equivalent.





CHAPTER 13

Cohomology

“About a thousand years ago, the proof of Pythagoras’s theorem
was thought to be difficult and abstract and suited only for the
‘scholastic’ geometers. Today the same theorem is considered an
intrinsic component of school education. Perhaps one day alge-
bra, sheaf theory and cohomology will be so well understood that
we will be able to explain the proof of Wiles’ theorem to school
children as well.”

— Kapil Hari Paranjape, essay, On Learning from Arnold’s talk
on the Teaching of Mathematics.

13.1. Chain complexes and cohomology

Homology theory is one of the pillars of algebraic topology and a vari-
ant called sheaf cohomology is widely used in algebraic geometry. The first
step to developing this theory involves defining cochain complexes — a
purely algebraic construct that will be coupled to geometry later.

We will assume all objects here are in a fixed abelian category (see sec-
tion 10.5 on page 361), A . For instance, they could be abelian groups or
modules over any ring, or even certain types of sheaves.

We begin with the most basic construct:

DEFINITION 13.1.1. A chain complex (Ci, ∂i) is a sequence of objects of
A and homomorphisms

· · · → Ci+1
∂i+1−−→ Ci

∂i−→ Ci−1 −→ · · ·
where, for all i, ∂i ◦ ∂i+1 = 0. A morphism of cochain complexes
{ fi}: (Ci, ∂i)→ (Di, ∂′i) (or chain-map) is a sequence of homomorphisms

fi: Ci → Di

such that the diagrams

(13.1.1) Ci
fi

//

∂i
��

Di

∂′i
��

Ci−1 fi−1

// Di−1

commute for all i. The maps, ∂i, are called the boundary maps or differentials
of the chain-complex. The category of chain-complexes with chain-maps as
morphisms is denoted C h.

433
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REMARK. The condition ∂i−1 ◦ ∂i = 0 implies that im ∂i ⊆ ker ∂i−1. In
algebraic topology, chain-complexes are geometrically defined objects that
contain a great deal of topological information.

Now we define a dual concept that is very similar:

DEFINITION 13.1.2. A cochain complex (Ci, δi) is a sequence of objects of
A and homomorphisms

· · · → Ci−1 δi−1−−→ Ci δi−→ Ci+1 → · · ·
where, for all i, δi+1 ◦ δi = 0. A morphism of cochain complexes
{ fi}: (Ci, δi)→ (Di, δ′i) (or chain-map) is a sequence of homomorphisms

fi: Ci → Di

such that the diagrams

(13.1.2) Ci+1 fi+1
// Di+1

Ci
fi

//

δi

OO

Di

δ′i

OO

commute for all i. The maps, δi, are called the coboundary maps or codiff-
erentials of the cochain-complex. The category of cochain-complexes with
chain-maps as morphisms is denoted Co.

REMARK. The superscripts are not exponents! At this point, the
reader may wonder what essential difference exists between chain
complexes and cochain complexes. The answer is “none!” We can define
cochain-complexes as chain-complexes with negative subscripts:

Ci = C−i

(or equivalently, defining chain-complexes as cochain-complexes with neg-
ative superscripts). Anything we can prove for one is valid for the other
under this equivalence.

Historically, chain-complexes appeared first and were geometrically
defined. The generators of the Ci were i-dimensional building blocks for a
topological space and the ∂i mapped one of these to its boundary. Cochain
complexes appeared later as sets of functions one could define on these
building blocks.

In actual applications (in the next section), this symmetry will break
down to some extent and they both will express complementary informa-
tion. We will give greater emphasis to cochain complexes because they are
the ones that are most significant in algebraic geometry.

The condition δi+1 ◦ δi = 0 implies that im δi ⊆ ker δi+1 for all i. With
this in mind, we can define

DEFINITION 13.1.3. Given:
� a chain-complex, (Ci, ∂i), we can define its homology groups, Hi(C)

via
Hi(C) =

ker ∂i
im ∂i+1
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� a cochain complex (Ci, δi), we can define its associated cohomology
groups, Hi(C), via

Hi(C) =
ker δi

im δi−1

REMARK. These will also be objects in the category A . If Hi(C) =
0, then the original chain complex was an exact sequence. Such chain-
complexes are said to be exact or acyclic. A similar definition exists for
cochain complexes.

Historically, Hi(C) measured the number of i-dimensional “holes” a
topological space had (so an n-sphere has Hn = Z and Hi = 0 for 0 < i <
n).

Note that the diagrams 13.1.2 on the preceding page imply that chain
maps preserve images and kernels of the boundary or coboundary homo-
morphisms. This implies that

PROPOSITION 13.1.4. A chain map or morphism:
� of chain complexes { fi}: (Ci, ∂i)→ (Di, ∂′i) induces homomorphisms of

homology
f i
∗: Hi(C)→ Hi(D)

or
� of cochain-complexes { fi}: (Ci, δi) → (Di, δ′i) induces homomorphisms

of cohomology groups

f ∗i Hi(C)→ Hi(D)

Next, we consider a property of chain maps:

DEFINITION 13.1.5. Two
� chain maps f , g: (C, ∂C) → (D, ∂D) of chain-complexes are said to

be chain-homotopic if there exists a set of homomorphisms

Φi: Ci → Di+1

for all i > 0 called a homotopy, such that

fi − gi = Φi−1 ◦ ∂C + ∂D ◦Φi

� chain maps f , g: (C, δC) → (D, δD) of cochain-complexes are said
to be chain-homotopic if there exists a set of homomorphisms

Φi: Ci → Di−1

called a cohomotopy for all i > 0, such that

fi − gi = Φi+1 ◦ δC + δD ◦Φi

REMARK. Chain-homotopy clearly defines an equivalence relation on
chain-maps. Although the definition seems odd, the maps Φ arise naturally
in certain topological settings.

The main significance of chain-homotopy is that:

PROPOSITION 13.1.6. If f , g: (C, δC) → (D, δD) are chain-homotopic
chain-maps of cochain complexes then

f ∗ = g∗: Hi(C)→ Hi(D)
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REMARK. A corresponding result exists for chain-complexes, by “re-
versing all the arrows.” The symmetry between chain and cochain com-
plexes persists.

PROOF. If x ∈ Hi(C), then there exists an element y ∈ ker(δC)i ⊂ Ci

such that x ≡ y (mod im (δC)i−1). If we evaluate ( f − g)(y), we get

( f − g)(y) = (Φ ◦ δC + δD ◦Φ) (y)

= δD ◦Φ(y) because y ∈ ker(δC)i

It follows that f (y) ≡ g(y) (mod im (δD)i) and f ∗(x) = g∗(x) ∈ Hi(D).
□

We can also define an equivalence relation on cochain-complexes:

DEFINITION 13.1.7. Two cochain-complexes (C, δC) and (D, δD) are
chain-homotopy equivalent if there exist chain maps

f : (C, δC) → (D, δD)

g: (D, δD) → (C, δC)

such that f ◦ g: (D, δD) → (D, δD) and g ◦ f : (C, δC) → (C, δC) are both
chain-homotopic to their respective identity maps.

REMARK. Clearly, homotopy equivalent cochain-complexes have iso-
morphic cohomology groups

Hi(C) ∼= Hi(D)

for all i. Chain-homotopy equivalence is a much sharper relationship than
simply having isomorphic cohomology groups. In a certain sense, (C, δC)
and (D, δD) may be regarded as equivalent in every important respect.

Our final topic in the basic algebra of chain-complexes is:

DEFINITION 13.1.8. If (C, δC), (D, δD), and (E, δE) are cochain com-
plexes, an exact sequence

0→ (C, δC)
f−→ (D, δD)

g−→ (E, δE)→ 0

are chain-maps f , g such that

0→ Ci fi−→ Di gi−→ Ei → 0

are exact for all i.

REMARK. Exact sequences of cochain complexes arise in many natural
settings and can be used to compute cohomology because of the next result:

PROPOSITION 13.1.9. An exact sequence

0→ (C, δC)
f−→ (D, δD)

g−→ (E, δE)→ 0

of cochain-complexes induces a homomorphism

c: Hi(E)→ Hi+1(C)
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for all i, called the connecting map, that fits into a long exact sequence in cohomol-
ogy:

· · · → Hi(C)
f ∗−→ Hi(D)

g∗−→ Hi(E) c−→ Hi+1(C)→ · · ·
Here f ∗ and g∗ are the induced maps and c: Hi(E) → Hi+1(C), called the

connecting map is defined as

c = f−1 ◦ δD ◦ g−1

or in more detail by
(1) If x ∈ Hi(E), then there exists y ∈ ker(δC)i such that x ≡ y

(mod im (δC)i−1).
(2) Since g: Di → Ei is surjective, there exists z ∈ Di with g(z) = y.
(3) Now take (δD)i(z) = w ∈ Di+1. Since y ∈ ker(δC)i and chain-maps

commute with coboundaries, w ∈ ker g.
(4) Since the sequence is exact, this w is in the image of (the injective map)

f so we may regard w ∈ Ci+1.
(5) This w ∈ ker(δC)i+1 because it is in the image of δC and its image in D

is in ker(δD)i+1 since (δD)i+1 ◦ (δD)i = 0.

REMARK. This will turn out to be very useful for computing cohomol-
ogy groups.

PROOF. The proof follows by analyzing the commutative diagram

...
...

...

0 // Ci+1

(δC)i+1

OO

f
// Di+1 g

//

(δD)i+1

OO

Ei+1

(δE)i+1

OO

// 0

0 // Ci

(δC)i

OO

f
// Di

(δD)i

OO

g
// Ei

(δE)i

OO

//

g−1

f−1
ks

0

0 // Ci−1

(δC)i−1

OO

f
// Di−1

(δD)i−1

OO

g
// Ei−1

(δE)i−1

OO

// 0

...

OO

...

OO

...

OO

in a visual process affectionately (or angrily!) called a “diagram chase”.
We show that c is well-defined: any two distinct lifts of y to Di will

differ by an element of Ci. Since the right square commutes, the final re-
sult will differ by an element of (δC)

i, hence define the same element of
Hi+1(C). If y, y′ both represent the same x, they will differ by an element of
(δC)i−1 and their lifts to Di will differ by an element of (δD)i−1, which will
be annihilated when we plug it into (δD)i.

The proof of the remaining assertions (about the sequence being exact)
follows by similar arguments and is left to the reader. □

If we define Ci = C−i and Hi(C) = H−i(C), we immediately get the
corresponding result for exact sequences of chain-complexes:
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PROPOSITION 13.1.10. Given a short exact sequence of chain-complexes

0→ (C, ∂C)
f−→ (D, ∂D)

g−→ (E, ∂E)→ 0

of chain-complexes, there exists a homomorphism

c: Hi(E)→ Hi−1(C)

for all i, called the connecting map, that fits into a long exact sequence in cohomol-
ogy:

· · · → Hi(C)
f ∗−→ Hi(D)

g∗−→ Hi(E) c−→ Hi−1(C)→ · · ·
We also need two more basic concepts:

DEFINITION 13.1.11. Given a chain-map of cochain complexes

f : (C, δC)→ (D, δD)

the algebraic mapping cone of f is a cochain complex defined by

A( f )n = Cn+1 ⊕ Dn

with a differential

δn
A =

[
−δn+1

C 0
f n+1 δn

D

]
:
[

Cn+1

Dn

]
= A( f )n →

[
Cn+2

Dn+1

]
= A( f )n+1

and giving a short exact sequence of cochain complexes

(13.1.3) 0→ D → A( f )→ C[+1]→ 0

where C[+1] is C shifted upwards by one degree so C[+1]n = Cn+1 with
δn

C[+1] = −δn+1
C .

REMARK. It is left as an exercise to the reader to verify that δ2
A = 0.

As the name hints, this was originally an algebraic version of a geometric
construction.

The short exact sequence in 13.1.3 induces a long exact sequence in
cohomology (proposition 13.1.9 on page 436):

· · · → Hi(D)→ Hi(A( f ))→ Hi(C[+1])→ Hi+1(D)→ · · ·
with Hi(C[+1]) = Hi+1(C). Analysis of the connecting map Hi(C[+1])→
Hi+1(D) shows that is identical to the map in cohomology induced by f so
we can rewrite the long exact sequence as

(13.1.4) · · · → Hi(C)
f ∗−→ Hi(D)→ Hi(A( f ))

→ Hi+1(C)
f ∗−→ Hi+1(D)→ · · ·

13.1.1. “Topological” homology and cohomology. In this section, we
will give a crude and (very!) non-rigorous overview of how homology and
cohomology were originally developed and what they “mean” — see [51]
for rigor and more details.

One way of studying topological spaces involved breaking them up
into a union of discrete pieces of every dimension, called simplices1, and a

1Simplices are essentially polyhedral pieces of Euclidean space. Singular homology and
cohomology involves mappings of simplices into a space.
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chain-complex was constructed from these simplices. The boundary oper-
ator actually represented taking the boundary of n-dimensional simplices
and expressing them as n− 1-dimensional simplices. Although the chain-
complex one gets from this construction is not unique (far from it!), it can
be proved that its homology is.

In dimension 0, H0(X; C) = Ck where k is the number of components
of X. Higher dimensional homology encodes the number of d-dimensional
“holes” a space has. For instance, if Sn is an n-sphere, then Hi(Sn; C) = 0
for 0 < i < n and Hn(Sn; C) = C.

Cohomology originally studied the behavior of functions on a topolog-
ical space — Ci was the set of functions on i-dimensional simplices and
the coboundary operator δi: Ci → Ci+1 determined a function on i + 1-
dimensional simplices by taking its value on the boundary. For instance
H0(X; C) is the set of locally-constant functions on X. If X has k compo-
nents, this is Ck.

In higher dimensions, Hi(X; C) measures the extent to which certain
functions on simplices are determined by their behavior on the on
the boundaries of those simplices. Roughly speaking, H1(R2; C) = 0
is equivalent to Green’s Theorem in multivariate calculus, and
H2(R3; C) = 0 is equivalent to the Divergence Theorem.

EXERCISES.

1. If

0→ (C, δC)
f−→ (D, δD)

g−→ (E, δE)→ 0

is an exact sequence of cochain complexes, and two out of the three com-
plexes are acyclic, show that the third must be acyclic also.

2. If

0→ (C, δC)
f−→ (D, δD)

g−→ (E, δE)→ 0

is an exact sequence of cochain-complexes and D is acyclic, show that

Hi(E) ∼= Hi+1(C)

for all i.

3. Show that, if two chain-maps f , g: (C, δC) → (D, δD) are
chain-homotopic and F: A → A ′ is any additive functor (for instance,
homA (M, ∗) for any M ∈ A ), then the induced chain-maps

F( f ), F(G): (F(Ci), F(δC))→ (F(Di), F(δD))

are also chain-homotopic. It follows that, if (C, δC) and (D, δD) are chain-
homotopy equivalent, then (F(Ci), F(δC)) and (F(Di), F(δD)) also are.
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4. Given a commutative diagram

0 // A

u
��

r // B

v
��

s // C

w
��

// 0

0 // A′
r′
// B′

s′
// C′ // 0

with exact rows, do a diagram-chase to show that, if u and w are isomor-
phisms, then so is v. This is a watered-down version of what is called the
5-Lemma.

13.1.2. Resolutions and Derived functors. Now we will consider spe-
cial types of chain- and cochain-complexes called resolutions. We will as-
sume that our abelian category, A , has enough projectives and injectives
(see definition 10.5.3 on page 362). This is true for abelian groups and mod-
ules over any ring, for instance.

Resolutions are used to compute constructs called derived functors.
Roughly speaking, given a functor F : A → B between abelian categories,
the first derived functor measures the extent to which F fails to be exact
(i.e. map exact sequences to exact sequence) — if it vanishes, then the
functor is exact. The second derived functor (again, roughly speaking)
measures the extent to which the first derived functor fails to be exact, and
so on. See corollary 13.1.21 on page 444 for a more precise statement.

DEFINITION 13.1.12. If M ∈ A is an object, a right resolution, I∗, of M
is a cochain-complex

I0
δ0−→ I1

δ1−→ · · ·
where there exists a monomorphism M→ I0 that makes the complex

0→ M→ I0
δ0−→ I1

δ1−→ · · ·
exact or acyclic. If all of the Ij are injective (see definition 10.5.3 on page 362),
this is called an injective resolution.

The injective dimension of an object, M ∈ A , denoted inj-dim M, is the
largest subscript of the shortest possible injective resolution of M — if M
has a finite injective resolution — or ∞.

REMARK. The definition immediately implies that

Hi(I∗) =

{
M if i = 0
0 otherwise

Since A has enough injectives, every object has some injective resolu-
tion:

(1) set I0 to some injective containing M and I1 to an injective object
containing I0/M.

(2) set Ij+1 to an injective object containing Ij/δj−1(Ij−1).
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We also have projective resolutions:

DEFINITION 13.1.13. If M ∈ A is an object, a (left) resolution, P∗, of M
is a chain-complex

· · · → P1 → P0 → 0

where there exists a epimorphism P0 → M that makes the chain complex

· · · → P1 → P0 → M→ 0

exact or acyclic. A resolution is called a projective resolution if all of the
Pi are projective objects (see definition 10.5.2 on page 362). The projective
dimension of an object, M ∈ A , denoted proj-dim M is the largest subscript
that occurs in a minimal projective resolution — if M has a finite projective
resolution — or ∞.

Injective resolutions are by no means unique although they have an
interesting property:

PROPOSITION 13.1.14. Suppose M, N ∈ A are two objects with right reso-
lutions I∗ and J∗, respectively. If J∗ is an injective resolution, then any morphism

f : M→ N

induces a chain-map
f̂ : I∗ → J∗

Although f̂ is not unique, any two such induced chain-maps are chain-homotopic.

REMARK. This implies that injective resolutions are unique up to
chain-homotopy type.

A similar statement can be proved for projective resolutions (reverse
all the arrows!).

PROOF. We make extensive use of the property of injective modules
described in exercise 3 on page 365. In the diagram

I0 // J0

M
?�

OO

f
// N
?�

OO

it is clear that a portion of I0 maps to J0 (namely the portion in the image
of M). The injective property of J0 implies that this extends to all of I0. In
a similar fashion, we inductively construct the chain-map f̂ in all higher
dimensions.

Suppose g1 and g2 are two chain-maps g1, g2: (I∗, δ) → (J∗, σ) that
cover the same map f : M → N. It follows that g = g1 − g2 is chain-map
that covers the zero map. We will show that it is homotopic to zero, i.e.
there exists a map

Φi: Ii → Ji−1

such that

(13.1.5) gi = Φi+1 ◦ δi + σi−1 ◦Φi
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Since M maps to 0, we have that g0: I0 → J0 maps the kernel of δ0 to 0,
which means that it maps im δ0 ⊂ I1 to J0. The injective property of J1
implies that this extends to all of I1, giving

Φ1: I1 → J0

with g0 = Φ1 ◦ δ0. Suppose equation 13.1.5 on the previous page is true for
degrees < t. In degree t, consider

gt − σt−1 ◦Φt: It → Jt

(gt − σt−1 ◦Φt) ◦ δt−1 = gt ◦ δt−1 − σt−1 ◦Φt ◦ δt−1

= σt−1 ◦ gt−1 − σt−1 ◦Φt ◦ δt−1

= σt−1 ◦Φt ◦ δt−1 + σt−1 ◦ σi−2 ◦Φi−1

−σt−1 ◦Φt ◦ δt−1

= σt−1 ◦Φt ◦ δt−1 − σt−1 ◦Φt ◦ δt−1

= 0

So (gt − σt−1 ◦Φt)|im δt−1 = 0 which means that (gt − σt−1 ◦Φt)| ker δt =
0. The argument used above implies that gt − σt−1 ◦ Φt defines a map
Φt+1: It+1 → Jt such that

gt − σt−1 ◦Φt = Φt+1 ◦ δt

The conclusion follows. □

Reversing the arrows proves the chain-complex version

PROPOSITION 13.1.15. Suppose M, N ∈ A are two objects with left resolu-
tions P∗ and Q∗, respectively. If P∗ is a projective resolution, then any morphism

f : M→ N

induces a chain-map
f̂ : P∗ → Q∗

Although f̂ is not unique, any two such induced chain-maps are chain-homotopic.

REMARK. This implies that projective resolutions are unique up to
chain-homotopy type.

We will be interested in functors F: A → A ′ to other abelian categories:

DEFINITION 13.1.16. A functor F: A → A ′ is left-exact if an exact se-
quence

(13.1.6) 0→ A r−→ B s−→ C → 0

in A implies that the sequence

0→ F(A)
F(r)−−→ F(B)

F(s)−−→ F(C)

is exact. The functor, F: A → A ′, is right-exact if the sequence 13.1.6 implies
the exactness of

F(A)
F(r)−−→ F(B)

F(s)−−→ F(C)→ 0

REMARK. Exercise 4 on page 365 shows that homA (A, ∗) is left-exact.
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PROPOSITION 13.1.17. For a module M over a ring, R, the functor ∗ ⊗R M
is right exact. In other words, the exact sequence

0→ A r−→ B s−→ C → 0

induces an exact sequence

A⊗R M→ B⊗R M→ C⊗R M→ 0

PROOF. Part of this has already been proved in Proposition 10.6.14 on
page 371.

The rest follows from the left-exactness of Hom and proposition 10.6.10
on page 369. The exact sequence in 13.1.6 on the facing page induces the
exact sequence

0→ HomR(C, homR(M, D))→ HomR(B, homR(M, D))

→ HomR(A, homR(M, D))

which, by proposition 10.6.10 on page 369, is isomorphic to

0→ HomR(C⊗R M, D)→ HomR(B⊗R M, D)

→ HomR(A⊗R M, D)

for an arbitrary module D. This implies

A⊗R M→ B⊗R M→ C⊗R M→ 0

is exact (the details are left to the reader as an exercise). □

Since injective resolutions are unique up to chain-homotopy type, the
solution to exercise 3 on page 439 that the following constructs will be well-
defined:

DEFINITION 13.1.18. If F: A → A ′ is a left-exact functor and C ∈ A
has an injective resolution I0 → · · · , then the right derived functors of F are

RiF(C) = Hi(F(I∗)) ∈ A ′

for i ≥ 0.

REMARK. It is not hard to see that R0FC = C. The {RiF(C)} for i > 0
essentially measure how much F fails to be right-exact.

DEFINITION 13.1.19. If M, N ∈ A and I∗ is an injective resolution of
N, the cohomology groups (in A b)

Exti
R(M, N) = Hi(homA (M, I))

depend only on M and N and are functorial.

REMARK. Note that we use hom here rather than Hom. The latter
is used for morphisms of modules over a ring, whereas hom is used for
morphisms in a category (so it is more general than Hom), in this case A .

Exercise 14 on page 446 shows that we could’ve used a projective reso-
lution, P∗, of M to compute Exti

R(M, N):

Exti
R(M, N) = Hi(homA (P∗, N))
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To analyze the behavior of derived functors, we need the following
result

LEMMA 13.1.20 (Injective Horseshoe Lemma). Suppose

0→ A r−→ B s−→ C → 0

is a short exact sequence in A and I∗ and J∗ are injective resolutions of A and
C, respectively. Then there exists an injective resolution W∗ of B fitting into a
commutative diagram

0 // A

ϵA
��

r // B

ϵB
��

s // C

ϵC
��

// 0

0 // I∗ u // W∗ v // J∗ // 0

where the bottom row is a short exact sequence of chain-complexes.

PROOF. Clearly, Wn = In ⊕ Jn for all n. The map ϵA: A → I0 shows
that a sub-object of B maps to I0. Injectivity implies that this map extends
to all of B, so we get ι: B→ I0 and can define

ϵB = ι⊕ ϵC ◦ s: B→ I0 ⊕ J0 = W0

We claim that this is injective: if b ∈ B maps to zero, it must map to zero
in J0 so that s(b) = 0. This means that b ∈ im A which maps to I0 via the
injective map, ϵA.

Suppose this exact sequence of resolutions has been constructed up to
degree n so we have

0 // In/im δA

δn
A
��

r // Wn/im δB

f
��

s // Jn/im δC

δn
C
��

// 0

0 // In+1 u // Wn+1 v // Jn+1 // 0

where the vertical maps are inclusions. Now construct f exactly the way ϵB
was constructed above. □

This immediately implies that

COROLLARY 13.1.21. If

0→ A r−→ B s−→ C → 0

is a short exact sequence in A , and F: A → A ′ is a left-exact additive functor,
there exists a natural long exact sequence

0→ F(A)→ F(B)→ F(C)→ R1F(A)→
· · · → RiF(A)→ RiF(B)→ RiF(C)→ Ri+1F(A)→ · · ·

REMARK. This long exact sequence is often useful for computing the
RiF(A). For instance, if R1F(A) = 0 then the sequence

0→ F(A)→ F(B)→ F(C)→ 0

is exact. If R1F(∗) is always 0, then F is an exact functor.
Here is an application:
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DEFINITION 13.1.22. If F: A → A ′ is a left-exact additive functor, an
object M ∈ A is called F-acyclic if

RiF(M) = 0

for i > 0.

The long exact sequence in corollary 13.1.21 on the facing page implies
that

COROLLARY 13.1.23. Let F: A → A ′ be a left-exact additive functor, and
let M be injective or F-acyclic. Then

(1) If
0→ A→ M→ B→ 0

is a short exact sequence in A , then

RiF(A) ∼= Ri−1F(B)

for i > 1 and R1F(A) is coker F(M)→ R(B).
(2) if

0→ A→ M0 → · · · → Mn−1 → B→ 0
with the Mi injective or F-acyclic then

RiF(A) ∼= Ri−nR(B)

and RnF(A) is coker F(Mn−1)→ F(B).
(3) If

0→ A→ M0 → · · ·
is a resolution by F-acyclic objects, then RiF(A) = Hi(F(M)).

PROOF. To prove the first statement, note that the long exact sequence
in corollary 13.1.21 on the preceding page reduces to

0→ F(A)→ F(M)→ F(B)→ R1F(A)→ 0

and
0→ RnF(B) δ−→ Rn+1F(A)→ 0

for all n > 0. The second statement follows from the first applied to short
exact sequences

0→ A→M0 → K1 → 0
0→ Ki →Mi → Ki+1 → 0

0→ Kn−1 →Mn−1 → B→ 0

and induction on n.
To prove the third statement, note that we can truncate the resolution

by F-acyclic objects at any point to get

0→ A→ M0 → · · · → Mn−1 → ker δn → 0

and

RnF(A) = coker F(δn−1): F(Mn−1)→ F(ker δn) = ker F(δn) = Hn(F(M))

where F(ker δn) = ker F(δn) is due to the left-exactness of F. □
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EXERCISES.

5. Fill in the details of the proof of proposition 10.6.14 on page 371: If

0→ homR(C⊗R M, D)
hom(β⊗1,1)−−−−−−−→ homR(B⊗R M, D)

hom(α⊗1,1)−−−−−−→ homR(A⊗R M, D)

is exact for an arbitrary module, D, then

A⊗R M α⊗1−−→ B⊗R M
β⊗1−−→ C⊗R M→ 0

is exact.

6. If A ∈ A b is a finite abelian group, show that there is an (unnatural!)
isomorphism

A ∼= homA b(A, Q/Z)

and that Ext1
Z(A, Z) = A.

