Adventures with
free Mathematical

Software
Edition 3

Adventures with
free Mathematical

Software

by
Justin R. Smith

Five Dimensions Press

Dedicated to the mem-
ory of my wonderful
wife, Brigitte.

©2023. Justin R. Smith. All rights reserved.

ISBN: 9798873341108

>

vV VVVVv

v

Also published by Five Dimensions Press

Introduction to Algebraic Geometry (paperback and hardcover),
Justin Smith.

Abstract Algebra (paperback and hardcover), Justin Smith.

Eye of a Fly (Kindle edition and paperback), Justin Smith.

The God Virus, (Kindle edition and paperback) by Justin Smith.
Ohana, (Kindle edition and paperback) by Justin Smith.

The Accidental Empress, (Kindle edition and paperback) by Justin
Smith.

Die zufiillige Kaiserin, German translation of The Accidental Empress
(Kindle edition and paperback) by Justin Smith.

Five Dimensions Press page:
http://www.five-dimensions.org
Email:jsmith@drexel.edu

Foreword

“The number system is like human life. First you have the natural
numbers. The ones that are whole and positive. Like the num-
bers of a small child. But human consciousness expands. The
child discovers longing. Do you know the mathematical expres-
sion for longing? The negative numbers. The formalization of the
feeling that you're missing something. Then the child discovers
the in-between spaces, between stones, between people, between
numbers and that produces fractions, but it’s like a kind of mad-
ness, because it does not even stop there, it never stops... Math-
ematics is a vast open landscape. You head towards the horizon
and it’s always receding. ..”

— Smilla Qaavigaaq Jaspersen, in the novel Smilla’s Sense of Snow,
by Peter Hoeg (see [21]).

This book arose out of one of the more enjoyable undergraduate
courses I taught at Drexel University: Mathematical Software. I taught
it for many years without using a textbook (and probably never taught
the same exact course twice!). I toyed with writing a text for it but never
found the time.

The courses I taught are varying subsets of the material in this manu-
script.

At Drexel, we used commercial software that had a very slick user-
interface (and that gives incorrect results in an important case!). In this
book, I use the free and open-source Maxima system with its wxMaxima
interface.

Sections marked in this manner are more advanced or specialized and may
be skipped on a first reading.

@@ Sections marked in this manner are even more advanced or specialized
and may be skipped on a first reading (or skipped entirely).

I am grateful to the many editors of Wikipedia. The biographical
sketches in this book owe a great deal to their vital work.

I am also grateful to Matthias Ettrich and the many other developers
of the software, LyX — a free front end to IATEX that has the ease of use of
a word processor, with spell-checking, an excellent equation editor, and a
thesaurus. I have used this software for years and the current version is
more polished and bug-free than most commercial software.

Contents

Foreword vii
List of Figures xiii
Chapter 1. Introduction 1
1.1. Installation and first steps 1
Chapter 2. Number theory 9
2.1. Introduction 9
2.2. Euler’s totient function 14
2.3. Public-key cryptography 15
2.4. Diffie-Hellman-Merkle key exchange 19
2.5. Continued fractions 21
Chapter 3. Basic algebra and calculus 25
3.1. Functions and programming 28
3.2. Limits 36
3.3. Elimination theory 37
Chapter 4. Differential Equations 41
4.1. Introduction 41
4.2. Into the wild 50
4.3. The Heat Equation 52
4.4. Solution to the Heat Equation 59
4.5. Finer points of plotting 61
4.6. The Wave Equation 65
Chapter 5. Integral transforms 75
5.1. The Fourier Transform 75
5.2. The discrete Fourier transform 77
5.3. The Laplace Transform 80
Chapter 6. Orthogonal polynomials 87
6.1. Introduction 87
6.2. Weighted orthogonality 91
Chapter 7. Linear Algebra 99
7.1. Introduction 99
7.2. Changes of basis 107
7.3. Dot-products and projections 109

7.4. Eigenvalues and the characteristic polynomial 116

X CONTENTS

7.5. Functions of matrices
7.6. Linear Programming

Chapter 8. Calculus of Finite Differences
8.1. A discrete introduction to finite differences
8.2. Functional Programming and Macros

Chapter 9. Nonlinear algebra
9.1. Introduction
9.2. Ideals and systems of equations
9.3. Grobner bases
9.4. Buchberger’s Algorithm
9.5. Consistency of algebraic equations

Chapter 10. Robot motion-planning
10.1. A simple robot-arm
10.2. A more complex robot-arm

Chapter 11. Differential Game Theory, a Drive-by
11.1. Dances with Limousines
11.2. Rock, Paper, Rocket

Chapter 12. Special Functions
12.1. The Gamma Function
12.2. Elliptic integrals and elliptic functions
12.3. Bessel functions
12.4. Airy functions
12.5. Logarithmic and exponential integrals
12.6. Lambert functions

Chapter 13. The Zeta function
13.1. Properties of the {-function
13.2. A “formula” for prime numbers

Appendix A. Grobner basis for the robotic motion problem
Appendix B. Predefined values.

Appendix C. Functional equation
C.1. Poisson summation
C.2. The main result

Appendix D. Fermat factorization
D.1. The algorithm
D.2. Derivation of the upper bound for the number of iterations

Appendix E. The Maxima Programming language
E.1. Introduction
E.2. Commands for functions and equations
E.3. Trigonometric functions
E.4. Logical Operations
E.5. Looping constructs

129
132

143
143
148

153
153
153
157
158
160

163
163
166

173
173
181

189
189
192
198
201
202
207

211
211
218

225
231

233
233
234

235
235
237

239
239
239
240
240
240

CONTENTS

E.6. Lists
E.7. Macros
E.8. Inputand Output

Appendix E. Visual outputs
E1l. Plotting
E2. plot3d
E3. Standalone commands

F4. Plot-outputs
E5. The draw commands

Appendix. Solutions to Selected Exercises
Appendix. Index
Appendix. Bibliography

xi

241
245
247

251
251
257
261
261
262

271
287
293

1.1.1

3.0.1
3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6
3.1.7
3.1.8

411
4.1.2
413
414
421
422
4.3.1
432
433
434
435
4.3.6
441
442
443
444
45.1
452
453
4.6.1

List of Figures

The complex plane

Roots of a cubic equation

Simple plot

Lambda plots

the block command

Local variables in a block-command
f(x) written using a block-command
False plot of f(x)

First plot of f(x)

Better plot of f(x)

Direction-field defined by equation 4.1.1 on page 41
The Logistic Curve
Output of the Runge-Kutta algorithm
Plot of two solutions
Plot of rabbits versus foxes
Rabbits and foxes
First three terms
First 10 terms
Comparison of first 10 with f(x)
The first 100 terms
Periodicity of a Fourier series
Gibbs Phenomena
P(x,.01)
P(x,.02)
P(x,.1)
P(x1)
An example of plot3d
with_slider_draw
Evolution of the heat equation

“Realistic” plucking function

xiii

26
29
30
32
33
33
34
35
35

42
45
48
49
51
51
56
57
57
57
58
59
61
61
62
62
63
63
63
68

4.6.2
4.6.3
4.6.4
4.6.5

511
5.3.1
532
533
534

6.1.1
6.1.2
6.1.3
6.14
6.2.1
6.2.2
6.2.3
6.24
6.2.5
6.2.6

7.1.1
7.3.1
73.2
7.3.3
734
74.1
7.6.1
7.6.2

8.1.1
821
8.2.2
823

10.1.1
10.1.2
10.2.1

11.1.1
11.1.2

LIST OF FIGURES

The extended plucking function

Initial position of a two dimensional membrane
First three terms of a two-dimensional Fourier series
After .4 time units

Fourier transform of f(x)
Harmonic oscillator

Simple harmonic motion
Forced harmonic motion

Discontinuous driving force

Model for Legendre polynomials

The first six Legendre polynomials

First 5 terms of a Legendre series

First 20 terms of a Legendre series

The first four Chebyshev polynomials

First 20 terms of a Chebyshev expansion
Weight-function for Chebyshev expansions
Laguerre polynomials

Expansion of f(x) in 100 Laguerre polynomials
Hermite polynomials

Code for a reduced echelon matrix
Projection of a vector onto another
Least squares fit
Linear regression
“Formula” for prime numbers

A sample web
Feasible region

Linear programming solution

The harmonic numbers

The Gregory-Newton series
Polynomial giving the first 10 primes
Prime polynomial plot

A simple robot arm

Reaching a point

A more complicated robot arm

Turning radius=30

Turning radius=10

68
71
72
73

77
82
83
84
86

88
89
90
91
92
93
94
94
95
97

105
110
113
114
116
125
133
134

147
150
151
152

163
165
166

178
179

11.1.3
11.14
11.1.5
11.2.1
11.2.2
11.2.3

12.1.1
12.1.2
12.2.1
12.2.2
12.2.3
1224
12.3.1
12.3.2
12.4.1
12.5.1
12.5.2
12.5.3
12.5.4
12.5.5
12.6.1
12.6.2

13.1.1
13.2.1
13.2.2
13.2.3

F11
F1.2
F1.3
F14
F15
F1.6
F1.7
F1.8
E2.1
E2.2
F2.3

LIST OF FIGURES

Bond far away

Gimbel problem

Solution to the Gimbel Problem

Naive pursuit algorithm

Rock speed 30

Predictive algorithm with rock speed 30

The I'-function

Plot of |I'(z)]

Pendulum

Jacobi functions

Plot of sn(x,.9)

Plot of en(x,.9)

First three Bessel J-functions
First three Bessel Y-functions
The Airy Functions

The li-function

The Ei-function

E1-function

The sine-integral

The cosine-integral

The Lambert W function
The Lambert function W_1(z)

The contour, C

Plot of R(x)

Approximate 77(x)

First 100 primes (approximately)

High-level plot example
Mixed plot-types

Plot example 1

Plot example 2
Parametric plot 1

Code for mixed parametric plot
Mixed parametric plot
Contour plot

A 3d plot

A 3d plot with mesh
Plot with elevation 0

XV

179
180
180
184
185
187

190
191
193
196
196
197
200
200
202
203
204
205
205
206
208
208

212
222
223
224

253
254
255
255
256
257
257
258
258
259
259

xvi

F24
F25
F2.6
E3.1
E5.1
F5.2
F5.3
F5.4
F5.5
F5.6
E5.7

E5.8
F5.9
F5.10

LIST OF FIGURES

Plot using palette

Plot with a color palette

Plot with a color-bar

The Mandelbrot set

The with_slider_draw command
Basic draw-command

Two-column plot

Drawing two plots in one command
Drawings with two columns
Multiple functions in the same scene
The trefoil knot

Output of exercise plot
Plot of ellipse,same_xy
Plot without same_xy

259
260
260
261
262
263
265
265
265
267
268

273
282
283

Adventures with
Mathematical
Software

CHAPTER 1

Introduction

“In the broad light of day, mathematicians check their equations
and their proofs, leaving no stone unturned in their search for
rigour. But at night, under the full moon, they dream, they float
among the stars and wonder at the miracle of the heavens. They
are inspired.

Without dreams there is no art, no mathematics, no life.”
— Sir Michael Atiyah, Notices of the AMS, January 2010, page 8.

1.1. Installation and first steps

Mathematical software development has made great strides in recent
decades, and one of the most powerful systems is free and open-source.
It is a modernized form of the Macsyma system developed from 1968 to
1982 at MIT’s Project MAC. The original system remained available to aca-
demics and US government agencies, and was distributed by the US De-
partment of Energy (DOE). That version, DOE Macsyma, was maintained
by Bill Schelter, a professor of mathematics at the University of Texas at
Austin.

Under the name of Maxima, it was released under the GPL in 1999, and
remains under active maintenance.

Versions of it exist for Linux, Windows, and the MacOS, and FreeBSD
(see the web site https://maxima.sourceforge.io/. For other sys-
tems, you can download the source code and try to compile it.

The original Maxima had a command-line interface. Professor Schelter
developed a rudimentary GUI interface. This was further improved by
the wxMaxima project and now includes menus for many of the maxima
commands and the ability to save one’s work in a kind of notebook.

Your first assignment is to download wxMaxima and install this on
the system of your choice (Maxima is bundled with most distributions of
wxMaxima).

(1) In windows, you can download a version of it from
http://wxmaxima-developers.github.io/wxmaxima/.

(2) In Linux and the three BSD’s!, pre-packaged versions of wxMax-
ima are available that you can install if you have root access. After
it is installed, you can run it from your applications menu or in
any directory by typing

wxmaxima

1FreeBSD, NetBSD, and OpenBSD.

2 1. INTRODUCTION

(3) If you don’t have root access or your distribution doesn’t sup-
port it, you can download the “Applimage” version of wxMaxima
from the web site listed above and install it in your user account
by following the instructions. This image contains Maxima and
all other dependencies.

After starting up wxMaxima, you will notice a number of menus:

File: this is self-explanatory. It allows you to save notebooks and open
ones you have saved.

Edit: also self-explanatory. The copy menu-items are significant. Copy-as-
text copies a formula in a format that can be input to Maxima.
Copy-as-LaTex copies it in a format suitable for inclusion in a TeX
typesetting document. Copy-as-mathml copies it in a format suit-
able for web pages. Copy-as-image is suitable for pasting into a
word document or web pages that can’t be viewed by a mathml-
aware web browser.

View: this controls which palettes and menus you see. Play with it to see
what it does!

Cell: this is important! Maxima statements are called cells, and this exe-
cutes them (as well as manipulating them in other ways).

Maxima: this interacts with the Maxima program in various ways.

Equations: this contains Maxima commands to solve equations or differ-
ential equations.

Matrix: a menu containing commands for creating and manipulating ma-
trices.

Calculus: a menu containing commands to differentiate and integrate
functions, among other things.

Simplify: an important menu containing commands to simplify or expand
expressions and manipulate complex numbers.

List: commands to manipulate lists.

Plot: commands to create plots.

Numeric: contains commands related to numeric computations.

Help: self-explanatory.

%: this is not a menu item, but is very important nevertheless. This symbol
represents the value of the last computation Maxima performed.
Most menu commands act on this by default (although you can
override this easily).

Go to the menu marked ‘New’ in the upper right portion of the screen and
select a new Maxima session (there are several other options available).

Type 1+1 and click ‘ Cell>Evaluate Cell(s) ‘ to get '2’. Amazing! This soft-
ware can add 1 and 1. We can also operate with numbers using *’ for
multiplication, ‘/” for division, and “*” for raising to a power.

See table 1.1.1 on the next page, so the expression 1/2+a”"2-3=0 has
implied parentheses ((1/2)+(a”"2))—-3=0. Operations at the same priority are
evaluated from left to right, so 3/4/5=3/(4+5)=3/20.

At this point, it is a good idea to save your notebook and give it a name
other than “Untitled’. Go to the ‘File’ menu and select ‘Save As’.

1.1. INSTALLATION AND FIRST STEPS 3

| Operator
A Exponentiation
P Division, multiplication, matrix-multiplication
+, - Addition, subtraction
: Assignment
=#,<,><=>= | Equal, not equal, greater than, less than, greater or equal
not boolean not
and boolean and
or boolean or
TABLE 1.1.1. Hierarchy of operations
Maxima can factor numbers: type factor(121) and click

’CellDEvaluate Cell(s)‘ to get 112. For something more challenging, try

factor(123456789) to get 32 3607 3803.

Maxima saves fractions in their lowest form. If you type 128/256,
Maxima will come back with 1/2.

Maxima had the basic abs-function built in that computes absolute
value:

abs(2) =2
abs(—2) =2

In general, Maxima has examples of its commands built into it. The
general format of the example-command is

example (command)

For instance, try typing and click example(factor) and click
’ Cell>Evaluate Cell(s) ‘
This may be used in other commands to refer to that output. For in-

stance, suppose you type 2100 and click ’ Cell>Evaluate Cell(s) ‘ to get

1267650600228229401496703205376

Now you can type factor(%) and click ’ Cell>Evaluate Cell(s) ‘ to get 2100,
To get an idea of the raw computing power of Maxima, consider the
factorial function. Recall that factorials are defined by

mM=nxn-1)xn-2)x---x1

The Maxima command for computing this is n! or factorial (n). Try

typing 100! or 1000! and clicking on ’ Cell>Evaluate Cell(s) ‘

Factorials like n! represent the number of ways of arranging n distinct
objects: Given # slots, the first object can go into any one of them. After it
has been placed, there are n — 1 slots left for the second object, and n — 2
for the third, and so on.

4 1. INTRODUCTION

Maxima also has a binomial-command given by

!
binomial(n,m) = m

It also has a mathematical significance: it represents the number of
ways of selecting a set of m objects from a set of n distinct objects. The
numerator is all possible arrangements of the original n objects. Since we
don’t care what order the m objects we’ve selected are in (because this is a
set of m objects), we divide out by the ways of arranging these m objects.
Since we really don’t care what order the n — m objects we didn’t select are
in, we also divide out by (n-m)!.

The float-command gives the numeric value of a quantity in scientific
notation.

The word float is part of computing history. Early computers could only
work with integers. When computers were built that could handle num-
bers in scientific notation, the numbers were called floating-point because
the decimal point could “float” into any position. In Maxima, float numbers
use the computer’s intrinsic ability to do floating-point arithmetic. Maxima
also has a bfloat-command with floating point arithmetic implemented in
software. These numbers could potentially have thousands of significant
digits. A bfloat-number followed by bnn means the number is to be multi-
plied by 10"".

If you type 123456789/987654321 and click ’CellDEvaluate Cell(s) |,
you get the fraction in its lowest terms: 13717421/109739369. If you type
bfloat(123456789/987654321) and click ’CellDEvaluate Cell(s)
0.124999998860938.

The Numeric menu has a Bigfloat-precision option that specifies the
number of digits to use. If you set this to 100, typing bfloat(%pi) and se-

, you get

lecting’ Cell>Evaluate Cell(s) ‘ gives

3.14159265358979323846264338327950288419716939937510
5820974944592307816406286208998628034825342117068

Maxima has predefined mathematical constants such as e and 7

typing bfloat(%e) and selecting |Cell>Evaluate Cell(s)| produces
2.71828182845905: see Appendix B on page 231 for a list of them —
including inf for infinity*.

2Try typing bfloat(inf) and’ Cell>Evaluate Cell(s) |

1.1. INSTALLATION AND FIRST STEPS 5

3H{z}
42
1 e
i z = |z|é’
| =2 -1 0 1 12 Rz}
-1
-2
FIGURE 1.1.1. The complex plane

Identifiers in maxima are strings of: lower- and upper-case letters, digits,
and "_". They must not begin with a digit. Examples: ‘setl’, ‘total_series’,
“accum’. They are case-sensitive and must not equal any Maxima keyword:
integrate | next from diff
in at limit sum
for and elseif then
else do or if
unless | product | while thru
step block | return | derivative

In Maxima, %i represents v/—1 and we can compute with complex
numbers. Recall that complex numbers can be either in a rectangular form
like a + bi or a polar form like re’— see figure 1.1.1. Maxima has commands
to convert numbers between these forms: the rectform-command or
menu-item ’ Simplify>Complex Simplification>Convert to Rectform ‘ or

the polform-command or menu-item

’ Simplify>Complex Simplification>Convert to Polarform ‘ Typing

(243+%i)/(4+5+%i) and clicking Cell>Evaluate Cell(s)‘ causes

Maxima to come back with gijg;ﬁ Typing the rectform-command or

menu-item ’ Simplify>Complex Simplification>Convert to Rectform ‘

gives 2;/;1’ + %. Typing the polarform-command or menu-item

Simplify>Complex Simplification>Convert to Polarform ‘ gives

\/ﬁo/o e%i arctan(%)
V41

6 1. INTRODUCTION

Typing %e”(%pi+%i) and clicking | Cell>-Evaluate Cell(s) |results in -1,
reproducing Euler’s famous formula

et = -1

and typing %e/~(x#%i) and the rectform-command or menu-item

’ Simplify>Complex Simplification>Convert to Rectform gives De

Moivre’s famous formula
(1.1.1) %i sin (x) + cos (x)

As you might expect, Maxima has basic functions like realpart and
imagpart that extracts these aspects of complex numbers

realpart(a + b * %i) = a
imagpart(a + b * %i) = b

Unfortunately, the abs-function doesn’t quite know how to handle complex
numbers:

abs(a+ b * %i) = |a+ b * %i]
For this purpose, we need the closely-related cabs-function (“complex” ab-

solute value)
cabs(a+bx %i) = VD% + a?

Leonhard Euler (1707 — 1783) was, perhaps, the greatest mathematician of
all time. Although he was born in Switzerland, he spent most of his life
in St. Petersburg, Russia and Berlin, Germany. He originated the notation
f(x) for a function and made contributions to mechanics, fluid dynamics,
optics, astronomy, and music theory. His final work, “Treatise on the Con-
struction and Steering of Ships,” is a classic whose ideas on shipbuilding
are still used to this day.

To do justice to Euler’s life would require a book considerably longer
than the current one — see the article [16]. His collected works fill more
than 70 volumes and, after his death, he left enough manuscripts behind
to provide publications to the Journal of the Imperial Academy of Sciences
(of Russia) for 47 years.

Typing %eN(%pi*%i/3) and clicking | Cell>Evaluate Cell(s) | gives

a cube root of —1, ie, @ + % We can verify this claim by typing

(1/24%ixsqrt(3) +1/2)"3. Unfortunately, Maxima just comes back with
. 3
3

(5+1).
What are we to do? Maxima has a command expand() that

causes it to eliminate parentheses as much as possible and multiply
factors out. Typing expand((1/2+%ixsqrt(3) + 1/2)"3) or clicking

’ Simplify>Expand Expression ‘ results in —1.

