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Foreword

“The number system is like human life. First you have
the natural numbers. The ones that are whole and
positive. Like the numbers of a small child. But human
consciousness expands. The child discovers longing.
Do you know the mathematical expression for longing?
The negative numbers. The formalization of the feeling
that you’re missing something. Then the child discovers
the in-between spaces, between stones, between people,
between numbers and that produces fractions, but it’s like
a kind of madness, because it does not even stop there, it
never stops. . . Mathematics is a vast open landscape. You
head towards the horizon and it’s always receding. . . ”
— Smilla Qaavigaaq Jaspersen, in the novel Smilla’s Sense of
Snow, by Peter Høeg (see [32]).

This book arose out of one of the more enjoyable undergraduate
courses I taught at Drexel University: Mathematical Software. I taught
it for many years without using a textbook (and probably never taught
the same exact course twice!). I toyed with writing a text for it but
never found the time.

The courses I taught are varying subsets of the material in this
manuscript.

At Drexel, we used commercial software that had a very slick user-
interface (and that gives incorrect results in an important case!). In this
book, I use the free and open-source Maxima system with its wxMax-
ima interface.

� Sections marked in this manner are more advanced or specialized and
may be skipped on a first reading.

� �

Sections marked in this manner are even more advanced or special-
ized and may be skipped on a first reading (or skipped entirely).

I am grateful to the many editors of Wikipedia. The biographical
sketches in this book owe a great deal to their vital work.

I am also grateful to Matthias Ettrich and the many other devel-
opers of the software, LYX — a free front end to LATEX that has the ease
of use of a word processor, with spell-checking, an excellent equation
editor, and a thesaurus. I have used this software for years and the

vii



current version is more polished and bug-free than most commercial
software.

For the fourth edition, I have added chapters on wavelets and
graph theory.
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CHAPTER 1

Introduction

“In the broad light of day, mathematicians check their equa-
tions and their proofs, leaving no stone unturned in their
search for rigour. But at night, under the full moon, they
dream, they float among the stars and wonder at the mira-
cle of the heavens. They are inspired.

Without dreams there is no art, no mathematics, no
life.”
— Sir Michael Atiyah, Notices of the AMS, January 2010,
page 8.

1.1. Installation and first steps

Mathematical software development has made great strides in re-
cent decades, and one of the most powerful systems is free and open-
source. It is a modernized form of the Macsyma system developed
from 1968 to 1982 at MIT’s Project MAC. The original system remained
available to academics and US government agencies, and was dis-
tributed by the US Department of Energy (DOE). That version, DOE
Macsyma, was maintained by Bill Schelter, a professor of mathematics
at the University of Texas at Austin.

Under the name of Maxima, it was released under the GPL in 1999,
and remains under active maintenance.

Versions of it exist for Linux, Windows, and the MacOS, and
FreeBSD (see the web site https://maxima.sourceforge.io/.
For other systems, you can download the source code and try to
compile it.

The original Maxima had a command-line interface. Professor
Schelter developed a rudimentary GUI interface. This was further im-
proved by the wxMaxima project and now includes menus for many
of the maxima commands and the ability to save one’s work in a kind
of notebook.

Your first assignment is to download wxMaxima and install this
on the system of your choice (Maxima is bundled with most distribu-
tions of wxMaxima).

(1) In windows, you can download a version of it from
http://wxmaxima-developers.github.io/wxmaxima/.
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2 1. INTRODUCTION

(2) In Linux and the three BSD’s1, pre-packaged versions of wx-
Maxima are available that you can install if you have root
access. After it is installed, you can run it from your applica-
tions menu or in any directory by typing

wxmaxima
(3) If you don’t have root access or your distribution doesn’t sup-

port it, you can download the “Applimage” version of wx-
Maxima from the web site listed above and install it in your
user account by following the instructions. This image con-
tains Maxima and all other dependencies.

After starting up wxMaxima, you will notice a number of menus:

File: this is self-explanatory. It allows you to save notebooks and open
ones you have saved.