7. Show that Q is an injective object in the category of abelian groups.

8. Show that Exti
R(A⊕ B, C) = Exti

R(A, C)⊕ Exti
R(B, C)

9. Show that Exti
R

(⊕
j Aj, C

)
= ∏j Exti

R(Aj, C)⊕ Exti
R(B, C)

10. Show that Exti
R(lim−→ Aj, C) = lim←− Exti

R(Aj, C)

11. If N is an injective object of A , show that

Exti
R(M, N) = 0

for i > 0 and any object M ∈ A . Conclude that hom(∗, N) is an exact
functor.

12. If A = R-mod, the category of modules over a commutative ring,
R, show that

Exti
R(R, M) = 0

for i > 0 and any R-module, M.

13. If A = R-mod, the category of modules over a commutative ring,
R, and P is any projective module over M, show that

Exti
R(P, M) = 0

for i > 0 and any R-module, M, so that homR(P, ∗) is an exact functor.

14. Suppose A = R-mod, M and N are R-modules, and

· · · → P1 → P0 → M→ 0

is a projective resolution (see definition 13.1.13 on page 441). Show that

Exti
R(M, N) = Hi(homR(P∗, N))

so projective resolutions could be used to compute the Exti
R-groups.

15. Compute Ext1
Z(Zn, Z) using the exact sequence

0→ Z
×n−→ Z→ Zn → 0

of Zn.
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16. Find an injective resolution for Z in A b.

17. If A = A b show that every abelian group, A, has an injective
resolution that ends in degree 1 — i.e. is of the form

I0 → I1

so that Exti
Z(A, B) = 0 for A, B ∈ A b and i > 1.

18. Prove a projective version of corollary 13.1.22 on page 445:
If

0→ U → Pn → · · · → P1 → A→ 0
is an exact sequence of modules over a ring, R, with all of the Pi projective,
then

Exti
R(U, M) = Exti+n

R (A, M)

if i > 0.

13.2. Rings and modules

Since the category of modules over a ring has enough projectives (just
map a suitable free module to a module) and enough injectives (proposi-
tion 10.5.10 on page 364), we can define homology and cohomology-based
functors.

Suppose A = MR, the category of modules over a commutative ring,
R.

When R is not commutative (for instance, when R = ZG, a group-ring
of a nonabelian group), most of these results still go through but become
slightly more complicated: for instance, we must make a distinction be-
tween right-modules and left-modules.

13.2.1. Tori
R-functors. In this section, we study the derived functors of

⊗.

DEFINITION 13.2.1. Given a ring, R, and R-modules, M and N, let

· · · → P2 → P1 → P0 → M→ 0

be an R-projective resolution of M and define

Tori
R(M, N) = Hi(P∗ ⊗ N)

REMARK. Proposition 13.1.15 on page 442 implies that Tori
R(M, N)

does not depend on the resolution used. The right-exactness of ∗ ⊗ N (see
proposition 13.1.17 on page 443) implies that

Tor0
R(M, N) = M⊗R N

PROPOSITION 13.2.2. If M is and R-module and

0→ A→ B→ C → 0

is an exact sequence of R-modules, there exist homomorphisms

∂i+1: Tori+1
R (C, M)→ Tori

R(A, M)
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that fit into a long exact sequence

· · · ∂n+1−−→ Torn
R(A, M)→ Torn

R(B, M)→ Torn
R(C, M)→ · · ·

∂2−→ Tor1
R(A, M)→ Tor1

R(B, M)→ Tor1
R(C, M)

∂1−→ A⊗R M→ B⊗R M→ C⊗R M→ 0

REMARK. This implies that Tor1
R(C, M) measures how much ∗ ⊗R M

fails to be right-exact.

PROOF. Let P∗ be a projective resolution of M. Since projective
modules are flat (see proposition 10.6.20 on page 374) and tensor products
with flat modules preserve exact sequences (see proposition 10.6.18 on
page 373), we get an exact sequence of chain-complexes

0→ A⊗R P∗ → B⊗R P∗ → C⊗R P∗ → 0

which induces a long exact sequence in homology — see
proposition 13.1.10 on page 438. This is the conclusion. □

EXAMPLE. If r ∈ R is not a zero-divisor the exact sequence

0→ R ×r−→ R→ R/r · R→ 0

induces

0→ Tor1
R(R/r · R, M)→ M ×r−→ M→ M/r ·M→ 0

since R⊗R M = M and (R/r · R)⊗R M = M/r ·M. It follows that

Tor1
R(R/r · R, M) = {m ∈ M|r ·m = 0}

i.e., the r-torsion elements of M. That’s the basis of the name Tori
R.

13.2.2. Ext1
R and extensions. In this section and the next, we will con-

sider properties of the Exti
R-functors in definition 13.1.19 on page 443.

DEFINITION 13.2.3. If A and B are R-modules, an extension of A by B is
a short exact sequence

0→ B→ E→ A→ 0

where E is some module. Two such extensions are considered equivalent if
they fit into a commutative diagram

0 // B r // E1

v
��

s // A // 0

0 // B
r′
// E2

s′
// A // 0

Exercise 4 on page 439 implies that v is an isomorphism.
Regard an extension as equivalent to 0 if it is split, i.e. of the form

0→ B→ B⊕ A→ A→ 0
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Given an extension, Corollary 13.1.21 on page 444 shows it induces a
long exact sequence

0→ homA (A, B)→ homA (A, E)→ homA (A, A)
δ−→ Ext1

R(A, B)

We will associate the extension to

(13.2.1) δ(1) ∈ Ext1
R(A, B)

where 1 ∈ homA (A, A) is the identity map. The fact that the long exact
sequence is natural means that an equivalence of extensions gives rise to a
commutative diagram

homA (A, E1)

��

// homA (A, A)
δ // Ext1

R(A, B)

homA (A, E2) // homA (A, A)
δ
// Ext1

R(A, B)

so equivalent extensions give rise to the same element of Ext1
R(A, B).

Given x ∈ Ext1
R(A, B) and an injective resolution for B, I∗, represent x

by a homomorphism x: A → I1 whose image lies in the kernel of δ1: I1 →
I2. This means it is in the image of I0 and this image is isomorphic to I0/B.
We get a commutative diagram

0 // B r // E1

v
��

s // A

x
��

// 0

0 // B
r′
// I0

s′
// I0/B // 0

where E1 is a pull-back (see exercise 6 on page 345) of

(13.2.2) I0/B Axoo

I0

s′
OO

so

E1 = {(α, β) ∈ I0 ⊕ A|s′(α) = x(β)}
and

s: E1 → A

is the composite E1 ↪→ I0 ⊕ A
p−→ A. The kernel of s is the pull-back

I0/B 0oo

I0

s′
OO

which is isomorphic to B.
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This induces a diagram

homA (A, E1)

��

// homA (A, A)

homA (1,x)
��

δ // Ext1
R(A, B) // Ext1

R(A, E1)

��

homA (A, I0) // homA (A, I0/B)
δ

// Ext1
R(A, B) // Ext1

R(A, I0)

Since Ext1
R(A, I0) = 0, it is clear that the identity map of A maps to x.

The proof that split exact sequences give 0 is left to the reader.
Suppose we vary x by a coboundary — i.e. x′ = x+ ∂ f where f : A→ I0

is a homomorphism. In this case, we get an isomorphism of pull-backs

F =

[
1 f
0 1

]
: E1 ⊂ I0 ⊕ A→ E2 ⊂ I0 ⊕ A

that fits into a commutative diagram

0 // B r // E1

F
��

s // A // 0

0 // B
r′
// E2

s′
// A // 0

It follows that the class of x ∈ Ext1
R(A, B) is what is significant.

We summarize this discussion

THEOREM 13.2.4. Given a ring R and modules A and B, let E(A, B) denote
the equivalence classes of extensions of A by B. The process in equation 13.2.1 on
the previous page gives a 1-1 correspondence

E(A, B)↔ Ext1
R(A, B)

REMARK. This gives us an interpretation of Ext1
R(A, B): it the set of

equivalence classes of extensions of A by B, and is the reason for the name
of the functor.

Suppose A = Zn and B = Z over the ring Z. In this case

0→ Z→ Q→ Q/Z→ 0

is an injective resolution of Z. A homomorphism

xk: Zn → Q/Z

is defined by
1 7→ k/n ∈ Q/Z

where
0 ≤ k < n

The extension defined by this is the pullback

Q/Z Zn
xkoo

Q

s′
OO
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If x = 0, this pullback is Z⊕Zn; otherwise it is Z. Note that extensions

0→ Z→ Z→ Zn → 0

for distinct nonzero values of k are inequivalent although their extended
modules are all Z.

DEFINITION 13.2.5 (Baer Sum). Given modules A and B over a ring, R,
and two extensions

0→ B→ E1 → A→ 0
0→ B→ E2 → A→ 0

of A by B, we define the Baer Sum of the extensions to be

0→ B→ E→ A→ 0

where E is defined via:
Let Ē be the pull-back

A E1oo

E2

OO

Ē

OO

oo

This contains three embedded copies of B, namely (B, 0), (0, B), and the
diagonally embedded copy:

ι: B ↪→ Ē ⊂ E1 ⊕ E2

b 7→ (b,−b)

Define

E =
Ē

ι(B)
This fits into an extension

0→ B→ E→ A→ 0

EXERCISES.

1. Show that a module M is projective if and only if

Ext1
R(M, N) = 0

for all R-modules, N.

2. Formulate the correspondence in theorem 13.2.4 on the facing page
using a projective resolution of A rather than an injective resolution of B.

3. Shows that the Baer sum in definition 13.2.5 makes the correspon-
dence in theorem 13.2.4 on the facing page a homomorphism of abelian
groups.
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4. If p is a prime, we know that Ext1
Z(Zp, Z) = Zp implying that there

are p inequivalent extensions

0→ Z
ι−→ M π−→ Zp → 0

and the split extension (M = Z ⊕ Zp) corresponds to 0 ∈ Ext1
Z(Zp, Z).

Describe the other p− 1 extensions.

5. Extend exercise 4 to the case

0→ Z
ι−→ M π−→ Zpq → 0

where p and q are two different primes. Hint: Note that Zpq = Zp ⊕Zq
and we have

� the split extension

0→ Z
ι−→ Z⊕Zpq

π−→ Zpq → 0

� partially split extensions

0→ Z
ι−→ Z⊕Zp

π−→ Zpq → 0

0→ Z
ι−→ Z⊕Zq

π−→ Zpq → 0

� and the totally nonsplit extensions

0→ Z
ι−→ Z

π−→ Zpq → 0

13.2.3. n-fold extensions. We can continue the reasoning in the last
section to so-called Yoneda extensions.

DEFINITION 13.2.6. If R is a ring and A and B are R-modules, an n-fold
extension of A by B is an exact sequence

0→ B→ En → · · · → E1 → A→ 0

Two such extensions

0→ B→ En → · · · → E1 → A→ 0

and
0→ B→ E′n → · · · → E′1 → A→ 0

are defined to be equivalent if there exists a commutative diagram

0 // B // En

��

// · · · // E1

��

// A // 0

0 // B // E′n // · · · // E′1 // A // 0

It is possible to “standardize” n-fold extensions:
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LEMMA 13.2.7. Let

· · · → Pn+1 → Pn → · · · → P1 → A→ 0

(note that we are indexing the projective modules in this resolution from 1 rather
than from 0) be a projective resolution of A. An n-fold extension of A by B is
equivalent to one in which n− 1 modules in the extension are projective and of the
form:

0 // B // M

��

// Pn−1

��

// · · · // P1

��

// A // 0

0 // B // En // En−1 // · · · // E1 // A // 0

REMARK. The significant thing about this is that most of our “stan-
dardized” extension is fixed.

PROOF. Proposition 13.1.15 on page 442 implies that we get a chain-
map:

(13.2.3)

· · · // Pn+1

u
��

v // Pn

��

q
// Pn−1

��

// · · · // P0

��

// A // 0

0 // B // En // En−1 // · · · // E1 // A // 0

Given a homomorphism x ∈ hom(Pn, B), we can form the push-out

Pn+1 //

��

Pn

��

B // M
or

M =
B⊕ Pn

f (Pn+1)

where
f = (u,−v): Pn+1 → B⊕ Pn

We have a homomorphism

ι: B→ M

defined as the composite

B ↪→ B⊕ Pn → M

We claim that this is injective. The kernel is given by

ker ι = B⊕ 0∩ im f

Commutativity of

Pn+1

u
��

v // Pn

pn
��

B a
// En
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— the leftmost-square of diagram 13.2.3 on the previous page — means
that v(x) = 0 implies pn ◦ v(x) = 0 which implies that a ◦ u(x) = 0. Since
a is injective, this means that u(x) = 0 so that ker ι = 0.

We define
M→ Pn−1

to be induced by
(0, q): B⊕ Pn → Pn−1

which is well-defined if ker f ⊂ B⊕ ker q. This follows from q ◦ v = 0.
The map M → En is induced by the defining property of a push-out.

□

This leads to the result

THEOREM 13.2.8. Let R be a ring and let A and B be R-modules. Then
the set of equivalence classes of n-fold extensions of A by B is in a one to one
correspondence with

Extn
R(A, B)

PROOF. Two n-fold extensions are equivalent if and only if their stan-
dardized forms

0→ B→ M1 → im Pn → 0
and

0→ B→ M2 → im Pn → 0
are equivalent. These equivalence classes are in a one-to-one correspon-
dence with Ext1

R(im Pn, B). Exercise 18 on page 447 implies that

Ext1
R(im Pn, B) = Extn

R(A, B)

and the conclusion follows. □

EXERCISES.

6. Define a generalization of the Baer sum for n-fold extensions.

13.3. Cohomology of groups

13.3.1. Introduction. The cohomology of groups is a vast subject suit-
able for its own book (for instance, the excellent [17]). We will only touch
on it here.

If G is a group, we can construct the group-ring, ZG — a ring of formal
linear combinations of elements of G. Let G act trivially on Z so that Z is a
ZG-module and let

· · · → P2 → P1 → P0 → Z→ 0
be a projective resolution of Z.
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DEFINITION 13.3.1. If A is a left ZG-module define

Hi(G, A) = Hi(homZG(P∗, A)) = Exti
ZG(Z, A)

REMARK. In a few cases, it’s easy to say what these groups are:

H0(G, A) = homZG(Z, A) = AG

the submodule of A fixed by G — definition 11.1.7 on page 390.

In order to proceed further, we must construct explicit resolutions of
Z.

PROPOSITION 13.3.2. If G = Zn, generated by T then

ZG = Z[T]/(Tn − 1)

a quotient of a polynomial ring and

Z =
ZG

(T − 1)

If x ∈ ZG has the property that (T − 1) · x = 0, then there exists y ∈ ZG such
that x = N · y where

N = 1 + T + T2 + · · ·+ Tn−1

It follows that

· · · → ZG
·(T−1)−−−−→ ZG ·N−→ ZG

·(T−1)−−−−→ ZG → Z→ 0

is a free ZG-resolution of Z.

REMARK. Note that this resolution is periodic so that, if A is a ZG-
module with trivial G-action:

H0(G, A) ∼= A

and
H2i(G, A) ∼= A/n · A

where i ≥ 1, and

H2i−1(G, A) ∼= H1(G, A) = A[n]

the n-torsion subgroup (see definition 4.6.23 on page 71).

PROOF. The statement that

Z =
ZG

(T − 1)

is clear. If (T − 1) · x = 0, and x = ∑n−1
i=0 aiTi, then

(T − 1) · x =
n−1

∑
i=0

(a(i+1) mod n − ai)Ti

so (T − 1) · x = 0 implies that all of the coefficients are the same — i.e.,
x = N · a0. □
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The definition of cohomology groups immediately implies that:
If G = Zn, then

H1(G, A) =
ker(N·: A→ A)

(T − 1) · A
From this, we get a cohomological statement of Hilbert’s Theorem 90 (see
theorem 8.8.2 on page 318):

THEOREM 13.3.3 (Hilbert’s Theorem 90). If G = Zn for some integer n
and G is the Galois group of a field extension

H

F

then
H1(G, H×) = {1}

where H× = H \ {0} is the multiplicative (abelian) group of H, regarded as a
ZG-module.

REMARK. Note: we haven’t used group cohomology to prove Hilbert’s
Theorem 90; we are merely stating it in terms of group-cohomology.

PROOF. If x ∈ A, the statement that N · x = 0 is equivalent (when
writing the operation multiplicatively) to the statement

x · θ(x) · · · θn−1(x) = 1

where θ generates the Galois group, G. This is equivalent to saying
the norm of x is 1, by theorem 8.8.1 on page 318. The statement that
H1(G, H×) = {1} means that x = θ(y)y−1 for some y ∈ H — or
x = zθ(z)−1, where z = y−1 — which is the statement of theorem 8.8.2 on
page 318. □

EXAMPLE 13.3.4. If G = Z, ZG = Z[T, T−1] and

0→ ZG
·(T−1)−−−−→ ZG → Z→ 0

is a projective resolution of Z, so
(1) H0(Z, A) = AZ, the largest submodule fixed by Z.
(2) H1(Z, A) = A/ ((T − 1) · A), the largest quotient fixed by Z.
(3) Hi(Z, A) = 0 for i ≥ 2.

In order to proceed further, we need a description of projective resolu-
tions for all groups.

DEFINITION 13.3.5. If G is a group, its bar resolution, BG, is a ZG-chain
complex

· · · → BG3
d3−→ BG2

d2−→ BG1
d1−→ BG0

ϵ−→ Z→ 0
of free ZG-modules where

(1) The basis for BGn is symbols [g1| · · · |gn] for all elements gi ̸= 1 ∈
G,

(2) BG0 = ZG · [ ], where [ ] is a symbol that is its only basis element.
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(3) ϵ: ZG · [ ]→ Z sends all elements of G to 1 ∈ Z

(4) for i > 0, Pi is the free ZG-module on a basis that consists of all
possible symbols [g1| · · · |gn] where 1 ̸= gi ∈ G for all i.

(5) dn:BGn → BGn−1 is defined by

dn([g1| · · · |gn]) = g1 · [g2| · · · |gn]

+
n−1

∑
i=1

(−1)i[g1| · · · |gigi+1| · · · |gn]

· · ·+ (−1)n[g1| · · · |gn−1]

Here, if a term has a 1 in it, we identify it with 0, so

d1([g|g−1]) = g[g−1]− [1] + [g] = g[g−1] + [g]

This is a resolution because it has a contracting homotopy given by

Φi:BGi → BGi+1

g · [g1| · · · |gi] 7→ [g|g1| · · · |gi] if g ̸= 1
1 · [g1| · · · |gi] 7→ 0

for i ≥ 0 and
Φ−1(1) = [ ]

such that

(13.3.1) 1− ϵi = di+1 ◦Φi + Φi−1 ◦ di

where ϵi = 0, if i > 0, and ϵ0 = ϵ, as defined above. It follows that the
0-map is chain-homotopic to the identity (see definition 13.1.5 on page 435
and proposition 13.1.6 on page 435) above dimension 0, and the homology
of this complex must vanish.

REMARK. This was originally defined by Eilenberg and Maclane in [32,
33] and MacLane’s book [70]. The term “bar resolution” comes from their
use of vertical bars rather than ⊗’s because they take up less space2.

This is what is called the normalized bar resolution; it is slightly smaller
than the unnormalized bar resolution, which allow 1’s in the bar-symbols.

EXERCISES.

1. Show that the resolution in definition 13.3.5 on the facing page is a
chain-complex, i.e., that di ◦ di+1 = 0 for all i.

2. Verify equation 13.3.1.

2Typographically!
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13.3.2. Extensions of groups. In this section we will apply the coho-
mology of groups to study the extension problem for groups:

Given two groups H and N, which groups, G, have the
property that
(1) N ◁ G
(2) there exists an exact sequence

(13.3.2) 1→ N ι−→ G π−→ H → 1

?
Such groups, G, are called extensions of H by N (compare
definition 13.2.3 on page 448).

This is an extremely difficult problem in general but we know solutions in
special cases:

If N is abelian and the extension is split — i.e., if there’s a homomorph-
ism g: H → G with the property that π ◦ g = 1: H → H in 13.3.2, then
exercise 5 on page 80 shows that

G = N ⋊φ H

the semidirect product.

PROPOSITION 13.3.6. An extension of a group H by an abelian group, N

1→ N ι−→ G π−→ H → 1

defines a ZH-module structure on N by conjugation

φ: H → Aut(N)

PROOF. We define a function (not a homomorphism!)

g: H → G

such that π ◦ g = 1: H → H. The H-action on N is defined by conjugation

φ(h)(n) = g(h) · n · g(n)−1

Note: since N is abelian, varying g(h) by an element of N doesn’t change
the result of conjugation so we actually get a homomorphism

H → Aut(N)

□

Compare this with 13.2.3 on page 448

DEFINITION 13.3.7. Two extensions, G1and G2 are defined to be equiv-
alent if there exists a commutative diagram

1 // N
ι1 // G1

π1 //

��

H // 1

1 // N
ι2
// G2 π2

// H // 1
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The results of section 13.2.2 on page 448 suggest that the cohomology
of groups might be useful — at least in the case where N is abelian.

Throughout the remainder of this section N denotes an abelian group
that is a module over ZH and we will study extensions like

(13.3.3) 1→ N ι−→ G π−→ H → 1

We will consider functions

(13.3.4) g: H → G

such that π ◦ g = 1: H → H. Given h1, h2 ∈ H, consider x(h1, h2) =
g(h1)g(h2)g(h1h2)

−1and we require g(1) = 1.

DEFINITION 13.3.8. Given a group-extension as in 13.3.3 and a map
g: H → G with the property g(1) = 1, the function

x: H × H → N

defined as x(h1, h2) = g(h1)g(h2)g(h1h2)
−1 is called a factor-set for the ex-

tension.

Since the extension in 13.3.3 is not split, g in 13.3.4 is not a homo-
morphism so x(h1, h2) ̸= 1. Since it maps to 1 in H, we conclude that
x(h1, h2) ∈ N.

If we identify G with N × g(H) (as sets), a factor-set for an extension
determines it because

(n1g(h1))(n2g(h2)) = (n1g(h1)n2g(h1)
−1g(h1)g(h2))

= (n1 φ(h1)(n2)g(h1)g(h2))

= (n1 φ(h1)(n2)g(h1)g(h2)g(h1h2)
−1g(h1h2))

= (n1 φ(h1)(n2) · x(h1, h2)g(h1h2))

or

(13.3.5) (n1, h1)(n2, h2) = (n1 + φ(h1)(n2) + x(h1, h2), h1h2)

since the N-group is abelian. Note that, if the factor-set is zero, this becomes
the product-formula for the semidirect product.

PROPOSITION 13.3.9. A function, x: H × H → N, is a factor-set for the
extension in 13.3.3 if and only if it defines a 2-cocycle

BH2 → N

with respect to the bar-resolution (see definition 13.3.5 on page 456).

PROOF. This is the same as saying the composite

BH3
d3−→ BH2

x−→ N

is zero, i.e.

(13.3.6) φ(h1) (x(h2, h3))− x(h1h2, h3) + x(h1, h2h3)− x(h1, h2) = 0
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If x is a factor-set, this follows from the associativity of the product in equa-
tion 13.3.5 on the preceding page:

((0, h1)(0, h2)) (0, h3) = (x(h1, h2) + x(h1h2, h3), h1h2h3)

(0, h1) ((0, h2)(0, h3)) = (φ(h1) (x(h2, h3)) + x(h1h2, h3), h1h2h3)

and setting the difference between these to 0 gives equation 13.3.6 on the
previous page.

Conversely, if x is a 2-cocycle, equation 13.3.5 on the preceding page
gives an associative product on N × H and

(n, h)−1 =
(
−φ(h−1)(n)− φ(h−1)

(
x(h, h−1)

)
, h−1

)
so we can define an extension group from x. □

LEMMA 13.3.10. If x1, x2: H× H → N are two factor-sets giving rise to the
same extension

1→ N → E→ H → 1
then

x1 − x2

is a coboundary in the bar-resolution of N. It follows that a factor-set corresponds
to a well-defined element of

H2(H, N)

PROOF. We will write the group-operation multiplicatively. If the xi are
induced by functions

gi: H → E

then g1(h)g2(h)−1 = θ(h) ∈ N for all h ∈ H, so g1(h) = θ(h) · g2(h).

x1(h1, h2) = g1(h1)g1(h2)g1(h1h2)
−1

= θ(h1)g2(h1)θ(h2)g2(h2) [θ(h1h2)g2(h1h2)]
−1

= θ(h1)g2(h1)θ(h2)g2(h2)g2(h1h2)
−1θ(h1h2)

−1

= θ(h1)g2(h1)θ(h2)g2(h1)
−1g2(h1)g2(h2)g2(h1h2)

−1θ(h1h2)
−1

= θ(h1)θ(h2)
g2(h1)g2(h1)g2(h2)g2(h1h2)

−1θ(h1h2)
−1

= θ(h1)θ(h2)
g2(h1)x2(h1, h2)θ(h1h2)

−1

Since the equation on the bottom line takes place entirely in the abelian
group, N, we may write it additively

x1(h1, h2) = θ(h1) + θ(h2)
g2(h1) − θ(h1h2) + x2(h1, h2)

or

x1(h1, h2)− x2(h1, h2) = θ(h1) + θ(h2)
g2(h1) − θ(h1h2)

= φ(h1) (θ(h2))− θ(h1h2) + θ(h1)

= θ (d2 ([h1|h2]))

where
d2:BH2 → BH1
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is the boundary map of the bar-resolution of H (see definition 13.3.5 on
page 456). □

Considering definition 13.3.7 on page 458, we conclude that

THEOREM 13.3.11. If H is a group and N is an abelian group with the struc-
ture of a ZH-module, the set of equivalence classes of extensions of N by H is in a
one-to-one correspondence with elements of

H2(H, N)

The split extension corresponds to 0 ∈ H2(H, N) (the semi-direct product —
see 4.7.15 on page 79 and exercise 5 on page 80).

Extensions in which N is not abelian are much more complex and their
study involves nonabelian cohomology and algebraic topology. See [18].

EXERCISES.

3. If F is a free group and A is any ZF module, show that

H2(F, A) = 0

4. If F is a free group and A is any ZF module, show that

Hi(F, A) = 0

for all i > 1.

� �





CHAPTER 14

Axiomatic Set Theory

“Either mathematics is too big for the human mind or the human
mind is more than a machine.”

— Kurt Gödel.

14.1. Introduction

In this section, we will give a rigorous set of axioms defining set theory. The
reader might wonder why this is necessary: after all sets are just collections of stuff.

In the 19th century, sets were regarded as any collection of objects that could be
described in any terms — and elements of sets could be any objects that one could
describe.

In [108], the philosopher Bertrand Russell pointed out a problem with this very
loose definition of a set:

Since sets could theoretically be elements of themselves, let S be
the set of all sets that do not contain themselves as an element.
The question is: Is S an element of S? If the answer is yes, then S
cannot be an element of S. If the answer is no, then S must be an
element of S.