1.1. INSTALLATION AND FIRST STEPS 7

EXERCISES.

1. From a standard 52-card deck of playing cards, how many 5-card
Poker hands are possible?

2. Write in the form a + bi
2

341

3. Write in the form a + bi
1
i+ ——
1+ 1=
4. Find equations for sin 76 and cos n6 in terms of sin 6 and cos #. Hint:

use de Moivre’s Formula (1.1.1 on the facing page) and the binomial theo-
rem.

CHAPTER 2

Number theory

“Mathematics is the queen of sciences and number theory is the
queen of mathematics. She often condescends to render service
to astronomy and other natural sciences, but in all relations she
is entitled to the first rank.”

— Carl Friedrich Gauss, see [47].

2.1. Introduction

People not interested in number theory can skip this chapter; none of
the others depend on it.

Number theory is the study of integers. On the surface this makes it
seem almost laughably simple, but some of the most difficult and complex
problems in all of mathematics belong to number theory. For instance, Fer-
mat’s Last Theorem (stated in 1637):

The equation
a + bb ="
has no solutions in integers with a,b,c > 0and n > 2.
was only proved in 1995 by Andrew Wiles.

Pierre de Fermat (1607- 1665) was a French mathematician who is given
credit for early developments that led to infinitesimal calculus, including
his technique of adequality”. He is recognized for his discovery of an orig-
inal method of finding the greatest and the smallest ordinates of curved
lines, which is analogous to that of differential calculus, and his research
into number theory. He made notable contributions to analytic geometry,
probability, and optics. He is best known for his Fermat’s principle for light
propagation and his Fermat’s Last Theorem in number theory, which he de-
scribed in a note at the margin of a copy of Diophantus’s Arithmetica.

For finding maxima and minima of functions.

The famous Riemann Hypothesis (discussed in chapter 13 on page 211)
is still unsolved.

Applied mathematicians regarded number theory as a subject only of
theoretical interest!. This state of affairs changed in the 1960’s when power-
ful new systems of cryptography were discovered that use number theory.
Today, the National Security Agency (responsible for secure communica-
tions) employs more number theorists than any university.

Iasa grad student at the Courant Institute, the author mentioned number theory and
another student sneered “Does such a thing even exist?”

10 2. NUMBER THEORY

We will begin by reviewing some very basic material.
Most people learned the following result in grade school — long division
with a quotient and remainder:

PROPOSITION 2.1.1. Let n and d be real numbers. Then it is possible to write
n=gq-d+rvr

where q is an integer and 0 < r < d. If r = 0, we say that d | n — stated “d
divides n”. The negation of this is d { n (d doesn’t divide n).

Maxima can compute this with the mod-command: type

mod(987654321,123456789); and | Cell>Evaluate Cell(s) fo ~ get the
remainder of dividing 987654321 by 123456789, namely 9.

Although this definition usually requires n and d to be integers, the
Maxima command works for real numbers as well: mod(1.5,1); produces .5.
Essentially,

a
2.1.1) mod(a,b) = a— bJ b
The division algorithm gives rise to the concept of greatest common divi-
sor.

DEFINITION 2.1.2. Let n and m be positive integers. The greatest com-
mon divisor of n and m, denoted gcd(n, m), is the largest integer d such that
d|n and d | m. The least common multiple of n and m, denoted lem(n, m), is
the smallest positive integer k such that n | k and m | k.

Since 0 is divisible by any integer, gcd(n,0) = ged(0,n) = n.

There is a very fast algorithm for computing the greatest common di-
visor due to Euclid — see [12, 13].

REMARK. Euclid’s original formulation was geometric, involving line-
segments. Given two line-segments of lengths 1 and r,, it found a real

number 7 such that
ror
1 2cz
r’r
An ancient proof of the irrationality of v/2 showed that this process
never terminates if one of the line-segments is of unit length and the other

is the diagonal of a unit square.

As trivial as proposition 2.1.1 appears to be, it allows us to prove Bé-
zout’s Identity:

LEMMA 2.1.3. Let n and m be positive integers. Then there exist integers u
and v such that

(2.1.2) ged(n,m)=u-n+v-m

REMARK. Bézout proved this identity for polynomials — see [2]. How-
ever, this statement for integers can be found in the earlier work of Claude
Gaspard Bachet de Méziriac (1581-1638) — see [22].

2.1. INTRODUCTION 11

Afterloading via load("gcdex"), the Maxima function igedex(n, k) com-
putes the greatest common divisor and the values of u,v that appear in
equation 2.1.2 on the preceding page.

For example

load ("gcdex");
igedex(12345,98765432)

returns
[—39546175 ,4943, 1}

where gcd(12345,98765432) = 1 and
—39546175 - 12345 4- 4943 - 98765432 = 1

Etienne Bézout (1730-1783) was a French algebraist and geometer credited
with the invention of the determinant (in [4]).

DEFINITION 2.1.4. A prime number is an integer that is not divisible by
any integer other than 1 or (£)itself.

The Maxima commands regarding primes are:

> primep(n) returns true when 7 is a prime and false otherwise. The
parameter primep_number_of_tests determines how many types
of tests for primality will be performed. The default is 25.

> primes(n, m) —returns a list of all primes, p, such thatn < p < m.
For instance

primes(2,20)

returns
[2,3,5,7,11,13,17,19]

> prev_prime (1) — returns the largest prime < n.
>> next_prime (1) — returns the smallest prime > n.

It is well-known that integers can be factored into powers of primes in a
unique way (see [40, chapter 3]:
LEMMA 2.1.5. Let n be a positive integer and let

o1 K
n = pl pk
(2.1.3) = qfl qfl
be factorizations into powers of distinct primes. Then k = £ and there is a reorder-
ing of indices f:{1,...,k} — {1,...,k} such that q; = P and i = Déf(,')for
all'i from1 to k.

The Maxima function ifactors(n) determines the unique factorization
of n:

ifactors (123456789);

12 2. NUMBER THEORY

returns
[[3,2],[3607,1] , [3803, 1]]
showing that
123456789 = 32 - 3607 - 3803

In this case, the factor-command also works.
Unique factorization also leads to many other results:

PROPOSITION 2.1.6. Let n and m be positive integers with factorizations
— Ak
n= pl PR pk
m = p'fl e pfk
Then n|m if and only if a; < B; fori =1,..., kand

ng(Tl, m) = prlnin(mxlsl) . pkmin(”‘krﬂk)
lem(n,m) = pr@Pr) . pmax(ape)
Consequently
nm
(2.1.4) lem(n,m) = scd(m)

DEFINITION 2.1.7. If n > 0 is an integer, two integers r and s are con-
gruent modulo n, written
r=s (mod n)
if
n|(r—s)

REMARK. It is also common to say that r and s are equal modulo n.
The first systematic study of these type of equations was made by Gauss
in his Disquistiones Arithmeticae ([15]). Gauss wanted to find solutions to
equations like

apx" 4+ -+ amx+ap=0 (mod p)

In Maxima terms, r = s (mod n) if and only if mod(r, n)=mod(s, n).

PROPOSITION 2.1.8. Equality modulo n respects addition and multiplica-
tion, i.e. ifr,s,u,v € Zandn € Z withn > 0, and

r=s (mod n)
(2.1.5) u=v (mod n)
then
r+u=s+v (mod n)
(2.1.6) r-u=s-v (mod n)
This elementary result has some immediate implications:

EXAMPLE. Show that 5|(7% — 2¥) for all k > 1. First note, that 7 = 2
(mod 5). Equation 2.1.6, applied inductively, implies that 78 = 2k (mod 5)
forall k > 1.

2.1. INTRODUCTION 13

DEFINITION 2.1.9. If n is a positive integer, the set of equivalence
classes of integers modulo # is denoted Z,,.

REMARK. It is not hard to see that the size of Z,, is n and the equiva-
lence classes are represented by integers
{0,1,2,...,n—1}
Proposition 2.1.8 on the preceding page implies that addition and mul-

tiplication is well-defined in Z,,. The Maxima command zn_add_table(n)
returns a table of Z, with the addition-operation. For instance:

zn_add_table (8);

returns table 2.1.1.

0123456 7
1 23 456 70
2 3456 7 01
34567012
4 56 7 01 2 3
56 7012 3 4
6 7 01 2 3 45
7 01 2 3 45 6
TABLE 2.1.1. Addition table for Zg

It is interesting to speculate on when a number has a multiplicative
inverse modulo . It turns out that:

PROPOSITION 2.1.10. Ifn > 1is an integer and x € Zy, then there exists
y € Zy, with
x-y=1 (mod n)
if and only if ged(x,n) = 1. When this is true, we say that x is relatively prime
to n.

Because of this, we are generally only interested in the elements x € Z,,
that are relatively prime to n. The set of such numbers is denoted Z,, where
the superscript x indicates that we’re considering the elements of Z,, under
multiplication rather than addition. Maxima has a command for computing
the multiplication table for Z; : zn_mult_table(n). For instance

zn_mult_table (8);

produces the table in 2.1.2 on the next page.
We also have other commands for doing modular arithmetic:
> power_mod(a, 1, m) — computes a” (mod m). Note: there are al-
gorithms for computing powers modulo another number that are
much faster than simply raising the number to that power.
> inv_mod(n,m) — computes n~! (mod m), if it exists (i.e., if
ged(n, m) = 1), and false otherwise.
This section would not be complete without mention of the famous:

14 2. NUMBER THEORY

1 35 7
3175
5 7 1 3
7 5 31
TABLE 2.1.2. Multiplication table for Zg

THEOREM 2.1.11 (Chinese Remainder Theorem). If ny, ..., ny are a set of
positive integers with ged(n;, nj) =1 forall 1 <i < j <k, then the equations

x=a; (mod nq)

x =a; (mod ny)
have a unique solution modulo H{le n;.

REMARK. The Chinese Remainder Theorem was first published some-
time between the 3rd and 5th centuries by the Chinese mathematician Sun
Tzu (not to be confused with the author of “The Art of Warfare”).

Naturally, Maxima has a command that implements this: In the no-
tation of theorem 2.1.11, the command chinese([ay, ..., ax], [11, ..., ng]) re-
turns x. If any of the conditions of theorem 2.1.11 are not met, it returns
false.

EXERCISES.

1. If n and m are two integers with ged(n,m) = 1, what can you say
about the primes that appear in their factorizations?

2. If n and m are two integers with gcd(n,m) = 1, show that Z),, =
Z); x Z,(the right side of this consists of pairs (a,b), where a € Z;* and
b € Z)). Hint: use the Chinese Remainder Theorem.

2.2. Euler’s totient function

DEFINITION 2.2.1. If n is a positive integer then

¢(n)
is the number of generators of Z,, — or the number of elements in Z;, or

> If n > 1 it is the number of integers, d, with 1 < d < n with
ged(d, n) = 1.
> If n =1, itis equal to 1.

2.3. PUBLIC-KEY CRYPTOGRAPHY 15

This is called the Euler ¢-function. Euler also called it the totient. The
Maxima command for computing this is called totient(n).

REMARK. If p is a prime number, then ¢(p) = p — 1 since the integers
1 <i < p—1are all relatively prime to p.

Exercise 2 on the facing page shows that, if # and m are integers with
ged(n,m) =1, then
221) ¢(mn) = ¢(n)¢(m)

This ¢-function has some interesting applications

PROPOSITION 2.2.2. If n and m are integers > 1 with ged(n, m) = 1, then

(2.2.2) m?™ =1 (mod n)
It follows that, for any integers a and b

(2.2.3) m* =m® (mod n)
whenever

a=b (mod ¢(n))

REMARK. Fermat proved this for n a prime number — in that case, it
is called Fermat’s Little Theorem.

EXERCISES.
1. Why is 7°% = 771 (mod 100)?

2.3. Public-key cryptography

“Well, a regular code is like a strongbox with a key. You lock your
message in it and nobody can read it without the key.”

“I understand. But Ed needs the key to read the messages,
right? How do you get it to him without the bad guys also seeing
it?”

“That’s the beauty of this system. It’s like a magic box that
comes with two different keys. When you lock it with one key,
only the other key can open it.”

“You can’t use the original one?” she said.

“No,” I replied. “So, I send Ed one key and keep the other
for myself. Even if the bad guys get his key, they can’t use it to
decode my messages. Only the one I keep will do that.”

— Constance Fairchild, in the novel Bloodline (with the au-
thor’s permission). See [41].

The idea of a public-private key cryptosystem is attributed to Whitfield
Diffie and Martin Hellman, who published the concept in 1976.

16 2. NUMBER THEORY

Bailey Whitfield ‘Whit” Diffie (1944-) An American cryptographer and
mathematician and one of the pioneers of public-key cryptography along
with Martin Hellman and Ralph Merkle. Diffie and Hellman’s 1976 pa-
per, [11], introduced a radically new method of distributing cryptographic
keys, that helped solve key distribution — a fundamental problem in cryp-
tography. They lacked a good implementation of their ideas.

Martin Edward Hellman (1945-) is an American cryptographer and mathe-
matician, best known for his involvement with public key cryptography in
cooperation with Whitfield Diffie and Ralph Merkle. Hellman is a longtime
contributor to the computer privacy debate, and has applied risk analysis
to a potential failure of nuclear deterrence.

Hellman was elected a member of the National Academy of Engineering in
2002 for contributions to the theory and practice of cryptography.

In 1977, Ron Rivest, Adi Shamir and Leonard Adleman, described an
efficient algorithm for public key encryption based on proposition 2.2.2 on
the previous page. A description of the algorithm was published in August
1977, in Scientific American magazine’s Mathematical Games column?.

Clifford Cocks, an English mathematician working for the British intel-
ligence agency Government Communications Headquarters (GCHQ), de-
scribed an equivalent system in an internal document in 1973. His descrip-

tion was classified until the RSA algorithm appeared.

Ronald Linn Rivest (1945-) is a cryptographer and computer scientist
whose work has spanned the fields of algorithms and combinatorics, cryp-
tography, machine learning, and election integrity. He is an Institute Pro-
fessor at the Massachusetts Institute of Technology (MIT) and a member of
MIT’s Department of Electrical Engineering and Computer Science and its
Computer Science and Artificial Intelligence Laboratory.

Along with Adi Shamir and Len Adleman, Rivest is one of the inventors of
the RSA algorithm. He is also the inventor of the symmetric key encryp-
tion algorithms RC2, RC4, and RC5, and co-inventor of RC6. (RC stands
for "Rivest Cipher". He also devised the MD2, MD4, MD5 and MD6 cryp-
tographic hash functions.

Adi Shamir (1952-) is an Israeli cryptographer. He is a co-inventor of the
Rivest-Shamir-Adleman (RSA) algorithm (along with Ron Rivest and Len
Adleman), a co-inventor of the Feige-Fiat-Shamir identification scheme
(along with Uriel Feige and Amos Fiat), one of the inventors of differential
cryptanalysis and has made numerous contributions to the fields of cryp-
tography and computer science

Leonard Adleman (1945-) is an American computer scientist. He is one
of the creators of the RSA encryption algorithm, for which he received the
2002 Turing Award. He is also known for the creation of the field of DNA
computing.

2To the consternation of the CIA!

2.3. PUBLIC-KEY CRYPTOGRAPHY 17

The basic idea:

Let p and g be two large (30 digits or more) primes, and let
n=pgso¢(n)=(p—1)(g—1). Now let a,b be integers
such that

ab=1 (mod ¢(n))

If 1 < x < nis any number, then
(x)? = x® =x' (mod n)

So, to encode x, raise it to the ath power modn. The
“encoded message” is (1,y), where y = x* (mod n). To
“decode” the message, compute y” mod 7, resulting in the
original a.

Make the value of n and a widely available. If anyone
wants to send you a message, they raise it to the a™ power
modn and transmit it. When you receive it, you raise it to
the b power modn and retrieve the original message.

How would a malicious person crack this code? They know a and n be-
cause these numbers were widely publicized. If they could compute ¢ ()
it would be fairly easy® to compute b = a~! (mod ¢(n)). So the whole
problem of cracking this code boils down to computing ¢(n), given n. It
turns out that there’s no known way of doing this without factoring n to get
pand q.

The conventional way to factor numbers involves trying primes like
2,3,...,17 and reducing the size of the number until it is manageable. Sup-
pose the smallest prime that divides a number has 30 digits! Factoring that
number will be quite difficult. Faster algorithms for factoring numbers
have been discovered*, but they are not substantially faster in all cases.

This is called the RSA encryption algorithm after its developers’ sur-
names. Since converting a long message to numbers and raising them to
a high power is computationally expensive, the “messages” sent via this
algorithm are usually keys for other, more conventional ciphers — which is
why it’s called a key-distribution algorithm.

Its security depends on the difficulty of factoring certain
large numbers.

Nowadays, the RSA algorithm uses the Carmichael A-function rather than
the ¢-function:

DEFINITION 2.3.1. If n > 1 is an integer, the Carmichael function, A(n),
is the smallest integer 1 < k < n such that

=1 (mod n)

for all a € Z such that ged(n,a) = 1.

3As it turns out!
45ee appendix D on page 235.

18 2. NUMBER THEORY

If p and g are primes, it turns out that A(p - q) = lem(p — 1,9 —1) <
(p —1)(g — 1), and computing this still requires factoring p - q. It's used
these days simply because it is usually smaller than ¢(p - q)°.

Naturally, Maxima has a command for computing A(#):

zn_carmichael_lambda (n)

For instance

totient (100)

returns 40, while

zn_carmichael_lambda (100)

returns 20.
We have the related command

zn_order(x,n)

which computes the lowest exponent ¢ such that
x*=1 (mod n)

The computation uses a factorization of ¢(n) (i.e. totient(n)). Since this
might be time-consuming (or practically impossible), the user can “help
the command” by supplying such a factorization® as the second parameter
in the notation of ifactors.

So our cryptographic scheme involve the following steps:

oose two large prime numbers g < p. To make factoring harder,
(1) Ch large pri bersqg < p. T ke £ ing hard
p and g should be chosen at random, be both large and have a

large difference: If
1 (r=q\’
2q 2

is small, Fermat factorization can easily factor p - ¢ — see appendix D
on page 235. For choosing the primes, the standard method is to
choose random integers and test for primality (using prime_p in
Maxima, for instance) until two primes are found. The primes p
and q are kept secret.

(2) Compute n = pq. This product, #, is used as the modulus for both
the public and private keys. Its length, usually expressed in bits,
is the key length.

(3) Compute A(n) =lem(p—1,4—1).

(4) Choose aninteger e such that2 < e < A(n) and ged(e,A(n)) =1. e
having a short bit-length and small Hamming weight (number of
1’s in its binary representation) results in more efficient encryption
— the most commonly chosen value for ¢ is 2!¢ + 1 = 65537. The
smallest (and fastest) possible value for e is 3, but such a small

550 the computations are slightly faster.
6Acquired by some magic, perhaps!

2.4. DIFFIE-HELLMAN-MERKLE KEY EXCHANGE 19

value for e has been shown to be less secure in some settings. The
public key is the pair (n,e). This is widely publicized.

(5) e is released as part of the public key. Determine d = ¢
(mod A(n)). The number, d, is kept secret as the private key
exponent. The private key is (n,d) — this is kept secret.

-1

CLAIM. Everyone who has ever purchased something on the network
has used a public key cryptosystem. The web server (for instance, the ven-
dor selling things) generates a public and private key pair. Then it sends the
public key to the web browser, which replies with an encrypted message
containing a randomly generated key for a secure conventional cryptosys-
tem (the message also includes a code for the desired type of conventional
cryptosystem; most browsers and servers support many of them). The web
server decrypts that and all further communication between the web server
and the browser is encrypted via the conventional system using that key.

Another important application of public-key cryptosystems is in digital sig-
natures. This passage from Bloodline says it all:

... Then use your private key to lock your message in the box.
Although your message is locked away, anyone can read it
— using your public key to unlock it. That’s fine — this time,
your aim wasn't to hide the message. The very fact that your pub-
lic key works proves you locked the message in the box: Only the
mate of the key that locked the magic box can unlock it. ..
— from the novel Bloodline (with the author’s permission).
See [41].
In real life, a kind of summary of the message (a MD5-hash, for instance)
is encrypted with the private key (not the whole message!) and sent along
with the original message.

2.4. Diffie-Hellman-Merkle key exchange

Ralph C. Merkle (1942-) is a computer scientist and mathematician. He
is one of the inventors of public-key cryptography, the inventor of crypto-
graphic hashing, and more recently a researcher and speaker on cryonics.
Merkle is a renowned cryptographer, known for devising Merkle’s Puzzles,
co-inventing the Merkle-Hellman knapsack cryptosystem, and inventing
cryptographic hashing (Merkle-Damgard construction) and Merkle trees.
He received the IEEE Richard W. Hamming Medal in 2010 and has pub-
lished works on molecular manipulation and self-replicating machines. He
also serves on the board of directors for the cryonics organization Alcor Life
Extension Foundation and appears in the science fiction novel The Diamond
Age.

This is a variation on the public-key cryptography described in the last
section, in that there is no private key. Let # > 1 be an integer and consider
the multiplicative set Z,;. This has ¢(n) elements and

DEFINITION 2.4.1. Given an integer, n, a primitive root modulo n, x €
Z},is an element with the property that for any y € Z, there exists an
integer m such that y = x™ (mod n).

20 2. NUMBER THEORY

REMARK. Primitive roots exist if n = 2,4, p* or 2p* with p a prime > 2
— see [15] or [46].

Maxima has a command for computing primitive elements if they exist:

zn_primroot(n)

or false if they don't.