Edit: also self-explanatory. The copy menu-items are significant.
Copy-as-text copies a formula in a format that can be input
to Maxima. Copy-as-LaTex copies it in a format suitable for
inclusion in a TeX typesetting document. Copy-as-mathml
copies it in a format suitable for web pages. Copy-as-image
is suitable for pasting into a word document or web pages
that can’t be viewed by a mathml-aware web browser.

View: this controls which palettes and menus you see. Play with it to
see what it does!

Cell: this is important! Maxima statements are called cells, and this
executes them (as well as manipulating them in other ways).

Maxima: this interacts with the Maxima program in various ways.
Equations: this contains Maxima commands to solve equations or dif-

ferential equations.
Matrix: a menu containing commands for creating and manipulating

matrices.
Calculus: a menu containing commands to differentiate and integrate

functions, among other things.
Simplify: an important menu containing commands to simplify or

expand expressions and manipulate complex numbers.
List: commands to manipulate lists.
Plot: commands to create plots.
Numeric: contains commands related to numeric computations.
Help: self-explanatory.
%: this is not a menu item, but is very important nevertheless. This

symbol represents the value of the last computation Maxima
performed. Most menu commands act on this by default (al-
though you can override this easily).

1FreeBSD, NetBSD, and OpenBSD.
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Operator
^ Exponentiation

/,*,. Division, multiplication, matrix-multiplication
+, - Addition, subtraction

: Assignment
=,#,<,>,<=,>= Equal, not equal, greater than, less than, greater or equal

not boolean not
and boolean and
or boolean or

TABLE 1.1.1. Hierarchy of operations

Go to the menu marked ‘New’ in the upper right portion of the screen
and select a new Maxima session (there are several other options avail-
able). Type 1+1 and click Cell▷Evaluate Cell(s) to get ‘2’. Amazing!
This software can add 1 and 1. We can also operate with numbers us-
ing ‘*’ for multiplication, ‘/’ for division, and ‘^’ for raising to a power.

See table 1.1.1, so the expression 1/2*a^2−3=0 has implied paren-
theses ((1/2)*( a^2))−3=0. Operations at the same priority are evalu-
ated from left to right, so 3/4/5=3/(4*5)=3/20.

At this point, it is a good idea to save your notebook and give it a
name other than ‘Untitled’. Go to the ‘File’ menu and select ‘Save As’.

Maxima can factor numbers: type factor(121) and click
Cell▷Evaluate Cell(s) to get 112. For something more challenging,

try factor(123456789) to get 32 3607 3803.
Maxima saves fractions in their lowest form. If you type 128/256,

Maxima will come back with 1/2.
Maxima had the basic abs-function built in that computes abso-

lute value:

abs(2) = 2

abs(−2) = 2

In general, Maxima has examples of its commands built into it. The
general format of the example-command is

example (command)

For instance, try typing and click example(factor) and click
Cell▷Evaluate Cell(s) .

This may be used in other commands to refer to that output. For
instance, suppose you type 2^100 and click Cell▷Evaluate Cell(s) to
get

1267650600228229401496703205376



4 1. INTRODUCTION

Now you can type factor(%) and click Cell▷Evaluate Cell(s) to get
2100.

To get an idea of the raw computing power of Maxima, consider
the factorial function. Recall that factorials are defined by

n! = n × (n − 1)× (n − 2)× · · · × 1

The Maxima command for computing this is n! or factorial (n).
Try typing 100! or 1000! and clicking on Cell▷Evaluate Cell(s) .

Factorials like n! represent the number of ways of arranging n dis-
tinct objects: Given n slots, the first object can go into any one of them.
After it has been placed, there are n − 1 slots left for the second object,
and n − 2 for the third, and so on.

Maxima also has a binomial-command given by

binomial(n, m) =
n!

m!(n − m)!

It also has a mathematical significance: it represents the number of
ways of selecting a set of m objects from a set of n distinct objects. The
numerator is all possible arrangements of the original n objects. Since
we don’t care what order the m objects we’ve selected are in (because
this is a set of m objects), we divide out by the ways of arranging these
m objects. Since we really don’t care what order the n − m objects we
didn’t select are in, we also divide out by (n-m)!.