Bertrand Arthur William Russell, 3rd Earl Russell, (1872 – 1970) was a
British philosopher, logician, mathematician, historian, writer, social critic
and political activist. He is well-known for his political leaning toward
pacifism, initiating the Russell–Einstein Manifesto opposing the develop-
ment of atomic weapons. His main mathematical work is [108].

The result of this is that set theory today is defined in terms of axioms:

14.2. Zermelo-Fraenkel Axioms

We resolve questions like the Russell Paradox via a system of axioms that de-
fine what we mean by sets. We present an abbreviated version of these axioms. In
these axioms, symbols like ∈ are boolean-valued operations so, if x is not a set, y ∈ x
is false for any y. The axioms describe how we are allowed to use these symbols in
equations1.

AXIOM 14.2.1 (Extensionality). Two sets are equal (are the same set) if they have the
same elements:

∀x,y [∀z(z ∈ x ⇔ z ∈ y) =⇒ x = y]

This is straightforward but has to be said.

1Roughly speaking, concrete “definitions” of these symbols in terms of other objects are
called models of set theory. In [24], P. Cohen shocked the mathematical world by showing that
multiple inequivalent models exist for set theory (in one of which all sets are countable).

463



464 14. AXIOMATIC SET THEORY

AXIOM 14.2.2 (Regularity). Every nonempty set x contains an element y such that
x and y are disjoint.

∀x
[
∃a(a ∈ x) =⇒ ∃y (y ∈ x ∧ ∀z (z ∈ x =⇒ z /∈ y))

]
The element y ∈ x with this property is said to be ∈-minimal. This axiom has a

number of interesting consequences:
(1) No set can be a member of itself (preventing the Russell Paradox). Sup-

pose A is a set and consider the set {A}. The Regularity Axiom implies
that there exists a y ∈ {A} that is disjoint from it. Since the only element
of {A} is A, we have y = A and

A ∈ {A} =⇒ A /∈ y = A

(2) No infinite descending chain of set-containments2 exists. Let f be a function
defined on the natural numbers such that

(a) f (n) is a set for all n and
(b) f (n + 1) ∈ f (n) for all n

Let S = { f (n)|n ∈N}. If y ∈ S is any element, y = f (k) for some k
and f (k + 1) ∈ y, so f (k + 1) ∈ f (k) ∩ S, violating the Regularity Axiom.
This only happens for infinite chains — something that might crudely be
represented by {

{∞x}∞, {∞−1x}∞−1, . . .
}

where one is to imagine an infinite number of brackets enclosing the x.
Given a finite chain like

{{{{x}}} , {{x}} , {x} , x}
we have

x ∈ {x} ∈ {{x}} ∈ {{{x}}}
and there’s a minimal element (x, in this case) that doesn’t contain any of
the others.

AXIOM 14.2.3 (Specification). Given a set, one can define a subset by imposing a
condition on its elements. In other words, one is allowed to use constructions like

{x ∈ S|ϕ(x)}
to define sets, where ϕ is some logical function and S is a set.

This is what is called an axiom schema since there are an infinite number of
possible functions ϕ and this gives rise to an axiom for each of them.

One consequence of this is that empty sets exist. If x is any set, we can define a
set

{y ∈ x|y ̸= y}
and the Axiom of Extensionality implies that any two such sets are equal, so we
have a unique empty set, denoted ∅.

AXIOM 14.2.4 (Pairing). Given two sets x and y there exists a set, z, that contains x
and y as elements

∀x,y∃z (x ∈ z ∧ y ∈ z)

AXIOM 14.2.5 (Union). The union over the elements of a set exists and is a set.

∀z∃u∀x,y ((x ∈ y) ∧ (y ∈ z)) =⇒ x ∈ u

2In this context “set-containment” means one set is an element of another — not a subset.
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AXIOM 14.2.6 (Replacement). The image of a set under any definable function lies
in a set.

This is also an axiom schema since the set of possible functions is infinite.

AXIOM 14.2.7 (Infinity). There exists a set with infinitely many elements.

∃x
[
∅ ∈ x ∧

(
∀yy ∈ x =⇒ (y ∪ {y}) ∈ x

)]
AXIOM 14.2.8 (Power set). Given a set, S, there exists a set whose elements are all of

the subsets of S (where a subset of S is defined as a set whose elements are contained in S)

AXIOM 14.2.9 (Well-ordering). Any set, S, can be well-ordered. This means that
there exists a binary order-relation, ≺, such that

� if x, y ∈ S with x ̸= y, then x ≺ y or y ≺ x (but not both),
� if T ⊂ S is a subset then T has a minimal element — i.e., there exists x ∈ T such

that x ≺ y for all y ∈ T with y ̸= x.

REMARK 14.2.10. The well-ordering axiom is completely trivial for finite sets.
For infinite sets, it has many subtle ramifications. For instance, if S = Q, the

well-ordering cannot possibly be the usual ordering, <, of rational numbers be-
cause an open interval like (0, 1) has no minimal element. We can construct a well-
ordering of the positive rationals: If p/q ∈ Q is reduced (i.e. gcd(p, q) = 1), define
h(p/q) = |p|+ |q| and order the rationals by this h-function. When two numbers
have the same value of h, order them by the denominator. In this ordering, the
minimal element of (0, 1), is 1/2.

At the time of this writing, there is no known well-ordering of the real numbers.

The well-ordering axiom implies another

THEOREM 14.2.11 (Axiom of choice). Given a set S and a collection of nonempty
sets indexed by S:{Gα}, α ∈ S, there exists a function

f : S→ G =
⋃

α∈S
Gα

that selects an element f (α) ∈ Gα ⊂ G.

REMARK. This is often stated as
The Cartesian product

∏
α∈S

Gα

is nonempty.
Although this also seems self-evident, it has bizarre implications for infinite families
of sets. It is possible to prove the well-ordering axiom from the axiom of choice and
the other axioms of set theory, so the two are equivalent. This proof is beyond the
scope of this book.

PROOF. Simply well-order G and define f (α) to be a minimal element in Gα ⊂
G. □

The well-ordering axiom also implies Zorn’s lemma, a classic result found in
[65, 111]:

LEMMA 14.2.12. If S is a partially-ordered set with the property that every increasing
sequence of elements

e1 ⪯ e2 ⪯ · · ·
has an least upper bound, then S contains a maximal element (“increasing” means ei ̸= ei+1
for all i).
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If every decreasing sequence of elements

e1 ⪰ e2 ⪰ · · ·
has a lower bound, then S has a minimal element.

REMARK. In this context,
(1) “least upper bound” means an element f such that f ⪰ ei for all i and for

any other g ⪰ ei, f ⪯ g.
(2) “maximal” means “there is an element e ∈ S such that there does not exist

an element e′ ∈ S with e ⪯ e′ and e′ ̸= e.”
Zorn’s lemma is equivalent to the axiom of choice and the well-ordering axiom
(which are equivalent to each other) in set theory. Proving all of these equivalences
is beyond the scope of this book3 — see [55] as a general reference.

PROOF. We give a non-rigorous proof that can be made rigorous using transfi-
nite induction and ordinals. Let P = P(S) \ {∅} and let

S̄ =
⋃

A∈P
A

Now use the Axiom of Choice ( 14.2.11 on the preceding page) to define a function

f : P→ S̄

with f (A) = a ∈ A — this just maps every nonempty subset of S to one of its
elements. Define the function

F: I → A ∪ {A}
where I is some ordered collection of indices to be defined later, via

F(α) =

{
f ({s ∈ S|F(β) ⪯ s, for all β < α}) if this set is nonempty
A otherwise

If S is finite and I = Z, then F(n) will be A for some value of n — we will have
constructed an ascending chain that exhausts all of the elements of S with elements
⪯ all other elements of S. Since this chain has an upper bound, F(n − 1) will be
maximal.

If S is infinite, the idea is basically the same except that I consists of infinite
ordinals4 — the totality of which is known not to constitute a set. We also need
transfinite induction to properly define F. It turns out that there exists an ordinal α
such that F(α) = A and α = β + 1 and F(β) is the maximal element. □

3We proved the “easy” one in theorem 14.2.11 on the previous page.
4See [55] as a general reference, again.



CHAPTER 15

Further topics in ring theory

“Geometry is one and eternal shining in the mind of God. That
share in it accorded to men is one of the reasons that Man is the
image of God.”

— Johannes Kepler, Conversation with the Sidereal Messenger
(an open letter to Galileo Galilei), [94].

This appendix deals with topics that are more specialized than those consid-
ered in chapter 5 on page 107. They have applications to Algebraic Geometry and
other areas.

15.1. Discrete valuation rings

In this section we define a class of rings that is important in algebraic geometry.
Their main property is that they have an especially simple ideal-structure.

Krull introduced them with the concept of valuation in his work on algebraic
number theory in [62]. A valuation on a field is a function that can be used to define
a metric on this field. We have already seen an example of this in claim 5.1.8 on
page 109 — the function v(x), there, is an example of a valuation.

DEFINITION 15.1.1. Let F be a field and let F× ⊂ F denote the subset of nonzero
elements. A discrete valuation on F is a surjective function

v: F× → Z

with the properties:
(1) v(x · y) = v(x) + v(y) for all x, y ∈ F×

(2) v(x + y) ≥ min(v(x), v(y))

REMARK. Statement 2 implies that v(1) = v(1 · 1) = v(1) + v(1) = 0. If
0 < α < 1 is some real number, it is not hard to see that

αv(∗): F× → [0, 1]

defines a metric on F, where we define the metric of 0 to be 0.

The definition of valuation easily implies the following properties:

PROPOSITION 15.1.2. Let F be a field with valuation v: F× → Z. Then

(1) v(x−1) = −v(x) for all x ∈ F∗, since v(x · x−1) = v(1) = 0 = v(x) +
v(x−1).

(2) v(−1) = 0, because v(1) = v((−1) · (−1)) = v(−1) + v(−1) if the charac-
teristic of F is ̸= 2. If it is 2, then −1 = 1, so the statement still holds.

(3) v(−x) = v(x), because −x = x · (−1).
(4) if v(x) > v(y) then v(x + y) = v(y). Certainly, it must be ≥ v(y) but, if we

write y = x + y− x, we get v(y) ≥ min(v(x + y), v(x)).

It is easy to find examples of valuations:

467
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EXAMPLE 15.1.3. If F = Q and p ∈ Z is any prime then we can define the
p-adic valuation, vp, as follows:

For any q ∈ Q we have a unique representation

q = ∏ pni
i

where the pi are primes and ni ∈ Z are integers (which are negative if a prime only
occurs in the denominator of q). If p = pj, define

vp(q) = nj

It is well-known that the p-adic valuations constitute all of the discrete valua-
tions on Q — see [61].

If a field, F, has a valuation

v: F× → Z

proposition 15.1.2 on the previous page implies that the set of elements x ∈ F with
v(x) ≥ 0 form a ring, i.e., are closed under addition and multiplication.

Other interesting examples are provided by power-series rings and variants

EXAMPLE 15.1.4. If k is a field, R = k[[X]] is the ring power-series in X and
F = k((X)) is the field of fractions of R, exercise 6 on page 251 implies that every
element in F can be written uniquely in the form

f = Xα · r
with r ∈ R. It follows that F is a field with valuation given by v( f ) = α. The subring
of elements with a valuation ≥ 0 is precisely R ⊂ F.

There are valuations that are not discrete in the sense above:

EXAMPLE 15.1.5. We can also define the field of Puiseux series, discovered by
Isaac Newton in 1676 ([81]) and rediscovered by Victor Puiseux ([91]) in 1850:

k{{X}} =
∞⋃

n=1
k((X1/n))

An argument analogous to that used in the power-series case implies that every
element of k{{X}} can be uniquely written in the form

f = Xq ·
(

a0 + a1X1/n + a2X2/n + · · ·
)

for some n ∈ Z, n ≥ 1, some q ∈ Q, and a0 ̸= 0 ∈ k. We can define the valuation of
f to be q.

REMARK. If k is algebraically closed and of characteristic 0, it turns out that
k{{X}} is the algebraic closure of k((X)). Newton sketched a proof in a letter he
wrote in 1676. See [86] for a short modern proof.

DEFINITION 15.1.6. Let R be an integral domain with field of fractions F. Then
R is a discrete valuation ring if there exists a valuation

v: F× → Z

such that
R = {x ∈ F|v(x) ≥ 0}

This ring has an ideal

m = {x ∈ F|v(x) > 0}
The notation for a discrete valuation ring is (R,m).
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REMARK. The properties of a valuation (in proposition 15.1.2 on page 467)
imply that m is an ideal and that all x ∈ R \m are units, so m is the unique maximal
ideal, and R is a local ring.

For the p-adic valuation on Q, the corresponding discrete valuation ring is
Rp ⊂ Q of fractions whose denominator is relatively prime to p (when it is reduced
to the lowest form). The maximal ideal is p · Rp.

As mentioned above, discrete valuation rings have an extremely simple ideal-
structure:

LEMMA 15.1.7. Let (R,m) be a discrete valuation ring defined by a valuation

v: F× → Z

on the field of fractions, F, of R. Then there exists an element r ∈ R such that m = (r) and
all ideals of R are of the form (rn) for n ∈ Z+.

PROOF. Suppose u ∈ R has v(u) = 0. Then v(u−1) = 0 also, so u is a unit. If
I ⊂ R is an ideal, let x ∈ I be the element with the smallest valuation. If y ∈ I,
then x−1y ∈ F has a valuation v(y)− v(x) ≥ 0 so x−1y ∈ R and y = x · x−1y and
I = (x), and all ideals are principal. It follows that m = (r) and v(r) = 1 (since the
valuation-map is surjective).

Suppose y ∈ R has the property that v(y) = n. Then r−ny has valuation 0 so it
is a unit and (y) = (rn). □

It is interesting to determine the properties a general ring must have to be a
discrete valuation ring:

LEMMA 15.1.8. Let R be a noetherian local domain with maximal ideal m ∈ R and
suppose that this is the only prime ideal (other than the trivial prime ideal, (0)). Then R is
a discrete valuation ring if and only if it is integrally closed in its field of fractions.

PROOF. First, we show that a discrete valuation ring is integrally closed. If F
is the field of fractions of R and x/y ∈ F is integral over R, then

(x/y)n + an−1(x/y)n−1 + · · ·+ a0 = 0

with the ai ∈ R. If v(x) < v(y) then

v((x/y)n + an−1(x/y)n−1 + · · ·+ (x/y)a1) = v(−a0) ≥ 0

Proposition 15.1.2 on page 467 implies that

v((x/y)n + an−1(x/y)n−1 + · · ·+ (x/y)a1) = v((x/y)n) < 0

which is a contradiction. It follows that v(x) ≥ v(y) and x/y ∈ R.
Now we work in the other direction: assume R satisfies the hypotheses (i.e., it is

a noetherian local domain with a unique prime ideal) and show that it is a discrete
valuation ring if it is integrally closed.

For every u ∈ m and v ∈ R \ (u) define

(15.1.1) (u: v) = {r ∈ R|rv ∈ (u)}
This is easily verified to be an ideal and nonempty (since it contains u at least). Let
(a: b) be the maximal such ideal (with respect to inclusion). We claim that it is a
prime ideal. If xy ∈ (a: b), then xyb ∈ (a). Note that (a: yb) ⊇ (a: b). If x, y /∈ (a: b),
then yb /∈ (a) and x ∈ (a: yb) so (a: yb) ⊋ (a: b), which contradicts the maximality
of (a: b).

Since m is the only prime ideal of R, we have m = (a: b). We claim that m =
(a/b) (so b|a). Equation 15.1.1 for (a: b) implies that (b/a) · (a: b) = (b/a) ·m ⊂ R.



470 15. FURTHER TOPICS IN RING THEORY

If (b/a) · m ̸= R then (b/a) · m must be an ideal of R, hence (b/a) · m ⊂ m.
Since R is noetherian, m must be a finitely generated R-module. Since (b/a) maps a
finitely-generated R-module to itself, proposition 6.5.2 on page 252 implies that b/a
is integral over R, hence in R (because R is integrally closed). This is a contradiction
(by the condition above equation 15.1.1 on the previous page), so we conclude that
(b/a)m = R and m = R · (a/b) = (a/b).

We claim that all ideals in R are principal. If not, there is a maximal non-
principal ideal I (because R is noetherian). We must have

I ⊂ m = (a/b)

Now consider
I ⊂ (b/a) · I ⊂ (b/a) ·m = R

If I = (b/a) · I, then by the reasoning above and proposition 6.5.2 on page 252, we
conclude that (b/a) is integral over R, hence in R. This is the same contradiction as
before (with m) and we conclude that

I ⊊ (b/a) · I
which implies that the ideal (b/a) · I is principal, say (b/a) · I = (x). Then we get
I = (x · a/b) which is a contradiction.

We conclude that all ideals are principal, and that R is a unique factorization
domain by remark 5.3.12 on page 119. The element π = a/b that defines m must be
irreducible and a prime, so we can define a function

v: R \ {0} → Z

by setting v(x) to the highest power of π that divides x. This extends to a valuation

v: F× → Z

v(x/y) = v(x)− v(y)

and R is a discrete valuation ring. □

15.2. Metric rings and completions

Rings with metrics arise naturally in areas of analysis and number theory.
We begin by defining a metric space.

DEFINITION 15.2.1. A metric space, M, is a set of points equipped with a func-
tion, d(x, y) ∈ R, for every x, y ∈ M with the properties

(1) d(x, y) ≥ 0 for all x, y ∈ M and d(x, y) = 0 if and only if x = y
(2) d(x, y) = d(y, x) for all x, y ∈ M.
(3) Given x, y, z ∈ M, d(x, z) ≤ d(x, y) + d(y, z) (Triangle inequality).

REMARK. It is well-known that Q and R are metric spaces with d(x, y) = |x−
y|. We have many more examples of metric rings because:

PROPOSITION 15.2.2. If R is a discrete valuation ring with valuation v: F× → Z

and α ∈ (0, 1), then v(x, y) defined by d(x, y) = |x− y|, where | ∗ | is defined by
(1) |0| = 0 for all x ∈ R

(2) if x ∈ R, and x ̸= 0, then d(x, y) =
(

1
2

)v(x)

is a metric on R.

REMARK. Note that this “absolute value” has the property that |x · y| = |x| · |y|.
PROOF. This follows by the properties of a valuation in proposition 15.1.2 on

page 467: □
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DEFINITION 15.2.3. An infinite sequence of points, {an}, in a metric space ap-
proaches a limit a if, for every ϵ > 0, there exists an integer N(ϵ) such that

|ai − a| < ϵ

for all i > N(ϵ) (where | ∗ | denotes distance). A sequence that has a limit is said to
converge.

We need a criterion for a limit to exist. It’s certainly necessary for the terms of
the sequence to get arbitrarily close to each other:

DEFINITION 15.2.4. An infinite sequence of points in a metric space {an} is
said to be Cauchy if, for every ϵ > 0, there exists an integer N(ϵ) such that

|ai − aj| < ϵ

for all N(ϵ) < i < j. If every Cauchy sequence in a metric space, M, converges, we
say that M is complete.

REMARK. Clearly, any convergent sequence is Cauchy.

15.3. Graded rings and modules

A graded ring is a kind of ring subdivided into distinct direct summands.
These appear in the study of projective varieties and sheaf-cohomology.

DEFINITION 15.3.1. A ring, G, is called a graded ring over k if there exists a
decomposition

G = G0 ⊕ G1 ⊕ · · ·
such that Gi · Gj ⊂ Gi+j for all i, j ≥ 0. If I ⊂ G is an ideal, we say that I is a graded
ideal if

I = I0 ⊕ I1 ⊕ · · ·
where Ij = I∩Gj for all j ≥ 0. An ideal H ⊂ G is homogeneous if all of its generators
come from the same Gn for some n.

REMARK. Any ring, R, can be regarded as a graded ring, if we define R0 =
R, Ri = 0 for i > 0. A polynomial ring, k[X1, . . . , Xt] is naturally graded with
gradation given by the total degree of a monomial (where we have specified the
degree of each of the Xi):

k[X1, . . . , Xt] = k⊕ K1 ⊕ K2 ⊕ · · ·
where Kn is the vector space generated by all monomials of total degree n. For
instance, let G = k[X, Y] where X and Y are of degree 1 and let H = k[X, Y] where
X is of degree 1 and Y is of degree 2. Then:

G0 = k
G1 = k · {X, Y}
G2 = k · {X2, XY, Y2}

...

and

H0 = k
H1 = k · X
H2 = k ·Y

...

so G and H are isomorphic as rings but not as graded rings.
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Given graded algebras over a ring R, we can define the graded tensor product

DEFINITION 15.3.2. If A, B are graded algebras over a (non-graded) ring, R, the
tensor product is the graded algebra A⊗R B defined by

(A⊗R B)n =
⊕

i+j=n
Ai ⊗R Bj

REMARK. This definition is consistent with the convention

(a⊗ b) · (c⊗ d) = (ac⊗ bd)

It is not hard to see that:

PROPOSITION 15.3.3. If H ⊂ G is a homogeneous ideal of a graded ring G, it is not
hard to see that

(15.3.1)
G
H

=
∞⊕

i=0

Gi +H

H

is also a graded ring.

Here is a standard construction of a graded ring:

DEFINITION 15.3.4. If a ⊂ R is an ideal in a ring, we can define a graded ring

Γ(a) = R⊕ a⊕ a2 ⊕ · · · = R[T · a] ⊂ R[T]

by giving R a degree of 0, and a a degree of 1 — or, equivalently, giving T a degree
of 1. This is called the Rees algebra of a.

We begin with

DEFINITION 15.3.5. If G is a graded ring (see definition 15.3.1 on the previous
page), a module, M, over G is a graded module if

M = M0 ⊕M1 ⊕ · · ·
with the property Gi ·Mj ⊂ Mi+j for all i, j ≥ 0.

If ℓ is an integer and M is a graded module over a graded ring, we define the
ℓ-twist of M, denoted M(ℓ) is defined by

M(ℓ)i = Mi+ℓ

REMARK. Although any k-algebra could be regarded as a graded algebra (put
it all in G0), some have a natural grading. For instance,

G = k[X0, . . . , Xn]

is naturally a graded ring by degrees of monomials, i.e., Gk consists of homoge-
neous polynomials of degree k. This grading is geometrically significant.

It is not hard to see

PROPOSITION 15.3.6. If I ⊂ G is a graded ideal in a graded algebra, the quotient

R =
G
I

is naturally a graded algebra with

(15.3.2) Rj =
Gj

Ij

for all j.

REMARK. Graded ideals are just graded submodules of G, regarding it as a
graded module over itself. In general, all of the results of section 6 on page 163
have versions for graded modules over graded algebras, given the following
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LEMMA 15.3.7. Let R = R0 ⊕ R1 ⊕ · · · be a graded ring and let M be a graded
module over R. If m ∈ M and p = ann(m) ⊂ R is prime, then p is homogeneous and p is
the annihilator of a homogeneous element of M.

PROOF. If r ∈ p, we have a unique expression r = ∑s
i=1 ri where ri is homoge-

neous of degree di, with d1 < d2 < · · · < ds. We will prove that p is homogeneous
by showing that r ∈ p implies that all of the ri ∈ p. By induction on s, it suffices to
show that r1 ∈ p.

Similarly, we have a unique expression m = ∑t
j=1 mj with mj homogeneous of

degree ei with e1 < · · · < et. We claim that r1 · m1 = 0, since this is the term in
r · m = 0 of lowest degree. This proves the result in the case where t = 1. Now
suppose it has been proved for all smaller values of t. The element

r1 ·m =
t

∑
j=2

r1 ·mj

is a sum of < t homogeneous components. Let q = ann(r1 · m). By induction, we
conclude that q is homogeneous if it is prime, and p ⊆ q. If p = q, we are done.
Otherwise, let g ∈ q \ p. Then g · r1 ·m = 0 so gr1 ∈ ann(m) = p. Since p is prime
and g /∈ p, we conclude that r1 ∈ p, and p is homogeneous.

Now, since p is homogeneous, p ·mj = 0 for all j, so

p = ann(m) ⊃
t⋂

j=1
ann(mj) ⊃ p

which implies that p =
⋂t

j=1 ann(mi) ⊃ ∏t
j=1 ann(mj). The fact that p is prime

implies that p ⊃ ann(mj) (see exercise 5 on page 115) for some j, which means that
p = ann(mj). □

With this in hand, we can easily generalize prime filtrations of modules to
graded modules:

LEMMA 15.3.8. Let M be a graded module over a graded ring, R. Then there exists a
finite ascending chain of graded-submodules

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mt = M

with the property that for each i
Mi+1

Mi
∼= R

pi
(ℓi)

where pi ⊂ R is a homogeneous prime ideal and ℓi is an integer.

PROOF. The proof is exactly the same as that of theorem 6.3.30 on page 242, ex-
cept that we use lemma 15.3.7 to guarantee that the ideals {pi} are all homogeneous
so that the quotients R/pi are now graded rings. The ℓi occur because the natural
grading of R/pi may be shifted in forming iterated quotients. □

We can also conclude something about other filtrations of modules:

DEFINITION 15.3.9. If M is a module over a ring R and a ⊂ R is an ideal, a
filtration

· · · ⊂ Mt ⊂ · · · ⊂ M0 = M
if called an a-filtration if a ·Mn ⊆ Mn+1 for all n ≥ 0. It is called a stable a-filtration if
a ·Mn = Mn+1 for all n > n0.

REMARK. Note that these conditions only apply from some finite point on.

We can define a kind of module-analogue of the Rees algebra:
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DEFINITION 15.3.10. If M is a module over a ring, R, with a filtration

· · · ⊂ Mt ⊂ · · · ⊂ M0 = M

define the Rees module of this to be

Γ(M) = M0 ⊕M1 ⊕ · · ·
REMARK. If the filtration is an a-filtration for some ideal a ⊂ R then Γ(M) is

naturally a graded-module over Γ(a), since at ·Mn ⊆ Mn+t.

One of our main results is:

LEMMA 15.3.11. If M is a finitely generated module over a ring R with an a-filtration

· · · ⊂ Mt ⊂ · · · ⊂ M0 = M

by finitely-generated submodules, for some ideal a ⊂ R, then Γ(M) is finitely generated
over Γ(a) if and only if this filtration is stable.

PROOF. If Γ(M) is finitely generated over Γ(a), then for some n

M0 ⊕ · · · ⊕Mn

generates all of Γ(M). Since the filtration is an a-filtration, we have ai ·Mn−i ⊆ Mn,
so we can really say that Mn generates

Mn ⊕Mn+1 ⊕ · · ·
and considerations of grading imply that Mn+i = ai ·Mn so the filtration is stable
from degree n on.