The parameter zn_primroot_limit determines how many attempts it
will make (the default is 1000). The computation uses a factorization of
¢(n) (i.e. totient(n)). Since this might be time-consuming (or practically
impossible), the user can “help the command” by supplying such a factor-
ization as the second parameter in the notation of ifactors:

zn_primroot(n, factorization)

Example

p:2°142 + 217;
ifs:ifactors (totient(p));
g:zn_primroot(p, ifs);

Our public key is the pair (n, x) where x is a primitive root modulo #; there
is no private key. When A and B wish to communicate, they both select
random numbers 4 and b modulo 7.

A sends B the message x” (mod 1), and B sends A the message x
(mod 1). When A receives this, he raises it to the a" power modulo n,
and B raises A’s message to the b power modulo 7.

As the end of this exchange, both A and B have a shared secret

x*? (mod n)

b

that no one else knows. This secret can be used as a key for a more conven-
tional (agreed-upon) cryptosystem’ that is used for further communication.

Its security depends on computing a (mod n), given n, x, and
x? (mod n) — the so-called discrete logarithm problem: In a manner of
speaking a = log, x”, the logarithm of x* — or it would be if computations
were done over R rather than Z;.

There are no known efficient algorithms for solving this other than rais-
ing x to all possible powers and comparing the result with x* (mod n).
Since a might be a large number, this could be computationally expensive.

Compare this with the treatment of elliptic-curve cryptography in [42, sec-
tion 6.2.2].

After all this, it’s important to mention that Maxima has a discrete log-
arithm command

zn_log(a,g,n)

If g is a primitive root modulo n, this solves the congruence g* = a
(mod n), if a solution exists.

"Which may also be publicly-known.

2.5. CONTINUED FRACTIONS 21

EXERCISES.

1. Modify the key-exchange algorithm to give a shared secret to m peo-
ple, where m > 2.

2. Implement electronic signatures using Diffie-Hellman-Merkle key ex-
change.

2.5. Continued fractions

Here’s an example of a continued fraction:

1
V2=1+ :
2+

Euler developed much of the theory of continued fractions, proving that

X

arctan(x) = = T

for |x| <1, where the general term is

(2k —1)2x2
2k+1— (2k—1)x2 +---

Setting x = 1 gives a nice continued fraction for 7t/4.

The standard form for continued fractions have numerators equal to 1,
and it can be proved that every continued fraction is equal to one in the
standard form (see [33]).

In Maxima, continued fractions are represented as lists

V2=101,2,2,22,...]

The results of truncating a continued fraction at a point is called a convergent
of the fraction. In the case of algebraic numbers like V2, the terms repeat
indefinitely and Maxima usually simply lists the sequence that repeats, so
we get

cf(sqrt(2))
[1,2]

The cf-command attempts to find a continued fraction form of its parame-
ter. It can work with linear combinations of square roots of integers (which
all produce repeating continued fractions) and floating point numbers:

22 2. NUMBER THEORY

cf(%pi);
cf: %pi is not a continued fraction./+error message!s/

f:cf(float(%pi));
[3,7,15,1,292,1,1,1,2,1,3,1,14]

The command cfdisrep displays a continued fraction in its normal mode

cfdisrep (f)

returns

a+—1-

]+ﬁ
The reader might wonder why we’re interested in continued fractions
(aside from the intriguing display they form on a printed page!). The
answer is that their convergents (i.e. the results of truncating them after
some finite point on) are rational numbers that converge to a real number
faster than any other known representation — if the continued fraction is
in standard form.

For instance, the command

cf(sqrt(2))

returns

[1,2]

which is not the answer®! The square root of 2 is the infinite periodic con-
tinued fraction

[112121212121211"']

where the first term is the only one that isn’t repeated. In mathematical
notation, the nonperiodic portion is usually distinguished via a semicolon:

(1,2,2,2,2,2,2,,...]

Maxima doesn’t do this, which might be confusing if one doesn’t know that
/2 is irrational from the outset.

The parameter cflength determines the number of periods of a periodic
continued fraction that will be displayed. The default is 1. The author
recommends setting this to something > 1!

In theory, then, if we want to build a computer that works with real
numbers, we should store them as continued fractions. Unfortunately, per-
forming basic arithmetic with continued fractions is difficult.

81t is a rational number!

2.5. CONTINUED FRACTIONS 23

There’s a lengthy theory of continued fractions and how they can be
used to prove numbers are irrational or transcendental. Again, see [33].

CHAPTER 3
Basic algebra and calculus

“L’algebre n’est qu'une géométrie écrite; la géométrie n’est
qu'une algebre figurée.” (Algebra is merely geometry in words;
geometry is merely algebra in pictures)

— Sophie Germain, [18]

We can type z:(a+b)"5. Try typing expand(z) to eliminate the paren-
theses and multiply out a + b five times. The result is

b® + 5ab* 4 10a%6% + 10a%b? + 5a*b + a°

Maxima can also factor algebraic expressions: type z:a10+b”10 and
Cell>Evaluate Cell(s) |, then factor(z) and ‘ Cell>Evaluate Cell(s) | to get

@8—f#+ﬂ%*—ﬁW+hﬂ(#+bﬂ

In the above, the letter z is an expression, and we can plug values in for
its variables. For instance, type z(a=1) and ‘ Cell>Evaluate Cell(s) ‘to get

(bA8 — bA6 + bA4 — bA2 + 1)x(bA2 + 1)

Maxima can solve equations with the solve command. Typing

solve (a*x"2+b*x+c=0,x)

solves for x and reproduces the familiar quadratic formula

X =

_\/b2—4ac+b v Vb2 —4ac—b
24 T 2a

If we type

solve (a*x"3+b*x"2+c*x+d=0,x)

we get Tartaglia’s formula for the roots of a cubic equation in figure 3.0.1 on
the following page.

25

26 3. BASIC ALGEBRA AND CALCULUS

<;1 Q) (\/27u2d2+(4b3—18abc)d+4ac3—b2c2 be _ 34 H)ba)

3
2 2 232 g2

1
242 3 3 2.2 3
(Vzn (43 -18abc) d+4ac3 22 pe 34 (1)};3)

3
232 a2

x=<@+i> V7R d 4 (453 —18abc) d+4ad —B2 2 be 34 (343
3
2 2 232 a2
(- %) ((—mz+ c)
T 7 “94,2 " 3a
- +

12742 42 3_ 3_p22
(Vzm a2 (40 1iahc)d+4ac P b 3d ()4
232 o2

<\/27a2d2+(4b3—18ubc) d+dad 122 be 34 (_y b3)~
x=

3
232 a2

- +

1
3
2742 &2 3_ 3_p2c2
(et +(403-18abc)d+4a3 122 pe_3d (1
232 a2

FIGURE 3.0.1. Roots of a cubic equation

Niccolo Fontana Tartaglia (1499/1500 — 1557) was a mathematician, archi-
tect, surveyor, and bookkeeper in the then-Republic of Venice (now part of
Italy). Tartaglia was the first to apply mathematics to computing the tra-
jectories of cannonballs, known as ballistics, in his Nova Scientia, “A New
Science.”

He outlined his formula for the roots of a cubic polynomial in a poem based
on Dante’s Inferno.

Tartaglia had a tragic life. As a child, he was one of the few survivors of
the massacre of the population of Brescia by French troops in the War of
the League of Cambrai. His wounds made speech difficult or impossible,
prompting the nickname Tartaglia (“stammerer”).

We can also do this for a fourth degree polynomial, resulting in a much
more complex formula. Something interesting happens if we go to the fifth
degree. Maxima gives back the same polynomial we input. This is because
no general formula exists for the roots of a polynomial of degree 5 or higher.
See [40, chapter 8] for a proof of this.

To some extent, we can find approximate roots of polynomials (and other
functions) numerically. Numeric methods have difficulty computing com-
plex roots, and can fail in many cases. The advantage of the formulas is that
they give exact answers (and they always work).

Suppose we have a polynomial x* + 2x3 — 3x + 5. Since it’s fourth-
degree, a formula exists for computing its roots exactly. Note that the messy

3. BASIC ALGEBRA AND CALCULUS 27

equation in figure 3.0.1 on the preceding page is enclosed in square brack-
ets. This means it is a Maxima-list. We access members of a list via square
brackets and an integer, starting from 1. If we type

roots:solve (xN+2+x"3-3xx+5=0,x)

the 4 roots are roots[1], roots[2], roots[3], and roots[4].
Typing roots[1] and ’ Cell>Evaluate Cell(s) ‘ gives

1
3
4./3 VA7597%i 4 29 \° 26
3<7¢47537w,§>3+3(7¢47537%+%>3+26 3<7V427359%7“+%>
232

G

232

T
3
VATET%i |, 29
3 2
232

2

2
3(\/475‘;7%i + % 3 +3< \/47527"/01’ + %) +26
9!

[,

232 232

1
(\/475 7"oi+%> 3

3
232

1
_ e -5

If we apply the bfloat-command or menu-item ’NumericDTo Bigfloat

to the expression, we get the same expression, with decimal
numbers instead of exact integers! This is a complex number,
so we can apply the rectform-command or menu-item

Simplify>Complex Simplification>Convert to Rectform‘ to try to put it

into standard complex notation. This gives us

M 1.603712691810368b0%i 1.81452763315978500 506 — 1

V2 V2

Applying the bfloat-command or menu-item ’ Numeric>To Bigfloat |to this

gives
(3.0.1) x = —1.133996119454043b0%i — 1.78306479405766b0

How do we check this? We use the subst-command or select
’ Simplify>Substitute ‘ The command’s format is

subst(new_value, old_variable ,expression)

and it gives

(—1.133996119454043b0%i — 1.78306479405766b0)4

+ 2.060(—1.133996119454043b0%i — 1.783064794057661)0)3
— 3.060 (—1.133996119454043b0%i — 1.78306479405766b0) + 5.060

28 3. BASIC ALGEBRA AND CALCULUS

which is not particularly enlightening. How do we get Maxima to multiply
out the parenthesized expressions? We use the expand-command or menu-

item | Simplify>Expand Expression ‘ to get

6.661338147750939b — 16%i + 4.662936703425657b — 15

which is very close to 0. This shows that equation 3.0.1 on the preceding
page defines an (approximate) root of x* + 2x3 — 3x + 5.
The next root, roots[2], turns out to be its complex conjugate
x = 1.133996119454043b0%i — 1.78306479405766b0

roots [3] and roots[4] also turn out to be a complex conjugate pair.
If we try this with a fifth-degree polynomial

solve (x"5+2+x-5=0,x);

we get
[0 =" +2v 5]
which simply says that the roots of this polynomial are the roots —i.e., Max-

ima cannot find exact roots. In this case, we can ask Maxima to use a nu-
meric algorithm via

allroots (xA5+2+x-5);

to get
(3.0.2)
x = 1.208917813386895, x = 0.9409544200647337%i — 1.167042002184507,
x = —0.9409544200647337%i — 1.167042002184507,
x = 1.234436184384532%i + 0.5625830954910601,
x = 0.5625830954910601 — 1.234436184384532%

In some cases, numeric algorithms do not converge.

EXERCISES.

1. Suppose we only want a list of the roots of a polynomial rather than
a list of equations like x=root. Hint: use the rhs and map commands (look
them up in the index or appendix E on page 239).

3.1. Functions and programming

ror

We have seen that identifiers like 'z’, ‘a’, or ‘b’ can represent variables
or expressions. They can also equal functions: type f(x):=x"2-3+x+3 and

Cell>Evaluate Cell(s) | to define the identifier f to be a function. Note that

3.1. FUNCTIONS AND PROGRAMMING 29

25

x"2-3*x+3

FIGURE 3.1.1. Simple plot

:= is used to define a function. We can also define “anonymous” functions
using the lambda-command:

lambda ([x,y],x*y)

Having defined a function, we can plot it with the command
plot2d(f,[x ,0,3]) to get figure 3.1.1

Standard form of this command:

plot2d (function /*or list=/ [f1,f2,...,fn],
[x,low_x,high_x]
/*optional :+/ ,[y,low_y, high_y]

)

The list of functions allows you to plot multiple functions in a single plot.
Note that text between /* and */ is regarded as a comment and is treated as
white space by Maxima.

We can plot lambda-functions in a command

plot2d ([lambda ([x],x”2),lambda ([x],x"3),
lambda ([x],x”~7)],[x,0,1])

to get figure 3.1.2 on the next page.
Now that we have functions, we can also do calculus. Maxima has a
derivative-command that does what its name implies. Its format is

derivative (expression, variable);

An alternate way computing derivatives uses the diff-command

diff (expression, variable);

which also allows for multiple derivatives

diff (expression, variable ,number);

So typing

30 3. BASIC ALGEBRA AND CALCULUS

1 lambda(
lambda|
lambda(|

X
i
X

| x"2)
x3)
x\7)

08

06

0.4

0.2

FIGURE 3.1.2. Lambda plots

diff (x"2, x,2);

gives 2.
Typing derivative(x"x, x); gives

x* (log (x) +1)
If the expression has several variables, this becomes the partial derivative
with respect to the variable listed!. For instance, derivative(x(x+y), X);
and hitting’ Cell>Evaluate Cell(s) ‘ gives
x* (log (x)y +y)
and derivative(x"(x+y), y); and hitting ’ Cell>Evaluate Cell(s) ‘ gives

Y og (x)

Since we can compute derivatives, we can compute Taylor series, using
the taylor-command?

taylor (function, variable , center ,highest_power);

So

taylor(sin(x),x,0,10);

gives

x3 5 7 9

LT N S

6 120 5040 3628380

There is the closely related powerseries-command that attempts to com-
pute a formula for the general coefficient. Its general form is

powerseries (function , variable , center);

For example

powerseries (sin(x),x,0);
/+ Note that the number of terms is not specified=/

1The listed variable is regarded as the only variable; all others are treated as constants.

2We'll leave out the “hitting ’ Cell>Evaluate Cell(s) " from now on; it’s implied.

3.1. FUNCTIONS AND PROGRAMMING 31

gives

i (_1)i1x2i1+1
g (il+1)!

In cases where the powerseries-command “doesn’t know” a formula for

the general term (for example, sin(sin(x))), it repeats the input. The taylor-

command just computes derivatives and grinds out the taylor series to the

required precision:

taylor(sin(sin(x)),x,0,10);

gives
oLy & 130
3 10 315 2520
Returning to f(x):=x"2-3%x+3, typing integrate(f(x),x) gives
x> 3x?
37 T

For definite integrals, we give the limits of integration:
integrate(f(x),x,0,2); to get %. The general form of this command is

integrate (expression, variable)

with optional limits of integration. As with differentiation, the variable
listed in the command is regarded as the only variable; the others are treated
as constants. So

integrate (x+y=*z,y)

results in
xy?z
2
The integrate ()-command “knows” all the rules of integration taught
in a calculus course (or in a table of integrals at the back of a textbook). For
instance, if you type integrate(1/(1+x”5),x), Maxima comes back with

\6(\/34- 1) arctan (W) \/§<\/§ - 1) arctan (4x_\/§_1)
+

2/5+10 —2+/5+10

5245410 5v—-2+v5+10
(V5+3)1og (202 —x(vV5+1) +2) (V5-3)log (22 +x(v5-1) +2)

10 (\/5+1) 10 (ﬁ—l)
+% log (x +1)

This is clearly correct ®!
In some cases, Maxima will simply return one’s input. For instance,

typing integrate (x"\x,x) gives
/ xdx

32 3. BASIC ALGEBRA AND CALCULUS

= equality
left side greater than right
< | right side greater than left

<= less than or equal
>= greater than or equal
not equal
TABLE 3.1.1. Maxima relational operators

which says “the integral is the integral”. This is Maxima’s way of saying it
doesn’t “know” how to get a more concrete formula for the integral of x*.

If we type integrate(x+log(x), x, a, b);, Maxima asks us whether 1 <
a and later, whether 2 < b. We can answer these questions beforehand via
the assume-command:

assume (x>1)
assume (b>a)

type this prior to doing the integration, and Maxima won’t ask questions.

Maxima has a complete programming language built into it for defin-
ing more complex functions. Suppose we want to define a function as fol-
lows:

0 x<-1
1 —-1<x<0

(311) FO=12 g<res
0 x>1

To implement this function, we need if-statements and relational operators
— see table 3.1.1. We could implement it as a complex nested if-statement

f(x):= if(x<-1) then 0
else if (x<0) then 1
else if (x<=1) then x/2
else 0;

Maxima allows you to remove the space between else and if to form an
elseif-command that does the same thing.

Maxima has a block-statement that can make it easier to define com-
plex logical and other types of programs. Its general format given in fig-
ure 3.1.3.

block ([local_variables or empty list],
statementl ,
statement?2 ,

e,
value);

FIGURE 3.1.3. the block command

3.1. FUNCTIONS AND PROGRAMMING 33

X:2;

block ([x:0,y,z], /#*a local wvariable named x*/
x:3,
1);

/* x is still equal to 2 =/

FIGURE 3.1.4. Local variables in a block-command

f(x) := block ([], /* no local variables =/
if (x<-1) then return (0),
if (x<0) then return (1),
if (x<=1) then return (x"2),
0);, /*default final value =/

FIGURE 3.1.5. f(x) written using a block-command

The value at the end is the result of the block-command executing. The
local variables are created inside the block and never conflict with variables
of the same name outside of it. Figure 3.1.4 illustrates this. The list of local
variables can also (optionally) assign initial values to them.
If there are no local variables, the block-command still requires an
empty list. Another way to exit a block is with the return-command. It
exits the block with whatever value (enclosed in parentheses) it has as its
parameter.
To summarize:
A block is the word block followed by a comma-separated sequence in
parentheses
(1) The first element is a list of local variables or an empty list.
(2) The remaining entries (before the last one) are expressions.
(3) The last entry is a (numeric or symbolic) value.
(4) block statements can be nested to any depth.

One exits the block by either

(1) dropping through the last entry, or
(2) areturn statement

So our discontinuous function in equation 3.1.1 on the preceding page
could be coded as in figure 3.1.5.

Unfortunately, the derivative and integrate commands do not under-
stand the logic of these little programs and we have to use a bit of ingenuity
to compute them. For instance, to compute

/_o:of(x)dx

we have to rewrite it as

(3.1.2) /j:of(x)dx = /i ldx + /01 x’dx = %

34 3. BASIC ALGEBRA AND CALCULUS

0.5

-0.5

FIGURE 3.1.6. False plot of f(x)

Plotting functions defined by programs also presents some special con-
siderations. Maxima first tries to evaluate the function and then sends it to
the plotting routines. For instance,

plot2d (f(x),[x,-5,5])

produces a very uninteresting result: figure 3.1.6, where f(x) appears to be
identically 0. This is because x starts out as < —1 and the first if statement
is activated.

Oddly enough, we must suppress this initial evaluation of f(x) via the
quote-command which sends the literal function-code to the plotting rou-
tines,

plot2d (" f(x),[x,-5,5])

to produce figure 3.1.7 on the facing page. Note that only a single quote is
required.

It is somewhat difficult to see the behavior of this function from this
particular plot. The plotting routines only use the minimum range of y-
values necessary to represent the plot. It is better if we extend the range of
y-values and restrict the x-values somewhat. Doing

plot2d ("f(x),[x,-2,2],[y,-.5,1.5])

gives figure 3.1.8 on the next page

The programming language built into Maxima has many standard fea-
tures that we will introduce as needed.

In many cases, it’s difficult to analytically integrate a function and we
have to resort to numerical methods. Calculus classes cover many meth-
ods for doing this, like Euler’s Method, the Trapezoid Rule, and Simpson’s
Rule. One of the main Maxima commands for numeric integration is the
quad_gag-command?®. Its general format is

3”quad” refers to quadrature, the act of estimating an area bounded by a curve (in ancient
Greek, ‘quad’ literally refers to constructing a square of a given area). The author has no idea
what ‘qag’ represents!

3.1. FUNCTIONS AND PROGRAMMING 35

0.8

0.6

)

0.4

0.2

4 2 0 2 4
FIGURE 3.1.7. First plot of f(x)
15
1 -
E o5t
0
-0.5
4 2 0 2 4
FIGURE 3.1.8. Better plot of f(x)

quad_qag(expression ,variable ,low,high, algorithm)

where algorithm is an integer from 1 to 6. The result is a list of four elements

[estimated integral,
estimated error,
number of iterations,
error code]

If we compute

1
/ sin (1> dx
J.o1 x

via

integrate (sin(1/x),x,.01,1);

36 3. BASIC ALGEBRA AND CALCULUS

we get

2sin (1) + gamma_incomplete (0,7) + gamma_incomplete (0, —7)
2
— 0.5gamma_incomplete (0, 100/) — 0.5 gamma_incomplete (0, —1001)
+ 0.005063656411097588

After typing bfloat and expand, we get
5.039818931754155b — 1

which we will regard as the (semi-)exact value. The numerical methods
produce results close to this:

quad_qag(sin(1/x),x,.01,1,1);

produces
[0.5039818931754158, 2.307129694260507 * 107,615, 0]

Clearly, these numeric methods can produce very accurate estimates of def-
inite integrals. Algorithm 6 gives a slightly more accurate estimate but the
difference is not significant.

It is interesting that these numeric algorithms can handle functions de-
fined like f(x) defined in figure 3.1.5 on page 33. Typing

quad—qag(f(x) Xy _5/5/1);

gives 0. If we change this to

quad—qag(’f(X) Xy -5 /5 /1)/

we still get
[0.0,0.0,15, 0]
But if we use another algorithm,

quad_qag(’'f(x),x,-5,5,2);

we get
1.333333332896747, 1.138680744111984 - 1078, 2415, 0}

which is very close to the correct value of 4/3. The other numeric algo-
rithms give similar results.