The float-command gives the numeric value of a quantity in scien-
tific notation.

The word float is part of computing history. Early computers could
only work with integers. When computers were built that could han-
dle numbers in scientific notation, the numbers were called floating-
point because the decimal point could “float” into any position. In
Maxima, float numbers use the computer’s intrinsic ability to do
floating-point arithmetic. Maxima also has a bfloat-command with
floating point arithmetic implemented in software. These numbers
could potentially have thousands of significant digits. A bfloat-
number followed by bnn means the number is to be multiplied by
10nn.

If you type 123456789/987654321 and click
Cell▷Evaluate Cell(s) , you get the fraction in its lowest terms:

13717421/109739369. If you type bfloat(123456789/987654321) and
click Cell▷Evaluate Cell(s) , you get 0.124999998860938.

The Numeric menu has a Bigfloat-precision option that specifies
the number of digits to use. If you set this to 100, typing bfloat(%pi)
and selecting Cell▷Evaluate Cell(s) gives

3.14159265358979323846264338327950288419716939937510
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u = eiθ

θ

FIGURE 1.1.1. The complex plane

5820974944592307816406286208998628034825342117068

Maxima has predefined mathematical constants such as e and π:
typing bfloat(%e) and selecting Cell▷Evaluate Cell(s) produces
2.71828182845905: see Appendix B on page 291 for a list of them —
including inf for infinity2.

Identifiers in maxima are strings of: lower- and upper-case letters, dig-
its, and ’_’. They must not begin with a digit. Examples: ‘set1’, ’to-
tal_series’, ’accum’. They are case-sensitive and must not equal any
Maxima keyword:

integrate next from diff
in at limit sum
for and elseif then
else do or if

unless product while thru
step block return derivative

In Maxima, %i represents
√
−1 and we can compute with

complex numbers. Recall that complex numbers can be either
in a rectangular form like a + bi or a polar form like reiθ—
see figure 1.1.1. Maxima has commands to convert numbers
between these forms: the rectform-command or menu-item
Simplify▷Complex Simplification▷Convert to Rectform or the

2Try typing bfloat ( inf ) and Cell▷Evaluate Cell(s) !
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polarform-command or menu-item
Simplify▷Complex Simplification▷Convert to Polarform . Typing

(2+3*%i)/(4+5*%i) and clicking Cell▷Evaluate Cell(s) causes Max-
ima to come back with 3%i+2

5%i+4 . Typing the rectform-command or menu-

item Simplify▷Complex Simplification▷Convert to Rectform

gives 2%i
41 + 23

41 . Typing the polarform-command or menu-item
Simplify▷Complex Simplification▷Convert to Polarform gives

√
13%e%i arctan( 2

23 )
√

41

The argument of the polar form (in this case arctan
( 2

23
)
) is returned

by the carg-command.
Typing %e^(%pi*%i) and clicking Cell▷Evaluate Cell(s) results

in −1, reproducing Euler’s famous formula

eπi = −1

and typing %e^(x*%i) and the rectform-command or menu-item
Simplify▷Complex Simplification▷Convert to Rectform gives De

Moivre’s famous formula

(1.1.1) %i sin (x) + cos (x)

As you might expect, Maxima has basic functions like realpart and
imagpart that extracts these aspects of complex numbers

realpart(a + b ∗ %i) = a

imagpart(a + b ∗ %i) = b

Unfortunately, the abs-function doesn’t quite know how to handle
complex numbers:

abs(a + b ∗ %i) = |a + b ∗ %i|

For this purpose, we need the closely-related cabs-function (“com-
plex” absolute value)

cabs(a + b ∗ %i) =
√

b2 + a2



1.1. INSTALLATION AND FIRST STEPS 7

Leonhard Euler (1707 – 1783) was, perhaps, the greatest mathemati-
cian of all time. Although he was born in Switzerland, he spent most
of his life in St. Petersburg, Russia and Berlin, Germany. He originated
the notation f (x) for a function and made contributions to mechanics,
fluid dynamics, optics, astronomy, and music theory. His final work,
“Treatise on the Construction and Steering of Ships,” is a classic whose
ideas on shipbuilding are still used to this day.