Conversely, if the filtration is stable from degree n on, then Mn+i = ai ·Mn so
that Γ(M) generated by M0 ⊕ · · · ⊕Mn over Γ(a). □

The main result of this section is

THEOREM 15.3.12 (Artin-Rees Theorem). Suppose R is a noetherian ring with ideal
a ⊂ R. If N ⊂ M are finitely generated R-modules and M has a stable a-filtration

· · · ⊂ Mt ⊂ · · · ⊂ M0 = M

then the filtration
· · · ⊂ Mt ∩ N ⊂ · · · ⊂ M0 ∩ N = N

is also a stable a-filtration. In other words there exists an integer n such that(
ai ·Mn

)
∩ N = ai · (Mn ∩ N)

PROOF. Since R is noetherian, a is finitely generated and Γ(a) is a finitely-
generated R-algebra, hence noetherian. Since the filtration on M is stable, Γ(M)
is finitely-generated over Γ(a). It is not hard to see that, computed with respect to
the induced filtration, Γ(N) ⊂ Γ(M), which means that it is also finitely generated
(see lemma 6.3.14 on page 227). The conclusion follows from lemma 15.3.11). □



Solutions to Selected Exercises

Chapter 3, 3.1 Exercise 1 (p. 18) They are numbers k such that k · ℓ ≡ 1 (mod m) for
some ℓ such that 0 < ℓ < m, or

k · ℓ = 1 + n ·m
or

k · ℓ− n ·m = 1

The proof of lemma 3.1.5 on page 14 implies that the smallest positive value attained
by linear combinations of ℓ and m is their greatest common divisor — in this case,
1. It follows that an integer 0 < k < m is a unit in Zm if and only if it is relatively
prime to m.

Chapter 3, 3.1 Exercise 2 (p. 18) We compute 123 = 27q1 + r1 with

q1 = 4
r1 = 15

Now 27 = 15q2 + r2 with

q2 = 1
r2 = 12

In stage 3, 15 = 12q3 + r3 with

q3 = 1
r3 = 3

The process terminates at this point so gcd(27, 123) = 3. Now we apply 3.1.12 on
page 17 to calculate a and b: x0 = 0 , y0 = 1, x1 = 1, y1 = −q1 = −4 and

x2 = x0 − q2x1 = −1
y2 = y0 − q2y1 = 5
x3 = x1 − q3x2 = 2
y3 = y1 − q3y2 = −9

So
3 = 2 · 123− 9 · 27

Chapter 3, 3.1 Exercise 3 (p. 18) This follows immediately from the fact that integers
uniquely factor into primes. Suppose

x = ∏ pαi
i

is an expression where the pi are primes. Clearly xy can be an integer: 641/2 = 8.
Suppose xy is not an integer but rational, i.e.(

∏ pαi
i
) R

S =
∏ amk

k

∏ bnℓ

ℓ

475
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where ∏ bnℓ

ℓ ̸= 1 and where the aj and the bℓ are disjoint sets of primes. Then

(
∏ pαi

i
)R

=
∏ amk ·S

k

∏ bnℓ ·S
ℓ

or

∏ pαi ·R
i =

∏ amk ·S
k

∏ bnℓ ·S
ℓ

∏ pαi ·R
i ·∏ bnℓ ·S

ℓ = ∏ amk ·S
k

This is a contradiction because the set of primes {bℓ} is disjoint from the {ak}.
Chapter 3, 3.2 Exercise 1 (p. 21) It is not hard to see that 7 ≡ 2 (mod 5). The fact
that modulo arithmetic preserves products implies that

7k ≡ 2k (mod 5)

for all k.

Chapter 3, 3.2 Exercise 3 (p. 21) Suppose k has the property that d · k ≡ 0 (mod n)
but k is not a multiple of n/d. Proposition 3.1.1 on page 13 implies that we can write

k = q · n
d
+ r

where 0 < r < n/d. If we multiply this by d we get

dk = qn + dr

≡ dr (mod n)

But dr < n since r < n/d so that dr ̸≡ 0 (mod n), a contradiction.

Chapter 3, 3.2 Exercise 4 (p. 21) Note that

p−
(

p− 1
2
− k
)
=

p + 1
2

+ k

so
p− 1

2
− k ≡ −

(
p + 1

2
+ k
)

(mod p)

so

(z!)2 = 1 · 2 · · · p− 1
2
· 1 · 2 · · · p− 1

2

= 1 · 2 · · · p− 1
2
· p− 1

2
· · · 2 · 1

≡ 1 · 2 · · · p− 1
2
·
(
− p + 1

2

)
· · ·
(
−
(

p + 1
2

+ k
))
· · · − (p− 1) (mod p)

Chapter 3, 3.3 Exercise 1 (p. 25) Since 52 = 4× 13

ϕ(52) = ϕ(4)ϕ(13)

= ϕ(22) · 12

= (4− 2) · 12

= 24



SOLUTIONS TO SELECTED EXERCISES 477

Chapter 3, 3.3 Exercise 2 (p. 25) This is just 71000 (mod 100) — so we must compute
ϕ(100). Since 100 = 22 · 52, we get

ϕ(100) = (22 − 2)(52 − 5) = 40

Since 40
∣∣ 1000, we conclude that

71000 ≡ 70 = 1 (mod 100)

so the lowest two digits are ‘01’.
Chapter 3, 3.4 Exercise 1 (p. 26) In this case (p − 1)(q − 1) = 120 so we may pick
n = 7. To find the corresponding m, we must find integers a and b such that

a · 7 + b · 120 = 1

Since 120 = 17 · 7 + 1, we conclude that a = −17 and b = 1. It follows that

(−17)7 ≡ (120− 17)7 ≡ 1 (mod 120)

so m = 120− 17 = 103.
Chapter 4, 4.1 Exercise 1 (p. 38) This follows from the basic property of an identity
element (statement 1 in definition 4.1.2 on page 34:

11 · 12 = 11 using g · 1 = g
= 12 using 1 · g = g

Chapter 4, 4.1 Exercise 2 (p. 38) Left-multiply the equation by a−1:

a−1ab = a−1ac

1 · b = 1 · c
b = c

Chapter 4, 4.1 Exercise 3 (p. 38) If a = R and b = c1, then table 4.1.1 on page 37
shows that

Rc1 = d2

= d−1
2

R−1c−1
1 = d1

Chapter 4, 4.1 Exercise 4 (p. 38) In the equation ab = 1, multiply on the left by a−1.
We get

a−1ab = a−1

1b = a−1

b = a−1

so the conclusion follows from statement 2 in definition 4.1.2 on page 34.
Chapter 4, 4.1 Exercise 5 (p. 38) Just multiply them together

ab · b−1a−1 =a · 1 · a−1

=1

Chapter 4, 4.1 Exercise 6 (p. 38) These are elements x ∈ Z10 with the property that
n · x ranges over all of the elements of Z10 as n ∈ Z varies. In particular, there is a
value of n such that n · x = 1 ∈ Z10. Example 3.2.6 on page 20 shows that these are
the elements x such that gcd(x, 10) = 1 or {1, 3, 7, 9}.

Chapter 4, 4.1 Exercise 7 (p. 38) It is easy to see that it is closed under multiplica-
tion.
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Chapter 4, 4.1 Exercise 11 (p. 39) If we form all possible powers of g, we get a set
{g, g2, g3, . . . }. Since G is finite, we must have gj = gk for some values of j and k. If
k > j, multiply this equation by g−j to get

gk−j = 1

Chapter 4, 4.1 Exercise 13 (p. 39) Besides (0, 0) and the entire Klein 4-group, there
are the subgroups

Z2 × 0, and 0×Z2

and the subgroup generated by (1, 1).
Chapter 4, 4.2 Exercise 1 (p. 40) This follows from the fact that f (1) has the property
that its product with f (g) ̸= 1 is f (g):

f (1) f (g) = f (1g) = f (g)

f (1) f (g) f (g)−1 = f (g) f (g)−1

f (1) = 1

Chapter 4, 4.2 Exercise 2 (p. 40) This follows from the fact that

f (g−1) f (g) = f (g−1g) = f (1) = 1

Chapter 4, 4.2 Exercise 3 (p. 40) If k1, k2 ∈ ker f , then f (k1k2) = f (k1) f (k2) = 1 ·
1 = 1 so k1k2 ∈ ker f .

Chapter 4, 4.2 Exercise 7 (p. 40) These isomorphisms are both immediate
consequences of the Chinese Remainder Theorem 3.3.5 on page 24.

Chapter 4, 4.4 Exercise 1 (p. 47) If h1k1 and h2k2 are elements of HK, h1k1h2k2 =

h1h2h−1
2 k2h2. Since K is normal, h−1

2 k2h2 = k′ ∈ K and h1k1h2k2 = h1h2k′ ∈ HK.
Chapter 4, 4.4 Exercise 2 (p. 47) Certainly, K ⊂ HK. Since it is normal in the whole
group G, it is also normal in the smaller group HK.

Chapter 4, 4.4 Exercise 3 (p. 47) If x ∈ H ∩ K and h ∈ H, then hxh−1 ∈ H because
H is a subgroup, and hxh−1 ∈ K because x ∈ K and K is normal. It follows that
hxh−1 ∈ H ∩ K.

Chapter 4, 4.4 Exercise 4 (p. 48) Consider the cosets used in forming the quotient
HK/K — they are of the form hk · K = h · K. It follows that the map

h 7→ h · K
defines a surjective homomorphism

f : H → HK
K

An element h ∈ H is in the kernel if and only if h ∈ K, i.e. if and only if h ∈ H ∩ K.
The conclusion follows from the First Isomorphism Theorem, 4.4.8 on page 45.

Chapter 4, 4.4 Exercise 5 (p. 48) If K ⊂ H, then p(H) ⊂ G/K is a subgroup. If W ⊂
G/K is a subgroup, then

p−1(W) =
⋃

x∈G,p(x)∈W

xK

contains K and is closed under multiplication and the act of taking inverses, so it is
a subgroup of G. If W ◁ G/K, it is not hard to see that p−1(W) is normal in G.

Chapter 4, 4.4 Exercise 6 (p. 48) The statement that H/K ◁ G/K follows from the
Correspondence Theorem (exercise 5 on page 48). We define a homomorphism

p: G → G/K
H/K
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by p(g) = g · K · H, which equals g · H since K ⊂ H. Since this homomorphism is
clearly surjective, the conclusion follows from theorem 4.4.8 on page 45.

Chapter 4, 4.4 Exercise 8 (p. 48) We have to verify that Z(G) is closed under multi-
plication. If z1, z2 ∈ Z(G), and g ∈ G is an arbitrary element, then

gz1z2 = z1gz2 = z1z2g

so z1z2 ∈ Z(G).

Chapter 4, 4.4 Exercise 9 (p. 48) Since the elements of Z(G) commute with every-
thing in G, they also commute with each other.

Chapter 4, 4.4 Exercise 10 (p. 48) The second isomorphism theorem implies that

p1: G → G
H
∼= K

p2: G → G
K
∼= H

and the map

(p1, p2): G → K× H

is an isomorphism.

Chapter 4, 4.4 Exercise 11 (p. 48) If x ∈ G then theorem 4.4.2 on page 43 implies
that the order of x is a divisor of 4, in other words, 2 or 4. If ord(x) = 4 then
G = {1, x, x2, x3} and G is cyclic. If G has no elements of order 4, its elements (other
than 1) must be of order 2. Suppose G = {1, x, y, z}. Then xy ̸= x and xy ̸= y so
xy = z. Similar reasoning shows that yx = z, xz = zx = y, yz = zy = x and G is
abelian.

Chapter 4, 4.4 Exercise 12 (p. 48) This follows from the fact that gh1g−1 · gh2g−1 =
gh1h2g−1, so Hg is closed under the group-operation.

Chapter 4, 4.4 Exercise 13 (p. 48) Fix an element g ∈ G. We must show that the map

f : G → G
x 7→ xg

is an automorphism. This means

(1) it is a homomorphism: xg
1 xg

2 = gx1g−1gx2g−1 = g(x1x2)g−1 = (x1x2)
g.

(2) it is injective: xg
1 = xg

2 =⇒ x1 = x2.
(3) it is surjective x ∈ G =⇒ x = (xg−1

)g.

Chapter 4, 4.4 Exercise 14 (p. 48) Every automorphism is bijective, so it has an in-
verse. The composition of two automorphisms is an automorphism.

Chapter 4, 4.4 Exercise 15 (p. 48) Any automorphism of Zm (or any cyclic group,
for that matter) is uniquely determined by its effect on 1. If f ∈ Aut(Zm) and
f (1) = k ∈ Zm 1to k ∈ Zm then f (n) = k · n and multiplication by k is an automor-
phism if and only if k ∈ Z×m .

Chapter 4, 4.4 Exercise 16 (p. 48) The composite of two inner automorphisms is an
inner automorphism:

(xg1 )g2 = g2(g1xg−1
1 )g−1

2 = xg2g1

Chapter 4, 4.4 Exercise 17 (p. 48) Suppose f : G → G is an automorphism of G. If
x, g ∈ G then conjugating by an automorphism, f , means computing the composite
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f (( f−1x)g), given by

f ( f−1(x)g) = f (g f−1(x)g−1)

= f (g)x f (g−1)

= x f (g)

which is still an inner automorphism.

Chapter 4, 4.4 Exercise 18 (p. 48) It is not hard to see that [g1, g2]
h = [gh

1 , gh
2 ].

Chapter 4, 4.4 Exercise 19 (p. 49) Let

p: G → G
[G, G]

If g1, g2 ∈ G, then p([g1, g2]) = 1 = p(g1)p(g2)p(g1)
−1 p(g2)

−1. Multiplying the
equation

p(g1)p(g2)p(g1)
−1 p(g2)

−1 = 1

on the right by p(g2) and then p(g1) gives the equation

p(g1)p(g2) = p(g2)p(g1)

in the quotient.
Chapter 4, 4.4 Exercise 20 (p. 49) Let g, h ∈ G. Since A is abelian
p(g)p(h)p(g)−1 p(h)−1 = p(ghg−1h−1) = 1, which implies that ghg−1h−1 ∈ K.

Chapter 4, 4.5 Exercise 3 (p. 58) This follows from a straightforward induction on
the number of cycles in g and proposition 4.5.11 on page 54 and corollary 4.5.12 on
page 54.

Chapter 4, 4.5 Exercise 4 (p. 58) If x ∈ Z(S3), then xy = yx for any y ∈ S3, or
xyx−1 = y for all y ∈ S3. But xyx−1 has the same cycle-structure as y with ele-
ments mapped via x — see proposition 4.5.11 on page 54. If x ̸= 1 it follows that
y ̸= xyx−1, so Z(S3) = {1}, the trivial group.

Chapter 4, 4.5 Exercise 5 (p. 58) Just consider the effect each element of D8 has on
the vertices: the rotation is the permutation (1, 2, 3, 4), the reflections are (1, 2)(3, 4)
, (1, 3), (1, 4)(2, 3), and (2, 4).

Chapter 4, 4.5 Exercise 6 (p. 58) By re-indexing, if necessary, we can assume the 5-
cycle is (1, 2, 3, 4, 5) and that the transposition is (1, i). If i = 5, we can reduce to the
case where i = 2 because

(15.3.3) (1, 5)(1,2,3,4,5) = (1, 2)

If i = 4 we get

(1, 4)(1,2,3,4,5)2
= (1, 3)

Claim: we can always assume (1, 2) ∈ G. If (1, 3) ∈ G, then note that

(1, 3)(1,2,3,4,5)2
= (3, 5)

and
(1, 3)(3, 5)(1, 3) = (1, 5)

and the conclusion follows from equation 15.3.3.
It follows that (1, 2) ∈ G and

(1, 2)(1,2,3,4,5)i−1
= (i, i + 1)

implies that all the adjacent transpositions lie in G as well. The conclusion follows
from corollary 4.5.6 on page 52.
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Chapter 4, 4.6 Exercise 1 (p. 72) Note that 60 = 22 · 3 · 5 so that theorem 4.6.10 on
page 65 implies that there are two abelian groups of order 60:

Z2 ⊕Z2 ⊕Z3 ⊕Z5

Z4 ⊕Z3 ⊕Z5

Chapter 4, 4.6 Exercise 2 (p. 72) Note that x ∈ Q× can be uniquely written in the
form

x = pk1
1 · · · pkn

n

where the pi are prime numbers. It follows that the prime numbers form a basis of
Q+.

Chapter 4, 4.6 Exercise 3 (p. 73) If A has a countable basis, it is essentially
∞⊕

i=1
Z =

∞⋃
n=1

(
n⊕

i=1
Z

)
which is a countable union of countable sets — therefore countable. It follows that
an uncountable free abelian group has a uncountable basis so A/2A is an uncountable
direct sum of copies of Z2 and is uncountable itself.

Chapter 4, 4.6 Exercise 4 (p. 73) Just map the sequence

(n1, . . . )

to
(m1, . . . )

where mi = 2ini. This defines a homomorphism B → S, which shows that S is
uncountable.

Chapter 4, 4.6 Exercise 5 (p. 73) Since every infinite sequence in S

(n1, . . . )

is eventually divisible by an arbitrarily high power of 2, we can eventually divide it
by 2 to get another sequence in S. Given a sequence in S

x = (n1, . . . , nk, . . . )

there exists another sequence

(0, . . . , 0, nk+1/2, nk+2/2, . . . )

in S. When we take the quotient, x will be in the same coset as

(n1, . . . , nk, 0, . . . )

This means that
S

2S
∼=

n⊕
i=1

Z2

which is countable.
Chapter 4, 4.6 Exercise 6 (p. 73) If the Baer-Specker group, B, is free abelian, propo-
sition 4.6.6 on page 61 implies that the subgroup, S, defined in exercise 4 on page 73
is also free abelian. Then exercise 3 on page 73 implies that S/2S will be uncount-
able. Since exercise 5 on page 73 shows that this is not the case, we get a contradic-
tion.

Chapter 4, 4.7 Exercise 1 (p. 80) Since G has order p2, proposition 4.7.14 on page 79
implies that Z(G) is of order p or p2. If it is of order p2, we are done, since the center
is abelian. If it is of order p then

G
Z(G)

= Zp
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and every element of G can be written in the form g = z · vi where z ∈ Z(G) = Zp
and v maps to a generator of the quotient. All such elements commute with each
other.

Chapter 4, 4.7 Exercise 3 (p. 80) The equation

(n1, h1) · (n2, h2) = (n1 φ(h1)(n2), h1h2) = (1, 1)

shows that h2 = h−1
1 and

(
φ(h1)

−1(n1)
)−1

= φ(h−1
1 )(n−1

1 ) = n2, so (n, h)−1 =

(φ(h−1)(n−1), h−1).

Chapter 4, 4.7 Exercise 4 (p. 80) This is direct computation

(1, h) · (n, 1) · (1, h)−1 = (φ(h)(n), h1) · (1, h)−1

= (φ(h)(n), h) · (φ(h−1)(1), h−1)

=
(

φ(h)(n)φ(h)
(

φ(h−1)(1)
)

, 1
)

= (φ(h)(n), 1)

Chapter 4, 4.7 Exercise 5 (p. 80) This is straight computation

(n1, h1) · (n2, h2) = n1h1n2h2

= n1h1n2h−1
1 h1h2

= n1(h1n2h−1
1 )h1h2

= n1 φ(h1)(n2)h1h2

Chapter 4, 4.8 Exercise 1 (p. 84) The first Sylow Theorem implies that G has a sub-
groups of order 5 and of order 7 — both of which are cyclic (because 5 and 7 are
primes — see proposition 4.4.4 on page 43). The second Sylow theorem states that
all 5 element subgroups are conjugate, and all 7-element subgroups are conjugate.
The third Sylow theorem states that the number of distinct 7-element subgroups
must divide 5 and be congruent to 1 modulo 7 — i.e. there must be only one of them,
so the 7-element subgroup is normal. It also follows that the 5-element subgroup is
normal. If x generates the 5-element subgroup and y generates the 7-element one,
then conjugation by y induces an automorphism of the 5-element subgroup. The
group of automorphisms of Z5 is Z4 (see exercise 15 on page 48), so if this auto-
morphism is not the identity, its order must divide 4 — which is impossible.

Chapter 4, 4.8 Exercise 2 (p. 84) Since 70 = 2 · 5 · 7 we have Sylow 2-groups, 5-
groups, and 7-groups. If n7 is the number of distinct Sylow 7-groups, the third
Sylow theorem states that n7

∣∣ 10 and n7 ≡ 1 (mod 7). The only possible value that
satisfies these conditions is n7 = 1. Since all conjugates of this Sylow 7-group are
7-groups, it follows that this Sylow subgroup is normal.

Chapter 4, 4.9 Exercise 1 (p. 87) Let

{1} ⊂ G0 ◁ G1 ◁ · · · ◁ Gk ◁ G

be a composition series with each Gi+1/Gi ∼= Zpi+1 with pi a prime. Then Gk is a
subgroup with [G: Gk] = pk, a prime.

Chapter 4, 4.9 Exercise 2 (p. 87) Clearly definition 4.9.7 on page 86 implies the new
definition. Conversely, if a group, G, has a subnormal series

(15.3.4) {1} ⊂ G0 ⊂ G1 ⊂ · · · ⊂ G

with Gi+1/Gi = Ai+1, an abelian group for all i, we can refine it (i.e. add more
terms) to get a composition series for G that satisfies definition 4.9.7 on page 86. Fix
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a value of i and let
p: Gi → Ai = A

be the projection to the quotient. If

{1} ⊂ L0 ◁ L1 ◁ · · · ◁ Lk ◁ A

is a composition series for A, let Pj = p−1(Lj). It is not hard to see that P0 = Gi−1
and we replace the portion Gi−1 ◁ Gi of equation 15.3.4 on the preceding page by

Gi−1 ◁ P1 ◁ · · · ◁ Pk ◁ Gi

The Third Isomorphism Theorem (see exercise 6 on page 48) implies that

Pj+1

Pj
∼=

Lj+1

Lj

so the quotients are all cyclic groups of prime order.
The conclusion follows by performing this refinement-operation on every stage

of 15.3.4 on the preceding page.
Chapter 4, 4.9 Exercise 4 (p. 87) Since G is solvable, there exists a composition series

{1} ⊂ G0 ◁ G1 ◁ · · · ◁ Gk ◁ G

with each factor Gk/Gk+1 cyclic — in particular abelian. We claim that this implies
that [Gk, Gk] ⊂ Gk+1 since [Gk, Gk] is the smallest normal subgroup of Gk giving an
abelian quotient (see exercise 20 on page 49). Since H ⊂ K implies that [H, H] ⊂
[K, K], a simple induction implies that all of the terms of the derived series of G are
contained in corresponding terms of the composition series (allowing for the fact that
they are indexed in opposite ways!).

Since the composition series terminates with {1} in a finite number of steps, so
must the derived series.

Conversely, if the derived series terminates in a finite number of steps, it is
a subnormal series with abelian quotient groups, so the conclusion follows from
exercise 2 on page 87.

Chapter 4, 4.9 Exercise 5 (p. 87) Both conclusions follow from exercise 4 on page 87.
If G is solvable and H ⊂ G with derived series

· · · ⊂ Gn ⊂ · · · ⊂ G1 ⊂ G0 = G
and

· · · ⊂ Hn ⊂ · · · ⊂ H1 ⊂ H0 = H
Since H ⊂ K implies that [H, H] ⊂ [K, K], a simple induction shows that Hi ⊂ Gi
for all i. Since the derived series of G terminates in a finite number of steps, the
same is true of the derived series of H.

If
p: G → H

is a surjective homomorphism, then p([G, G]) = [H, H] and a simple induction
shows that p(Gi) = Hi. Again, the finite termination of G’s derived series implies
that of H.

Chapter 4, 4.9 Exercise 6 (p. 87) Since G/H is solvable, let

{1} ⊂ Q0 ◁ Q1 ◁ · · · ◁ Qk ◁ Q = G/H

be its composition series. This “lifts” to a series in G,

H ◁ G0 ◁ G1 ◁ · · · ◁ Gk ◁ G

and we splice this with a composition series for H to get a complete one for G.
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Chapter 4, 4.10 Exercise 1 (p. 93) This follows from the basic property of a free
group, theorem 4.10.5 on page 88, and exercise 5 on page 80.

Chapter 4, 4.10 Exercise 2 (p. 93) The group (Q,+) is generated by elements
{1/n!, n ∈ Z+}. Define a homomorphism

f : G → (Q,+)

via

1 7→ 0

xn 7→ 1/n!

x−1
n 7→ −1/n!

where multiplication in G corresponds to addition in (Q,+). This is compatible
with the relations because n · 1/n! = 1/(n− 1)!. It is clearly surjective, so we must
analyze the kernel. Note:

G is abelian. This follows from the fact that in a product, xixj, both xi and xj are
powers of xmax(i,j) so they commute.

Suppose

(15.3.5) g = xα1
1 · · · xαn

n

is in the kernel of f (where, without loss of generality, we assume the letters are
arranged in order of increasing subscripts). This means

α1 + α2/2! + · · ·+ αn/n! = 0

(n!α1 + (n!/2!)α2 + · · ·+ αn) /n! = 0

We can also do the same for the expression in 15.3.5 to get

g = xn!α1+(n!/2!)α2+···+αn
n = x0

n = 1

Chapter 4, 4.10 Exercise 5 (p. 104) We know H is free, because of corollary 4.10.26
on page 104. It cannot be free on a finite number of generators because xiyi cannot
be written in terms of xjyj for all values of j ̸= i.

Chapter 5, 5.2 Exercise 2 (p. 115) Since (x, y) = R it follows that there exist a, b ∈ R
such that

ax + by = 1

or ax = 1 in R/(b). This means that anxn = 1 in R/(b) so that (xn, y) = R. A
similar argument with the image of b in R/(a) implies the conclusion.

Chapter 5, 5.2 Exercise 3 (p. 115) Suppose α has a multiplicative inverse

β =
∞

∑
j=0

bjX j

Then the product is

α · β =
∞

∑
n=0

cnXn

where c0 = a0 · b0 = 1.
Chapter 5, 5.2 Exercise 5 (p. 115) If a ̸⊂ p and b ̸⊂ p then there exists x ∈ a with
x /∈ p and y ∈ b with y /∈ p. The product, xy, will be in a · b so xy ∈ p. This
contradicts the definition of a prime ideal (see definition 5.2.3 on page 111).

Chapter 5, 5.2 Exercise 6 (p. 116) Suppose x · y ∈ p but x /∈ p. Then there exists an
integer n such that, for i > n, x /∈ pi. The fact that pi is prime implies that y ∈ pi for
i > n, so y ∈ p.
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Chapter 5, 5.2 Exercise 7 (p. 116) The ideal (X) consists of polynomials such that
the X-degree of every monomial is ≥ 1. If a(X) · b(X) ∈ (X), each monomial of
a(X) · b(X) must have X-degree ≥ 1. If a(X) and b(X) both contain a monomial
of X-degree 0, the product of those monomials will also have X-degree zero and
a(X) · b(X) /∈ (X).

This ideal is not maximal because it is contained in the proper ideal (X, Y).
Chapter 5, 5.2 Exercise 8 (p. 116) This map clearly preserves addition. It remains to
show that f (x · y) = f (x) · f (y) for all x, y ∈ Q[

√
2]. If

x = a + b
√

2
y = c + d

√
2

are two elements, then

xy = ac + 2bd + (ad + bc)
√

2

and

f (x) = a− b
√

2

f (y) = c− d
√

2

so
f (x) · f (y) = ac + 2bd− (ad + bc)

√
2 = f (x · y)

Chapter 5, 5.2 Exercise 9 (p. 116) If

x = a + b
√

2
y = c + d

√
2

are two elements of Q[
√

2], then

xy = ac + 2bd + (ad + bc)
√

2

If we set c = a and d = −b, so y = a− b
√

2, then we get

xy = a2 − 2b2 ∈ Q

and the
√

2 term is zero. It follows that

(a + b
√

2)−1 =
a− b

√
2

a2 − 2b2

If a + b
√

2 ̸= 0, denominator is nonzero since
√

2 is irrational.