3.2. Limits

Maxima can compute limits using L’'Hopital’s rule and others. The
limit-command has the format

limit (expression ,variable , goal)

and can include an optional direction. For instance

limit ((x"3-x)/(x+1),x,-1)

produces the result 2. The command

3.3. ELIMINATION THEORY 37

limit (x*log(x),x,zeroa)

takes the limit of xlog(x) as x — 0T, and is completely equivalent to the
command*

limit (x+log(x),x,0,plus)

4

We consider the question

3.3. Elimination theory

Given polynomials
(3.3.1) f(x) =anx" +---+ag
(3.3.2) g(x) = byx™ + -+ by
when do they have a common root?

Sylvester studied this problem and solved it using a matrix from which he derived
the resultant of the polynomials, Res(f, g, x).

PROPOSITION 3.3.1. The polynomials f(x) and g(x) have a common root if and only
ifRes(f,g,x) =0.

PROOEF. See [40, section 6.2.4]. O

James Joseph Sylvester (1814-1897) was an English mathematician who
made important contributions to matrix theory, invariant theory, number
theory and other fields.

EXAMPLE. For instance, suppose we type

f:xN2-2xx+5;
g:x"3+x-3;

Then

resultant(f,g,x)

gives 169, so these two polynomials have no common roots.

There are many interesting applications of the resultant. Suppose we are given
parametric equations for a curve

. _ A0
g1(t)

_ LM
T $2(t)

where f; and g; are polynomials, and want an implicit equation for that curve, i.e.
one of the form
F(x,y)=0

4So the constants zeroa and zerob are unnecessary.

38 3. BASIC ALGEBRA AND CALCULUS

This is equivalent to finding x, y such that the polynomials
Alt) —xg1(t) = 0
fa(t) —yga2(t) 0
have a common root (in ¢). So the condition is
Res(f1(t) = xg1(t), f2(t) = yga(t), 1) = 0

This resultant will be a polynomial in x and y. We have eliminated the variable t —
and the study of such algebraic techniques is the basis of Elimination Theory.

EXAMPLE 3.3.2. Let
x =t
y=t(t+1)

Then typing

resultant (t"2-x, tA2+(t+1)-y, t)

gives
yz—nyfoerz

Issue the command

subst (t"2,x,y"2-2+x*y—x"3+x"2)

to get

YA2-24t A2xy—t A6+t A4

and

subst(t"2+(t+1),y,y"2-2+t "\ 2xy—t N6+t "4)

to get

tA L (t+1) 2 t A6+ EAL—25t Adx(t+1)

Now, typing

expand (%)

gives 0. So
—x3+y2 —2yx—|—x2 =0
after plugging in the parametric equations for x and y.
What is the connection with elimination theory? If we had the equations
x—t2=0
y—t2(t+1)=0
We could ask the question: “What conditions must x and y, alone, satisfy for these
two equations to be satisfied?” or “How can we eliminate t from the original equa-
tions?”
Exercise 4 on the next page uses this to solve two simultaneous algebraic equa-
tions. This is the main application of the resultant. Solving more complex systems

of algebraic equations requires a construction known as a Grobner basis, which we
will explore later.

3.3. ELIMINATION THEORY 39

EXERCISES.

1. Compute an implicit equation for the curve defined parametrically by

x = t/(1+£)
y = £/(1-1)
2. Compute an implicit equation for the curve
x = t/(1—#)
y = t/(1+)
3. Compute an implicit equation for the curve
x = (1-8H/(1+1¢)
y = P£/(1+8)
4. Solve the equations
X2+ y2 =1
X +2y — y2 = 1

by computing a suitable resultant to eliminate y.

5. Find implicit equations for x, y, and z if

x = s+t
y = 2 _ 2
z = 25— 3

Hint: Compute resultants to eliminate s from every pair of equations and then elim-
inate f from the resultants.

CHAPTER 4

Differential Equations

“Science is a differential equation. Religion is a boundary condi-
tion.”
— Alan Turing.

4.1. Introduction

Suppose we have a first-order differential equation

d

== flxy)
At each point, the function f(x,y) defines a direction, i.e. a slope. A solu-
tion to the differential equation is a curve through the points whose slope
matches the direction-field defined by f(x, y). Intuition tells us that a solu-
tion passes through each point where f(x,y) is well-defined. Simply draw
a curve in the direction the arrows point. Intuition also tells us that this
solution will be unique: if you steer a car the same way two times in a row,
you end up at the same destination. This is the Cauchy-Lipschitz Theorem
— see [44].

For instance, the equation

dy
(4.1.1) i xX+y
defines the direction-field in figure 4.1.1 on the following page, and a so-
lution is the curve whose direction matches the arrows. We can see this
direction-field by using the plotdf-command:

plotdf (x+y,[x,-2,2],[y,-2,2])

One nice feature of the resulting plot is that clicking on the plot produces
a solution-curve (computed numerically) to equation 4.1.1 that passes
through the point you clicked.

If the variables in the plot are not x and y, one must list them:

plotdf (usv,[u,v],[u,-2,2],[v,-2,2])

This is a very complex command with many options that can be accessed
from a menu on the plot itself or in the command-line. Each option in the
command-line is enclosed in a list with the name of the option and its value:
(1) [tstep,value] the size of the steps taken in approximating a solu-
tion to the differential equation. The default is .1.
(2) [nsteps,value] the number of steps taken to draw the solution-
curve. Default is 100.

41

42

®)

(4)

4.1.2)

®)

4. DIFFERENTIAL EQUATIONS

FIGURE 4.1.1. Direction-field defined by equa-
tion 4.1.1 on the preceding page

[direction, option] defines the direction of the independent vari-
able that will be followed to compute an integral curve. Possi-
ble values are forward, to make the independent variable increase
nsteps times, with increments tstep, backward, to make the in-
dependent variable decrease, or both that will lead to an integral
curve that extends nsteps forward, and nsteps backward. The key-
words right and left can be used as synonyms for forward and
backward. The default value is both.

[tinitial,value] defines the initial value of variable t used to
compute integral curves. Since the differential equations are
autonomous, that setting will only appear in the plot of the
curves as functions of t. The default value is 0. This refers to an
alternate form of the plotdf-command in analyzing a system of two
differential equations:

dx

ar = f(xy)
dy _

o =g(xy)

and we plot the behavior of x versus y (the dependent variables
could have other names, but the independent variable is always
named t) in a command-line

plotdf ([f,g].[x,y]l,[x,-2,2],[y,-2,2])

[versus_t,number] is used to create a second plot window, with
a plot of an integral curve, as two functions X, y, of the indepen-
dent variable, t. If versus_t is given any value different from 0,
the second plot window will be displayed. The second plot win-
dow includes another menu, similar to the menu of the main plot
window. The default value is 0.

4.1. INTRODUCTION 43

(6) [trajectory_at,coordinates] defines the coordinates xinitial and
yinitial for the starting point of an integral curve. The option is
empty by default. You can set this simply by clicking on the plot.

(7) [“parameterl=vall,parameter2=val2...”] defines a list of param-
eters, and their numerical values, used in the definition of the dif-
ferential equations. The name and values of the parameters must
be given in a string with a comma-separated sequence of pairs
name=value.

(8) [sliders, “parl=min:max,par2=min:max...”] defines a list of pa-
rameters that will be changed interactively using slider buttons,
and the range of variation of those parameters. The names and
ranges of the parameters must be given in a string with a comma-
separated sequence of elements name=min:max.

(9) [xfun, “functionl,function2,...”] defines a string with semi-colon-
separated sequence of functions of x to be displayed, on top of the
direction field.

(10) [x,min,max] sets up the minimum and maximum values shown
on the horizontal axis. If the variable on the horizontal axis is not
x, then this option should have the name of the variable on the
horizontal axis. The default horizontal range is from -10 to 10.

(11) [ymin,max] sets up the minimum and maximum values shown on
the vertical axis. If the variable on the vertical axis is not y, then
this option should have the name of the variable on the vertical
axis. The default vertical range is from -10 to 10.

Maxima “knows” the basic methods for symbolically solving first and

second-order differential equations. One of the main commands for this is
the ode2-command , which has the basic form

ode2(equation ,dependent-var ,independent—var)

For example

ode2 (" diff (y(x),x)=x+y(x),y(x),x)

results in

y(x) = ((—x — 1) * %e ™™ + %c) * %e*
where %c is an arbitrary constant. We must quote the diff-command be-
cause we don’t want it to compute the derivative; we just want to indicate
that differentiation takes place. If we type

expand (%)

we get the simplified form
y(X) = %c%e* —x —1
The ic1-command selects (by adjusting the arbitrary constant) the solution

that passes through a given point.
Given

sol:ode2 (" diff (y(x),x)=x+y(x),y(x),x)

and

44 4. DIFFERENTIAL EQUATIONS

icl(sol,x=2,y(x)=3)

we get
y(x) = %e 2 ((y(2) +3) %™ — %oc?x — %c?)
and expand(%) gives
y(x) = y(2)%e* > +3%e" > —x — 1

The ode2-command also handles second-order differential equations.
For instance

sol:ode2(x+(" diff(y,x,2))-"diff(y,x)+x=0,y,x);

produces the output

~ 2x?log(x) — x?
=——

where %k1 and %k?2 are arbitrary constants’.

As with first order differential equations, there’s a command to set the
arbitrary constants to appropriate values to satisfy initial conditions: the
ic2-command.

+ 0/01(2X2 — %

ic2(sol, x=1, y=2, ’diff(y, x)=1);

produces
_ 2x%log(x)—x* x% 5
y=-——y t3t:

This is a perfect opportunity to introduce the ratsimp-command which
simplifies rational expressions?. Typing ratsimp(%) gives

_ 2x?log(x) —3x2 -5

T 4

In cases where Maxima doesn’t “know” how to solve a differential
equation, it returns with False.
Another interesting “simplification” command is radcan.

EXAMPLE 4.1.1. The Logistics Equation. Imagine there is a population,
P, and a disease is circulating through it. The function y(t) is the num-
ber of people infected and, of course, P — y(f) is the number uninfected.
The probability of people getting infected is proportional to the product of
these, so we get a differential equation

(4.1.3) ‘% —ky (1- %)

We type

Isol:ode2(’diff(y,t)=k+y+(1-y/P),y,t)

IWe can “absorb” the quotient by 2 into %k1!

2Simplifying an expression is a complex process, and Maxima has several commands for
doing this in different ways. It's not always clear what constitutes simplification.

4.1. INTRODUCTION 45

(100"%e")/(%et+99)

FIGURE 4.1.2. The Logistic Curve

and get
_log(y—P) —log(y)
k

Now, we decide that the first case of this disease happened at time 0 and
issue the command

=t 4+ %c

icl(lsol ,t=0,y=1);

to get
log (y —P) —log (y) _ kt —log(1—P)
- k N k
which doesn’'t quite solve the problem. If we issue the

logcontract-command, we get

log (y—LP) _ kt—log(1—-P)
k B k

which is slightly more useful. At this point, we can type

solve(%,y);

to get

o Po/oekt
YT ekt +P—-1

If we set P = 100 and k = 1, we can plot this via

plot2d ((100+%eAt)/(%ert +99),[t,0,10]);

to get the well-known Logistic Curve or the Sigmoid Curve in figure 4.1.2
Equation 4.1.3 on the facing page was first proposed by Pierre-Francois Ver-
hulst in modeling population growth with limited resources. In this case,
P represents the carrying capacity of the environment. The logistic curve is
also used to model bacterial growth.

46 4. DIFFERENTIAL EQUATIONS

Pierre-Frangois Verhulst (1804 — 1849) was a Belgian mathematician from
the University of Ghent. He is best known for the logistic growth model
in his notable paper of 1845. His use of the term “logistic” was probably
influenced by his association with the Belgian military (he briefly taught
in their military academy). For the military, the word “logistics” represent
supplies and shipping.

We also have the desolve-command for solving systems of linear ordi-
nary differential equations. The general format is

desolve ([list of equations],[list of functions])

EXAMPLE 4.1.2. Suppose we have equations

eqn_1: ’diff(f(x),x,2) = sin(x) + "diff(g(x),x);
eqn_2: “diff(f(x),x) + x"2 - f(x) = 2+’ diff(g(x),x,2);

We solve them by typing

desolve ([eqn_1,eqn_2],[f(x),g(x)])

and get a huge expression. We can simplify this somewhat by giving initial
conditions

atvalue (" diff (f(x),x),x=0,a);
atvalue (f(x),x=0,1);

specifying that f(0) = 1 and

df

dx =4

x=0

and re-issue the desolve-command to get

f(x) = _ 3sin (x) 4 cos (x)+

5 5
_ 16 . X X X
((4(2a 2) 25)sm(z) _ SCOSS(Z)) %e?2
2
0/ ,—X
N 2/053 F 2242
and
~ sin(x) | 2cos(x)
glx) = -0, 20
2(10{7—18)4_& . X _ X x
((. 25>sm(2)+(10a 185)cos(2)>%e2
2
2%e

4.1. INTRODUCTION 47

Important note: In using desolve, functions must be written as such: in
other words, one must write f(x) rather than just f!
Suppose we have a differential equation like
d
(4.1.4) % — 3sin(sin(y))

This is highly nonlinear, and ode2 comes back with

| sEnm®
3
which isn’t very helpful. Maxima’s puny brain simply can’t handle it. In
this case, we are reduced to solving it numerically.
Euler proposed the first numeric algorithm for solving an equation like

% =fluy)

It involved replacing the derivative by finite differences:

Ay
4.1. - _
(5) Ax f(x’ y)
f(xiv1) = f(xi) + (xig1 — xi) - f(xi, 1)
This crude approximation becomes more accurate the smaller x;,1 — x; be-

comes. Maxima uses a similar but more sophisticated algorithm called the
fourth-order Runge-Kutta algorithm.

= x + %c

SO

Carl David Tolmé Runge (1856 — 1927) was a German mathematician,
physicist, and spectroscopist.

He was co-developer and co-eponym of the Runge-Kutta method, in the
field of what is today known as numerical analysis. In addition to pure
mathematics, he did experimental work studying spectral lines of various
elements (together with Heinrich Kayser), and was very interested in the
application of this work to astronomical spectroscopy.

Martin Wilhelm Kutta (1867 — 1944) was a German mathematician.
In 1901, he co-developed the Runge-Kutta method, used to solve
ordinary differential equations numerically. He is also remembered
for the Zhukovsky-Kutta aerofoil (used in modern airplanes), the
Kutta—Zhukovsky theorem and the Kutta condition in aerodynamics.

Maxima implements this with the rk-command, which takes one of the
following two forms:

rk(diff -equation ,dependent-variable ,initial —value
[independent-var,start , finish ,delta])

Note: since the algorithm assumes that all equations are of the form

ZZ =flxy)

you only list the "f(x, y)” in the algorithm.
The smaller delta is, the more accurate the approximation.

48 4. DIFFERENTIAL EQUATIONS

FIGURE 4.1.3. Output of the Runge-Kutta algorithm

For equation 4.1.4 on the previous page, we could program this as

rk (3+sin(sin(y)),y,2,[x,0,5,.01])

The command comes back with a long list of the form

[[x1,y1],[x2,y2],etc]

We can plot this using the “discrete” option to the plot2d-command. This
has the general form

plot2d ([discrete ,[[x1,y1],[x2,y2], etc.],[y,lowy, highy]

So we run

point_list:rk(3+sin(sin(y)),y,2,[x,0,5,.01])

and

plot2d ([discrete , point_list],[y,0,5])

to get the plot in figure 4.1.3. One nice feature of the rk-command is that it
can handle systems of differential equations. In this form, it is coded

rk ([odel,ode2,etc,] ,[varl, 6 var2,etc,],
[initl ,init2 ,etc.],[independent—var,blow, high, delta])

We can solve the system

dx
(4.1.6) i 3x — 4y
dy _
i 2x + 3y
via

results :rk ([3*x—4xy,2+x+3+y],[x,y],[2,3],[t,0,4,.01])

The output (results) is a list of the form

[[t1,x1,y1l],[t2,x2,y2],etc.]

which must be reformatted (via the makelist-command) to suit the plot2d-
command:

4.1. INTRODUCTION 49

100

-100

FIGURE 4.1.4. Plot of two solutions

xgraph: makelist ([p[1],p[2]],p, results)

and

ygraph: makelist ([p[1],p[3]],p, results)

Now we can plot both solutions via

plot2d ([[discrete ,xgraph] ,[discrete ,ygraph]],
[y,-100,100]);

to get figure 4.1.4.

EXERCISES.

1. Solve equations 4.1.6 on the facing page exactly via the desolve-
command.

2. Convert the equation

ay’ (N,

e (dx +2y=0
into a system of first-degree equations suitable for solving via the
rk-command.

3. Plot a solution to the differential equation

dy _)
ax Y

with y(—1) = 3 with a comparison plot of /x.

4. Plot solutions to the system of differential equations

dz

dx

do

dt

through the point (z,v) = (6,0) with k = 2 and a slider for varying m from
1tob.

=70

= —kz/m

50 4. DIFFERENTIAL EQUATIONS

5. Try simplifying the output of desolve in example 4.1.2 on page 46
using ratsimp. The result will look more complicated, showing that sim-
plification of an expression is a complex question with no obvious solution.
Can these expresssions be further simplified?

4.2. Into the wild

Consider a forest with two populations: rabbits and foxes. The rabbits
live in a leporine paradise — with unlimited resources allowing them to
breed with reckless abandon. At least it would be a paradise were it not for
the voracious foxes. Encounters between rabbits and foxes end badly for
the rabbits and well for the foxes. Rabbits are the foxes’ only sources of
food.

The chances of rabbits meeting foxes is proportional to the product of
their populations. If 7(¢) and f(t) represent the rabbit and fox populations,
respectively, we get the differential equations

dr
E—ar—ﬁfhf

df
A 5t -
G = ftorf
where «, B, v, § are nonnegative constants.

At first, we're tempted to use the desolve command to handle these
equations. Unfortunately, the desolve-command only handles linear differ-
ential equations. The terms 7 - f make these equations very nonlinear.

Alfred James Lotka (1880 — 1949) was a US mathematician, physical
chemist, and statistician, famous for his work in population dynamics and
energetics. An American biophysicist, Lotka is best known for his proposal
of the predator—prey model, developed simultaneously but independently
by Vito Volterra. The Lotka—Volterra model is still the basis of many mod-
els used in the analysis of population dynamics in ecology.

Vito Volterra (1860 — 1940) was an Italian mathematician and physicist,
known for his contributions to mathematical biology and integral equa-
tions, and being one of the founders of functional analysis.

We initially fall back on the trusty plotdf-command.

plotdf ([a*r—bsr=f,—cs+f+dxr=f], [r,f],
[parameters ,"a=.2,b=.2,c=.1,d=.2"]
[sliders ,"a=.1:5,b=.1:5,c=.1:5,d=.1:5"])

To produce figure 4.2.1 on the facing page. The fact that there is a closed
curve shows that there is a periodic phenomena involved. It is interesting
to move the sliders and see where the plot goes.

4.2. INTO THE WILD 51

A

S
S
P A A A]
VA A A A

IS A N R]

FIGURE 4.2.1. Plot of rabbits versus foxes

FIGURE 4.2.2. Rabbits and foxes

To see actual plots of foxes and rabbits, re-run the command with the
versus_t option set to something nonzero:

plotdf ([as*r—bxr=f,—c+f+dxr=f], [r,
[parameters ,"a=.2,b=.2,c=.1,d=.2"]
[sliders ,"a=.1:5,b=.1:5,c=.1:5,d
[versus_t ,1])

We get a second plot window with actual solutions for rabbits and foxes in
figure 4.2.2.

Again, moving the sliders around varies the behavior of the plots. They
show that, when the fox-population is low, the rabbits freely multiply. Then
the foxes have an abundant food-source and they multiply, causing the
rabbit-population to plunge. This cycle repeats, with slight variations. This
phenomena has been observed in the wild — see [37].

52 4. DIFFERENTIAL EQUATIONS

To get a more accurate (and quantitative solution) we can use the rk-
command:

populations:rk ([r—.01xr+f,—f+.01lxr«f],[r, f],
[1000,10],[t,0,10,.01]);

If you examine the numbers coming from this simulation, you will notice
fractional rabbits and foxes — the famous atto-fox problem — where an atto-

fox is 1018 of a fox®. See [29].

EXERCISES.

1. If a cannon is inclined 30°and fired with a muzzle-velocity of 1000
meters per second, what is the maximum altitude the shell will reach?
Assume air-resistance is negligible and the acceleration of gravity is -9.8
m/second.

2. Same problem as the above with air-resistance given by
(4.2.1) F= %chsz

where Cp is a dimensionless constant (assume it is .47), p is the density
of the air (assume it is 1.225kg/m?> at sea-level and doesn’t change with
altitude), and A is the cross-sectional area of the cannonball (assume it is .2
square meters). Assume the cannonball weighs 4kg.

4.3. The Heat Equation

Imagine a wire that is heated in some fashion. The flow and diffusion
of heat through the wire is expressed by the one-dimensional heat equation

1 %P(x,t) 9p(x,t)

a2 o9x2 ot
where (x, t) is temperature, x is distance, and ¢ is time. We will discuss its
“meaning” later. In this equation, a is a constant that represents how fast
heat flows through the material in question; we will simplify matters by
assuming it is 1.