To do justice to Euler’s life would require a book considerably
longer than the current one — see the article [24]. His collected
works fill more than 70 volumes and, after his death, he left enough
manuscripts behind to provide publications to the Journal of the Im-
perial Academy of Sciences (of Russia) for 47 years.

Typing %e^(%pi*%i/3) and clicking Cell▷Evaluate Cell(s) gives

a cube root of −1, i.e.,
√

3 i
2 + 1

2 . We can verify this claim by typ-
ing (1/2*%i*sqrt(3) + 1/2)^3. Unfortunately, Maxima just comes back

with
(√

3 i
2 + 1

2

)3
.

What are we to do? Maxima has a command expand() that
causes it to eliminate parentheses as much as possible and multiply
factors out. Typing expand((1/2*%i*sqrt(3) + 1/2)^3) or clicking
Simplify▷Expand Expression results in −1.

EXERCISES.

1. From a standard 52-card deck of playing cards, how many 5-
card Poker hands are possible?

2. Write in the form a + bi
2

3 + i
3. Write in the form a + bi

3i +
1

1 − i
4. Find equations for sin nθ and cos nθ in terms of sin θ and cos θ.

Hint: use de Moivre’s Formula ( 1.1.1 on the facing page) and the bi-
nomial theorem.





CHAPTER 2

Number theory

“Mathematics is the queen of sciences and number theory is
the queen of mathematics. She often condescends to render
service to astronomy and other natural sciences, but in all
relations she is entitled to the first rank.”
— Carl Friedrich Gauss, see [68].

2.1. Introduction

People not interested in number theory can skip this chapter; none
of the others depend on it.

Number theory is the study of integers. On the surface this makes
it seem almost laughably simple, but some of the most difficult and
complex problems in all of mathematics belong to number theory. For
instance, Fermat’s Last Theorem (stated in 1637):

The equation

an + bb = cn

has no solutions in integers with a, b, c > 0 and n > 2.

was only proved in 1995 by Andrew Wiles.

Pierre de Fermat (1607– 1665) was a French mathematician who is
given credit for early developments that led to infinitesimal calculus,
including his technique of adequalitya. He is recognized for his dis-
covery of an original method of finding the greatest and the smallest
ordinates of curved lines, which is analogous to that of differential cal-
culus, and his research into number theory. He made notable contri-
butions to analytic geometry, probability, and optics. He is best known
for his Fermat’s principle for light propagation and his Fermat’s Last
Theorem in number theory, which he described in a note at the margin
of a copy of Diophantus’s Arithmetica.

aFor finding maxima and minima of functions.

The famous Riemann Hypothesis (discussed in chapter 15 on
page 269) is still unsolved.

9
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Applied mathematicians regarded number theory as a subject
only of theoretical interest1. This state of affairs changed in the 1960’s
when powerful new systems of cryptography were discovered that
use number theory. Today, the National Security Agency (responsible
for secure communications) employs more number theorists than any
university.

We will begin by reviewing some very basic material.
Most people learned the following result in grade school — long

division with a quotient and remainder:

PROPOSITION 2.1.1. Let n and d be real numbers. Then it is possible
to write

n = q · d + r
where q is an integer and 0 ≤ r < d. If r = 0, we say that d

∣∣ n — stated “d
divides n”. The negation of this is d ∤ n (d doesn’t divide n).

Maxima can compute this with the mod-command: type
mod(987654321,123456789); and Cell▷Evaluate Cell(s) to get the
remainder of dividing 987654321 by 123456789, namely 9.

Although this definition usually requires n and d to be integers,
the Maxima command works for real numbers as well: mod(1.5,1); pro-
duces .5. Essentially,

(2.1.1) mod(a, b) = a −
⌊ a

b

⌋
· b

The division algorithm gives rise to the concept of greatest common
divisor.