Chapter 5, 5.2 Exercise 10 (p. 116) If r is not a unit, (r) ⊂ R is a proper ideal and
there exists a maximal ideal m such that (r) ⊂ m. But r − 1 ∈ J ⊂ m (since J is
the intersection of all maximal ideals), so r and r − 1 are both contained in m. This
implies that r− (r− 1) = 1 ∈ m, which contradicts the fact that m is a proper ideal
of R.

Chapter 5, 5.2 Exercise 11 (p. 116) Without loss of generality assume i = 1 and write

R = (a1 + a2)(a1 + a3) · · · (a1 + an)

When carrying out the multiplication, all but one term in the product has a factor of
a1, hence is contained in a1 (by the defining property of an ideal — see definition 5.2.3
on page 111). The one exception is the term a1 + ∏n

j=2 aj — and this contains a1 and
all of the other terms. It follows that

R = (a1 + a2) · · · (a1 + an) ⊆ a1 +
n

∏
j=2

aj
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so

a1 +
n

∏
j=2

aj = R

Chapter 5, 5.2 Exercise 12 (p. 116) We get a natural map

(15.3.6) R→
n

∏
i=1

R
ai

that sends x ∈ R to (p1(x), . . . , pn(x)), where pi is the natural projection

pi: R→ R
ai

The kernel of the map in 15.3.6 is clearly a. It only remains to show that this map is
surjective. Use the solution to exercise 11 on page 116 to conclude that

ai + ∏
j ̸=i

aj = R

for all i. This means that, for each i, there is an element ui ∈ ai and vi ∈ ∏j ̸=i aj
such that ui + vi = 1. It is not hard to see that

pi(vi) = 1
pj(vi) = 0

for any j ̸= i. If

(x1, . . . , xn) ∈
n

∏
i=1

R
ai

is an arbitrary element, set

x =
n

∑
i=1

xivi

Then pi(x) = pi(vixi) = xi so the map is surjective.
Chapter 5, 5.3 Exercise 1 (p. 121) We work in the ring F[x]. Definition 5.3.3 on
page 118 and example 5.3.4 on page 118 implies that αn = 1 in F if and only if
x− α|(xn − 1). Each such x− α is an irreducible factor of xn − 1 and we get

xn − 1 = (x− α1)(x− α2) · · · (x− αk)p(x)

where p(x) is a product of the other irreducible factors. Corollary 5.3.7 on page 118
implies that this factorization is unique, so k ≤ n.

Chapter 5, 5.3 Exercise 2 (p. 121) Two functions g1, g2 ∈ C[0, 1] map to the same
element of the quotient C[0, 1]/fa if and only if g1(a) = g2(a). It follows that
C[0, 1]/fa ∼= R. Since this is a field, lemma 5.3.2 on page 117 implies that famust
be maximal.

Chapter 5, 5.3 Exercise 3 (p. 121) We start by dividing the larger polynomial by the
smaller one to get

b(X) = q1(X) · a(X) + r1(X)

q1(X) = X− 3

r1(X) = 10X3 − 7X2 + 3X + 8

Now we compute

a(X) = q2(X) · r1(X) + r2(X)

q2(X) =
1
10

X2 − 7
100

X− 81
1000

r2(X) = − 1577
1000

X2 +
683

1000
X− 706

125
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Now we divide r1(X) by r2(X) to get

r1(X) = q3(X) · r2(X) + r3(X)

q3(X) =
10000
1577

X +
4209000
2486929

r3(X) =
93655000
2486929

X− 3877000
2486929

We finally divide r2(X) by r3(X) to get

r2(X) = q4(X)r3(X) + r4(X)

q4(X) = − 3921887033
93655000000

X +
8992165757259

548203689062500

r4(X) =
6220545559984
1096407378125

Since this is a unit of Q[X], it shows that a(X) and b(X) are relatively prime.

Chapter 5, 5.3 Exercise 4 (p. 121) In R, X5 ∤ X6 and their common divisors are 1, X2

, and X3 — none of which is divisible in R by the other two.
Chapter 5, 5.3 Exercise 5 (p. 121) We get an injective homomorphism

R
f−1(p)

↪→ S
p

Since p is prime S/p is an integral domain — see lemma 5.3.2 on page 117. This
means R/ f−1(p) is also an integral domain, which implies that f−1(p) is prime.

Chapter 5, 5.4 Exercise 1 (p. 125) This is just the pigeonhole principal: Suppose R
is an integral domain with n elements and x ∈ R is nonzero. Multiply all of the
nonzero elements of R by x:

{x · y1, . . . , x · yn−1}
We claim that these products must all be distinct. If x · yi = x · yj then x · (yi − yj) =
0 and the only way this can happen in an integral domain is for yi = yj. It follows
that 1 must be in this set of products, so 1 = x · yk for some k and yk = x−1.

Chapter 5, 5.4 Exercise 2 (p. 125) This follows immediately from the Ascending
Chain Condition and lemma 5.2.9 on page 114.

Chapter 5, 5.4 Exercise 3 (p. 125) The ring Q[X, Y] is certainly an integral domain.
So see that it is not Euclidean note that the two variables X and Y have no common
divisors other than 1.

If Q[X, Y] was a Euclidean ring, it would be possible to find polynomials
a(X, Y) and b(X, Y) such that

1 = a(X, Y) · X + b(X, Y) ·Y
This is impossible since we could make the right side of the equation equal to 0 by
setting X = 0 and Y = 0, so we would get

1 = 0

It is interesting that Q[X, Y] has unique factorization — see Lemma 5.6.2 on
page 147.

Chapter 5, 5.4 Exercise 4 (p. 125) Suppose an ideal I contains polynomials
p(X), q(X). If these polynomials are relatively prime in Q[X] then there is a linear
combination

a(X)p(X) + b(X)q(X) = 1
in Q[X], and after clearing out the denominators, we get

n · a(X)p(X) + n · b(X)q(X) = n
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so this ideal also contains an integer, n. If an ideal does not contain any integer then
it is not maximal.

The requirement that Z[X]/I is a field (see lemma 5.3.2 on page 117) implies
that n is a prime, p. We can compute the quotient of Z[X]/I in two stages:

Form the quotient with respect to (p), forming

Zp[X]

and then taking the quotient by the image of the polynomials in I. Since Zp[X] is
a principal ideal domain, we can assume that the image of I in Zp[X] is a principal
ideal (q(X)). The quotient

Zp[X]/(q(X))

is a field if and only if q(X) is irreducible. It follows that our maximal ideals of Z[X]
are all of the form

(p, qp(X))

where p ∈ Z is a prime and qp(X) has an irreducible image in Zp[X]. Two such
ideals

(p, ap(X)), (p, bp(X))

will be equal if and only if (ap(X)) = (bp(X)) ⊂ Zp[X].

Chapter 5, 5.4 Exercise 5 (p. 125) This follows by straightforward induction on n
and proposition 5.1.9 on page 109.

Chapter 5, 5.4 Exercise 6 (p. 125) Since R is noetherian, N(R) = (x1, . . . , xn) for
some finite set of elements of N(R). Each of these elements must be nilpotent, i.e.

xαi
i = 0

for suitable values of αi. If α = max(α1, . . . , αn) then the Pigeonhole Principal im-
plies that

N(R)n·α = 0

Chapter 5, 5.4 Exercise 7 (p. 125) The localization, Rp, only has one prime ideal, p ·
Rp, and theorem 12.2.8 on page 421 implies that all of the elements of p · Rp are
nilpotent. If x ∈ p, then x/1 ∈ p · Rp is nilpotent so that there exists an element,
y ∈ R \ p such that y · xn = 0 for some n.

Chapter 5, 5.5 Exercise 1 (p. 141) We plug x = 1/2, y = 1/2, and z = 1 +
√

2/2 into
the ideal P in example 5.5.17 on page 139 to give

P′ = (−1 + 2 b5
2,−b5 + a5,−2−

√
2 + 2 b4 + b4

√
2,

− 1 + b4,−2 + 2 b4
2, a4, b3 + b5b4,−

√
2 + 2 a3,

√
3b5 +

√
3b5
√

2− 2 b4
√

3b5 + 3 b2,

3 a2 − 2
√

3− 1/2
√

2
√

3 + b4
√

3)

If we take a Gröbner basis of this, we get an even simpler representation

P′ = (−1 + 2 b5
2,−b5 + a5,−1 + b4, a4, b3 + b5,−

√
2 + 2 a3,

3 b2 +
(√

2
√

3−
√

3
)

b5, 6 a2 −
√

2
√

3− 2
√

3)
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from which we conclude

a5 = b5 = ±1/
√

2
b4 = 1
a4 = 0
b3 = −b5

a3 = 1/
√

2

b2 = −b5(
√

6−
√

3)/3

a2 = (
√

6 + 2
√

3)/6

which gives two solutions:

(1) ϕ1 = 45◦, θ1 = 90◦, θ2 = 315◦, θ3 = 99.735◦

(2) ϕ1 = 225◦, θ1 = 90◦, θ2 = 45◦, θ3 = 80.264◦

Note that the two possible values of θ3 sum up to 180◦.

Chapter 5, 5.5 Exercise 2 (p. 141) We start with the same equations as before:

a5a4a3 − a5b4b3 + a5a4 − x = 0
b5a4a3 − b5b4b3 + b5a4 − y = 0

b4a3 + a4b3 + b4 − z = 0

a2
3 + b2

3 − 1 = 0

a2
4 + b2

4 − 1 = 0

a2
5 + b2

5 − 1 = 0(15.3.7)

And we plug in the new directions to get

(a5a4a3 − a5b4b3) a2 + (−a5a4b3 − a5b4a3) b2 − 1 = 0

(b5a4a3 − b5b4b3) a2 + (−b5a4b3 − b5b4a3) b2 = 0

(b4a3 + a4b3) a2 + (a4a3 − b4b3) b2 = 0

a2
2 + b2

2 − 1 = 0(15.3.8)

The Gröbner basis with lexicographic ordering is

(y, b5, a5
2 − 1,

4 x2b4
2 − 4 x2 + 2 x2z2 − 4 x2zb4 + x4 + z4 − 4 z3b4 + 4 z2b4

2,

z2a5 − 2 za5b4 + x2a5 + 2 xa4,

− 4 xa5 + 4 zb4a4 − 2 z2a4 + 4 b4
2xa5 + z2a5x− 2 za5xb4 + x3a5,

a4
2 + b4

2 − 1,

2 b4a4 − za4 + b3 + xa5b4

− 2 + 4 b4
2 − 4 zb4 + z2 + 2 a3 + x2,

za5 − a5b4 + b2,−a5a4 − x + a2)

from which we conclude that y = 0 and a5 = ±1. The term next to the last implies
that

x2 − 4zb4 + z2 + 4b2
4 = x2 + (z− 2b4)

2 = 2− 2a3

which means x and z lie on a circle of radius
√

2(1− a3) and center (0, 2b4). If we
specify that a3 = c, some constant and take a further Gröbner basis (not including c
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in the list of variables), we get an additional relation between x and z (among other
things):

(c− 1)z2 + (1 + c)x2 = 0

or

z = ±x
√

1 + c
1− c

so the reachability set is contained in this pair of lines in the xz-plane (and very
small!). The possible values of z are

b4c + b4 ±
√

1− b4
2 − c2 + b4

2c2

It is interesting that, although the set of points that can be reached is limited, there
are many ways to reach each of these points.

Chapter 5, 5.5 Exercise 3 (p. 141) We compute the intersection of the principal
ideals generated by these polynomials and take their intersection, using the
method of proposition 5.5.15 on page 135: we find a Gröbner basis of the ideal

(T(−X3 − 2 YX2 − XY2 + 2 X),

(1− T)(4− 4 X2 − 4 Y2 + X4 − 2 Y2X2 + Y4))

using a lexicographic ordering T ≻ X ≻ Y to get

Y4X− 2 X3Y2 + X5 − 4 XY2 − 4 X3 + 4 X,

X4 − 3 Y2X2 − 2 X2 + TY2X2 − 2 TX2 − 2 XY3

+ 4 XY + 2 XTY3 − 4 TXY + Y4T − 4 TY2 + 4 T,

− X3 − 2 YX2 − XY2 + 2 X + X3T + 2 YTX2 + XTY2 − 2 XT

Since the only term that does not contain T is the top one, it is the answer.

Chapter 5, 5.5 Exercise 4 (p. 141) No. The basis given for a is a Gröbner basis with
lexicographic ordering and

X + Y →a 2Y

so X + Y /∈ a.

Chapter 5, 5.5 Exercise 5 (p. 141)

X + Y →a X + Y
(X + Y)2 →a 4XY

(X + Y)3 →a 12 XY2 − 4 Y3

(X + Y)4 →a 32 XY3 − 16 Y4

(X + Y)5 →a 0

so (X + Y)5 ∈ a.

Chapter 5, 5.5 Exercise 6 (p. 141) We compute the intersection of the principal
ideals generated by these polynomials and take their intersection, using the
method of proposition 5.5.15 on page 135: we find a Gröbner basis of the ideal

(T(−X3 − 2 YX2 − XY2 + 2 X),

(1− T)(4− 4 X2 − 4 Y2 + X4 − 2 Y2X2 + Y4))
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using a lexicographic ordering T ≻ X ≻ Y to get

Y4X− 2 X3Y2 + X5 − 4 XY2 − 4 X3 + 4 X,

X4 − 3 Y2X2 − 2 X2 + TY2X2 − 2 TX2 − 2 XY3

+ 4 XY + 2 XTY3 − 4 TXY + Y4T − 4 TY2 + 4 T,

− X3 − 2 YX2 − XY2 + 2 X + X3T + 2 YTX2 + XTY2 − 2 XT

Since the only term that does not contain T is the top one, it is the answer.
Chapter 5, 5.5 Exercise 7 (p. 141) No. The basis given for a is a Gröbner basis with
lexicographic ordering and

X + Y →a 2Y
so X + Y /∈ a.

Chapter 5, 5.5 Exercise 8 (p. 141)

X + Y →a X + Y
(X + Y)2 →a 4XY

(X + Y)3 →a 12 XY2 − 4 Y3

(X + Y)4 →a 32 XY3 − 16 Y4

(X + Y)5 →a 0

so (X + Y)5 ∈ a.

Chapter 5, 5.5 Exercise 9 (p. 144) The presence of X3 implies that we should start
with

σ3
1 = X3 + 3X2Y + 3X2Z + 3Y2Z + Y3 + Z3 + 6XYZ

so
X3 + Y3 + Z3 − σ3

1 = −3X2Y− 3X2Z− 3Y2Z− 6XYZ

The highest ordered monomial is −3X2Y, which is the highest ordered monomial
of −3σ1σ2 (see equation 5.5.15 on page 143). We get

X3 + Y3 + Z3 − σ3
1 + 3σ1σ2 = 3XYZ

= 3σ3

so
X3 + Y3 + Z3 = σ3

1 − 3σ1σ2 + 3σ3

Chapter 5, 5.5 Exercise 10 (p. 144) The roots of Xn − 1 are ωi, for 0 ≤ i < n, where
ω = e2πi/n.

We start with the computation

∆ =∏
i<j

(ωi −ω j)2

= ±∏
i ̸=j

(ωi −ω j)

= ±∏
i ̸=j

ωi(1−ω j−i)

= ±∏
i

ωi

(
∏
k ̸=0

(1−ωk)

)
= ±∏

i
ωi(n)

= ±nn
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where ∏k ̸=0(1−ωk) = n comes from the fact that it is h(1) for

h(X) =
Xn − 1
X− 1

= Xn−1 + · · ·+ 1

which we get from

h(X) = ∏
k ̸=0

(X−ωk)

Compare equation 5.5.12 on page 142.

Chapter 5, 5.5 Exercise 11 (p. 145) Since ∆ is unchanged by any permutation of the
αi, it is a symmetric function of the αi, therefore a polynomial function of the elemen-
tary symmetric functions of the αi by theorem 5.5.18 on page 142. But elementary
symmetric polynomials are just the coefficients of p1, by equation 5.5.12 on page 142.
A similar argument shows that ∆ is a polynomial function of the coefficients of p2.

Now , regard the αi and β j as indeterminates and express Res(p1, p2, t) as a
function of the αi, β j by plugging elementary symmetric functions in for the coeffi-
cients of p1 and p2. So

Res(p1, p2, t) ∈ k[α1, . . . αn, β1, . . . βm]

Since Res(p1, p2, t) vanishes whenever an αi = β j, it follows that
(αi − β j)|Res(p1, p2, t) for all i, j. This means that ∆|Res(p1, p2, t) in
k[α1, . . . αn, β1, . . . βm], and the quotient, q, will also be symmetric in the αi, β j —
hence a polynomial function of the coefficients of p1 and p2. Now, note that the
degree of each αi in ∆ and in Res(p1, p2, t) is m and the degree of each β j in both is
n. It follows that q is a constant.

Chapter 5, 5.5 Exercise 12 (p. 145) We use induction on n. If n = 2, the conclusion is
clear. Now we assume the conclusion for n, and we will prove it for n + 1. We have

Vn+1 =


1 α1 α2

1 · · · αn
1

1 α2 α2
2 · · · αn

2
1 α3 α2

3 · · · αn
3

...
...

...
. . .

...
1 αn+1 α2

n+1 · · · αn
n+1


and replace α1 by X. The determinant is a polynomial p(X) that vanishes if X =
α2, . . . , αn+1. It follows that

f (X) = C · (X− α2) · · · (X− αn+1)

where the coefficient of Xn is precisely C. Expanding the determinant of Vn+1 by
minors in the first row shows that the coefficient of Xn, or C, is equal to the (−1)n×
the determinant of

V =


1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2
1 α3 α2

3 · · · αn−1
3

...
...

...
. . .

...
1 αn α2

n · · · αn−1
n
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so

det Vn+1 = (−1)n det Vn ·
n+1

∏
j=2

(α1 − αj)

= det Vn ·
n+1

∏
j=2

(αj − α1)

= ∏
1≤i<j≤n+1

(αj − αi)

Chapter 5, 5.5 Exercise 13 (p. 145) The map

F[X1, . . . , Xn]

I
→ F[X1, . . . , Xn+1]

I+ (Xn+1 − f (X1, . . . , Xn))

Xi 7→ Xi

and the inverse is defined similarly, except that

Xn+1 7→ f (X1, . . . , Xn)

Chapter 6, 6.2 Exercise 1 (p. 171) The only one that defines a linear transformation
is number 2. The others are either nonlinear (i.e., xy) or have constants added to
them so that f (0, 0, 0) ̸= 0.

Chapter 6, 6.2 Exercise 2 (p. 171) Brute-force computation!
Chapter 6, 6.2 Exercise 3 (p. 171) This is an immediate consequence of the associa-
tivity of matrix-multiplication:

(A · · · A)︸ ︷︷ ︸
n times

· (A · · · A)︸ ︷︷ ︸
m times

= An+m = (A · · · A)︸ ︷︷ ︸
m times

· (A · · · A)︸ ︷︷ ︸
n times

which implies that the order of the parentheses is irrelevant.
Chapter 6, 6.2 Exercise 4 (p. 171) Since powers of A commute with each other, dis-
tributivity implies that scalar linear combinations of them (i.e., polynomials in A)
will also commute with each other.

Chapter 6, 6.2 Exercise 5 (p. 190) The Sylvester matrix of t− x(1+ t2) and t2− y(1−
t) is 

−x 1 −x 0

0 −x 1 −x

1 y −y 0

0 1 y −y


and the determinant is

Res(t − x(1 + t2), t2 − y(1 − t), t) = x2 + 2 yx2 + 2 y2x2 + yx − y2x − y

so the implicit equation is

x2 + 2 yx2 + 2 y2x2 + yx− y2x− y = 0

Chapter 6, 6.2 Exercise 6 (p. 190) These parametric equations are equivalent to t −
x(1− t2) = 0 and t− y(1 + t2) = 0 with a Sylvester matrix of

x 1 −x 0

0 x 1 −x

−y 1 −y 0

0 −y 1 −y
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and resultant of
r = 4 y2x2 − x2 + y2

so the implicit equation is r = 0.

Chapter 6, 6.2 Exercise 7 (p. 190) Our polynomials are 1− t− x(1 + t) = 0 and t2 −
y(1 + t2) = 0 with a Sylvester matrix of −1− x 1− x 0

0 −1− x 1− x

1− y 0 −y


giving the implicit equation

−2 y + 1− 2 x− 2 yx2 + x2 = 0

Chapter 6, 6.2 Exercise 8 (p. 190) The resultant in question is

x4 + 2 x3 + x2 − 4 x = x(x− 1)(x2 + 3x + 4)

It follows that x can have one of the 4 values{
0, 1,
−3± i

√
7

2

}
Each of these x-values turns out to correspond to a unique y-value. Our four solu-
tions are

(x, y) =

{
(0, 1) , (1, 0) ,

(
−3− i

√
7

2
,

3− i
√

7
2

)
,

(
−3 + i

√
7

2
,

3 + i
√

7
2

)}
Chapter 6, 6.2 Exercise 9 (p. 190) We get

Res(s + t− x, s2 − t2 − y, s) = −2xt + x2 − y

Res(s2 − t2 − y, 2s− 3t2 − z, s) = 9 t4 + 6 t2z− 4 t2 − 4 y + z2

Res(s + t− x, 2s− 3t2 − z, s) = −3 t2 − 2 t + 2 x− z

and

R = Res(−2xt + x2 − y,−3 t2 − 2 t + 2 x− z, t) =

− 3 x4 + 4 x3 + 6 x2y− 4 x2z + 4 yx− 3 y2

so the implicit equation is

3 x4 − 4 x3 − 6 x2y + 4 x2z− 4 yx + 3 y2 = 0

If we compute the resultant of 9 t4 + 6 t2z− 4 t2 − 4 y + z2 and −2xt + x2 − y
we get

9 x8 − 36 x6y + 24 x6z− 16 x6 + 54 x4y2

− 48 x4yz− 32 x4y + 16 x4z2

− 36 x2y3 + 24 x2y2z− 16 x2y2 + 9 y4

which turns out to be a multiple of R.

Chapter 6, 6.2 Exercise 10 (p. 194) We can put C in echelon form by doing this with
A and B independently of each other, i.e.

C̄ =

[
Ā 0
0 B̄

]
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where C̄ is the upper-triangular echelon matrix for C and the corresponding state-
ments apply to Ā and B̄. The conclusion now follows from the fact that determi-
nants of an upper triangular matrix is the product of its diagonal elements.

Chapter 6, 6.2 Exercise 13 (p. 195) Just form the matrix

P =

 8 −1 2
4 0 1
3 −1 1


and compute

P−1 AP =

 −27 5 −8
53 −10 15

137 −25 40


Chapter 6, 6.2 Exercise 14 (p. 201) Just plug n = 1/2 into equation 6.2.33 on
page 198 to get

√
A =

 −4
√

2− 3
√

3 + 8
√

3− 1 −
√

3−
√

2 + 2
8
√

2− 8 1 2
√

2− 2
20
√

2 + 12
√

3− 32 4− 4
√

3 4 ·
√

3 + 5
√

2− 8


Chapter 6, 6.2 Exercise 15 (p. 201) If A is a diagonal matrix, then

χA(A) = (A− d1 I) · · · (A− dn I)

=


0 0 · · · 0

0 d2 − d1
. . . 0

...
. . .

. . .
...

0 0 · · · dn − d1

 · · ·


d1 − dn 0 · · · 0

0 d2 − dn
. . . 0

...
. . .

. . .
...

0 0 · · · 0



=

 0 · · · 0
...

. . .
...

0 · · · 0


where the di are the diagonal entries.

The case where the eigenvalues of A are all distinct is almost as simple. In this
case

A = PDP−1

and χA(A) = PχD(D)P−1 = 0.

Chapter 6, 6.2 Exercise 16 (p. 201) We start with

λI − C =

[
λI − A 0

0 λI − B

]
and refer to exercise 10 on page 194.

Chapter 6, 6.2 Exercise 17 (p. 201) The hypotheses imply that

λI − B = C−1(λI − A)C

so

det(λI − B) = det(C)−1 det(λI − A)det(C)

= det(λI − A)

Chapter 6, 6.2 Exercise 18 (p. 201) This follows from exercise 17 on page 201 and the
fact that the (n− 1)st coefficient of χ∗(λ) is −Tr (∗).
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Chapter 6, 6.2 Exercise 19 (p. 201) Let

D1 = U−1
1 AU1

D2 = U−1
2 BU2

be the diagonal forms of the matrices, where the Ui are invertible.

χA(λ) =
n

∏
i=1

(λ− λi)

χB(λ) =
n

∏
i=1

(λ− µi)

in the algebraic closure, F, of the field where A and B live. Here {λi} are the eigen-
values of A and {µi} are the eigenvalues of B. The hypotheses imply that

n

∏
i=1

(λ− λi) =
n

∏
i=1

(λ− µi)

Since F[λ] has unique factorization, it follows that the list

{λ1, . . . , λn}

is just a permutation of the list {µ1, . . . , µn} and that there exists a permutation ma-
trix, P, such that

D2 = P−1D1P

It follows that

B = U2P1U−1
1 AU1PU−1

2

so

C = U1PU−1
2

Chapter 6, 6.2 Exercise 23 (p. 211) The product

MMt = A

is a matrix with Ai,j = ui •uj — the identity matrix. See definition 6.2.84 on page 218.

Chapter 6, 6.2 Exercise 24 (p. 211) We already know that v1 and v2 are linearly in-
dependent (see proposition 6.2.54 on page 196). We have

Av1 = λ1v1

so

vt
2 Av1 = vt

2λ1v1 = λ1vt
2v1 = λ1v1 • v2

Since this is a scalar (a 1× 1 matrix) it equals its own transpose, so we get

(λ1v1 • v2)
t = λ1v1 • v2

=
(
vt

2 Av1
)t

= vt
1 Atv2

= vt
1 Av2

= λ2v1 • v2

So we conclude λ1v1 • v2 = λ2v1 • v2. Since λ1 ̸= λ2, we get v1 • v2 = 0 .



SOLUTIONS TO SELECTED EXERCISES 497

Chapter 6, 6.2 Exercise 25 (p. 214) The x-component of u× (v×w) is given by

(u× (v×w))1 = u2(v1w2 − v2w1)− u3(v3w1 − v1w3)

= v1(u2w2 + u3w3)−w1(u2v2 + u3v3)

= v1(u2w2 + u3w3)−w1(u2v2 + u3v3) + (u1v1w1 − u1v1w1)

= v1(u1w1 + u2w2 + u3w3)−w1(u1v1 + u2v2 + u3v3)

= (u ·w)v1 − (u · v)w1

The other components are computed by permuting the subscripts in this formula.