In his research on this equation, Fourier discovered that trigonometric

polynomials play an important part. What is a trigonometric polynomial?
For our purposes, it is a linear combination

k
(4.3.1) f(x) =bo+)_ ajsin(jx) + bj cos(jx)
=1

where the coefficients, {4;,b;} are real numbers.

3In this simulation, you may see more atto-rabbits than foxes!

4.3. THE HEAT EQUATION 53

Jean-Baptiste Joseph Fourier (1768 — 1830) was a French mathematician and
physicist born in Auxerre and best known for initiating the investigation of
Fourier series, which eventually developed into Fourier analysis and har-
monic analysis, and their applications to problems of heat transfer and vi-
brations. The Fourier transform and Fourier’s law of conduction are also
named in his honor. Fourier is also generally credited with discovering the
greenhouse effect.

Suppose someone provides us with an unknown function, g(x), (a
“black box” that gives us a function-value when we supply a value for x)
and whispers “This is a trigonometric polynomial”. How are we to check
this claim or compute its coefficients?

If we type

integrate (sin (nx*x),x,—%pi,%pi)

we get 0. If we type

integrate (cos(n=*x),x,—%pi,%pi)

we get

2+sin(%pi*n)/n

Of course, this is for an arbitrary value of n (like 2.7, for instance). If we
insist that # is an integer, via the declare-command

declare(n,integer)

then

integrate (cos(nx*x),x,—%pi,%pi)

gives 0, so that

/n sin(nx)dx = /n cos(nx)dx =0

J—7 J—7

for n an integer. For f(x) in equation 4.3.1 on the facing page, it follows
that

T T
/ F(x)dx = bo/ dx = 27thy
-7 -7
SO

(4.32) by = % [7; F(x)dx

Next, Fourier noted that

(4.3.3) /ﬂ sin(nx) cos(mx)dx =0

-7

54 4. DIFFERENTIAL EQUATIONS

because this is an odd function* integrated over a symmetric range. It follows
that