Chapter 6, 6.2 Exercise 26 (p. 214)

v′ = −
 1

0
−1

+ cos 30◦

 1
2
3

+

 1
0
−1

+ sin 30◦

 1√
2

 1
0
−1

×
 1

2
3


=


√

3− 1√
3√

3 + 1

+
1
2

 1√
2

 2
−4
2


=


√

3− 1 + 1/
√

2√
3−
√

2√
3 + 1/

√
2


Chapter 6, 6.2 Exercise 27 (p. 222) We start with the standard basis of R3, given in
example 6.2.79 on page 216. Since that example shows that ∥e1∥ =

√
2, we get

u1 =
1√
2

e1

Now ⟨u1, e2⟩ = −1/
√

2, so

Proju1
e2 = − e1

2
and

f = e2 − Proju1
e2 =

 1/2
1
0


and ∥ f ∥ =

√
3/2 and

u2 =

√
2
3

 1/2
1
0

 =

 1/
√

6√
2/3
0


Finding u3 is similar.

Chapter 6, 6.3 Exercise 1 (p. 230) It A is not principal, then any free basis of A must
contain at least two elements x, y ∈ R. The equation

y · x− x · y = 0

implies that they can’t be part of a free basis (i.e., all elements of R may be used as
coefficients in linear combinations). If x is a non-zero divisor, then R · x ∼= R.

Chapter 6, 6.3 Exercise 2 (p. 230) Define f̄ to send m (mod A) to f (m) (mod f )(A)
for all m ∈ M1. This is well-defined because m ∈ A implies that f (m) ∈ f (A).

Chapter 6, 6.3 Exercise 3 (p. 235) This follows from

F = ker (pk×) : M→ M
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so it must be preserved under an isomorphism as well as T = M/F, so it is uniquely
defined. The factor R1 = R/(g1) is the kernel of

g1×: T → T

Define Tj = T/Rj−1 — this must be preserved under any isomorphism of the orig-
inal M. The factor Rj+1 is the kernel of

gj+1×: Tj → Tj

so it is also preserved under isomorphisms of M.
Chapter 6, 6.3 Exercise 4 (p. 235) It is 2 0 0

0 6 0
0 0 12


with

S =

 0 0 1
0 1 0
1 0 −5

 , T =

 3 −2 4
−1 3 −2

2 −2 3


Chapter 6, 6.3 Exercise 6 (p. 240) This follows immediately from exercise 18 on
page 201.

Chapter 6, 6.3 Exercise 7 (p. 241) This follows by a straightforward induction. It is
clearly true for n = 1. If we assume the result for n− 1 and multiply

λn−1 0 0 · · · 0

(n− 1)λn−1 λn−1 . . .
. . .

...

0 (n− 1)λn−1 . . .
. . . 0

... · · · . . . λn−1 0
0 · · · 0 (n− 1)λn−1 λn−1





λ 0 0 · · · 0

1 λ
. . .

. . .
...

0 1
. . .

. . . 0
... · · · . . . λ 0
0 · · · 0 1 λ


we get the expected result.

Chapter 6, 6.3 Exercise 8 (p. 241) We know that

P−1 AP =


1 0 0 0 0
0 2 0 0 0
0 1 2 0 0
0 0 0 3 0
0 0 0 1 3

 = J

with

P =


1 0 1 0 1
−3 1 −1 1 −1

2 −1 −1 − 3
4 − 3

2
−3 0 −4 − 1

2 −4
−1 0 0 0 0


and that

An = PJnP−1

Exercise 7 on page 240 implies that

Jn =


1 0 0 0 0
0 2n 0 0 0
0 n2n−1 2n 0 0
0 0 0 3n 0
0 0 0 n3n−1 3n
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We can easily calculate the result with SAGE. The columns of B = An are, respec-
tively

B∗,1 =


−8 · 3n−1n + 9 · 2n−1n− 8 · 3n + 9 · 2n

8 · 3n−1n− 9 · 2n−1n
12 · 3n−1n− 9 · 2n−1n + 18 · 3n − 18 · 2n

32 · 3n−1n− 36 · 2n−1n + 36 · 3n − 36 · 2n

0



B∗,2 =


2n−1n− 2 · 3n + 2 · 2n

−2n−1n + 2 · 3n − 2n

−2n−1n + 3 · 3n − 3 · 2n

−4 · 2n−1n + 8 · 3n − 8 · 2n

0



B∗,3 =


−2 · 3n + 2 · 2n

2 · 3n − 2 · 2n

3 · 3n − 2 · 2n

8 · 3n − 8 · 2n

0



B∗,4 =


−2 · 3n−1n + 2 · 2n−1n− 3n + 2n

2 · 3n−1n− 2 · 2n−1n− 3n + 2n

3 · 3n−1n− 2 · 2n−1n + 3 · 3n − 3 · 2n

8 · 3n−1n− 8 · 2n−1n + 5 · 3n − 4 · 2n

0


and

B∗,5 =


−2 · 3n−1n− 3 · 3n + 4 · 2n − 1

2 · 3n−1n + 3n − 4 · 2n + 3
3 · 3n−1n + 6 · 3n − 4 · 2n − 2

8 · 3n−1n + 13 · 3n − 16 · 2n + 3
1


Chapter 6, 6.3 Exercise 9 (p. 241) Theorem 6.3.26 on page 237 states that there exists
an invertible matrix, P, such that

J = P−1 MP =


Jα1 (λ1) 0 · · · 0

0
. . . 0

...
. . .

...
0 · · · 0 Jαm (λm)


is the Jordan Canonical Form. Furthermore

Jn = P−1 MnP = I =


Jα1 (λ1)

n 0 · · · 0

0
. . . 0

...
. . .

...
0 · · · 0 Jαm (λm)n


Exercise 7 on page 240 shows that a Jordan block Jα(λ)n = I if and only if α = 1.
The statement about the eigenvalues is clear.

Chapter 6, 6.3 Exercise 10 (p. 247) This is basic linear algebra: U is the nullspace of
the linear map V →W and the image is all of W.
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Chapter 6, 6.3 Exercise 11 (p. 247) Suppose V is a vector-space over an infinite field,
k, and

V =
n⋃

i=1
Vi

where the Vi are proper subspaces. Without loss of generality, assume this decom-
position is minimal (none of the Vi’s are contained in a union of the others).

If x ∈ V1 and y ∈ V \ V1, then x + r · y ∈ V as r ∈ k runs over an (infinite)
number of nonzero values. The Pigeonhole Principle implies that there is a j such
that

x + r · y ∈ Vj

for an infinite number of values of r. This means that there exist r1 ̸= r2 ∈ k with
x + r1 · y, x + r2 · y ∈ Vj which implies that (x + r1 · y)− (x + r2 · y) = (r1− r2) · y ∈
Vj so y ∈ Vj. We conclude that x ∈ Vj as well. Since x was an arbitrary element of
V1, this means that

V1 ⊂
n⋃

i=2
Vi

which contradicts the assumption that the original decomposition was minimal.
Chapter 6, 6.3 Exercise 12 (p. 247) A finite-dimensional vector-space over a
finite field has a finite number of elements, hence is the (finite) union of the
one-dimensional subspaces generated by these elements,

Chapter 6, 6.3 Exercise 13 (p. 247) Just apply proposition 6.3.16 on page 228 to the
diagram

Pg
zz

M
f
// P

Chapter 6, 6.3 Exercise 14 (p. 247) If x ∈ R annihilates M2, it annihilates any sub-
module and quotient so

Ann(M2) ⊂ Ann(M1) ∩Ann(M3)

If x ∈ Ann(M1), y ∈ Ann(M3), and m ∈ M2, then y ·m ∈ M1, since its image in M3
is zero. Then x · (y ·m)) = 0, so

Ann(M1) ·Ann(M3) ⊂ Ann(M2)

Chapter 6, 6.3 Exercise 15 (p. 248) We claim that the map

(q, h): U ⊕W → V

is an isomorphism. Suppose (u, v) maps to 0 in V, so q(u) = −h(v). If we map
this via p, we get p ◦ q(u) = −p ◦ h(v). Since p ◦ q = 0, we get p ◦ h(v) = 0 which
implies that v = 0 (since p ◦ h = 1). Since q is injective, this also implies that u = 0.
So the map, (q, h), is injective.

Suppose v ∈ V is any element and let z = v− h ◦ p(v). Then p(z) = p(v)− p ◦
h ◦ p(v) = p(v)− p(v) = 0. This implies that z = q(u) for some u ∈ U and

v = (q, h)(z, h(v))

so the map is also surjective.
Chapter 6, 6.3 Exercise 16 (p. 248) This follows immediately from exercises 13 on
page 247 and 15 on page 248.

Chapter 6, 6.4 Exercise 2 (p. 251) This follows immediately from the Ascending
Chain Condition (in proposition 5.4.2 on page 122) and corollary 6.4.8 on page 250.
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Chapter 6, 6.4 Exercise 3 (p. 251) The non-zero-divisors of R × S is the set (r, s)
where r is a non-zero-divisor of R and s is a non-zero-divisor of S.

Chapter 6, 6.4 Exercise 4 (p. 251) Let ann(m) ⊂ R be the annihilator of m — an
ideal. Then m goes to 0 in Ma if and only if ann(m) ̸⊂ a (see definition 6.4.9 on
page 250). But proposition 5.2.11 on page 115 shows that every ideal is contained in
some maximal ideal.

Chapter 6, 6.4 Exercise 5 (p. 251) This follows immediately from exercise 4 on
page 251.

Chapter 6, 6.4 Exercise 6 (p. 251) The general element of F is of the form

f =
a0 + a1X + · · ·
b0 + b1X + · · ·

Suppose ai is the lowest indexed coefficient in the numerator that is nonzero and bj
is the corresponding one in the denominator. Then

f =
Xi(ai + ai+1X + · · · )
X j(bj + bj+1X + · · · ) = Xi−j ai + ai+1X + · · ·

bj + bj+1X + · · ·
where bj ̸= 0 so that the denominator is a unit in R (see proposition 5.1.9 on

page 109). Set α = i− j and r = (ai + ai+1X + · · · )
(

bj + bj+1X + · · ·
)−1

.

Chapter 6, 6.5 Exercise 1 (p. 259) Suppose s−1x ∈ S−1T is integral over S−1R. Then
it satisfies an equation

(s−1x)n + an−1(s−1x)n−1 + · · ·+ a0 = 0

where the ai ∈ S−1R. Let s̄ ∈ S be able to clear the denominators of all of the ai.
Multiplying this equation by (ss̄)n gives

(s̄x)n + an−1ss̄(s̄x)n−1 + · · ·+ sn s̄a0 = 0

so s̄x ∈ R is integral over R, and (ss̄)−1(s̄x) = s−1x is integral over S−1R.

Chapter 6, 6.5 Exercise 2 (p. 259) Let

xn + an−1xn−1 + · · ·+ a0 = 0

be the minimal polynomial (see definition 7.1.8 on page 263) of x with ai ∈ F. If
s ∈ R can clear the denominators of the ai, multiply this equation by sn to get

snxn + snan−1xn−1 + · · ·+ sna0 = (sx)n + an−1s(sx)n−1 + · · ·+ sna0

= 0

so sx is integral over R.

Chapter 6, 6.5 Exercise 3 (p. 259) Clearly, any element x ∈ F that is integral over R
is also integral over T. On the other hand, if x is integral over T, it is also integral
over R because of statement 2 of proposition 6.5.5 on page 253 (the degree of the
monic polynomial over R will usually be higher than that over T). It follows that
the integral closures will be the same.

Chapter 7, 7.1 Exercise 1 (p. 265) Let p(X) ∈ F[X] be the minimum polynomial of
α. Its being of degree n implies that F[X]/(p(X)) = F[α] = F(α) is a degree-n
extension of F. The conclusion follows from proposition 7.1.6 on page 263.

Chapter 7, 7.1 Exercise 2 (p. 265) Whenever one gets X3, it must be replaced by
−3− 3X, giving the result

ad− 3ce− 3b f + X(ae + bd− 3ce− 3c f − 3b f ) + X2(a f + be + cd− 3c f )
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Chapter 7, 7.2 Exercise 1 (p. 271) We claim that F(X) = F(X2) · 1⊕ F(X2) · X as a
vector space. If

u =
p(X)

q(X)

we can write
q(X) = a(X2) + X · b(X2)

— just separate the terms with odd powers of X from the others. Now, we get

u =
p(X)

q(X)
· a(X2)− X · b(X2)

a(X2)− X · b(X2)
=

p(X)(a(X2)− X · b(X2))

a(X2)2 − X2 · b(X2)2

Now, write the numerator as

p(X) = c(X2) + X · d(X2)

so we get

u =
R(Y)
S(Y)

+ X · T(Y)
S(Y)

where

S(Y) = a(Y)2 −Y · b(Y)2

R(Y) = c(Y)a(Y)−Y · b(Y)d(Y)
T(Y) = a(Y)d(Y)− c(Y)b(Y)

Chapter 7, 7.2 Exercise 2 (p. 271) The number 21/3 satisfies the equation

X3 − 2 = 0

and Eisenstein’s Criterion (theorem 5.6.8 on page 149) shows that this is irreducible.
It follows that X3 − 2 is the minimal polynomial of 21/3.

Set Q(21/3) = Q[X]/(X3− 2). We would like to find the multiplicative inverse
of the polynomial

X2 − X + 1
modulo X3 − 2. We can use the extended Euclidean algorithm (algorithm 3.1.12 on
page 17) for this. Dividing X3 − 2 by X2 − X + 1 gives a quotient of q1(X) = X + 1
and a remainder of −3. We’re done since

(X + 1) · (X2 − X + 1)− 1 · (X3 − 2) = 3

or
1
3
(X + 1) · (X2 − X + 1)− 1

3
· (X3 − 2) = 1

so, modulo X3 − 2, we get 1
3 (X + 1) · (X2 − X + 1) = 1 which implies that

1
3
(21/3 + 1) =

1
22/3 − 21/3 + 1

∈ Q(21/3) = Q[21/3]

Chapter 7, 7.2 Exercise 3 (p. 271) Just follow the proof of theorem 7.2.13 on
page 270. The minimal polynomials of

√
2 and

√
3 are, respectively, X2 − 2 and

X2 − 3. Their roots (i.e., the αi and β j in the proof) are

±
√

2,±
√

3

and the set of elements of Q we must avoid are
√

2√
3
∈ Q[

√
2,
√

3] \Q

Since this is not a rational number, it follows that we can pick any nonzero rational
number for our c. We pick c = 1 and γ =

√
2 +
√

3.
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So
Q[
√

2,
√

3] = Q[
√

2 +
√

3]
To find the minimal polynomial, we refer to example 7.3.1 on page 272.

Chapter 7, 7.2 Exercise 4 (p. 271) One obvious root of X3 − 2 ∈ Q[X], is X = 21/3,
so we try the field extension

Q[21/3]

Since 21/3 is a root of X3 − 2, we get (X− 21/3)|(X3 − 2) with a quotient of

X2 + 21/3 · X + 22/3

and if we set X = Y · 21/3, this becomes

22/3 · (Y2 + Y + 1)

The roots of
Y2 + Y + 1 = 0

are

ω, ω2 =
−1±

√
−3

2
which are the cube-roots of 1 (other than 1 itself). So our splitting field is

Q[21/3, ω]

of degree 6 over Q.

Chapter 7, 7.3 Exercise 1 (p. 273) We find a Gröbner basis for a = (X2 − 2, Y3 −
2, A− X−Y) with lexicographic order with

X ≻ Y ≻ A

to get

a = (−4− 24 A + 12 A2 − 6 A4 − 4 A3 + A6,

− 364 + 152 A− 156 A2 + 9 A4

− 160 A3 + 24 A5 + 310 Y,

364− 462 A + 156 A2 − 9 A4

+ 160 A3 − 24 A5 + 310 X)

so the minimal polynomial of α is

α6 − 6α4 − 4α3 + 12α2 − 24α− 4 = 0

Chapter 7, 7.3 Exercise 2 (p. 276) The minimal polynomial is X3 − 2 and we get a
basis of {1, 21/3, 22/3}. If γ = a + b21/3 + c22/3, then the effect of γ on the basis is
given by

γ · 1 = a + b21/3 + c22/3

γ · 21/3 = 2c + a21/3 + b22/3

γ · 22/3 = 2b + 2c21/3 + a22/3

which gives a matrix

mγ =

 a 2c 2b
b a 2c
c b a


with a determinant

NH/F(γ) = a3 − 6 acb + 2 b3 + 4 c3
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and characteristic polynomial

χγ(X) = X3 − 3 aX2 −
(

6 cb− 3 a2
)

X− a3 + 6 acb− 2 b3 − 4 c3

Chapter 7, 7.3 Exercise 3 (p. 276) In this case, our basis for H over Q is
{1,
√

2,
√

3,
√

6}. If γ = a + b
√

2 + c
√

3 + d
√

6 is a general element, its effect on a
basis is

γ · 1 = a + b
√

2 + c
√

3 + d
√

6

γ ·
√

2 = 2b + a
√

2 + 2d
√

3 + c
√

6

γ ·
√

3 = 3c + 3d
√

2 + a
√

3 + b
√

6

γ ·
√

6 = 6d + 3c
√

2 + 2b
√

3 + a
√

6

which gives a matrix

mγ =


a 2b 3c 6d
b a 3d 3c
c 2d a 2b
d c b a


with a determinant

NH/F(γ) = a4 − 4 a2b2 + 48 adbc− 12 d2a2 − 6 a2c2

+ 4 b4 − 24 d2b2 − 12 b2c2 + 9 c4 − 36 c2d2 + 36 d4

and characteristic polynomial

χH/F(γ) = X4 − 4 aX3 +
(
−12 d2 − 6 c2 − 4 b2 + 6 a2

)
X2

+
(
−48 dbc + 24 d2a + 12 ac2 + 8 ab2 − 4 a3

)
X

a4 − 4 a2b2 + 48 adbc− 12 d2a2 − 6 a2c2

+ 4 b4 − 24 d2b2 − 12 b2c2 + 9 c4 − 36 c2d2 + 36 d4

Chapter 7, 7.4 Exercise 1 (p. 279) If α
∣∣ β in Z[γ], then β = α · t where t ∈ Z[γ] and

t =
n−1

∑
i=0

ciγ
i

with ci ∈ Z. Since α ∈ Z, we have

α · t =
n−1

∑
i=0

αciγ
i

and this is in Z ⊂ Z[γ] if and only if ci = 0 for i > 0. This means that α
∣∣ β in Z.

Chapter 7, 7.4 Exercise 2 (p. 279) deg Φn(X) = ϕ(n) — see definition 3.3.1 on
page 22.

Chapter 7, 7.5 Exercise 1 (p. 287) Suppose

f (X) = Xn + an−1Xn−1 + · · ·+ a0

(after dividing by an if necessary) and embed F in its algebraic closure, F̄. We get

f (X) =
n

∏
j=1

(X− αj)

and the splitting field of f (X) is just

F[α1, . . . , αn] ⊂ F̄

which is unique in F̄. The conclusion follows from theorem 7.5.3 on page 283.
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Chapter 7, 7.5 Exercise 2 (p. 287) The characteristic polynomial of γ was computed
in the solution to 2 on page 276 (setting c = 0)

χγ(X) = X3 − 3 aX2 + 3 a2X− a3 − 2 b3

and this is also the minimal polynomial of γ. One factor of this must be X − γ, so
we take the quotient

X3 − 3 aX2 + 3 a2X− a3 − 2 b3

X− γ

= X2 + X(γ− 3a) + γ(γ− 3a) + 3a2

= X2 + (−2a + b 21/3)X + a2 − ab 21/3 + b2 22/3

regarding it as a polynomial with coefficients in C. The roots of this quadratic equa-
tion are

X = a + b

(
−1±

√
−3

2

)
21/3 = a + b21/3ω j

where ω = e2πi/3 is a primitive cube root of 1 and j = 1, 2. Since ω /∈ Q[21/3], these
conjugates do not lie in Q[21/3]. This is why we need to go to an algebraic closure of
the field.

Chapter 7, 7.5 Exercise 3 (p. 287) Yes! The algebraic numbers, Q̄, are an algebraic
extension of Q but of infinite degree.

Chapter 7, 7.5 Exercise 4 (p. 287) Oddly, yes. If

Q̄ = Q(α1, . . . )

then

Q̄ =
∞⋃

i=1
Q(α1, . . . , αi) =

∞⋃
i=1

Q[α1, . . . , αi] = Q[α1, . . . ]

Chapter 7, 7.6 Exercise 2 (p. 290) R(x) = x7 + x6, S(x) = x2 + x + 1

Chapter 7, 7.7 Exercise 1 (p. 295) Suppose π is algebraic. Then so is πi and eπi

should be transcendental, by the Lindemann–Weierstrass theorem. But eπi = −1
(see Euler’s Formula, theorem 2.1.2 on page 7), which is algebraic. This is a
contradiction.

Chapter 7, 7.7 Exercise 2 (p. 295) The algebraic closure of Q is the algebraic num-
bers, Q̄, which is countable. If F is a countable field F(X) is also a countable field
and a simple induction shows that

F(X1, . . . , Xn)

is also countable for any n. If S = {X1, . . . } is a countable set of indeterminates,
then

F(S) =
∞⋃

i=1
F(X1, . . . , Xi)

is also countable. It follows that an uncountable field like C must have an uncount-
able degree of transcendence over Q.

Chapter 8, 8.3 Exercise 1 (p. 303) This follows immediately from the definition of
F(α1, . . . , αk): if x ∈ F(α1, . . . , αk) then

x =
∑k

i=1 ∑ni
j=0 ci,jα

j
i

∑k
i=1 ∑mi

j=0 di,jα
j
i

where ci,j, di,j ∈ F. All of the elements here are fixed by f .
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Chapter 8, 8.6 Exercise 1 (p. 313) Suppose

(15.3.9) F ⊂ F1 ⊂ · · · ⊂ Fk = E

is a tower of radical extensions for E. We will refine it to one with the required
properties — i.e. we will insert new terms between the old ones.

If Fi+1 = Fi(α), where αn = 1 and n = p ·m, where p is a prime, set E1 = Fi(β)
where β = αm, and consider the series

Fi ⊂ E1 ⊂ Fi+1

Since βp = 1, Fi ⊂ E1 is pure of type p.
Now Fi+1 = E1(α), where αm ∈ F1. If m is not a prime, continue this construc-

tion, inserting new subfields and stripping off a prime in each step.
We will eventually arrive at a sequence of subfields

Fi ⊂ E1 ⊂ · · · ⊂ Ek ⊂ Fi+1

where each extension is pure of prime type.
Apply this construction to all terms of equation 15.3.9 to get the required result.

Chapter 8, 8.6 Exercise 2 (p. 313) Since F ⊂ E is finite, it is algebraic (see proposi-
tion 7.2.2 on page 266), so

E = F(α1, . . . , αk)

If fi(X) ∈ F[X] is the minimal polynomial of αi set

f (X) =
k

∏
i=1

fi(X)

and define G to be the splitting field of f (X) (see corollary 7.2.4 on page 266).
Chapter 8, 8.6 Exercise 4 (p. 313) Since G is the splitting field of

f (X) =
k

∏
i=1

fi(X)

it contains the conjugates of each of the αi — and these are the images of the αi under
the Galois group of G over F.

If Gal(G/F) = {g1 . . . , gn} we define Ei = gi(E).
Chapter 8, 8.6 Exercise 5 (p. 314) Since

E

F

is a radical extension, we use exercise 1 on page 313 to conclude that it can be
resolved into a sequence of pure extensions via primes, pi. Each has the form
Ei+1 = Ei(αi), where α

pi
i ∈ Ei. The conjugates of αi are precisely αi · ω j

i , where
ωi

i = 1 — i.e. we must adjoin appropriate roots of unity to get a splitting field.
These adjunctions are also pure of prime order, so the extension

G

F

must also be radical.
Chapter 8, 8.8 Exercise 1 (p. 321) We prove this by induction on |G|. If |G| > 1, then
Z(G) > 1 by Burnside’s Theorem 4.7.14 on page 79. If Z(G) = G, then G is abelian,
so it is solvable. Otherwise, G/Z(G) is a smaller p-group, which is solvable by
the inductive hypothesis. Since Z(G) is also solvable (because it’s abelian), we use
exercise 6 on page 87 to conclude that G is solvable.
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Chapter 9, 9.1 Exercise 1 (p. 324) If y = (a, b) ∈ A ⊕ A, then y∗ = (a∗,−b) and
equation 9.1.1 on page 324 gives

yy∗ = aa∗ + bb∗

y∗y = a∗a + b∗b

so the right inverse is

y−1 =
y∗

yy∗

and the left inverse is
y∗

y∗y
= y−1

Chapter 9, 9.1 Exercise 2 (p. 324) If u = (a, b) and v = (c, d), then

uv = (ac− d∗b, da + bc∗)

and

(15.3.10) (uv)∗ = (c∗a∗ − b∗d,−da− bc∗)

using equation 9.1.2 on page 324. Now u∗ = (a∗,−b) and v∗ = (c∗,−d), and direct
computation, using equation 9.1.2 on page 324 shows that v∗u∗is equal to the right
side of equation 15.3.10.

Chapter 9, 9.1 Exercise 3 (p. 324) Suppose a, b are nonzero and

ab = 0

If we have a−1 · a = 1 and multiply the equation above by a−1, we get

a−1(ab) = 0 ̸= (a−1a)b = b

In other words, if the algebra fails to be associative, this can easily happen.

Chapter 9, 9.1 Exercise 4 (p. 324) If a = x · b and u · b = 0 with u ̸= 0, then a =
(x + u) · b so that quotients are not unique.

Chapter 9, 9.1 Exercise 5 (p. 324) If a ∈ A is nonzero, then a×: A → A defines a
linear transformation. Since A has no zero-divisors, the kernel of this linear trans-
formation is zero. Corollary 6.2.33 on page 182 implies that a× is 1-1, so it maps
some element, a−1, to 1.

Chapter 9, 9.1 Exercise 6 (p. 325) If c ∈ A, then mx(c) = x · c, in general. The defini-
tion of matrix-product implies that

mxmy = x · (y · c))
— see section 6.2.2 on page 169. If A is associative, x · (y · c)) = (x · y) · c, so that
mx·y = mxmy. Otherwise, we have mx·y ̸= mxmy in general, and there is no obvious
relationship.

Chapter 9, 9.2 Exercise 1 (p. 332) No! If it was valid, it would imply that multipli-
cation of exponentials is commutative, whereas equation 9.2.7 on page 329 implies
that

eα·u1 · eβ·u2 − eβ·u2 · eα·u1 = 2 sin α sin β · u1 × u2 ̸= 0

in general.

Chapter 9, 9.2 Exercise 2 (p. 332) In several places, including the claim that xy =
yx =⇒ x−1y = yx−1, and equation 9.2.8 on page 331.
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Chapter 9, 9.2 Exercise 3 (p. 332) It suffices to check it on quaternion units with the
correspondence:

1↔ (1, 0)

i↔ (i, 0)

j↔ (0, 1)

k↔ (0, i)

Chapter 9, 9.2 Exercise 4 (p. 332) The matrix is of the form[
0 0 0 0
0 C1 C2 C3

]
so the rotation is given by (see equation 6.2.7 on page 170)

M =
[

C1 C2 C3
]

where

C1 = x · i · x−1 = 0 + i(a2 + b2 − c2 − d2) + j(2ad + 2bc) + k(2bd− 2ac)

= 0 + i(1− 2c2 − 2d2) + j(2ad + 2bc) + k(2bd− 2ac)

C2 = x · j · x−1

C3 = x · k · x−1

or

M =

 1− 2(c2 + d2) 2(bc− ad) 2(bd + ac)
2(ad + bc) 1− 2(b2 + d2) 2(cd− ab)
2(bd− ac) 2(cd + ab) 1− 2(b2 + c2)


Chapter 9, 9.3 Exercise 1 (p. 337) Just write αv = α|v|(v/|v|) and apply
equation 9.2.6 on page 328. We get (αv)2 = −α2|v|2.

Chapter 9, 9.3 Exercise 2 (p. 337) We need to prove an analogue of equation 9.2.6
on page 328. If u ∈ O is a purely imaginary unit octonion, then u = (a, b) in
the Cayley-Dickson construction, where a is a purely imaginary quaternion and
|a|2 + |b|2 = 1. The Cayley-Dickson construction (definition 9.1.2 on page 324)
implies that

(a, b)2 =
(

a2 − b∗b, b(a + a∗)
)

If a is a purely imaginary quaternion, a + a∗ = 0, and we get

(α(a, b))2 = (−α2|a|2 − α2|b|2, 0) = −α2 ∈ R

which is precisely what equation 9.2.6 on page 328 says. We answer the final ques-
tion in the affirmative by a simple induction.

Chapter 10, 10.1 Exercise 1 (p. 344) This is literally a direct restatement of
the definition of a product: every pair of morphisms f ∈ homC (W, A) and
g ∈ homC (W, B) induces a unique morphism f × g ∈ homC (W, A × B) that
makes the diagram 10.1.2 on page 340 commute.

Chapter 10, 10.1 Exercise 3 (p. 344) Suppose g1, g2 ∈ homC (C, A) map to the same
element of homC (C, B), then f ◦ g1 = f ◦ g2: C → B, which implies (by the defini-
tion of monomorphism) that g1 = g2.

Chapter 10, 10.1 Exercise 4 (p. 344) If

f : A→ B

has a kernel, the inclusion of distinct elements of A that differ by an element of
the kernel are distinct morphisms whose composite with f are the same. The other
conclusion follows by a similar argument.
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Chapter 10, 10.2 Exercise 1 (p. 349) It is At, the transpose of A.
Chapter 10, 10.2 Exercise 2 (p. 349) It is an equivalence because of the natural iso-
morphism in example 10.2.5 on page 348. It is not an isomorphism of categories
because the finite-dimensional vector-space V∗∗ is not identical to V. If V is infinite-
dimensional, it is not even isomorphic.

Chapter 10, 10.3 Exercise 1 (p. 351) Every pair of morphisms

y → x
z → x

— i.e., every morphism (y, z)→ ∆x — corresponds to a unique morphism

y ⨿ z→ x

so we get an equivalence

homC×C ((y, z), ∆x) = homC (y ⨿ z, x)

Chapter 10, 10.4 Exercise 1 (p. 360) It is given in theorem 4.10.5 on page 88.
Chapter 10, 10.4 Exercise 2 (p. 360) Definition 10.4.10 on page 356 implies that there
is a natural equivalence

homC∞ (∆∞x, y) = homC (x, lim←− y)

for all x ∈ C and y ∈ C∞.
Chapter 10, 10.4 Exercise 3 (p. 360) This follows immediately from the definition of
the equivalence relation ∼ in definition 10.4.1 on page 351.

Chapter 10, 10.5 Exercise 2 (p. 364) If a ∈ A is torsion-free then a 7→ x for any x ̸= 0
defines a nonzero homomorphism. If a is of order n then a 7→ 1/n defines a nonzero
map.

Chapter 10, 10.5 Exercise 3 (p. 365) The sub-object im A ⊂ B maps to A in a
straightforward way. The injective property of A implies that this extends to all of
B.

Chapter 10, 10.5 Exercise 4 (p. 365) We already know that

0→ homA (D, A)
homA (1,r)−−−−−−→ homA (D, B)

is exact, by exercise 3 on page 344, so we must still show that

homA (D, A)
homA (1,r)−−−−−−→ homA (D, B)

homA (1,s)−−−−−−→ homA (D, C)

is exact. If f ∈ homA (D, B) maps to 0 in homA (D, C), then s ◦ f = 0. Since
r = ker s, we have a unique morphism D → A that makes

D
f
//

v $$

B

A
r
OO

commute. This is precisely the element of homA (D, A) that maps to f .
Chapter 10, 10.6 Exercise 1 (p. 376) The hypotheses imply that the composites

R ↪→ M
p1−→ M/S→ R

S ↪→ M
p2−→ M/R→ S

are the identity maps, so we get a well-defined homomorphism

M
(p1,p2)−−−−→ R⊕ S

and this is easily verified to be an isomorphism.
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Chapter 10, 10.6 Exercise 2 (p. 376) If Q = M/N, we get a short exact sequence

0→ N → M→ Q→ 0

and the conclusion follows from the fact that the sequence

0→ A⊗R N → A⊗R M→ A⊗R Q→ 0

is also exact (because A is flat).
Chapter 10, 10.6 Exercise 3 (p. 376) In the top formula, multilinear maps

M× N × T → A

where A is an arbitrary R-module factor through M⊗R (N⊗R T) and (M⊗R N)⊗R
T so the universal property of ⊗ implies that they are isomorphic.

To see the second equality, regard M⊗R N and N⊗R M as quotients of Z[M×
N] by the ideal generated by the identities in definition 10.6.3 on page 366 and
noting that this ideal is symmetric with respect to factors.

Chapter 10, 10.6 Exercise 4 (p. 377) Corollary 10.6.8 on page 369 implies that

kn ⊗k km = kn·m

so the dimensions are as claimed.
If {ei} is a basis for V and { f j} is a basis for W then it is not hard to see that

{ei ⊗ f j}, i = 1, . . . , n, j = 1, . . . , m spans V ⊗k W — just use the identities in defini-
tion 10.6.3 on page 366 to express any v⊗w in terms of them. The fact that V ⊗k W
is n ·m-dimensional shows that these elements must be linearly independent too.

To prove the final statement, we must show that the set {ei ⊗ f j} is linearly
independent even if there are an infinite number of basis elements. Suppose we
have some linear combination

(15.3.11)
n

∑
t=1

at(eit ⊗ fkt ) = 0

for at ∈ k. Since only a finite number of terms are involved, this equation really
involves finite-dimensional subspaces of V and W, namely the span of the {eit} in
V and the span of the { f jt} in W. We have already seen that the {eit ⊗ fkt} are
linearly independent in this case, so all of the at = 0 in equation 15.3.11.

Chapter 10, 10.6 Exercise 5 (p. 377) This is an ns × mt matrix called the Kronecker
product of A and B. If

A =

 a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n


Then

A⊗ B =

 a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB


Chapter 10, 10.6 Exercise 6 (p. 377) We construct a homomorphism

M∗ ⊗ N → homk(M, N)

Let M have basis {ei} with i = 1, . . . , m, and let N have basis { f j}with k = 1, . . . , n.
Then M∗ has the dual basis {ei} defined by

ei(ej) =

{
0 if i ̸= j
1 if i = j
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and M∗ ⊗ N has a basis {ei ⊗ f j}. Given an element, m ∈ M, we can evaluate each
basis element

ei(m) · f j

to define an element of homk(M, N). Since this is bilinear and dim M∗⊗N = nm =
dim homk(M, N), it follows that it defines an isomorphism.

Chapter 10, 10.6 Exercise 7 (p. 377) This follows immediately from
proposition 10.6.11 on page 370:

R
a
⊗R

R
b
=

(
R
a

)/
b ·
(

R
a

)
=

R
a+ b

Chapter 10, 10.6 Exercise 8 (p. 377) We always have a surjective natural map

a⊗R M → a ·M
a⊗m 7→ a ·m

If M is flat, this map is also injective since it is

a ↪→ R

⊗M.
Chapter 10, 10.6 Exercise 9 (p. 377) For each i, take the natural maps

zi: Mi → lim−→ Mj

Zi: Mi ⊗R N → lim−→
(

Mj ⊗R N
)

and form the tensor product of Mi with N to get

zi ⊗ 1: Mi ⊗R N →
(

lim−→ Mj

)
⊗R N

The universal property of direct limits implies the existence of a unique map

v: lim−→
(

Mj ⊗R N
)
→
(

lim−→ Mj

)
⊗R N

that makes the diagram

lim−→
(

Mj ⊗R N
)

v //
(

lim−→ Mj

)
⊗R N

Mi ⊗R N

Zi
OO

Mi ⊗R N

zi⊗1
OO

commute. If m⊗ n ̸= 0 ∈
(

lim−→ Mj

)
⊗R N, then m is the image of some mi ∈ Mi

and m⊗ n = v ◦ Zi(mi ⊗ n). It follows that v is surjective.

If w ∈ lim−→
(

Mj ⊗R N
)

is in the kernel of v, then w = Zi(mi ⊗ n) for some i.
the commutativity of the diagram implies that (zi ⊗ 1)(mi ⊗ n) = zi(mi)⊗ n = 0,
which implies that Zi(mi ⊗ n) = 0 — so v is injective.

Chapter 10, 10.6 Exercise 10 (p. 377) The hypotheses imply that

0 // lim−→ Ai
lim−→ fi
// lim−→ Bi

lim−→ gi
// lim−→ Ci // 0

0 // Ai

āi
OO

fi

// Bi

b̄i
OO

gi
// Ci

c̄i
OO

// 0

commutes for all i, where we don’t know whether the top row is exact. If x ∈ lim−→ Ci,
then x is the image of some xi ∈ Ci. The commutativity of this diagram implies that
x is in the image of b̄i(g−1

i (xi)). It follows that lim−→ gi is surjective. If x ∈ lim−→ Bi such
that x ∈ ker lim−→ gi, then x = b̄i(xi) for some i and c̄i ◦ gi(xi) = 0. The definition
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of direct limit implies that there exists N > i such that cN ◦ · · · ◦ ci(x) = 0, so
bN ◦ · · · ◦ bi(xi) ∈ ker gN . The exactness of the original sequences implies that
bN ◦ · · · ◦ bi(xi) = fN(yN) and the commutativity of the diagram above implies
that āN(yN) = x. A similar argument implies that the left end of the upper row is
also exact.

Chapter 10, 10.6 Exercise 11 (p. 377) Consider the map g: (α) ↪→ R. This is an inclu-
sion and, since S is flat over R

(α)⊗R S
g⊗1−−→ R⊗R S = S

is also an inclusion. Since α is a non-zero-divisor in R, (α) ∼= R and the isomorphism
R→ R induced by the inclusion is multiplication by α. This implies that

S = R⊗R S
(×α)⊗1=× f (α)−−−−−−−−−→ R⊗R S = S

is also injective, which implies that f (α) ∈ S is a non-zero-divisor.

Chapter 10, 10.6 Exercise 12 (p. 377) Let

(15.3.12) 0→ U1 → U2 → U3 → 0

be a short exact sequence of modules over S. Since we can compose the action of
S on these modules with the homomorphism, f , it is also a short exact sequence of
modules over R. If we take the tensor product with M⊗R S, we get

0 // U1 ⊗S (M⊗R S) // U2 ⊗S (M⊗R S) //// U3 ⊗S (M⊗R S) //// 0

U1 ⊗R M U2 ⊗R M U3 ⊗R M

which is exact since equation 15.3.12 is an exact sequence of R-modules.

Chapter 10, 10.6 Exercise 13 (p. 378)

Chapter 10, 10.6 Exercise 14 (p. 378) For any commutative ring U and any module
A over U, U ⊗U A = A. This (and the associativity of tensor products) implies that

(S−1R⊗R M)⊗S−1R (S−1R⊗R N) = (S−1R⊗R M)⊗S−1R S−1R⊗R N

= (S−1R⊗R M)⊗R N

= S−1R⊗R M⊗R N

= S−1R⊗R (M⊗R N)

Chapter 10, 10.6 Exercise 15 (p. 378) Since M is projective, it is a direct summand of
a free module, F, so F = M⊕ N for some other projective module, N. Then

F∗ = M∗ ⊕ N∗

Chapter 10, 10.7 Exercise 1 (p. 386) First of all, note that the map V → W is split,
i.e. there exists a left-inverse t: W → V so that g ◦ t = 1. Any two such splitting
maps differ by a map from V to U. Now define 1− t ◦ g: W → ker g = im U or
f−1 ◦ (1− t ◦ g): W → U. We get an isomorphism

( f−1 ◦ (1− t ◦ g), g): W ∼= U ⊕V

Given a commutative diagram like the one in the statement of the problem, we can
lift a map t2: W2 → V2 to get a map t1: W1 → V2 so we get a natural isomorphism
from Wi to Ui ⊕Vi . The conclusion follows from proposition 10.7.8 on page 381.

Chapter 10, 10.7 Exercise 2 (p. 386)
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Chapter 10, 10.7 Exercise 3 (p. 386) Just compute

(e2 + 2e4) ∧ e3 ∧ 2e1 ∧ (e2 − e4) = −e2 ∧ e3 ∧ 2e1 ∧ e4

−2e4 ∧ e3 ∧ 2e1 ∧ e2

= −2e1 ∧ e2 ∧ e3 ∧ e4

+4e1 ∧ e2 ∧ e3 ∧ e4

= 2e1 ∧ e2 ∧ e3 ∧ e4

so the determinant is 2.

Chapter 11, 11.1 Exercise 2 (p. 392) If x ̸= 0 ∈ M, then R · x ⊂ M is a submodule.

Chapter 11, 11.1 Exercise 4 (p. 392) Any sub-representation would be one dimen-
sional, there is no invariant one-dimensional subspace.

Chapter 11, 11.1 Exercise 5 (p. 392) If |G| = n, then gn = 1 (see definition 4.1.11 on
page 38 and theorem 4.4.2 on page 43). It follows that ρ(g)n = I so the conclusion
follows from exercise 9 on page 241.

Chapter 11, 11.1 Exercise 6 (p. 392) Exercise 6 on page 377 implies that there’s a nat-
ural isomorphism

Homk(M, N) ∼= M∗ ⊗k N

“Natural” means it preserves group-actions, i.e. kG-module structures. So we
must analyze the group-actions on M∗ and N. The definition of the action on M∗ =
Hom(M, k) has g ∈ G acting via

Hom(g−1, 1): Homk(M, k)→ Homk(M, k)

and exercise 1 on page 349 implies that the matrix for the action of Hom(g−1, 1)
is the transpose of that for g−1. The conclusion follows from equation 11.1.2 on
page 391.

Chapter 11, 11.1 Exercise 7 (p. 392) If f ∈ Homk(M1, M2), the action of an element,
g ∈ G, on it is given by

(g · f )(x) = g · f (g−1 · x)
where x ∈ M1. If (g · f )(x) = f (x) for all g ∈ G and all x ∈ M1, then f (g−1 · x) =
g−1 f (x), so f preserves the group action and f ∈ HomkG(M1, M2).

Chapter 11, 11.1 Exercise 8 (p. 392) Recall that the trace is an invariant of the linear
transformation defined by P, not the matrix used to compute it (see exercise 18 on
page 201).

The statement that P|W = 1: W →W is equivalent to P2 = P.
If Q = I − P, then Q|W = 0 and P = I −Q. If Z = im Q then Q2 = (I − P)2 =

I − 2P + P2 = Q. It follows that Q|Z = 1: Z → Z. If we combine a basis of W with
one for Q, we get a basis for V in which

P =

[
0 0
0 I

]
: Q⊕W → Q⊕W

so the trace of P is the dimension of W.

Chapter 11, 11.1 Exercise 9 (p. 392) The isomorphism f : V → V is an element of
GL(V). The reasoning in theorem 6.2.50 on page 194 implies the conclusion.

Chapter 11, 11.1 Exercise 10 (p. 392) Let f : ρ1(G) → ρ2(G) be the
conjugation-isomorphism. Then φ = ρ−1

2 ◦ f ◦ ρ1.

Chapter 11, 11.1 Exercise 11 (p. 393) Since they are irreducible U1 ∩ U2 = 0. The
conclusion follows from exercise 1 on page 376.
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Chapter 11, 11.1 Exercise 12 (p. 393) If we have

M ∼= N ⊕U

then N and U also have the property that every submodule of them has a com-
plement, i.e. if N′ ⊂ N, then N′ has a complement, V ⊂ M and and N ∩ V is a
complement in N. If we write M ∼= N ⊕U, and N is not simple (i.e., irreducible),
we can split further N = N1 ⊕ N2 — and this process will proceed until we have
written M as a direct sum of simple modules.

On the other hand, if
M = S1 ⊕ · · · ⊕ Sn

where the Si are simple, and N ⊂ M, then

N ∩ Si =

{
Si or
0

so we can define U to be the direct sum of the Si not contained in N.
Chapter 11, 11.1 Exercise 13 (p. 393) This follows immediately from exercise 12 on
page 393.

Chapter 11, 11.1 Exercise 14 (p. 393) If R is semisimple, then R⊕ · · · ⊕R will also be
semisimple — in other words any free R-module will be semisimple. The conclusion
follows from proposition 6.3.10 on page 225 and exercise 13 on page 393.

Chapter 11, 11.2 Exercise 1 (p. 398) Transpose defines an isomorphism

Mop
n (k) tr−→ Mn(k)

Chapter 11, 11.2 Exercise 2 (p. 398) Given a matrix algebra Mn(D), we can form the
opposite

Mn(D)op = Mop
n (Dop)

If D is a division ring, so is Dop. The conclusion follows from exercise 1 on page 398.
Chapter 11, 11.3 Exercise 1 (p. 408) If g has order n, then ρ(g)n = I. The conclusion
follows from exercise 9 on page 241.

Chapter 11, 11.3 Exercise 2 (p. 408) Since ρ(g) is diagonalizable with eigenvalues
λ1, . . . , λk, we get χ(g) = λ1 + · · ·+ λk. Since ρ(g)n = I, we conclude that λn

i = 1
for all i.

Chapter 11, 11.3 Exercise 3 (p. 408) As in exercise 2 on page 409, χ(g) = λ1 + · · ·+
λk, and χ(1) = k, the degree of the representation. The triangle inequality shows
that

|λ1 + · · ·+ λk| ≤ k
with equality only if λ = λ1 = · · · = λk. So ρ(g) = λ · I.

Chapter 11, 11.3 Exercise 4 (p. 409) This follows immediately from exercise 2 on
page 409 above. This reasoning was used in the proof of proposition 11.3.11 on
page 401.

Chapter 11, 11.3 Exercise 5 (p. 409) The first statement follows immediately from
exercise 4 on page 409 above, which implies that χ(g) = χ(g) for all g ∈ G. The
second follows from the fact that a character-table is square: so a conjugacy class is
uniquely determined by its characters.

Chapter 12, 12.1 Exercise 1 (p. 418) The closed sets of A1 are:
(1) the empty set,
(2) all of A1,
(3) finite sets of point (roots of polynomials).

It follows that the closed sets in the product-topology on A1 ×A1 consist of
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(1) all of A1 ×A1

(2) {finite set} ×A1

(3) A1 × {finite set}
(4) {finite set} × {finite set}

and the Zariski topology on A2 has many more closed sets, like the set of points that
satisfy

x2 + y2 = 1

or even the diagonal line
y = x

Chapter 12, 12.1 Exercise 2 (p. 418) Both V and ℓ are closed sets of An, so their in-
tersection is also a closed set and a closed subset of ℓ = A1. The only closed sets of
ℓ (in the Zariski topology) are:

(1) ∅
(2) ℓ
(3) finite sets of points.

Since p ∈ ℓ and p /∈ V, case 2 is ruled out.

Chapter 12, 12.1 Exercise 3 (p. 418) This follows from exercise 14 on page 247,
which shows that

Ann(M1) ·Ann(M3) ⊂ Ann(M2) ⊂ Ann(M1) ∩Ann(M3)

and proposition 12.1.2 on page 417.

Chapter 12, 12.1 Exercise 4 (p. 418) We can simplify the ideal (X2
1 + X2

2 − 1, X1 − 1)
considerably. Since X2

1 − 1 = (X1 + 1)(X1− 1), we subtract X1 + 1 times the second
generator from the first to get (X2

2 , X1 − 1). It follows that V consists of the single
point (0, 1) and I(V) = (X1 − 1, X2).

Chapter 12, 12.1 Exercise 5 (p. 418) In characteristic 2,
(X1 + X2 + X3)

2 = X2
1 + X2

2 + X2
3 , so V is the plane defined

by
X1 + X2 + X3 = 0

and I(V) = (X1 + X2 + X3).

Chapter 12, 12.1 Exercise 6 (p. 418) This is XY, since XY = 0 implies X = 0 or Y =
0.

Chapter 12, 12.1 Exercise 7 (p. 418) If we use the results of the previous exercise,
XY = 0 so V ((XY)) is the PXZ ∪ PYZ where PXZ denotes the XZ-plane and PYZ
denotes the YZ-plane. Similarly, V ((XZ)) = PXY ∪ PYZ so that

V ((XY, XZ)) = (PXZ ∪ PYZ) ∩ (PXY ∪ PYZ) = PYZ

Since V ((YZ)) = PXY ∪ PXZ, we get

V ((XY, XZ, YZ)) = (PXY ∪ PXZ) ∩ PYZ

= (PXY ∩ PYZ) ∪ (PXZ ∩ PYZ)

and each of these terms are equal to the union of the axes.

Chapter 12, 12.1 Exercise 8 (p. 418) In k[V] = k[X, Y]/(Y2 − X3) the identity Y2 =
X3 holds, so every occurrence of Y2 can be replaced by X3.

Chapter 12, 12.2 Exercise 1 (p. 426) If n = max(n1, . . . , nk) then (p1 · · · pk)
n ∈ (x)

so that (p1 · · · pk) ∈
√
(x).
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Chapter 12, 12.2 Exercise 2 (p. 426) Suppose that p ⊂ k[X1, . . . , Xn] is prime and
suppose that an ∈ p. If we write an = a · an−1, then the defining property of a
prime ideal implies that either a ∈ p or an−1 ∈ p. In the first case, the claim is
proved. In the second case, we do downward induction on n.

Chapter 12, 12.2 Exercise 3 (p. 426) Suppose a ⊂ k[X1, . . . , Xn] is a proper ideal. The
strong form of the Nullstellensatz says that IV (a) =

√
a.

We claim that if a ̸= k[X1, . . . , Xn] then the same is true of
√
a. The statement

that 1 ∈ √a, is equivalent to saying that 1n ∈ a for some n. But 1n = 1 so 1 ∈ √a
implies that 1 ∈ a.

Since
√
a ̸=k[X1, . . . , Xn], we conclude that V(a) ̸= ∅.

Chapter 12, 12.2 Exercise 4 (p. 426) Set n = m = 1. In this case, the Zarski-closed
sets are finite sets of points or the empty set or all of A1. The maps that swaps two
points (like 1 and 2) but leaves all other points fixed is Zarski-continuous, but is
clearly not regular.

Chapter 12, 12.2 Exercise 5 (p. 426) Since the determinant, z, can never vanish and
since it is a polynomial over X1, . . . , Xn, Hilbert’s Nullstellensatz implies that it
must be a constant (any nonconstant polynomial has a zero somewhere).

Chapter 12, 12.2 Exercise 6 (p. 426) The second equation implies that

XZ− Z = Z(X− 1) = 0

so X = 1 or Z = 0. Plugging each of these cases into the first equation gives:
Case 1:
If X = 1 then the first equation becomes YZ = 1 which generates a hyperbola.
Case 2:
If Z = 0 then the first equation becomes X = 0 and Y is unrestricted — i.e., we

get the Y-axis. So the two components are the
(1) hyperbola X = 1, YZ = 1 and
(2) the Y-axis.

Chapter 12, 12.2 Exercise 7 (p. 426) Yes. If we compute Gröbner basis of a + (1 −
T(X + Y)) (with respect to any ordering) we get (1). Using the NormalForm com-
mand in Maple gives

(X + Y)2 →a 4Y2

(X + Y)3 →a 0

so (X + Y)3 ∈ a.
Chapter 12, 12.3 Exercise 1 (p. 430) If we add the two equations, we get

2X2 = −1

so

X = ± i√
2

If we plug this into the second equation, we get

Y2 + Z2 =
1
2

so V consists of two disjoint circles.
Chapter 12, 12.3 Exercise 2 (p. 430) We will prove that the negations of these state-
ments are equivalent. If there exists a nonempty proper subset S ⊂ X that is both
open and closed then X \ S is a closed set and

X = S ∪ (X \ S)

is a decomposition with S ∩ (X \ S) = ∅.
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Conversely, if there exists a decomposition

X = X1 ∪ X2

with X1, X2 nonempty closed sets and X1 ∩ X2 = ∅, then X \ X1 = X2, so X2 is
open as well as closed.

Chapter 13, 13.1 Exercise 1 (p. 439) The cohomology groups of the third cochain
complex will appear in the long exact sequence in proposition 13.1.9 on page 436
sandwiched between the zero-groups of the other two.

Chapter 13, 13.1 Exercise 2 (p. 439) In the long exact sequence

· · · → Hi(C)
f ∗−→ Hi(D)

g∗−→ Hi(E) c−→ Hi+1(C)→ Hi+1(D)→ · · ·
we have Hi(D) = Hi+1(D) so the exact sequence reduces to

· · · → Hi(C)
f ∗−→ 0

g∗−→ Hi(E) c−→ Hi+1(C)→ 0→ · · ·
Chapter 13, 13.1 Exercise 3 (p. 439) If the chain-homotopy between f and g is Φ,
simply use F(Φ) as the chain-homotopy between F( f ) and F(g).

Chapter 13, 13.1 Exercise 4 (p. 440) If b ∈ B maps to 0 under v, then its image under
s must map to 0 under w. But w is an isomorphism so s(b) = 0. The exactness of the
top row implies that b = r(a) for some a ∈ A. If a ̸= 0, then it maps to something
nonzero under u (since u is an isomorphism) and therefore to something nonzero
under r′, which gives a contradiction. It follows that b must have been 0 to start
with. So v is injective. Proof of surjectivity is left to the reader.

Chapter 13, 13.1 Exercise 5 (p. 446) If B⊗R M → C ⊗R M is not surjective, it has a
cokernel, K and there is a homomorphism

C⊗R M→ K

Make D = K in the original exact sequence of hom’s. Then this map goes to the
0-map in homR(B⊗R M, D), a contradiction.