(4.3.4) /nf(x) sin(nx)dx = aq /jt sin(x) sin(nx)dx+

T
~~~+an/ sinz(nx)dx+~~~+ak/

—7T —

7T
sin(nx) sin(kx)dx
T

+0+---4+0
If we type

declare (m, integer);
integrate (sin (nx*x)=*sin (m*x) ,x,—%pi,%pi);
integrate (cos(nx*x)=*cos(ms#x) ,x,—%pi,%pi);

we learn that get

(4.3.5) /n sin(nx) sin(mx)dx = 0
(4.3.6) /_n cos(nx) cos(mx)dx =0
if n #£ m.

Incidentally, the reader might wonder what difference there is between
the assume-command on page 32 and the declare-command used here.
The assume-command describes numeric relations (usually inequalities)
that exist between numeric identifiers, and the declare-command
describes properties identifiers have (they might not be numeric ones).

If we type

integrate (sin(n*x)"2,x, —%pi,%pi)

we learn that

(4.3.7) /7T sin(nx) sin(nx)dx = 7

-7
It follows that equation 4.3.4 can be rewritten as
T
/ f(x)sin(nx)dx =a1-0+---+ap-7w+---+a,-0
7T

from which we get

" TT
(4.3.8) ay = l/ f(x) sin(nx)dx
T J)—m
A similar line of reasoning shows that
7T
(4.3.9) by = l/ f(x) cos(nx)dx
wTJ—m

So we have an answer to our question:

¢(x) is a trigonometric polynomial if only a finite number
of the a,, and b, computed using equations 4.3.8 and 4.3.9
are nonzero.

4A function, f(x),is called odd if f(—x) = —f(x).




4.3. THE HEAT EQUATION 55

This would’ve ended matters if Fourier hadn’t taken the next step: apply
these equations to a function that is definitely not a trigonometric polyno-
mial — for instance the bizarre function, f(x), plotted in figure 3.1.8 on
page 35! Recall that it is defined via

f(x) := block ([], /* no local variables =/
if (x<-1) then return (0),
if (x<0) then return (1),
if (x<=1) then return (x"2),
0);

We will define functions to compute the coefficients in equations 4.3.8 on
the preceding page and 4.3.9 on the facing page (following the example of
equation 3.1.2 on page 33):

a(k):= (integrate(sin(k=x),x,-1,0)
+integrate (sin (kxx)*x”"2,x,0,1))/%pi

If we type a(3), we get
2gin (2)— 2 2)—1
sin ( )4 cos (2) + COS(Z) B %
7T

which is a bit awkward. This expression should be simplified or consoli-
dated. If we type ratsimp(%), we get
2sin(2) +cos(2) —3
4
which is more compact. We incorporate this into our function for a(k):

a(k):= ratsimp ((integrate (sin(k*x),x,-1,0)
+integrate (sin (k*x)*x"2,x,0,1))/%pi)

We also have a similar function to compute the cosine coefficients

b(k):= ratsimp ((integrate (cos(k=*x),x,-1,0)
+integrate (cos (kx*x)*x”"2,x,0,1))/%pi)

If we define b0 via equations 4.3.2 on page 53 and 3.1.2 on page 33,

b0:2/(3%%pi);

Now we write a function to add up terms of the trigonometric polynomials
with these coefficients. There are several ways to do this. We'll start with
the while-command with a general format

while condition do

(

statementl ,
statement?2 ,

statementn

)




56 4. DIFFERENTIAL EQUATIONS

0.8

0.6

0.4

0.2

FIGURE 4.3.1. First three terms

To compute the sum of the first n terms of our trigonometric polynomial,
we code

first_n(n,x):= block (
[sum:2/(3%%pi), k:1], /*local wvariables =/
while k<=n do

(

sum:sum+a (k)*sin (k*x)+b(k)*cos(k#x),

k:k+1 /*increment the counter */
)/

sum /* value returned =/

)

Now we can plot these trigonometric polynomials via

plot2d (first_n (3,x),[x,-3,3]);

to get figure 4.3.1. This doesn’t tell us much but, like Fourier, we persist.
The sum of the first 10 terms gives figure 4.3.2 on the next page,
which is evocative. Plotting this with f(x) (or Wxmaxima-menu item

Plot>Plot 2d | via

plot2d ([ first_n (10,x), "f(x)],[x,-3,3]);

gives figure 4.3.3 on the facing page.
At this point, we go for broke and compare the first 100 terms via

plot2d ([ first_n (100,x), "f(x)],[x,-3,3]);

to get figure 4.3.4 on the next page.

This is very evocative! Although f(x) is not a trigonometric polynomial,
an infinite series of trigonometric terms seems to converge to it almost ev-
erywhere. This is the famous Fourier Series, and was the beginning of a
whole field of mathematics called harmonic analysis. Notice that Fourier
series are more “powerful” than, say, Taylor series. They can represent
functions that are not necessarily differentiable or even continuous.




4.3. THE HEAT EQUATION 57

0.8

0.6

0.4

0.2

. N A
V) v \/
3 2 1 0 1 2 3
FIGURE 4.3.2. First 10 terms
. AN fur
0.8
0.6
0.4
0.2
0 VA ¢ N\
\/ V
3 2 1 0 1 2 3
FIGURE 4.3.3. Comparison of first 10 with f(x)

'f(x)

fun2
1
0.8

0.6

0.4

0.2

FIGURE 4.3 .4. The first 100 terms

Since all the functions that go into a Fourier series are periodic, so is
the series itself — see figure 4.3.5 on the following page.



58 4. DIFFERENTIAL EQUATIONS

™)
fup2

1 | }!ﬁmmﬁ* |’,,,m,m,,&f
0.8
0.6
0.4
0.2

(o] o Fo&—

2 o 2 4 6 8
X
FIGURE 4.3.5. Periodicity of a Fourier series

You may notice that the Fourier series “overshoots” and “undershoots”
f(x) at the points where it is discontinuous. This is called Gibbs Phenomena
and is illustrated by typing

plot2d ([(first_n (100,x)-"f(x))"2],[x,-3,3]);

to get figure 4.3.6 on the next page.
This does not go away as we add more terms; the peaks simply become
narrower. This leads to the question:

In what sense does the Fourier series converge to f(x)?

It turns out’ that if f(x) is any function that can be integrated from — 7t to
7 and if S, (x) is the sum of the first n terms of the Fourier series for f(x),
then

. & 2
tim [" (8.(x) = f()?dx =0
In other words, the “space between the curves” of f(x) and S,(x) goes to
zero as 1 goes to infinity. This is called Lp-convergence.

If the original function, f(x), is continuous, the “space between the
curves” of f(x) and S, (x) going to zero intuitively implies that S, (x) con-
verges to f(x) for every value of x. This is called “pointwise convergence”.
See [38] for the details.

Claim: Virtually all readers of this book have used Fourier series.

How? The mp3 audio and the jpeg graphic formats are based on
Fourier series. The jpeg format uses a two-dimensional version of it. The
actual jpeg file is a string of Fourier coefficients. If the spikes in the Gibbs
phenomena are narrower than a pixel, they have no effect on the final
image. Something similar happens with mp3 files: the narrow spikes are
high-frequency signals above the range of human hearing.

Maxima has a sum-command that would have eliminated the need for
programming! Its general form is

sum(expression ,index_variable ,low, high);

5In other words, it is well-known but we won’t prove it here. See [38].




4.4. SOLUTION TO THE HEAT EQUATION 59

0.25

0.2

0.15

0.1

0.05

FIGURE 4.3.6. Gibbs Phenomena

and we could’ve written our function as

first_n(k,x):= 2/(3x%pi)
+sum(a(j)«sin(jx)+b(j)cos(j*x),j,1,k);

4.4. Solution to the Heat Equation

At this point, the reader may wonder what all of this has to do with the
Heat Equation. Recall that this is

1 %yP(x,t)  9p(x,t)

a2 2 ot
where we assume a = 1. Fourier attempted a particularly simple solution
in the form

Y(x, 1) = u(x) - o(t)
Plugging this into the heat equation gives

v = ud

and we divide by uv to get

How can a function of one variable equal another of an unrelated variable?
They both equal the same constant! So we have

uw'(x) _ (1)

u(x) o)

We have

v'(t) =c-o(t)
This is a simple differential equation, but we’ll pretend we don’t know the
solution and use Maxima’s ode2-command for solving ordinary differential
equations of degree < 2. We'll start with the equation for v(t):

ode2( ' diff(v,t)=cx*v,v,t);




60 4. DIFFERENTIAL EQUATIONS

Note that we must quote the diff-command because we don’t want Maxima
to try to compute a derivative; we just want to indicate that differentiation
takes place.
We get
v = %c%oe!

Here %c is an arbitrary constant that is completely unrelated to c. If ¢ > 0,
then, depending on the sign of %c, we realize that the temperature becomes
exponentially hot over time or exponentially cold.

This is a reminder that not all solutions of the heat equation physically
occur!

To avoid being burned alive or frozen, we’ll assume that ¢ < 0. This is
traditionally written as

where A > 0. The command

ode2( ' diff (v, t)=—lambdax*v,v,t);

gives
v = o/OCO/Oeftlambda

and the command

ode2(’'diff (u,x,2)=-lambdax*u,u,x);

prompts the question of whether lambda is positive, negative or zero®. We
answer ‘positive’ and get

u = %kl sin (xm) ~+ %Xk2 cos (x\/M)

where %k1 and %k2 are arbitrary constants. This gives a basic solution to
the Heat Equation

P(x, t) = (%kl sin <xm) + %Xk2 cos (M/M)) o~ lambdat

Since the Heat Equation is linear, any linear combination of these basic so-
lutions is also a solution.

At this point, we can set vlambda = n, an integer, and get a basic
solution’

Y (x,t) = (%K1, sin (nx) + %k2, cos (nx)) e
When t = 0, this looks like a term of a trigonometric polynomial. We hit
upon Fourier’s solution to the Heat Equation:
(1) expand (x, 0) — the initial heat distribution — in a Fourier series,

(2) Multiply the n™" term of this Fourier series by et The resulting
series defines ¢(x, t) for t > 0.

60f course we could've preceded the ode2 command with assume(lambda>0).
7We have absorbed the constant %c into %k1 and %k2.




4.5. FINER POINTS OF PLOTTING 61

0.8

0.6

0.4

0.2

3 2 1 0 1 2 3
FIGURE 4.4.1. P(x,.01)
1
0.8
0.6
0.4
0.2
0
3 2 1 0 1 2 3
FIGURE 4.4.2. P(x,.02)

We can test this with our Fourier series for the discontinuous function f(x)
defined in equation 3.1.1 on page 32. We replace our command for partial
sums of this with

psi_n(k,x,t):= 2/(3+%pi)
+sum ((a(j)*sin(j=*x)
+b(j)*cos(j=*x))*%er(-j 2+t),j,1,k);

Figures 4.4.1 through 4.4.4 on the following page shows the time-evolution
of ¢: Heat flows from the hotter parts of the wire to the cooler ones. The
“sharp” edges of the function become smooth, and it’s clear that the heat-
distribution becomes constant in the limit as t — oc.

e

Maxima has no built-in plotting capabilities. It uses a very powerful indepen-
dent software package called Gnuplot (automatically installed with Maxima). It
also uses powerful plotting commands built into wxMaxima.

4.5. Finer points of plotting




62 4. DIFFERENTIAL EQUATIONS

0.7

0.6

0.5

0.4

0.3

0.2

0.1

FIGURE 4.4.3. P(x,.1)

0.8
0.6

0.4

FIGURE 4.4.4. P(x,1)

The commands plot2d (and plot3d!) only use the most basic features of Gnu-
plot. Since we have mentioned plot3d we may as well discuss it. It’s general form
is

plot3d (two—variable —expression ,[x,low,high],[y,low, high]);

For example

plot3d (sin (x"2+y~3),[x,-2,2],[y,-2,2]);

produces figure 4.5.1 on the next page. The wxMaxima-menu | Plot>Plot 3d

prompts you for all the necessary parameters. One nice thing about these plots is
that you can rotate them with the mouse and see them from many different angles.

We can use the complete repertoire of Gnuplot commands to generate plots
and diagrams. We would like to produce an animated image of the heat-flow in the
wire. wxMaxima provides the with_slider_draw-command for for this. Its general
format is given in figure 4.5.2 on the facing page. This command cycles through the
list of values, setting the variable to each of them and runs the corresponding plot
command.

We would like to plot the flow of heat in our heated wire. We use the command
in figure 4.5.3 on the next page.




4.5. FINER POINTS OF PLOTTING 63

sin(y"3+x"2)

FIGURE 4.5.1. An example of plot3d

with_slider_draw (
variable , /+variable to attach to the slider =/
list of values,
plot—-command, /*plot =/
plot—options /*optional graphic command =/
); /* end of with_slider_draw —command =/

FIGURE 4.5.2. with_slider_draw

with_slider_draw (
t, /+~variable to attach to the slider =/
makelist(j,j,0,100), /+list of integers =*/
explicit(psi_n(100,x,.01+t),x,~%pi,%pi), /*plot =/
yrange= [0,1.2] /*optional graphic command =/
); /* end of with_slider_draw —command x/

FIGURE 4.5.3. Evolution of the heat equation

and wait a long time (Maxima is computing 101 plots of the ip-function). After-
ward, a window appears with a slider that animates the passage of time. The slider
allows us to move time forward or backward and see how the process changed.
One can right-click this plot to save it as an animated gif file.

In this context, explicit means plotting in the normal fashion that plot2d fol-
lows. The alternative is implicit, which plots points satisfying an equation

draw2d (implicit (x"+y~4=1,x,-2,2,y,-2,2))

Before you click’ Cell>Evaluate Cell(s) \, several explanations are in order. The sec-
ond parameter of with_slider_draw must be a list, i.e. data like

[1,2,3]
This particular list would make for a pathetic animation, though — with only 3
frames! What we really need is a list of integers from 0 to 100. Rather than typing

out 101 numbers, we use the all-important makelist-command. It has several forms
and can be used to create or modify lists.




64 4. DIFFERENTIAL EQUATIONS

(1) makelist(expression, variable, i0, i1) Makes a list of the expression
with the variable set equal to integers from i0 to il (incremented by 1
each iteration). For instance

makelist(i, i, 1, 5)

produces the list
[1,2,3,4,5]

and

makelist(x=i~2, i, 1, 5)

produces the list
[x=1,x=4,x=9,x=16,x = 25]

(2) makelist(expression, variable, list) Cycles through the elements of the
list, setting the variable equal to each of them and creating a list of the
expression evaluated at these values. For instance,

makelist(x=y, y, [a,b,[1,2]])

produces
[x=a,x=bx=112]]
This form of the command can be used to reformat lists. Suppose
a:[(1,2,3], [u,v,w], [i, ], k]]

and we issue the command makelist([p[2],p[1],p [2]], p,a). We get the
result
[(2,1,2], [o,u, 0], [j, 7, ]]]

Incidentally, these repeated computations (of a(k) and b(k)) could benefit from a
process called memoization. Since a(k) and b(k) only depend on k it would be better
if the functions stored their results and simply did a table-lookup whenever the
same value of k is used a second time. This is called memoizing the computations.
Maxima makes this very simple:

alk]:= ratsimp ((integrate (sin(k+x),x,-1,0)
+integrate (sin (k*x)*x”2,x,0,1))/%pi)

ratsimp ((integrate (cos(k=x),x,-1,0)
+integrate (cos (k*x)*x"2,x,0,1))/%pi)

b[k]:

All we have done here is replace a(k) by a[k] and b(k) by b[k]. This is a signal
to Maxima to store the computed values in an array. If an array-position already
has a value in it, Maxima suppresses rerunning the function and simply returns
the array-entry. This creates a problem if the program has bugs: it remembers the
incorrect values. To erase these incorrect values, issue the kill-command: kill(a),
kill(b).

We also have to rewrite the psi_n function slightly.

psi_n(k,x,t):= 2/(3+%pi)
+sum((a[j]*sin(j=*x) /*replaced a(j) by alj] */
+b[j ]+ cos(jx*x))x%e(-j 2+t),j,1,k);

Now you can click ‘ Cell>Evaluate Cell(s) ‘!
For more information on plotting, see Appendix F on page 251.




4.6. THE WAVE EQUATION 65

4.6. The Wave Equation

4.6.1. Introduction. The one-dimensional wave equation looks like the
heat equation with a slight difference

2 2
we Py(x,t) _ 1 0%p(x,1)
dx? ¢z o

— the time derivative is second-order. One is to imagine a vibrating string,
where the function 1 (x, t) represents the displacement of the string at any
given position and time.

The one-dimensional version was discovered by d’Alembert; the
higher dimensional wave equation was discovered by Euler.

Jean-Baptiste le Rond d’Alembert (1717 — 1783) was a French mathe-
matician, mechanician, physicist, philosopher, and music theorist. Un-
til 1759 he was, together with Denis Diderot, a co-editor of the Ency-
clopédie. D’Alembert’s formula for obtaining solutions to the wave equa-
tion is named after him. The wave equation is sometimes referred to as
d’Alembert’s equation, and the fundamental theorem of algebra is named
after d’Alembert in French.

D’Alembert found a completely general solution to the
one-dimensional wave equation:

P(x,t) = f(x+ct) + g(x —ct)

where f and g are arbitrary twice-differentiable functions®. As clever as this
is, it is not clear how apply it to interesting situations. We will use a Fourier
series approach.

As before, we assume ¢ = 1 and write

px,t) = ulx) - oft)
Plugging this into equation 4.6.1 gives
u”(x) - o(t) = u(x) -0 (t)

or

and (via ode2, for instance) we get
u(x) = acos(xvA + Bsin(xvA)
o(t) = ycos(tV/A) + &sin(tV/A)

where «, B, v, § are arbitrary constants.

Now imagine that our string is fixed between supports at x = 0 and
x = 7t so that ¢(0,¢) = 0 = (7, t), for all values of ¢. The simplest way to
ensure this is to set &« = 0 and sin(nﬁ) =0,0orvVA =mn,an integer.

We will consider two important special cases.

8The reader is invited to verify that this actually satisfies equation 4.6.1.



66 4. DIFFERENTIAL EQUATIONS

4.6.2. The plucked string. This is the kind of string found in a guitar
or harpsichord.
In this case, the string is initially not in motion, so that

oY
(4.6.2) 3 = 0
when t = 0. Since a basic solution is
Pr(x,t) = ay sin(kx) (b sin(kt) 4 cx cos(kt))

the easiest way to ensure equation 4.6.2 is to set by = 0 for all k. Our basic
solutions reduce to

Pr(x,t) = ay sin(kx) cos(kt)
and
Pr(x,0) = agsin(kt)

If the initial configuration of the string (the “plucking” function) is f(x)
for 0 < x < 71, we can define an odd function from —7t to 7:

f1(x):{f(x) ifx>0

—f(—x) otherwise

and we can expand this in a Fourier series. Since f1(x) is odd, the cosine
terms will all vanish:

by = %/jtﬁ(x) cos(kx)dx
= %Lonfl(x) cos(kx)dx + % /Onfl(x)cos(kx)dx

=L [ i) costingar + - [ i) cos(inre
=0

The sine-terms tend to “double up”

ag = %/j{fl(x) sin(kx)dx

_1 l On F1(x) sin(kx)dx + % /0 " (x) sin(kx)dx

s
L in(kx)d L/ in(kx)d
= g/o f1(x) sin(kx) x+;/0 f1(x) sin(kx)dx
2 (7 .
= E/o f1(x) sin(kx)dx
So, we expand f(x) in a Fourier series of sines, and the solution to the wave
equation is

P(x,t) = iak sin(kx) cos(kt)

k=1
If we type

sin (n*x)*cos(n=t)




4.6. THE WAVE EQUATION 67

and issue the trigreduce-command (one of several commands for simplify-
ing trigonometric expressions) we get
sin (nx +nt)  sin (nx — nt)
2 2

SO
=]

P(x,t) = % <2 agsin (kx +kt) + Y agsin (kx — kt))
k=1 k=1

Now we ask ourselves “What is ) ;7 ; a sin (kx)?”

Well
o f(x) if0<x<m
Y agsin (kx) = { —f(—x) if —Tr<x<0
k=1

Periodic with period 27t
So we get a closed form solution to the plucked wave equation:
Given a “plucking function”,” f(x), for 0 < x < 7t define
f(x) fo<x<m
flx) =14 —f(~x) if —t<x<0
Periodic with period 27
Then

p(xt) =5 (fx+ 5+ flx—1)

N~

Let’s compute!
We start with a “realistic” plucking function

x/2 for0<x<1
-2 forl<x<m

This programs as

f(x):=block ([],

if (x<1) then return (x/2),
—(x=%pi)/(2+%pi-2)

)

and we can plot it via

plot2d ("f(x),[x,0,%pil,[y,-1/2,1/2])

and we get figure 4.6.1 on the following page.
Now we define f(x):

f_bar(x):=block ([],

if (x>%pi) then return (f_bar(x-2+%pi)),
if (x<=%pi) then return (f_bar (x+2«%pi)),
if (x>=0) then return (f(x)),

—-f(-x)

);

e, shape of the string at time 0.




68 4. DIFFERENTIAL EQUATIONS

0.4

0.2

f(x)
o

0.2

0.4

FIGURE 4.6.1. “Realistic” plucking function
0.4
0.2
-0.2
0.4
10 5 0 5 10
FIGURE 4.6.2. The extended plucking function

and, to check this, we plot it

plot2d (" f_bar(x),[x,-10,10],[y,-1/2,1/2])

and get figure 4.6.2.

psi_p(x,t):=(f_bar(x+t)+f_bar(x-t))/2

Which we can plot via

with_slider_draw (
t, /*variable to attach to the slider =/
makelist(j,j,0,100), /xlist of integers =/
explicit(’'psi_p(x,.1=t),x,0,%pi), /+plot =/
yrange= [-1/2,1/2] /+optional graphic command =
); /* end of with_slider_draw —command =/

4.6.3. The “hammered” string. These occur in pianos or hammered
dulcimers. We return to our basic solution

Pi(x,t) = ag sin(kx) (by sin(kt) + c cos(kt))
Since ¥(x,0) = 0, we set the ¢, to 0, so our basic solution looks like

P (x,t) = ay sin(kx) sin(kt)



4.6. THE WAVE EQUATION 69

and 3
ETIf = ay. - ksin(kx) cos(kt)
If we sett = 0, this becomes
oY _ .
i ay - ksin(kx)

If h(x) is our “hammering” function — the state of motion of the string
at time 0 — to solve the wave equation we

(1) expand h(x) in a Fourier sine-series as in the plucked case, with

coefficients
— / ) sin(kx)d

(2) the resulting series for i(x, t) is

o

p(xt) =Y %" sin(kx) sin(kt)

k=1
For instance, we can define our hammering function by
0 if0<x<1/2
h(x) =<1 if1/2<x<3/4
0 if3/4<x<m

h(x):=block ([],

if (x<1/2) then return (0),
if (x<=3/4) then return (1),
0

);

and, to check this, we plot it. We define

a(k):=(2/%pi)*integrate (sin(k+x),x,1/2,3/4)

Now we define

psi_h(x,t):=sum(a(j)*sin(j*x)*sin(j=*t)/j,j,1,100)

and plot it with

with_slider_draw (
t, /*variable to attach to the slider =/
makelist(j,j,0,100), /+list of integers =/
explicit(psi_h(x,.1xt),x,0,%pi), /*plot =/
yrange= [-1/2,1/2] /*optional graphic command =
); /* end of with_slider_draw —command =/

You will benefit from memoizing these computations (as with the heat equa-
tion).



70 4. DIFFERENTIAL EQUATIONS

EXERCISES.

1. Find a closed-form solution of the wave-equation for a hammered
string.

L4

4.6.4. The two-dimensional case. In this case, the wave equation looks like
o’y LY PP 1%
a2 a2 2o

where ¢(x, y, t) is the displacement of a rectangular drum-head. We try the trick we
used before:

Y(x,y,t) = u(x)o(y)w(t)

and get the equation

d?u d*v 1 d>w

Wv(y)w(t) + u(x)Ww(t) = Cﬁ”(x)v(y)ﬁ
and divide by u(x)v(y)w(t) to get

1 d*u L1 do 1 1 dw
u(x)dx? " o(y)dy?  cw(t) d2

As before, functions of x and y can only equal a function of ¢ if they are equal to the
same constant:

1 d*w
w(t) d?
1 dPu 1 do
u@) dx2 | o(y) dy
The second of these equations implies that

1 d%u 1 d%v

1
7 _—A

u(oyd? T o(y) dy?
so, again, we have a function of x equal to a function of y: they must both equal the
same constant! We have equations

1 1 dw
c2w(t) di2
1 d?u
u(x) dx2
1 &
o(y) dy
Note that the solutions to the differential equations are
(4.6.3) u(x) = rsin(y/ax) + s cos(v/ax)
o(y) = 1’ sin(vVby) + s’ cos(Vby)

w(t) = 7sin(cva + bt) + 5cos(cva + bt)

=—(a+b)




4.6. THE WAVE EQUATION 71

X*(1-x72)*y*(8-y"3)

z 1.5 \\\\\\\\\
) T
05 ""0"‘5‘\\\\ \\\\ 2
/1171 W\\\\\ ! 15

FIGURE 4.6.3. Initial position of a two dimensional membrane

Suppose our vibrating surface is L units long, W units wide, and is rigidly
fixed on its boundaries. We'll also suppose the membrane is at rest initially and has
a shape given by f(x,y), so

fOy) =f(Ly)=0
f(x,0) = f(x,W) =0

We can expand f(x,y) in a two-dimensional Fourier series

Y cumsin ("7 sin (")
o Cnm ST ) S Ty
nm=1

Cnm = % /OL /wa(x,y) sin (%) sin (mvny) dxdy

So equations 4.6.3 on the facing page imply that an elementary solution looks like

(4.6.4) sin (%) sin (%) cos (cnt Z—i + g:;)

We will assume W = 1, L = 2, ¢ = 1, and define f(x,y) = xy(1 — x?)(8 — %),
which plots as figure 4.6.3

where

declare(n,integer);
declare (m, integer);
coef[n,m]:=2+integrate (integrate (x*y=*(1-x"2)=*
(8-y~"3)+sin(%pi*n*x)=*sin(%pimx+y/2),
x,0,1),y,0,2);

which gives

ome °ome

1 (_ (3847%m2—768)(=1)" 768 ) (—1)"

coef(n,m) = — 3

Now we write a function to add up terms of the two-dimensional Fourier series




72 4. DIFFERENTIAL EQUATIONS

Function

3.5

il
25+

2 L

z / \\
15 V7 \
Y gy \) \\\\\\\\

1 RO

TR 2

FIGURE 4.6.4. First three terms of a two-dimensional
Fourier series

first_n(n,x,y):=block (
[] 4
sum (sum (
coef[i,jl*sin(%pi*i*x)*sin(%pi*j*y/2)
,i,1,n),j,1,n))

If we plot the first three terms, via

plot3d (first_n(3,x,y),[x,0,1],[y,0,2]);

we get figure 4.6.4, which is not bad.
Now we apply equation 4.6.4 on the previous page to get a solution of the wave

equation
S e i (M7 [ ?
mglcoef(n,m)sm (nrmx) sm( > )cos <7‘[t n? + 1 )

which we code up via

agk

n=1

vibrate_n(n,x,y, t):=block (
[1,
sum (sum (
coef[i,j]+sin(%pixi*x)
+sin(%pi*j*y/2)
+cos(%pixrtxsqrt (inN2+j"2/4))
,i,1,n),j,1,n))

At time t = 4, our plot

plot3d (vibrate_n(3,x,y,.4) ,[x,0,1],[y,0,2]);

looks like figure 4.6.5 on the facing page. Notice that the vibration is asymmetric
(you might have to rotate it a bit to see this).




4.6. THE WAVE EQUATION

Function

FIGURE 4.6.5. After .4 time units

EXERCISES.
2. Show that

/_7; /: sin (nx) sin (my) - sin (7ix) sin (y) dxdy = 0

ifn # fiorm # m.

73






CHAPTER 5

Integral transforms

“We are rag dolls made out of many ages and skins, changelings
who have slept in wood nests or hissed in the uncouth guise of
waddling amphibians. We have played such roles for infinitely
longer ages than we have been men. Our identity is a dream. We
are process, not reality, for reality is an illusion of the daylight —
the light of our particular day.”

— Loren Eiseley.

5.1. The Fourier Transform

In this chapter we will begin by approaching Fourier series from an-
other direction, using the simple fact that

/‘” G | i 1y 2 ifn=m
Jon 0 otherwise

If f(x) is a function, we can compute coefficients via