The fact that β ◦ α = 0 implies that β⊗ 1 ◦ α⊗ 1 = 0, so im α⊗ ⊂ im β⊗ 1 Now
let D = B⊗R M/im (α⊗ 1) with

p: B⊗R M→ D

the projection. Then p ∈ homR(B⊗R M, D) and p ∈ ker hom(α⊗ 1, 1) (by construc-
tion) which means

p ∈ im hom(β⊗ 1, 1)
so there exists a map ϕ: C⊗R M→ D such that p = β⊗ 1 ◦ ϕ, so

im β⊗ 1 = ker p = ker(β⊗ 1 ◦ ϕ) = (β⊗ 1)−1(ker ϕ)

which contains ker β⊗ 1.
Chapter 13, 13.1 Exercise 6 (p. 446) First note that homA b(Z/n ·Z, Q/Z) = Z/n ·
Z. The conclusion follows from the finite direct sum

A =
⊕ Z

ni ·Z
so

homA b(A, Q/Z) = ∏
Z

ni ·Z
= A

since the product is finite.
The second statement follows from looking at the injective resolution of Z in

exercise 16 on page 447.
Chapter 13, 13.1 Exercise 8 (p. 446) This follows from the corresponding property
of hom.
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Chapter 13, 13.1 Exercise 9 (p. 446) This follows from the corresponding property
of hom.

Chapter 13, 13.1 Exercise 11 (p. 446) In this case N is its own injective resolution.
And all others are chain-homotopy equivalent to it, so they have the same coho-
mology.

Chapter 13, 13.1 Exercise 12 (p. 446) We can identity
homR-mod(R, M) = homR(R, M) = M. It follows that, applied to
any resolution of M, we just recover the resolution.

Chapter 13, 13.1 Exercise 13 (p. 446) A projective module is a direct summand of a
free module, so we get

Exti
R(P⊕Q, M) = Exti

R(P, M) = Exti
R(Q, M) = Exti

R(F, M)

and Exti
R(F, M) = 0, by exercise 12 on page 446.

Chapter 13, 13.1 Exercise 14 (p. 446) The proof is very much like that of
corollary 13.1.23 on page 445 except that you “reverse the arrows.”

Chapter 13, 13.1 Exercise 15 (p. 446) We get the induced long exact sequence (see
proposition 13.1.9 on page 436)

0 = hom(Zn, Z)→ homZ(Zn, Zn) = Zn
∼=−→ Ext1

Z(Zn, Z)→ Ext1
Z(Zn, Z) = 0

so Ext1
Z(Zn, Z) = Zn.

Chapter 13, 13.1 Exercise 16 (p. 446) This is just

Q→ Q/Z

because both of these groups are injective objects (see propositions 10.5.6 on
page 363 and 4.6.18 on page 69).

Chapter 13, 13.1 Exercise 17 (p. 447) This follows immediately from
proposition 10.5.7 on page 363.

Chapter 13, 13.1 Exercise 18 (p. 447) Since each of the Pi are projective, we have
Extj

R(Pi, ∗) = 0 for j > 0. We prove this by induction on n. If M is any R-module,
the long exact sequence in cohomology gives

· · · → Extj
R(Pi, M) = 0→ Extj

R(im Pi+1, M)→ Extj+1
R (im Pi, M)→ Extj+1

R (Pi, M) = 0→ · · ·
so

Extj
R(im Pi+1, M) = Extj+1

R (im Pi, M)

as long as j > 0 and i ≥ 1. At the end of the induction step

Extj
R(im P2, M) = Extj+1

R (im P1, M) = Extj+1
R (A, M)

Chapter 13, 13.2 Exercise 1 (p. 451) If M is projective, it is its own projective resolu-
tion so Ext1

R(M, N) = 0 for any N. On the other hand, suppose Ext1
R(M, N) = 0 for

any N. If

W → M

is a surjective map with kernel K the W is an extension of M by K. Since
Ext1

R(M, K) = 0, this extension is split, i.e. W = K⊕M — which is the definition of
a projective module (see 6.3.15 on page 227).
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Chapter 13, 13.2 Exercise 2 (p. 451) The reasoning associating an extension to an el-
ement of Ext1

R(A, B) is exactly the same as before.
If

· · · → P2 → P1 → P0 → A→ 0
is a projective resolution of A, and x ∈ Ext1

R(A, B), then x: P1 → B is a homomorph-
ism that vanishes on the image of P2 which is the kernel of P1 → P0. It follows that
it induces a map x̄: im (P1)→ B and we can form the push-out

im (P1) //

x̄ ��

P0

��

B // E

We clearly have a homomorphism

B→ E

which is injective since im (P1) ↪→ P0 is injective. We also have an isomorphism
E
B
∼= P0

im (P1)
∼= A

Chapter 13, 13.2 Exercise 4 (p. 451) If x ̸= 0 ∈ Ext1
Z(Zp, Z) the extension

0→ Z
ι−→ Z

π−→ Zp → 0

corresponding to x is defined by:
(1) ι(1) = p
(2) π(1) = x

Note that we are using the fact that p is a prime here (so every nonzero element of
Zp is a generator).

Chapter 13, 13.3 Exercise 3 (p. 461) This follows immediately from exercise 1 on
page 93 and theorem 13.3.11 on page 461.

Chapter 13, 13.3 Exercise 4 (p. 461) This follows immediately from exercise 3 on
page 461 and theorem 13.1.23 on page 445.





Glossary

A b The category of abelian groups.
diffeomorphic Two topological spaces, X and Y, are diffeomorphic if there

exist smooth maps f : X → Y and g: Y → X whose composites are
the identity maps of the two spaces. Note the similarity to homeo-
morphism.

homeomorphic Two topological spaces, X and Y, are homeomorphic if there
exist continuous maps f : X → Y and g: Y → X whose composites
are the identity maps of the two spaces.

SM The symmetric algebra generated by a module. See definition 10.7.4
on page 379.

Assoc(R) The set of associated primes of a ring R. See definition 6.3.27 on
page 241.

C The field of complex numbers.
H The division algebra of quaternions.
O The division algebra of octonions.
C h The category of chain-complexes. See definition 13.1.1 on page 433.
Co The category of cochain-complexes. See definition 13.1.2 on

page 434.
coker f The cokernel of a homomorphism. See definition 6.3.6 on page 224.
dense subset A subset S ⊂ X of a topological space is dense if, for any open

set U ⊂ X, S ∩U ̸= ∅.
Exti

R(A, B) The Ext-functor — see section 13.1.19 on page 443.
Λi M The ith exterior power of a module, M. See definition 10.7.7 on

page 380.
Fpn The unique finite field of order pn, where p is a prime number. See

section 7.6 on page 287.
xn The falling factorial or Pochhammer symbol, defined by xn = x(x−

1) · · · (x− n + 1) for n ≥ 1.
F̄p The algebraic closure of the field Fp. See theorem 7.6.7 on page 289.
Fp The Frobenius homomorphism of a finite field of characteristic p.

See definition 7.6.5 on page 289.
inj-dim M The injective dimension of a module. See definition 13.1.12 on

page 440.
J(R) The Jacobson radical of a ring. See definition 5.7.1 on page 154.
k[[X]] Power series ring, defined in definition 5.1.7 on page 109.
k{{X}} Field of Puiseux series, defined in example 15.1.5 on page 468.
lim−→ An The direct limit of a sequence of objects and morphisms. See defi-

nition 10.4.1 on page 351.
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lim←− Rn The inverse limit of a sequence of objects and morphisms. See def-
inition 10.4.10 on page 356.

LT(∗) Leading monomial of a polynomial with respect to some ordering.
Used in computing Gröbner bases.

A( f ) The algebraic mapping cone of a chain-map, f . See
definition 13.1.11 on page 438.

\ A difference between sets, so A \ B is the elements of A that are not
contained in B.

R-mod The category of modules over a ring, R. See statement 7 on
page 341.

homC(A, B) The set of morphisms between objects of a category C. See
definition 10.1.2 on page 340.

N(R) The nilradical of a ring. See definition 12.2.7 on page 421.
◁ A symbol indicating that a subgroup is normal — see

definition 4.4.5 on page 44.
proj-dim(M) The projective dimension of a module. See definition 13.1.13

on page 441.
Q The field of rational numbers.
R The field of real numbers.
RiF Right derived functors of F. See definition 13.1.18 on page 443.√∗ Radical of an ideal. See definition 12.2.4 on page 421.
rank(A) Rank of a matrix, A.
Γ(a) The Rees algebra of a ring with respect to an ideal. See defini-

tion 15.3.4 on page 472.
Res( f , g) Resultant of two polynomials. See definition 6.2.41 on page 188.
Tori

R(A, B) The Tor-functor — see definition 13.2.1 on page 447.
Tr (A) The trace of a square matrix (the sum of its diagonal elements).
R× The group of units of a ring or field.
Z The ring of integers.
Z(p) p-adic numbers. See example 10.4.14 on page 359.
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NIELS HENRIK ABEL, 314
Abel’s Impossibility Theorem, 314
abelian category, 359
abelian group, 35
abelianization of a group, 49
absolute value of a complex number, 7
ACC, 122
action of a group on a set, 74
acyclic cochain complex, 433
additive functor, 359
adjoint functors, 347
adjoint of a matrix, 183
adjugate of a matrix, 183
adjunction, 347
affine k-algebra, 428
affine group, 201
affine regular mapping, 423
affine space, 413
algebra, 321

alternative, 331
power-associative, 331

algebra over a field, 260
algebraic closure

construction, 282
algebraic closure of a field, 281
algebraic element of a field, 261
algebraic extension of fields, 263
algebraic independence, 289
algebraic mapping cone, 436
algebraic number, 120

minimal polynomial, 120
algebraic numbers, 283
algebraic set, 413
algebraically closed field, 281
alternating group, 54
alternative algebra, 331
annihilator of an element in a module,

239
EMIL ARTIN, 158
Artin-Wedderburn theorem, 395
Artinian ring, 157
Artinian module, 224
ascending chain condition, 122

associated prime, 239
Aut(G), 48
automorphism, 40, 111

inner, 48
outer, 48

automorphism group, 48

Baer Sum, 449
Baer’s Criterion for injectivity, 361
Baer-Specker group, 60
bar resolution, 454
basis

ideal, 111
basis for a vector space, 164
ÉTIENNE BÉZOUT, 14
Bézout’s Identity, 14
bijective function, 39
bilinear form, 254
bilinear map, 365
Bruno Buchberger, 127
WILLIAM BURNSIDE, 76
Burnside’s Theorem, 409

GEROLAMO CARDANO, 297
category, 338

concrete, 339
discrete, 339
equivalence, 346

AUGUSTIN-LOUIS CAUCHY, 76
Cauchy sequence, 469
ARTHUR CAYLEY, 49
Cayley Numbers., 330
Cayley-Dickson Construction, 322
Cayley-Hamilton Theorem, 197
center of a group, 46
center of a ring, 403
centralizer of an element of a group, 79
chain complex, 431
chain-homotopic chain-maps, 433
chain-homotopy equivalent, 434
chain-map, 431, 432
character, 302
character of a group-representation, 396
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characteristic of a field, 259
characteristic polynomial in a finite

extension, 271
characteristic polynomial of a matrix, 193
characteristic subgroup, 47
characters

inner product, 399
Chinese Remainder Theorem, 116
class equation, 78
class equation of a group, 78
class function, 397
closure of a set, 415
cochain complex, 432
cofinal subsequence, 352
cohomology groups, 433
cokernel of a homomorphism, 113, 222
column-vectors of a matrix, 168
combinatorial group theory, 87
commutative ring, 107
commutator, 47
commutator subgroup, 47
compact topological space, 423
complement of a submodule, 392
complete metric space, 469
complex conjugate, 7
complex number

conjugate, 7
composition factors, 85
composition series, 85
compositum of fields, 311
concrete category, 339
congruence modulo a number, 18
conjugacy problem, 90
conjugate

complex number, 7
quaternion, 324

conjugate closure of a subgroup, 46
conjugates of an algebraic element, 283
contravariant functor, 344
convergent sequence, 469
coordinate ring, 425
coproduct in a category, 340
Correspondence Theorem for groups, 48
covariant functor, 344
GABRIEL CRAMER, 176
Cramer’s Rule, 175
cross product of vectors, 209
cross-product as wedge-product, 381
cycle, 50
cyclic group, 37
cyclotomic polynomial, 274

decomposable elements of an exterior
algebra, 380

decomposable tensors, 365
JULIUS WILHELM RICHARD DEDEKIND,

6
definition

group, 34
symmetric group, 34

degenerate bilinear form, 254
degree of a field extension, 260
MAX DEHN, 91
dependent characters, 303
derived functors, 438
derived series, 84
determinant, 170
determinantal variety, 415
dihedral group

geometry, 57
dihedral group,D8, 37
dimension of a representation, 386
dimension of a vector space, 165
direct limit, 349
direct product, 59
direct sum, 363
direct sum of group-representations, 389
direct sum of groups, 38
directed set, 350
JOHANN LEJEUNE DIRICHLET, 279
Dirichlet’s theorem, 279
discrete category, 339
discrete valuation, 465
discrete valuation ring, 466
discriminant

cubic polynomial, 144
quadratic polynomial, 144

discriminant of a polynomial, 144
disjoint cycles, 51
distinguished open sets, 415
divisible group, 69
division algebra, 321
division algorithm, 128
division ring, 107
domain of a function, 39
dot-product, 206
dual of a module, 374
dual of a representation, 389

echelon form of a matrix, 171
edges of a graph, 74
eigenspace, 196
eigenvalue, 193
eigenvector, 193
Eisenstein’s irreducibility criterion, 149
elementary matrix

type 1, 174
elementary row operation

type 1, 174
elementary symmetric functions, 142
elliptic curve, 414
enough injectives, 360
enough projectives, 360
epimorphism

category theoretic definition, 342
equivalence of categories, 346
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equivalent extensions of groups, 456
Euclid Algorithm, 13
Euclid algorithm

extended, 17
Euclidean ring, 118

norm, 118
Euler

ϕ-function, 22
LEONHARD EULER, 7
Euler formula

quaternionic, 326
Euler’s Criterion, 28
exact sequence, 222
exact sequence of cochain complexes, 434
Exti

R(M, N)-functor, 441
Extended Euclid algorithm, 17
extension

degree, 260
n-fold extension, 450
extension of fields, 259
extension problem for groups, 456
extension ring, 110
exterior algebra, 378

decomposable elements, 380

F -acyclic object, 443
faithful functor, 345
faithful representation, 385
Fermat number, 278
Fermat Prime, 278
Fermat Primes, 278
Fermat’s Little Theorem, 22
field, 259

algebraic closure, 281
algebraic extension, 263
algebraically closed, 281
characteristic, 259
compositum, 311
extension, 259, 260
of fractions of a ring, 260
perfect, 268
prime subfield, 259
radical extension, 311
rational function, 260

field extension
Galois group, 298

field of fractions of a ring, 260
filtered colimit, 350
a-filtration, 471
finite fields, 285
First Sylow Theorem, 81
fixed field of a set of automorphisms, 304
flat module, 371
forgetful functors, 348
free abelian group, 59
free basis, 59
free group, 88

defining property, 89

free module, 221
freely equal strings, 88
FERDINAND GEORG FROBENIUS, 328
Frobenius map, 287
Frobenius’s Theorem

associative division algebras, 328
full functor, 345
function, 39

bijective, 39
domain, 39
image, 39
injective, 39
range, 39
surjective, 39

functor, 343
faithful, 345
full, 345
isomorphism, 344

fundamental theorem of algebra, 319

ÉVARISTE GALOIS, 298
Galois extension, 306
Galois group of an extension, 298
Galois Theory, 284
JOHANN CARL FRIEDRICH GAUSS, 146
Gauss’s Lemma, 147
Gaussian Elimination, 176
Gaussian Integers, 250
gcd, 13
general linear group, 200
generating set of a module, 223
generators in a presentation, 89
generators of a group, 37
gimbal problem, 328
graded algebra, 469
graded ideal, 469
graded module, 470
graded reverse lexicographic ordering,

128
graded ring, 377
Gram-Schmidt orthonormalization, 218
graph, 74
Grassmann algebras, 378
greatest common divisor, 13
Gröbner basis, 127

leading term, 127
group

p -primary component, 68
abelian, 35
abelianization, 49
action, 74

orbit, 74
affine, 201
alternating, 54
automorphism, 40
Baer-Specker, 60
center, 46
centralizer of an element, 79
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class equation, 78
commutator subgroup, 47
composition factors, 85
composition series, 85
correspondence theorem, 48
cyclic, 37
definition, 34
derived series, 84
dihedral, 37
direct sum, 38
divisible, 69
extension problem, 456
free

defining property, 89
free abelian, 59
general linear, 200
generators, 37
homomorphism, 40
infinite cyclic, 41
isomorphism, 40
Jordan-Hölder Theorem, 85
Klein 4-group, 38
Lagrange’s theorem, 43
left cosets, 43
normal subgroup, 44
order, 35
order of an element, 38
presentation, 89

generators, 89
relations, 89
relators, 89

quotient, 45
representation, 385, 388
second isomorphism theorem, 48
semidirect product, 79
simple, 55
solvable, 87
special linear, 200
special orthogonal, 200
sub-representation, 386
subgroup, 37

normalizer, 46
subnormal series, 84
symmetric, 34
third isomorphism theorem, 48
torsion free, 67

group of units, 108
group-action

transitive, 74
group-algebra, 387
group-representation

character, 396
dimension, 386
direct sum, 389
homomorphism, 385
isomorphism, 385
tensor product, 389

group-ring, 109
grout

orthogonal, 200

WILLIAM ROWAN HAMILTON, 198
KURT WILHELM SEBASTIAN HENSEL,

358
CHARLES HERMITE, 215
Hermitian matrix, 215
Hermitian transpose, 215
DAVID HILBERT, 417
Hilbert Basis Theorem, 123
Hilbert Nullstellensatz

weak form, 417
Hilbert rings, 155
Hilbert space, 213

L2, 214
Hodge duality, 382
homogeneous ideal, 469
homology groups, 432
homomorphism

kernel, 111
homomorphism of groups, 40
homomorphism of modules, 221
homomorphism of representations, 385
homomorphism of rings, 111
homomorphism of vector spaces, 167

ideal, 111
generated by a set of elements, 111
left, 111
maximal, 111
prime, 111
principal, 111
product, 111
radical, 419
right, 111
two-sided, 111

ideal basis, 111
identity matrix, 168
image of a function, 39
imaginary part of a complex number, 7
imaginary part of a quaternion, 323
∈-minimal element (of a set), 462
independent group characters, 303
index of a subgroup, 43
inductive limit, 350
infinite cyclic group, 41
injective dimension, 438
injective function, 39
injective object, 360
injective resolution, 438
Inn(G), 48
inner automorphism, 48
inner product, 213
inner product of characters, 399
integers, 108

unique factorization, 16
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integral closure, 252
integral domain, 117
integral elements, 250
integral extension of rings, 251
integrally closed ring, 252
invariant set of a group-element, 75
inverse limit, 354
invertible matrix, 169
involution

algebra, 321
irreducible element, 117
irreducible representation, 386
isomorphism, 111
isomorphism of algebraic sets, 428
isomorphism of graphs, 74
isomorphism of groups, 40
isomorphism of representations, 385
isomorphism problem, 90

Jacobi’s Conjecture, 424
Jacobson radical, 154
Jacobson ring, 154, 428
MARIE ENNEMOND CAMILLE JORDAN,

233
Jordan Canonical Form, 236
Jordan-Hölder Theorem, 85

kernel of a homomorphism, 111
kernel of a homomorphism of groups, 40
Klein 4-group, 38
Kronecker product, 389, 508
Krull-Azumaya Theorem, 244

JOSEPH-LOUIS LAGRANGE, 43
Lagrange’s formula

triple cross product, 212
Laurent polynomials, 425
Law of Cosines, 206
lcm, 13
least common multiple, 13
Lebesgue measure

outer, 189
left-adjoint, 347
left-cosets, 43
left-exact functor, 440
left-ideal, 111
Legendre symbol, 27
lexicographic ordering, 128
limit of an infinite sequence, 469
Lindemann–Weierstrass theorem, 289,

292
linear dependence, 163
linear independence, 163
linear transformation of vector spaces,

167
local ring, 113, 248
localization at a prime, 248
locally free modules, 373

lower-triangular matrix, 170

HEINRICH MASCHKE, 393
Maschke’s Theorem, 391
matrix, 168

adjoint, 183
adjugate, 183
characteristic polynomial, 193
column-vectors, 168
determinant, 170
echelon form, 171
elementary, 174
Hermitian, 215
identity, 168
invertible, 169
lower-triangular, 170
minor, 182
trace, 194
transpose, 168
unitary, 215
upper-triangular, 170

maximal ideal, 111
metric space, 468
CLAUDE GASPARD BACHET DE

MÉZIRIAC, 14
minimal polynomial, 120, 261
minimal polynomial of a matrix, 227
minor of a matrix, 182
module

dual, 374
socle, 389

module over a ring, 220
monomial

graded reverse lexicographic ordering,
128

lexicographic ordering, 128
monomorphism

category theoretic definition, 342
multiplicative group of Zn, 20
multiplicative set in a ring, 246

Nakayama’s Lemma, 243
natural isomorphism, 345
natural numbers, 5
natural transformation, 345
nilpotent element of a ring, 419
nilradical, 419
EMMY NOETHER, 121
Emmy Noether, 121
Noether Normalization Theorem, 417
noetherian module, 224
noetherian ring, 121
non-unique factorization, 120
norm

Euclidean ring, 118
norm of a finite extension, 271
norm of a quaternion, 325
norm of a vector, 206
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normal closure of a subgroup, 46
normal extension, 306
normal ring, 252
normal subgroup, 44
normalizer of a subgroup, 46
nullspace of a linear transformation, 167
Nullstellensatz

strong form, 419
weak form, 417

octonions, 330
orbit, 74
order of a group, 35
order of a group element, 38
ordering of monomials, 127
NICOLE ORESME, 2
orthogonal group, 200
orthonormal set of vectors, 216
outer automorphisms, 48
outer Lebesgue measure, 189

p-adic integers, 357
p-adic numbers, 357
p-adic valuation, 466
perfect field, 268
ϕ-function, 22
PID, 119
pivot element of a matrix, 170
polynomial

discriminant, 144
primitive, 147, 288

polynomial ring, 108
polynomially-closed, 156
power-associative algebra, 331
power-series ring, 109
powerset of a set, 11
presentation of a group, 89
prime element of a ring, 117
prime factors of a module, 240
prime field, 259
prime filtration, 240
prime ideal, 111
prime number, 15
primitive element, 268
primitive element theorem, 268
primitive polynomial, 147, 288
primitive root of unity, 301
principal ideal, 111
principal ideal domain, 119
product

direct, 59
product of ideals, 111
projection to a quotient group, 45
projective dimension, 439
projective module, 225
projective object, 360
projective resolution, 439
Prüfer group, 38, 72

Puiseux series, 466
pull-back, 341
Puma 560 robot arm, 203
push-out, 340

Quadratic Reciprocity Theorem, 28
quadratic residues, 27
quaternion

imaginary part, 323
norm, 325
scalar part, 323
vector notation, 324
vector part, 323

quaternion conjugate, 324
quaternion group, 106
quaternion units, 323
Quaternionic Euler Formula, 326
quaternions, 323
quotient group, 45
quotient ring, 112

Rabinowich Trick, 156
radical extension of a field, 311
radical of an ideal, 419
radical tower, 311
range of a function, 39
rank-variety, 414
rational function field, 260
real part of a complex number, 7
reduced form of a word, 88
reduced ring, 428
Rees algebra of an ideal, 470
KURT WERNER FRIEDRICH

REIDEMEISTER, 99
Reidemeister rewriting process, 99
Reidemeister-Schreier rewriting process,

101
relators in a presentation, 89
representation

character, 396
dimension, 386
group, 385, 388
homomorphism, 385
irreducible, 386
isomorphism, 385
simple, 386
stable subspace, 388

representation of Sn, 387
representation space, 386
resultant, 186
rewriting process, 94

Reidemeister, 99
right derived functors, 441
right resolution, 438
right-adjoint, 347
right-exact, 440
right-exact functor, 369
right-ideal, 111
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ring, 107
Artinian, 157
center, 403
commutative, 107
discrete valuation, 466
Euclidean, 118
extension, 110
field of fractions, 260
homomorphism, 111
ideal, 111
integral domain, 117
integrally closed, 252
irreducible element, 117
local, 113
multiplicative set, 246
noetherian, 121
normal, 252
PID, 119
polynomial, 108
prime element, 117
principal ideal domain, 119
quotient, 112
reduced, 428
subring, 107
trivial, 107
UFD, 119
unit, 107

ring of fractions
universal property, 353

root of unity
primitive, 301

PAOLO RUFFINI, 314
BERTRAND ARTHUR WILLIAM RUSSELL,

461

S-polynomial, 131
scalar part of a quaternion, 323
OTTO SCHREIER, 101
Schreier coset representative function,

101
Schreier transversal, 103
ISSAI SCHUR, 388
second isomorphism theorem for groups,

48
Second Sylow Theorem, 81
sedenions, 334
semidirect product, 79
semisimple, 390
separable element of a field, 267
separable extension of fields, 268
separable polynomial, 267
set

powerset, 11
short exact sequence, 222
sign-representation, 386
simple group, 55
simple representation, 386
Smith Normal Form, 233

socle of a group, 47
socle of a module, 389
solvability by radicals, 312
solvable group, 87
span of a set of vectors, 164
special linear group, 200, 414
special orthogonal group, 200
split short exact sequence, 246
splitting field, 264
stabilizer, 74
stable a-filtration, 471
stable subspace of a representation, 388
standard inner product, 213
standard representation of Sn, 387
sub-representation of a group, 386
subgroup, 37

normalizer, 46
submodule, 221
subnormal series, 84
subring, 107
surjective function, 39
PETER LUDWIG MEJDELL SYLOW, 81
Sylow Theorem

First, 81
Second, 81
Third, 81

JAMES JOSEPH SYLVESTER, 186
Sylvester Matrix, 186
symmetric algebra, 377
symmetric bilinear form, 254
symmetric group, 34

cycle, 50
standard representation, 387
transposition, 50

NICCOLÒ FONTANA TARTAGLIA, 296
tensor algebra, 376
tensor product, 364

universal property, 364
tensor product of group-representations,

389
third isomorphism theorem, 48
Third Sylow Theorem, 81
Tietze transformations, 91
torsion free group, 67
total quotient ring, 249
totient, 22
trace form, 255
trace of a finite field extension, 271
trace of a matrix, 194
transcendence basis, 292
transcendence degree, 291, 292
transcendental element of a field, 261
transcendental extension of fields, 263
transcendental number, 120
transitive group-action, 74
transpose of a matrix, 168
transposition, 50
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transversal, 97
Schreier, 103

trivial ring, 107
two-sided ideal, 111

UFD, 119
unique factorization domain, 119
unique factorization of integers, 16
unit, 107
unit vector, 206
unitary matrix, 215
units

group, 108
upper-triangular matrix, 170

valuation, 465
Vandermonde matrix, 145
variety of a movement problem, 139
vector

norm, 206
unit, 206

vector notation for a quaternion, 324
vector space, 163

basis, 164
dimension, 165
homomorphism, 167

vector-part of a quaternion, 323
vectors

orthonormal, 216
vertices of a graph, 74

Weierstrass Division Theorem, 151
Weierstrass Preparation Theorem, 152
Wilson’s Theorem, 27
word problem, 90

Xn-general power series, 151

Yoneda extensions, 450

Z(G), 46
Oscar Zariski, 415
Zariski closure, 415, 420
Zariski topology, 415

distinguished open sets, 415
zero-divisor, 108
Zorn’s Lemma, 463
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