a = i/rr f(x)e **dx
21 J-n
and get a series

f= Y ae

k>—o00

If we expand our old friend, f(x), defined in equation 3.1.1 on page 32, we

get
1 0 . 1 .
ay = =— (/ e~y +/ xze’k"dx)
27t \J-1 0

or

alk]:= (integrate(%e”(-%ixk=*x),x,-1,0)
+integrate (x"2+%eN-%ixkx*x),x,0,1))/(2+% pi)

first_n(k,x):= sum(al[j]+%eN(%ix*j=*x),j, -k, k);

Now, suppose we want to expand our horizons from [—7, 7t} to [—L, L]. We
rewrite the equations above to

1 L —i27tkx /L
akfi/%f(x)e dx

75




76 5. INTEGRAL TRANSFORMS

and the Fourier series becomes
o0
f(x) — Z akekax/L
k>—o00
and we will rewrite this slightly

L .
gL = /7Lf(x)€_2mx}(/de

and
1 & ik /L
f(x) = 5L Y agy e

k>—o0
Now, we let L — oo and set s = k/L and get

as =a(s) = /j:of(x)efzmxsdx
flx) = /_oo a(s)e?™*s ds

and a(s) is defined to be the Fourier Transform of f(x) — if these integrals
are well-defined!

Let’s compute the Fourier transform of our old friend, f(x), defined
in 3.1.5 on page 33 and plotted in figure 3.1.8 on page 35.

0 . 1 .
a(s) :/ e—27‘clxsdx+/ xze—mesdx
-1 JO

or

a(s):= integrate(%e”(-2+%pit%i+s+x),x,-1,0)
+integrate (x"2+%eN(-2+%pi*%ix*s+*x),x,0,1)

Now we plot the real and imaginary parts of a(s)

plot2d ([ realpart(a(s)),imagpart(a(s))],[s,—4,4]);

to get figure 5.1.1 on the facing page. The plot-command complains about
division by zero, although it manages to generate the plot.
To see why, do indefinite integrals:

integrate(%eN(-2+%pi*x%i*s=*x),X)

gives
ie—Znixs

27ts

integrate (x"2+%eN(-2+%pi*%ix*s*x),X)

gives
(27%is2x2 + 2msx — i) e 27X
47333

with s in the denominator in both cases! On the other hand a(0) is a perfectly
well-defined 4/3, as the plot shows.

We have effectively decomposed f(x) into a continuous infinity of pe-
riodic functions. The Fourier transform recognizes periodic behavior of a
function and gives its intensity at different frequencies.




5.2. THE DISCRETE FOURIER TRANSFORM 77

fun1
fun2

0.8
0.6

0.4

0.2 /\
0

v v

FIGURE 5.1.1. Fourier transform of f(x)

5.2. The discrete Fourier transform

Although Maxima doesn’t have built-in commands to implement
Fourier transforms analytically, it does implement fast numeric algorithms
for discrete Fourier transforms.

If {x;} i = 1...nisasequence of numbers, its discrete Fourier transform
is defined via

n—1
(5.2.1) y(k) = Z x(]-)ezm"jk/n
j=0

and its inverse is defined by
n—1 .
(522) x(j) = Y y(k)e 2k
i=0

These are the definitions used by Maxima; there are many others.
Many (most?) authors swap these definitions — they define the Fourier
transform via equation 5.2.2 and the inverse via 5.2.1.

Although these are straightforward enough, they become cumbersome
when the sequences are long (as they are in practice). An algorithm was
discovered when n = 2" for some integer m > 0 — attributed to Cooley
and Tukey (but really discovered centuries earlier by Gauss!), called the
Fast Fourier Transform.

James William Cooley (1926 — 2016) was an American mathematician. He
was a programmer on John von Neumann’s computer at the Institute for
Advanced Study, Princeton, NJ, from 1953 to 1956, where he notably pro-
grammed the Blackman-Tukey transformation.

He worked on quantum mechanical computations at the Courant Institute,
New York University, from 1956 to 1962, when he joined the Research Staff
at the IBM Watson Research Center, Yorktown Heights, NY. Upon retire-
ment from IBM in 1991, he joined the Department of Electrical Engineering,
University of Rhode Island, Kingston, where he served on the faculty of the
computer engineering program.




78 5. INTEGRAL TRANSFORMS

John Wilder Tukey (1915 — 2000) ) was an American mathematician and
statistician, best known for the development of the fast Fourier Transform
(FFT) algorithm and box plot. The Tukey range test, the Tukey lambda
distribution, the Tukey test of additivity, and the Teichmtiller-Tukey lemma
all bear his name. He is also credited with coining the term ‘bit” and the first
published use of the word ‘software’.

The Fast Fourier Transform commands occur in a library loaded via

load (" fft")

The most basic commands in question are fft and inverse_fft. The follow-
ing code shows that they really are inverses.

load ("fft");
fpprintprec : 4; /+ number of digits to print =/
L: 1,1+ %, 1-%, -1, -1, 1 -%i, 1 + %, 1];
L1 : fft (L);
[0.5, 0.5, 0.25 %i - 0.25, (- 0.3536 %i) - 0.3536, 0.0,

0.5,(— 0.25 %i) - 0.25, 0.3536 %i + 0.3536]
L2 : inverse_fft (L1);
[1.0, 1.0 %i + 1.0, 1.0 - 1.0 %i, - 1.0, - 1.0,

1.0 - 1.0 %i,1.0 %i + 1.0, 1.0]
Imax (abs (L2 - L));

0.0

The most straightforward application of the discrete Fourier transform is
detecting periodic behavior in sequences of numbers.

To introduce a more interesting (and widely-used) application, we
need:

DEFINITION 5.2.1. Let A = {a;},i = 0,...,n—1and B = {b;}, j
0,...m — 1 be sequences of numbers. The convolution A%B = {cx}, k =
0,...,n+m —1 of these sequences is defined by

t
Ct = 2 aib;_;
i=0

whereaizoifiéo,...n—landbj:0ifj¢0,...,m.

REMARK. This also well-defined in the continuous case
rxg(s) = [ flag(s = x)dx
We have the well known

THEOREM 5.2.2 (Convolution Theorem). If A is a sequence of numbers, let
F(A) denote the discrete Fourier transform of A. If A and B are finite sequences
of numbers of length n, then ¥ (A% B); = n-F(A); - F(B); for all i. In particular

(5.2.3) A%xB=n-F1(F(A) F(B))

where " represents element-by-element multiplication.




5.2. THE DISCRETE FOURIER TRANSFORM 79

REMARK. See [34] for a proof. So Fourier transforms convert convolu-
tions into simple multiplications. If we follow the widespread convention
mentioned above, the factor of n is unnecessary. In other words, using
Maxima’s conventions

(5.2.4) A%B =7 (3”*1(A) .frl(B))

A similar result is true in the continuous case (without the factor of n!).

The fast Fourier transformation and its inverse are so fast, equation 5.2.3
on the preceding page is faster than direct computation — at least if the
sequences are sufficiently large.

The reader might ask
Why do we care about convolutions?
They have applications to
(1) Analyzing signals.
(2) Multiplication of polynomials (the coefficients of the product are
a convolution of the coefficients of the factors), if the polynomials
are large (hundreds of terms).
(3) Multiplication of numbers with hundreds of digits — we can re-
gard them as polynomials evaluated at 10 with coefficients that
are integers 0...9.

EXAMPLE 5.2.3. Suppose we want to form the convolution of the se-
quences
{1,4,2,5} and {3,1, 3,2}
representing coefficients of cubic polynomials 1+ 4x + 2x% + 5x> and 3 +
x + 3x2 + 2x3. Their convolution will be of length 7 so we extend these to
length 8 = 23 by zeroes on the right and execute the code:

load ("fft");

fpprintprec : 4; /+ number of digits to print =/
A:[1,4,2,5,0,0,0,0];
0

B . [3/1/3/2/0/ IOIO]I
fa : fft(A);
fb : fft(B);

fc:faxfb;/+ element by element multiplication =/
C : realpart(8+inverse_fft(fc));

You will notice that the output of the inverse_fft command has imaginary
parts that are very small (~ 10~17). All the intermediate computations used
complex numbers that don’t quite cancel in the end due to round-off errors.
The simplest way to deal with these is to take the realpart.

There are other Maxima commands to take transforms of real-valued
sequences (with a faster algorithm) or to use bfloat’s in the computations
(so the round-off errors are much smaller).




80 5. INTEGRAL TRANSFORMS

EXERCISES.

1. Show that convolution is commutative and associative. In other
words, if A, B, and C are sequences of numbers, show that

A% B =B¥xA
A% (BkC) = (A% B)%C

2. In example 5.2.3 on the preceding page, why did we extend the se-
quences until they had length 8?

3. Run example 5.2.3 on the previous page using equation 5.2.4 on the
preceding page.

4. Compute the cube of the polynomial 2 — 4x + x? — x>

lution and equation 5.2.4 on the previous page.

using convo-

5.3. The Laplace Transform

The Fourier transform inspired Laplace to develop a variation of it that
is useful in solving linear differential equations. The Laplace Transform of a
function, f(x), is defined by

(53.1) £(f)(s) = /0 " e (x)dx

(if the integral is well-defined!) with an inverse

-1 : 1 T XS
CUF)(x) = Jim A L eF(s)ds

where 7 is a real number set to something that makes the integral converge
(if possible!).



5.3. THE LAPLACE TRANSFORM 81

Pierre-Simon, marquis de Laplace (1749 — 1827) was a French scholar whose
work was important to the development of engineering, mathematics, sta-
tistics, physics, astronomy, and philosophy. He summarized and extended
the work of his predecessors in his five-volume Mécanique céleste (Celestial
Mechanics) (1799-1825). This work translated the geometric study of clas-
sical mechanics to one based on calculus, opening up a broader range of
problems. In statistics, the Bayesian interpretation of probability was de-
veloped mainly by Laplace.

Laplace formulated Laplace’s equation, and pioneered the Laplace trans-
form which appears in many branches of mathematical physics, a field
that he took a leading role in forming. The Laplacian differential opera-
tor, widely used in mathematics, is also named after him. He restated and
developed the nebular hypothesis of the origin of the Solar System and was
one of the first scientists to suggest an idea similar to that of a black hole.
Laplace is regarded as one of the greatest scientists of all time. Sometimes
referred to as the French Newton or Newton of France, he has been de-
scribed as possessing a phenomenal natural mathematical faculty superior
to that of almost all of his contemporaries. He was Napoleon’s examiner
when Napoleon attended the Ecole Militaire in Paris in 1784. Laplace be-
came a count of the Empire in 1806 and was named a marquis in 1817, after
the Bourbon Restoration.

Both the Laplace transform and its inverse are built in to Maxima (it's
not necessary to load any libraries):

laplace (x"3,x,s); /+ The Laplace transform. =/

gives

ilt(6/s”4,s,x); /+ The Inverse Laplace transform. =/

recovers X3.

As we said earlier, the Laplace Transform is useful in solving linear
differential equations. To see why, note that

L(f'(x) =s-L(f) = £(0)
which you can see by integrating equation 5.3.1 on the facing page by parts
or typing

laplace (" diff (f(x),x),x,s);

to get

s*laplace (f(x),x,s)—f(0)

Suppose we want to solve the differential equation of a harmonic oscillator
as in figure 5.3.1 on the next page.




82 5. INTEGRAL TRANSFORMS

®
F.=0
x=0
F.
1
x<0
© FS
AVAVAVAVAVAVAVAVAVAVAVA
1
x>0
FIGURE 5.3.1. Harmonic oscillator

We assume the mass bobs back and forth without friction and get a
differential equation like

2 f _
(5.32) S5 3 =0

where f is the displacement of the mass and x is time. We apply the Laplace
Transform to get

—£'(0) +s2L(f) +3L(f) —sf(0) =0
and solve for £(f) to get

_ sf(0)+£(0)
=g

The command

ilt ((s=f(0)+fp(0))/(s”2+3),s,x);

shows that
"(0) sin (v/3x
flx) = f(O)\@(3) + f(0) cos (\@x)

Figure 5.3.2 on the facing page shows a plot of the motion when f/(0) = 0
and f(0) = 1.




5.3. THE LAPLACE TRANSFORM 83

]
05|
s
E o
05}
-1 F
0 2 4 6 8 10
X
FIGURE 5.3.2. Simple harmonic motion

Now consider the case of a forcing function:

2
% +3f = sin(2x)
Here, the function sin(2x) is driving the oscillator. We apply the Laplace

Transform to both sides of the equation to get

, 2
(53.3) —f1(0) +°L(f) +3L(f) =sf(0) = 7o
We can solve this for £(f) (using solve!) to get

L(f) = f(0)s> + f'(0)s +4s£(0) +4f'(0) +2
B st +752 +12
Now we take the inverse Laplace Transform to get

(f(0) +2) sin(v/3x)

flx) =
V3
One nice aspect of this solution is that it explicitly shows the effect of initial
conditions.

If £/(0) = 0 and f(0) = 1, we get the motion in figure 5.3.3 on the next
page.

One shortcoming of the Maxima’s Laplace transform package is its

failure to deal with Heavyside functions. These are functions of the form
H(x — «) where H(x) is defined by

H(x) = 0 %fx<0
1 ifx>0

+ £(0) cos(v/3x) — sin(2x)

These are interesting because:

D> every piecewise-defined function can be expressed as a linear
combination of Heavyside functions and ordinary functions



84 5. INTEGRAL TRANSFORMS

FIGURE 5.3.3. Forced harmonic motion

> Laplace transforms of such functions can be easily calculated

LEMMA 5.3.1. Let f(x) be a function that has a Laplace transform and let
a« € R be such that « > 0. Then

(5.3.4) L(H(x—a)f(x) =e “L(f(x+a))
It follows that
(5.3.5) L7 (e %g(s)) =H(x —a) - £L71(g) (x — )

PROOF. From the definition
L(H(x - a)f(x)) = / e H(x — o) f(x)dx
0
— [ e f(x)dx
J
Now let u = x — «, so x = u + « and substitute
/ e f(x)dx = / e~ RS £y 4 o) dx
o 0

=e % /0 e " f(u+ a)dx

e “L(f(u+a))
O
EXAMPLE 5.3.2. Suppose the driving force of our harmonic oscillator
is given by
1 if1/2<x<1
ORI
0 otherwise
Then d(x) = H(x —1/2) — H(x — 1) and our version of equation 5.3.3 on
the preceding page is

_f/(()) —|—s2[,(f) +3L(f) —Sf(O) — 675/2 _ S



5.3. THE LAPLACE TRANSFORM 85

giving
c(f) = LO+/O) te e
s-+3
s e—s/2 e~s
(5:3.6) =2/ Ot a5 Ot a5 2
Now we isolate each term of the form
e *r(s)

where 4 is a real number and compute
H(x —a)L Y (r)(x —a)
In the case of equation 5.3.6, we take the inverse Laplace transform using
the ilt-command for the first two terms, and the ilt-command coupled with
equation 5.3.5 on the facing page to handle the remaining two terms:
sin(v/3 - x)f/(O)
V3

sin(v/3 - (x —1/2))

V3
sin(v/3- (x — 1))
' V3
If we assume that the string was initially at rest, we get
sin(v/3 - (x —1/2)) sin(v/3- (x — 1))

V3 G

which is plotted in figure 5.3.4 on the next page. Here, we have coded

f(x) = cos(v3-x)£(0) +

+H(x—1/2)-

—H(x—1)

f(x) =H(x—-1/2)- —H(x—-1)

H(x):=block(
[1,
if (x>=0) then return (1),
0)

EXERCISES.
1. Is the function depicted in figure 5.3.3 on the facing page periodic?

2. Represent the piecewise function

0 ifx <2
¥ ifx<3
flx) = —x ifx<b
0 ifx>5

as a linear combination of Heavyside functions (the coefficients may be
arbitrary ordinary functions).




86 5. INTEGRAL TRANSFORMS

0.4 |
02}
N
©
£
0.2 f
04|
0 05 1 15 2 25 3 35
X
FIGURE 5.3 4. Discontinuous driving force

3. Use Laplace transforms to solve the differential equation

Py | dy
W‘f‘%‘f—X—f(x)

where f(x) is defined in exercise 2 on the previous page.



CHAPTER 6

Orthogonal polynomials

“It is a matter for considerable regret that Fermat, who cultivated
the theory of numbers with so much success, did not leave us
with the proofs of the theorems he discovered. In truth, Messrs
Euler and Lagrange, who have not disdained this kind of re-
search, have proved most of these theorems, and have even sub-
stituted extensive theories for the isolated propositions of Fermat.
But there are several proofs which have resisted their efforts.”
— Adrien-Marie Legendre.

6.1. Introduction

As we saw in section 4.3 on page 52, it is possible to expand func-
tions (even discontinuous ones!) in a series of sines and cosines. How
was this possible? After some thought, it becomes clear that the key was
equations 4.3.3 on page 53, 4.3.5 on page 54, and 4.3.7 on page 54 — the
so-called orthogonality relations.

Is it possible to find similar relations between other sets of functions?

We will construct a set of orthogonal polynomials {P;(x)} with

1
6.1.1) / P,(x) Py (x)dx = 0

J-1
ifi #j.
The simplest candidate for Py is 1, so we will pick it. The linear poly-
nomial is of the form ag + a;x

1
/ 1 (ag + ayx)dx = 2ag
-1

For the polynomials to be orthogonal, we set a9 = 0 and set a; = 1, so
p1(x) = x. We also have

‘l 2
2 - —
/ Py (x)“dx 3

The general form of P;(x) is ag + a1x + axx?. We get

integrate (1+(a_0+a_l=*x+a_2x*x"2),x,-1,1); ratsimp (%);

which gives
2a; + 6ag
3

integrate (x*(a_0+a_l*x+a_2x*x"2),x,-1,1); ratsimp (%),

87




88 6. ORTHOGONAL POLYNOMIALS

Field Source

Origin
FIGURE 6.1.1. Model for Legendre polynomials
gives
20,
3

We uniquely determine coefficients by requiring P;(1) = 1:

solve ([2xa_2+6xa_0=0,2+a_1=0,a_0+a_1+a_2=1],

[a_0,a_1,a_2])
and get
1 3
Hao = —5m =0,a = 2”

3, 1
Py(x) = )
In this fashion, we can inductively construct a sequence of polynomials
{P;(x)} satisfying equation 6.1.1 on the preceding page. Of course, we are
not the first people to think of this. The {P;(x)} are called the Legendre

Polynomials after the first person to study them.

SO

Adrien-Marie Legendre (1752 — 1833) was a French mathematician who
made numerous contributions to mathematics. Well-known and important
concepts such as the Legendre polynomials and Legendre transformation
are named after him.

In 1782, he first introduced his polynomials as coefficients in the expansion
of the Newtonian Potential energy

1 1

6.1.2 =
(6.12) Ix=x'[  /|x]2+[x'[2 = 2]x|[x] cos B

o

|X/ 4
=Y X7 Py(cos )
(=0

where 0 is the angle between the vectors x and x/, and |x/| < |x| — see
figure 6.1.1.

Figure 6.1.2 on the facing page show plots of the first six Legendre polyno-
mials.

Nowadays, they crop up when one converts the heat and wave equa-
tions to spherical coordinates (latitude, longitude, and radius). Since the




6.1. INTRODUCTION 89

1 P0 ——
Pl —
P2
P3
P5
05 |
0
-0.5 |
-1
1 0.5 0 0.5 1
X
FIGURE 6.1.2. The first six Legendre polynomials

Schrodinger Wave equation is related to the Heat equation, Legendre poly-
nomials also are widely used in Quantum Mechanics.
Legendre and others have discovered some of their properties:
Besides orthogonality, we have

2
2n+1

(6.1.3) /jl Py(x)%dx =

(this isn’t obvious!).
Luckily, people have compiled a Maxima library of Legendre polyno-
mials (and many other systems of orthogonal polynomials) accessed by

load ("orthopoly")

The Legendre polynomials are given by legendre_p(n,x). If we type

legendre_p (5,x)

we get

63(1 — x)° L 31501 - x)*
8 8
and expand(%) gives a simplified form

63x° _35x°  15x
8 4 8

Recall our old friend, the discontinuous function f(x), plotted in 3.1.8 on

page 35:

5 105(1—x)?
e

~15(1—x) — —70(1 — x) +1

f(x) := block ([], /* no local wvariables =/
if (x<-1) then return (0),




90 6. ORTHOGONAL POLYNOMIALS

1.2 )
fun2

0.8

0.6

0.4

0.2

FIGURE 6.1.3. First 5 terms of a Legendre series

if (x<0) then return (1),
if (x<=1) then return (x"2),
0), /xdefault final value =/

We'll expand this in a series of Legendre polynomials using the same meth-
ods as for Fourier series:

B f}l legendre_p(k, x) f (x)dx
fil legendre_p(k, x)2dx

aj =

Translated into Maxima, this is

a[n]:=((2+*n+1)/2)+(integrate (legendre_p (n,x),x,-1,0)
+integrate (legendre_p(n,x)*x"2,x,0,1));

where
2n+1 1

2 fil legendre_p(k, x)2dx

— see equation 6.1.3 on the preceding page. We finally get our series:

partial_sum (k,x):=sum(a[n]+legendre_p(n,x),n,0, k)

If we plot the first five terms against f(x):

plot2d ([ "f(x),partial_sum (5,x)],[x,-1,1]);

we get figure 6.1.3.
If we try 20 terms, we get figure 6.1.4 on the facing page. The Legendre
series is clearly trying to approximate f(x) — just as a Fourier series did.
As with Fourier series, it turns out' that the Legendre series converges
in the manner

1
lim (partial_sum(n, x) — f(x))*dx =0

n—eo J_1

ILe., we're not going to prove this here!



6.2. WEIGHTED ORTHOGONALITY 91

'f(x)

; A~ /\ fun2

0.8

0.6

0.4

0.2

FIGURE 6.1.4. First 20 terms of a Legendre series

Many applications of Legendre polynomials come from equation 6.1.2
on page 88: if we are in spherical coordinates and have a charge situated at
the end of vector x/, the potential energy at the end of vector x is expressed
in the series of Legendre polynomial given above.

EXERCISES.

1. Legendre polynomials satisfy Bonnet’s Recursion Formula
(n+1)Pypa(x) = (21 + 1)xPy(x) — 1Py 1 (x)

Write a Maxima function to compute P, (x), using this.

2. Expand sin x in a series of Legendre polynomials and compare with
the Taylor series of the sine-function.

3. Do three-dimensional plots of P>(cos ), P3(cos ), P4(cos 6) in cylin-
drical coordinates, where 6 is the angle from the x — y-plane and radius is
1.

6.2. Weighted orthogonality

There are many other systems of orthogonal polynomials in common
use. We will only touch on a few of them.

6.2.1. Chebyshev Polynomials. We begin with Chebyshev Polynomi-
als, {T,,(x)}, defined by

(6.2.1) Ty (cos ) = cosné



92 6. ORTHOGONAL POLYNOMIALS

1 ‘ ‘ 11—
4 (10)+2 (1021
(-9*(1+x))-471-x)*3+12*(1-x)"2+1
(-16™(1-xNg8%(1-x)74-32* (\-x)3+40*(1-x)"
05|
0
05 |
-1
1 05 0 05 1
X
FIGURE 6.2.1. The first four Chebyshev polynomials

They are orthogonal in the sense that?

0 if fm[ # [n]

! T"(x)Tm(x)dxz T fn=m=0

(6.2.2)

- 1—x2 /2 ifn=m>0
so they are orthogonal with a weight-function
1
Vi-a2

Pafnuty Lvovich Chebyshev (ITacdbuyruit JIssérna Hebbimés) (1821 — 1894)
was a Russian mathematician and considered to be the founding father of
Russian mathematics.

Figure 6.2.1 shows the first four Chebyshev polynomials.
When we expand a functions (like f(x)) in a series of Chebyshev poly-
nomials, we must take the weight function into account:

1)

1
g 2 [T

/-1 /1 —x2

In Maxima’s orthopoly package, they are called chebyshev_t (n, x).
Our Maxima commands are and we sum up terms of the series via

partial_sum (k,x):=a0+sum(a[n]*chebyshev_t(n,x),n,1, k)

If we plot the first twenty terms against our discontinuous function f(x):

This is easily derived from definition 6.2.1 on the preceding page, equations 4.3.3 on
page 53, 4.3.6 on page 54, and 4.3.7 on page 54 and a suitable u-substitution.




6.2. WEIGHTED ORTHOGONALITY 93

a0:(1/%pi)+(integrate(1/sqrt(1-x"2),x,-1,0)
+integrate (x"2/sqrt(1-x72),x,0,1));

a[n]:=(1/%pi)*

(integrate (chebyshev_t(n,x)/sqrt(1-x"2),x,-1,0)
+integrate (chebyshev_t(n,x)*x"2/sqrt(1-x"2),x,0,1));

'f(x)

, /\ fun2

0.8

0.6

0.4

0.2

FIGURE 6.2.2. First 20 terms of a Chebyshev expansion

plot2d ([ "f(x),partial_sum (20,x)],[x,-1,1]);

we get figure 6.2.2. The weight-function plays a part in how the Chebyshev
series converges to f(x). We have

lim 1 (partial_sum(n, x) — f(x))?

noseo |1 V122

As figure 6.2.3 on the following page shows, it prioritizes the endpoints
of the interval [—1,1].

It is known (which we won't prove!) that for continuous functions
(something our f(x) isn’t) the Chebyshev series converges more rapidly
than any other series of orthogonal polynomials — see [30]. This means
they have important applications in numerical analysis. For instance many
software-library functions for sines and cosines use Chebyshev expansions.

dx=20

6.2.2. Laguerre Polynomials. Laguerre Polynomials are defined as
certain solutions of the Laguerre Differential equation:
@y dy

XE‘F(l—x)E‘Fny:O

where n > 0 is an integer. The only nonsingular solution of this is the
n" Laguerre polynomial, L, (x) =laguerre (1, x). These polynomials are
orthogonal with respect to the weight function e™*:

/ e *laguerre(n, x) - laguerre(m, x)dx = 0if n # m
Jo




94 6. ORTHOGONAL POLYNOMIALS

g
5
08 06 04 02 0 02 04 06 08
X
FIGURE 6.2.3. Weight-function for Chebyshev expansions
‘ ‘ ‘ 1 —
1-x
31 X72/2-2*x+1 1

(-xA3/B)+(3*x"2)/2-3*x
XPA/24°(2°X"3)/3+3*XA

FIGURE 6.2.4. Laguerre polynomials

and®

/ e *laguerre(n, x)%dx = 1
Jo

3These are not obvious!



6.2. WEIGHTED ORTHOGONALITY 95

0.8 |
0.6
04|
02}
N TN

FIGURE 6.2.5. Expansion of f(x) in 100 Laguerre polynomials

Edmond Nicolas Laguerre (1834 — 1886) was a French mathematician and
a member of the Académie des sciences (1885). His main works were in
the areas of geometry and complex analysis. He also investigated orthogo-
nal polynomials. Laguerre’s method is a root-finding algorithm tailored to
polynomials.

The Laguerre polynomials arise in quantum mechanics, in the radial
part of the solution of the Schrodinger equation for a one-electron atom.
We will expand our discontinuous function in these polynomials with co-
efficients

a0:integrate(%e(-x)*x"2,x,0,1);
a[n]:=integrate (laguerre(n,x)*x"2+%e”(-x) ,x,0,1);

and partial sum

partial_sum (k,x):=a0+sum(a[n]+laguerre(n,x),n,1,k)

If we plot the first 100 terms of the series, we get figure 6.2.5, which doesn’t
look very good until you realize that it only converges with the weight
function e™*.

In other words
e F) — pulx)lax — 0

as n — oo, where py(x) is the n™ partial sum of a Laguerre series. Since
e~ ™ tapers off rapidly as x increases, we don’t really care what p, (x) does
for large values of x.




96 6. ORTHOGONAL POLYNOMIALS

Laguerre polynomials are often used to numerically estimate integrals
of the form

/Ooo et f(x)dx

(for the degree-n form of the equation with n > 1) via the Gauss-Laguerre
quadrature formula

] n
(6.2.3) /0 e " f(x)dx = Y wif (x;)
i=1

where the {x;} are the roots of L, (x) and the weights {w;} are given by

x:
6.24 w; = !
29 T DL ()
see [39].

EXERCISES.

1. Code a function the does Gauss-Laguerre quadrature using equa-
tions 6.2.3 and 6.2.4 . Hint: use the allroots command to find the roots of

Ly (x)).

6.2.3. Hermite polynomials. These are orthogonal with respect to the

weight function e They exist in two closely-related forms, the physicist’s

Hermite polynomials, defined by

Ha(x) = (<17 2 (e)

dxn

and the probability-theorist’s form

2,5 2 d" 2
Hep(x) = (—1)"e* /2% — (e*x /2)
() = (1) =
We will consider the physicist’s form here, which appear naturally in the
Schrédinger wave equation for a harmonic oscillator in quantum mechan-
ics.
Their orthogonality relations are

0 ifn#£m
/2! otherwise

/ e‘szn(x)Hm(x)dx = {
In the orthopoly library, the n" Hermite polynomial is denoted
hermite(n,x). The first five Hermite polynomials are plotted in figure 6.2.6
on the facing page.



6.2. WEIGHTED ORTHOGONALITY 97

10
- XA2) [
T2xr2)/3) ——
XM4)/3-4*x7241) ——
5 L
N 1
5t
-10 :
0 1 2 3 4 5
X
FIGURE 6.2.6. Hermite polynomials

Charles Hermite (1822 — 1901) was a French mathematician who did re-
search concerning number theory, quadratic forms, invariant theory, or-
thogonal polynomials, elliptic functions, and algebra.

Hermite polynomials, Hermite interpolation, Hermite normal form, Her-
mitian operators, and cubic Hermite splines are named in his honor. One
of his students was Henri Poincaré.

He did not discover Hermite polynomials”: Hermite polynomials were de-
fined by Pierre-Simon Laplace in 1810 and studied in detail by Pafnuty
Chebyshev in 1859. Chebyshev’s work was overlooked, and they were
named later after Charles Hermite, who wrote on the polynomials in 1864,
describing them as new.

See Stigler’s Law of Eponymy in the index!

EXERCISES.

2. Expand our discontinuous function, f(x), (see equation 3.1.1 on
page 32) in Hermite polynomials.






CHAPTER 7

Linear Algebra

“Life stands before me like an eternal spring with new and bril-
liant clothes.”
— Carl Friedrich Gauss.

7.1. Introduction

We assume the reader is familiar with the basic concepts of linear alge-
bra — see [40, chapter 6] as a general reference.

Initially, the focus of linear algebra was solving systems of linear equa-
tions in multiple variables. Some 4000 years ago, Babylonians were able
to solve pairs of linear equations in two unknowns. In 200BC, the Chinese
publication, “Nine Chapters of the Mathematical Art” (see [24]) showed
how to solve systems of three equations in three unknowns.

The solve-command can handle simple systems of linear equations:

Given

2x+3y =5
(7.1.1) 6x—y=2

where we must solve for x and y. If we type

solve ([2+x+3+y=5,6xx-y=2],[x,y])

and Maxima replies with

[r=t0-3]

Here’s another example:
x+2y—z=0
3x—y+2z=0

which we code as

solve ([ x+2+y-z=0,3*xx-y+2+xz=0],[x,y,z])

and Maxima replies with

|:|:X _ _3/01‘1 y = 5%r1 z= 0/01‘1:|:|

7 7
Here, Maxima has introduced an auxiliary variable, %r1, that can take on

arbitrary values, showing that there are an infinite number of solutions to
this system.

99




100 7. LINEAR ALGEBRA

In 1848, Sylvester realized that an array of coefficients was all that really
mattered in these equations and coined the term “matrix” for them from
the Latin word for “mother” and “womb”.

Coding matrices in Maxima is done with the matrix-command:

a:matrix([1,2,3],[4,5,6]1,[7,8,9])

gives
1 2 3
4 5 6
7 8 9

The usual operations ‘+" and ‘- work for matrices. The multiplication-
operation, ‘«' multiplies them element-by-element, which is not what we
want. To correctly multiply matrices, use the *.’-operator.

For instance, if we type

b:matrix([1,2,-3],[4,5,6],[7,8,10])

then
a.b
produces
30 36 39
66 81 78
102 126 117
a+b
produces
2 4 0
8 10 12
14 16 19

wxmaxima has a short-cut to entering matrices: select the menu-item
Matrix>Enter Matrix ‘

NOTE 7.1.1. Matrices are always assumed to be two-dimensional, even
if they only have one row! So, if we define

a:matrix([1,2,-3])

we access the elements with two subscripts,

a[l,1],a[1,2],a[1,3]

rather than one.
Given a matrix, one can determine how many rows it has via the length-
command:

length (b)

returns




7.1. INTRODUCTION 101

7.1.1. Matrix-creation commands. Besides the matrix-command, we
have several others to create matrices:

(1) the ident(n)-command creates an n x n identity matrix.

(2) the zeromatrix(m,n)-command creates an m X n matrix of zeroes.

(3) the genmatrix(ident,m,n)-command is the most powerful of the
matrix-creation commands. If ident is an identifier with no other
properties, genmatrix produces an m X n matrix with subscripted
copies of ident. For example

genmatrix(a,3 ,4)

produces

a1 412 413 414

21 a22 423 24

az1 Aaz2 433 34
If ident is the name of a memoized function of two variables, gen-
matrix plugs row and column numbers into ident and posts the
value of the function to the array

bli,jl:=i+j;
genmatrix(b,3 ,4)

produces
2 3 45
3 456
4 5 6 7

ident can also be an anonymous lambda-function, so

genmatrix (lambda([i,j],i-j),3,4)

produces
0o -1 -2 -3
1 0 -1 -2
2 1 0o -1

7.1.2. Matrix operations. The transpose-command does what you’d
expect it to do:

transpose(a)

gives
1 4 7
2 58
3 6 9
We will also be concerned with vectors, which we will regard as ma-
trices with a single row or, more often, a single column. The *.” operation
doubles as the dot product for vectors, so

r:transpose (matrix([1,2,-3]))




102 7. LINEAR ALGEBRA

produces

and

s:transpose (matrix ([4,5,6]))

produces
4
5
6

Now

r.s

is undefined as a matrix-product, but gives the dot-product of r and s as
vectors, namely —4. Technically, the valid matrix product is

transpose(r).s

which also produces the dot-product, —4.
We can write a simple function for the norm of a vector

norm(v):=sqrt(v.v);

or, the technically more correct

norm(v):=sqrt(transpose(v).v);

Matrix-assignment, like

x:b

merely causes x to become an alias for b. Changes to x like

x[2,1]: =100

will be immediately reflected in b:

1 2 -3
—100 5 6
7 8 10

If we want an independent copy of a matrix, we must use the copymatrix-
command

x:copymatrix(b)

We can easily compute integral powers of matrices too:!

ann2

IThe use of a single carat, /, is also well defined but it raises the entries in the matrix to
powers, which is not correct.




7.1. INTRODUCTION 103

produces
30 36 42
66 81 96
102 126 150
bAN-1
produces the inverse
2 4 9
15 5 5
=
BT |
5 5 5

DEFINITION 7.1.2. To analyze more complex linear systems, we sim-
plify the matrix of coefficients by performing elementary row-operations:

Type 1: subtracting a multiple of one row from another. Maxima com-
mand: rowop(M, i, j, theta) replaces row i in the matrix M by row
i - theta*row j.

Type 2: involves swapping two rows of a matrix. Maxima command:
rowswap(M,i,j) which swaps rows i and j of the matrix M.

Type 3: involves multiplying a row of a matrix by a nonzero constant.
There is no Maxima command to do this.

If the matrix consists of coefficients of a linear system, these operations
produce a system that is mathematically equivalent to the original. Our
goal is to make the matrix triangular:

DEFINITION 7.1.3. Ann x n matrix, A, is called upper-triangular ifA; j =
0 whenever i > j. The matrix, A, is lower triangular if AZ-,]- = (0 whenever
j> i

REMARK. The term “upper-triangular” comes from the fact that A
looks like

The process of converting a matrix to upper triangular form is called

Gaussian Elimination.

Al A At A ]
0 Ay Az n-1 Ao
0 0 : :
: : Ap-in-1 An-n
L 0 0 0 Ann




104 7. LINEAR ALGEBRA

Carl Friedrich Gauss (1777 — 1855) was a German mathematician and physi-
cist who made significant contributions to many fields in mathematics and
science. Sometimes referred to as the Princeps mathematicorum (Latin for
“the foremost of mathematicians”) and “the greatest mathematician since
antiquity”, Gauss had an exceptional influence in many fields of mathe-
matics and science, and is ranked among history’s most influential mathe-
maticians.

In surveying land around Hannover, he invented many modern surveying
instruments and the field of differential geometry. This paved the way for
Riemannian geometry and Einstein’s theory of General Relativity. He also
discovered least-squares approximations (see section 7.3.1 on page 112) for
estimating orbits of planets and asteroids given many slightly differing ob-
servations. Least squares was used to predict the future location of the
newly discovered asteroid, Ceres.

Ironically, Gauss didn’t discover Gaussian Elimination, which was first
mentioned (in Europe) by Isaac Newton. He did discover the fast Fourier
transform 160 years before its official discoverers, Cooley and Tukey. This is
a time-honored tradition in mathematics called Stigler’s law of eponymy® of
naming results after people who didn’t discover them.

True to itself, it was first proposed by the sociologist, Robert Merton, not Stigler ©!

Maxima has a triangularize-command to do this

triangularize (a)

produces
1 2 3
0 -3 -6
0 0 O

The related echelon-command produces a normalized form of this matrix
with the first nonzero entry of each row set to 1. The 1 that begins each
nonzero row is called its pivot. So

echelon(a)

produces
1 2 3
01 2
0 00

where we have highlighted the pivots.

To solve a linear system, we really want a reduced echelon matrix where
we perform additional row-operations to make the pivot in each row the
only nonzero element in its column — see figure 7.1.1 on the next page.

So

reduced_echelon (a)

subtracts 2x row 2 from row 1 to produce
1 0 -1
01 2
00 O




7.1. INTRODUCTION 105

/* We must write a function to compute
reduced echelon form =/
reduced_echelon(a):=block ([rows, cols ,k,temp],
[rows, cols ]: matrix_size (a),
temp:echelon(a), /* this copies a */
k:min(rows, cols),
for i thru min(rows, cols)
/* Find pivot =/
do (if temp[i,i]=0 then (k:i-1,return())),
/* Clear out column i =/
for i:k thru 2 step -1 do
(for j from i-1 thru 1 step -1
do temp:rowop (temp,j,i,temp[j,i])),
temp) /* return the result =/

FIGURE 7.1.1. Code for a reduced echelon matrix

DEFINITION 7.14. If s = {vq,...,v,} are elements of R”, their span,
Span(s) is the set of all possible linear combinations

n
z:thvi
i=1

for a; € R. It forms a subspace of R".

Recall that the column space of a matrix, A, is the vector space of all
vectors of the form Av for all vectors v. We have a columnspace-command

columnspace(a)

to compute this
11 (2
span | (4|, |5
7] |8

Recall that the null space, Null(A), of a matrix, A, is the set of vectors, v,
such that Av = 0. This is the nullspace-command:

nullspace(a)

(<))

Recall that determinants are defined by

DEFINITION 7.1.5. If M is an n X n matrix, its determinant, det(M) is
defined by

(7.1.2) det(M) = ) ©(0)My4(1) - - - My o(n)

ocEeS,




106 7. LINEAR ALGEBRA

where the sum is taken over all n! permutations in S,. Here p(c) is the
parity of a permutation, defined in terms of the number of inversions it pro-
duces. An inversion exists for a permutation, o, if there is a pair of elements
x, y such that x < y and o(x) > o (y).

+1 if the total number of inversions is even
p(o) = .
—1 otherwise

REMARK. Equation 7.1.2 on the preceding page is due to Euler. It is
not particularly suited to computation of the determinant since it is a sum
of n! terms.

DEFINITION 7.1.6. If B = [T}, [a;,b;] is a box in R", its volume, vol(B)
is defined by

n

vol(B) = [ (b; — a;)

i=1
This is used to define the Lebesgue measure:

DEFINITION 7.1.7. If R C IR" is a region, its outer Lebesgue measure is
defined by

AR) =

inf { Z vol(B): € is a countable set of boxes whose union covers R}
BecC

Recall the geometric interpretation of the determinant:

THEOREM 7.1.8. If Aisan n x n matrix, R C R", then
A(A(R)) = |det A| - A(R)

REMARK. So the determinant gives the effect of a linear transformation
on volumes. Analytic geometry and manifold theory considers volumes to
have signs, in which case we do not take the absolute value of the determi-
nant.

See [40] for a proof.

Maxima has a determinant-command that computes these efficiently

determinant(a)

determinant(b)

15
More recently, Fateman has implemented a newdet-command that is
faster than determinant but uses more memory — see [17]. If
2x—1 37 -9
z=|3x2+x 2x 3x
51 2x 7

then




7.2. CHANGES OF BASIS 107

newdet(z)

produces
—66x° — 761x2 + 6306x

EXERCISES.

1. What is the volume of the parallelepiped spanned by the three vec-
tors

1 2 1
01 = 5 , U= 1 U3 = 0
6 3 -1

2. What might the sign of the volume mean (when a determinant has
a negative sign)?

7.2. Changes of basis

Recall that a basis of a vector-space is like a “coordinate system” for it:
every vector can be uniquely written as a linear combination of the basis-
elements.

Suppose we have a vector-space with basis {¢;}, i = 1,...,n and we
are given a new basis {b;}. If

X1
Xn
is a vector in this new basis, then
X1
Xiby+ - xpby=[ b1 -+ by |-
Xn
is the same vector in the old basis, where P = [ by --- b, |isann xn

matrix whose columns are the basis-vectors. Since the basis-vectors are
linearly independent, P is invertible. Since P converts from the new basis
to the old one, P! performs the reverse transformation.

For instance, suppose R3 has the standard basis and we have a new

basis
28 8 3

bi=1| =25 |, bp=| =7 | ,bz=| —4
7 2 1




108 7. LINEAR ALGEBRA

We form a matrix from these columns:

28 8 3
P=| -25 -7 -4
7 2 1
whose determinant is verified to be 1. The vector
1
-1
1
in the new basis is
1 23
by —by+b3=P| —1 = —36
1 10
If we want to convert the vector
1
2
3
in the standard basis into the new basis, we get
1 1 -2 -11 1 -36
pll2|=|-3 7 37 2 | =| 122
3 -1 0 4 3 11
and a simple calculation shows that
1
—36by +122by + 1103 = | 2
3

For matrices, changes of basis are a bit more complicated. Suppose V is
an n-dimensional vector-space and an #n X n matrix, A, represents a linear
transformation

fiVv—=Vv
with respect to some basis. If {b;,...,b,} is a new basis for V, let
P=1by,..., by

be the matrix whose columns are the b;. We can compute the matrix repre-
sentation of f in this new basis, A, via

A
Vold — Voud

7| [

Vnew T) Vnew

In other words, to compute a matrix representation for f in the new basis:

(1) convert to the old basis (multiplication by P)
(2) act via the matrix A, which represents f in the old basis
(3) convert the result to the new basis (multiplication by P~1).

We summarize this with



7.3. DOT-PRODUCTS AND PROJECTIONS 109

THEOREM 7.2.1. If Ais an n X n matrix representing a linear transformation

V-V
with respect to some basis {e1, ..., e, } and we have a new basis {by, ..., b, } with
P=[by -+ by]
then, in the new basis, the transformation f is represented by
A=P1AP

EXERCISES.

1. Solve the system of linear equations

2x+3y+z=38
4x +7y +5z2 =20
—2y+2z=0

2. Solve the system
2x+3y+4z=20

x—y—z=0
y+2z=0
3. If V is a 3-dimensional vector-space with a standard basis and
8 -1 2
bh=|4|,bb=| 0 [,b3=1|1
3 -1 1
is a new basis, convert the matrix
1 0 -1
A=1] 2 1 3
-1 2 1

to the new basis.

7.3. Dot-products and projections
Dot-products have a great deal of geometric significance. We start with:

DEFINITION 7.3.1. If v € R”, define ||v|| = /v e v — the norm of v. A
unit vector u € R" is one for which |ju| = 1.

THEOREM 7.3.2. Letx,y € R" be two vectors with an angle 8 between them.
Then

(7.3.1) cos(0) = X0y

[ - Nyl



110 7. LINEAR ALGEBRA

v
Vi
-\ 0
u Proj,v
FIGURE 7.3.1. Projection of a vector onto another
PROOF. See theorem 6.2.66 in [40]. O

One immediate consequence is:

REMARK 7.3.3. Vectors u and v are perpendicular if and only if
uev=_0
DEFINITION 7.3.4. Let u € IR” be a unit vector and v € IR” be some
other vector. Define the projection of v onto u via
Proj,v = (uev)u
Also define
v, =v—Proj,v
REMARK. Note that Proj, v is parallel to u with a length of ||v|| - cos®,
where 6 is the angle between u and v. Also note that
uev, =ue(v—(uev)u)
=uev—(uevjueu
=uev—uev=_0
so v is perpendicular to u as per remark 7.3.3.

Since v = Proj,v + v, we have represented v as a sum of a vector
parallel to u and one perpendicular to it. See figure 7.3.1.

We can generalize projection to multiple dimensions:

DEFINITION 7.3.5. Let uy,...,u; € R" be a set of vectors. This set is
defined to be orthonormal if

1 ifi=j
7.3.2 ; =
( ) it {O otherwise

As with a single vector, we can define projections in this case.

DEFINITION 7.3.6. If V is an inner-product space, v € V, and S =
{uy, ..., ux} is an orthonormal set of vectors with W = Span(S), then de-
fine

k

Proj,v=Y) (ujev)u;
i=1

If v.Z W, what is the relation between v and Proj,, v?



7.3. DOT-PRODUCTS AND PROJECTIONS 111

PROPOSITION 7.3.7. If S = {uy,...,ux} is an orthonormal set of vectors
that span W C R", and v is any other vector, then

v =V —Projyv

has the property that v, eu; = 0 forall j = 1,...,k, making it perpendicular to
all of W. It follows that Proj,y v is the vector in W closest to v in the sense that

[V —wl > [|v = Proj,v]|
for any w € W with w # Projy,v.
PROOF. See proposition 6.2.88 in [40]. O

Maxima has a library called eigen that adds additional functions to the
system. For instance:

load ("eigen");
x:matrix ([1,2,3]);
unitvector(x);

results in
I <
V1a 14 V14
so it returns
X
x|

EXERCISES.

1. Compute the angle between the vectors

1 1
2 and -2
3 0
2. Consider the unit vector
1/V/3
u= | 1/v3
1/V3
If
1
v=| 2
3

compute Proj, v and v . Write Maxima functions to do this.

3. Given vectors

1 1 2
2 0 -1
V1 = 3 | V2 = 1 , V3 = )
4 1 -1




112 7. LINEAR ALGEBRA

in R*, find an orthonormal set {uy, up, u3} with
Span{uy, up, uz} = Span{vy, vy, v3}

Hint: u; = vy /||v1]|. Now project voonto uy, compute (v3) |, and make
that into a unit vector, etc. This process is called the Gram-Schmidt Algo-
rithm. The eigen library has a gramschmidt-command that almost carries
this out.

7.3.1. Linear least squares. Suppose we are given a collection of data
{(x1,¥1),..., (xn,yn)} and would like to find a function f(x) such that
f(x;) = y;. Or, failing this, we would like to find a function that fits this
data “as closely as possible”. What do we mean by this?

Least squares tries to find a function that minimizes

(f(x;) — ;)

M-

i=1

as in figure 7.3.2 on the next page.
We will begin with the simplest case: f(x) = c1x + co. We get a vector

c1x1+¢co— 1 x1 1 Y1
c1X2 +Co — Y2 xp 1 Y2
D= : = Do { ‘1 } - :
: : : co
1xp1+co— Y1 X1 1 Y1
C1Xt +Co — Yt Xt 1 Yt
or
D=XC-Y
where
X1 1
X2 1
oo T[]
: co
Xt 1 1
Xt 1
and
i
Y2
Y = :
Y1
Yt

We want to minimize || D||> = D'D. We get
(XC-Y) (XC—Y) = (C'X' = Y))(XC - Y)
=C'x!'xc - c'x'y - Y'XC + Y'Y



7.3. DOT-PRODUCTS AND PROJECTIONS 113

10

FIGURE 7.3.2. Least squares fit

Now we differentiate by the ¢; (i.e.form the gradient) and set it to zero, to
get
2X'XC —2X'Y =0
since C!X'Y = Y'XC (why??).
Our least-squares problem becomes
(7.3.3) X'xc = xty

This simple (i.e., degree-1) case is often used in the business world, where
it’s called linear regression. It shows whether random-appearing data is (on
the average) trending upward or downward.

Incidentally, equation 7.3.3 will be used in much more complex exam-
ples of least-squares fits; only the definition of X will change.

EXAMPLE 7.3.8. Suppose
1.827619199225791

0.3903692355955774
Y = [0.9647810497032392
0.7108801143185723
0.5044777533707618
and x; =i
1 1
21
X=131
4 1
5 1
then equation 7.3.3 is
55 15| | c1 | _ |10.86861004365476
15 5 co | |4.398127352213942

2They’re both scalars!



114 7. LINEAR ALGEBRA

Data e

18 Trend line
16
1.4
12

1 L]
0.8

.
0.6
0.4 .
1 15 2 25 3 35 4 45 5
X

FIGURE 7.3.3. Linear regression

from which we get

c1 | _ |—0.2325772012987064
co | | 1.577357074338908

or

y ~ x - (—0.2325772012987064) + 1.577357074338908

so the data is trending downwards. We can plot it with

plot2d ([[ discrete ,[[1,y[1,1]],[2,y[2,1]],[3,y[3,11],
[4,y04,111,[5,y[5,11 1 11,
x*(—-0.2325772012987064)+1.577357074338908],

[x,1,5],[style,[points ,4,7,1],[lines ,2,1]],
[legend, "Data","Trend_line"]);

to get figure 7.3.3.

Incidentally, the [style,[points ,4,7,1],[ lines ,2,1]] trailing the
rest of the plot-specifications gives the respective styles of the two
function-plots. These always follow the other options. The specification
[points ,4,7,1] specifies that the first plot is disconnected points (the default
is to connect the points with lines). The specification takes the form
[points,diameter,type_of_point,color]. See table F1.1 on page 255 in
appendix F on page 251 for the codes.

Now we’ll look at a more complex example: finding a fourth-degree
polynomial that is a “formula” for the first 10 prime numbers.




7.3. DOT-PRODUCTS AND PROJECTIONS 115

EXAMPLE 7.3.9. In this case

and, since we're approximating these by f(x) = c4x* + c3x3 + cox? + c1x +
cowithx; =ifori=1,...,10, we get X;; = i°~J and use the command

X:genmatrix (lambda([i,j],i~(5-j)),10,5)

to get
1 1 1 1 1]
16 8 4 2 1
81 279 3 1
256 64 16 4 1
X — 625 125 25 5 1
1296 216 36 6 1
2401 343 49 7 1
4096 512 64 8 1
6561 729 81 9 1
10000 1000 100 10 1]
so X' X is
167731333 18080425 1978405 220825 25333
18080425 1978405 220825 25333 3025
1978405 220825 25333 3025 385
220825 25333 3025 385 55
25333 3025 385 55 10
and X'Y is
585514
66118
7726
952
129
and C is given by
41
e 4
572

(Xx)"Y(xty)=C= %2

2]543



116 7. LINEAR ALGEBRA

30

Primes <
Least squares

FIGURE 7.3 .4. “Formula” for prime numbers

so that our “formula” for the prime numbers is

41 -x* 147 %3 6869 -x2 542 x N 25

3432 572 3432 143 6

and figure 7.3.4 shows a comparison plot.
In the most general form of linear least squares, we approximate data
via a formula

f(x) = icigi<x>

where the g; are some functions (not necessarily powers of x), and X;; =
g;j(x;). In our examples above, the g;(x) were xl.

EXERCISES.

4. Find a fifth degree polynomial that least-squares approximates the
first 20 prime numbers, which are

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67, 71

7.4. Eigenvalues and the characteristic polynomial

Suppose V is a vector space and A:V — V is a linear transformation.
Recall how eigenvalues and eigenvectors are defined in terms of each other

(7.4.1) Av = Av

where we require v # 0 and A to be a scalar. A nonzero vector, v, satisfying
this equation is called an eigenvector of A and the value of A that makes this
work is called the corresponding eigenvalue.



7.4. EIGENVALUES AND THE CHARACTERISTIC POLYNOMIAL 117

Eigenvectors and eigenvalues are defined in terms of each other, but
eigenvalues are computed first.
We rewrite equation 7.4.1 on the facing page as

Av = Alv
where [ is the suitable identity matrix and get
(A= Ao =0
This must have solutions for nonzero vectors, v. This can only happen if
det(A—AI)=0
DEFINITION 7.4.1. If Ais an n x n matrix
det(AT—A) = xa(A)

is a degree-n polynomial called the characteristic polynomial of A. Its roots
are the eigenvalues of A. Maxima has a charpoly-command

EXAMPLE 7.4.2. If type

b:matrix ([1,2,3,4],[5,6,7,81,[7,8,9,10],[11,12,13,14]);

to get
1 2 3 4
5 6 7 8
7 8 9 10
11 12 13 14

Its characteristic polynomial is computed by the charpoly-command

charpoly (b, x)

The first parameter is the matrix, and the second is the variable to appear
in the polynomial. This generally gives a messy output expression that can
be simplified by the expand-command to get

xp(x) = x* —30x° — 64x°

with roots (eigenvalues of b) that can be computed directly (i.e., without first
issuing the charpoly-command) by the eigenvalues-command which has
a shorter abbreviation, eivals

eigenvalues(b)

to get
[[—2,32,0],[1,1,2]]
These two lists give, respectively, the eigenvalues themselves, and their

corresponding multiplicities. So our eigenvalues are 0, —2,32 with multi-
plicities 2,1, 1, respectively.




118 7. LINEAR ALGEBRA

The eigenvectors are computed by the eigenvectors-command which
finds the eigenvalues and then the corresponding eigenvec’cors3

[[[=2,32,0], [1,1,2]],

[Hll?)l_lll_iﬂ ’ Hl 23133H ,[[1,0,-3,2],[0,1,-2,1]]

This output consists of a list of

(1) Eigenvalues and multiplicities (identical to the output of the
eigenvalues-command),
(2) For each eigenvalue, a list of the corresponding eigenvectors
(there might be more than one). In this example, the eigenvalue
0 has fwo linearly independent eigenvectors. These vectors are
listed as row-vectors rather than the column-vectors used in
section 7.2 on page 107.
We will try to do what was done in section 7.2 on page 107 using the matrix
b. We cut and paste the eigenvectors computed earlier into a matrix
First, we type

pt:matrix([1,3/11,-1/11,-9/11],[1,7/3,3,13/3],
[1,0,-3,2],[0,1,-2,1]);

to get
S
1
L3 3 3
1 0 -3 2

0o 1 -2 1
Since this has row vectors rather than the column vectors we want, we use
the transpose-command

p:transpose(pt)

to get
11 1 0
3 7
p=| 5 5
Vs,
-7 3 2 1
Now we are ready to play!
d:(p"-1).b.p
gives
-2 0 00
g— 0 32 00
{0 0 00
0 0 00

so the matrix b simply multiplies the