DEFINITION 2.1.2. Let n and m be positive integers. The greatest
common divisor of n and m, denoted gcd(n, m), is the largest integer d
such that d

∣∣ n and d
∣∣m. The least common multiple of n and m, denoted

lcm(n, m), is the smallest positive integer k such that n
∣∣ k and m

∣∣ k.
Since 0 is divisible by any integer, gcd(n, 0) = gcd(0, n) = n.

There is a very fast algorithm for computing the greatest common
divisor due to Euclid — see [17, 18].

REMARK. Euclid’s original formulation was geometric, involving
line-segments. Given two line-segments of lengths r1 and r2, it found
a real number r such that

r1

r
,

r2

r
∈ Z

An ancient proof of the irrationality of
√

2 showed that this pro-
cess never terminates if one of the line-segments is of unit length and
the other is the diagonal of a unit square.

1As a grad student at the Courant Institute, the author mentioned number theory
and another student sneered “Does such a thing even exist?”
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As trivial as proposition 2.1.1 on the facing page appears to be, it
allows us to prove Bézout’s Identity:

LEMMA 2.1.3. Let n and m be positive integers. Then there exist inte-
gers u and v such that

(2.1.2) gcd(n, m) = u · n + v · m

REMARK. Bézout proved this identity for polynomials — see [4].
However, this statement for integers can be found in the earlier work
of Claude Gaspard Bachet de Méziriac (1581–1638) — see [33].

After loading via load("gcdex"), the Maxima function igcdex(n,
k) computes the greatest common divisor and the values of u, v that
appear in equation 2.1.2.

For example

load ( " gcdex " ) ;
igcdex (12345 ,98765432)

returns
[−39546175, 4943, 1]

where gcd(12345, 98765432) = 1 and

−39546175 · 12345 + 4943 · 98765432 = 1

Étienne Bézout (1730–1783) was a French algebraist and geometer
credited with the invention of the determinant (in [6]).

DEFINITION 2.1.4. A prime number is an integer that is not divisible
by any integer other than 1 or (±)itself.

The Maxima commands regarding primes are:
� primep(n) returns true when n is a prime and false other-

wise. The parameter primep_number_of_tests determines
how many types of tests for primality will be performed. The
default is 25.

� primes(n, m) — returns a list of all primes, p, such that n ≤
p ≤ m. For instance

primes ( 2 , 2 0 )

returns
[2, 3, 5, 7, 11, 13, 17, 19]

� prev_prime (n) — returns the largest prime < n.
� next_prime (n) — returns the smallest prime > n.

It is well-known that integers can be factored into powers of primes in
a unique way (see [58, chapter 3]:
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LEMMA 2.1.5. Let n be a positive integer and let

n = pα1
1 · · · · · pαk

k

= qβ1
1 · · · · · qβℓ

ℓ(2.1.3)

be factorizations into powers of distinct primes. Then k = ℓ and there is a
reordering of indices f : {1, . . . , k} → {1, . . . , k} such that qi = p f (i) and
βi = α f (i) for all i from 1 to k.

The Maxima function ifactors(n) determines the unique factoriza-
tion of n:

i f a c t o r s ( 1 2 3 4 5 6 7 8 9 ) ;

returns
[[3, 2] , [3607, 1] , [3803, 1]]

showing that
123456789 = 32 · 3607 · 3803

In this case, the factor-command also works.
Unique factorization also leads to many other results:

PROPOSITION 2.1.6. Let n and m be positive integers with factoriza-
tions

n = pα1
1 · · · pαk

k

m = pβ1
1 · · · pβk

k

Then n|m if and only if αi ≤ βi for i = 1, . . . , k and

gcd(n, m) = pmin(α1,β1)
1 · · · pmin(αk ,βk)

k

lcm(n, m) = pmax(α1,β1)
1 · · · pmax(αk ,βk)

k

Consequently

(2.1.4) lcm(n, m) =
nm

gcd(n, m)

DEFINITION 2.1.7. If n > 0 is an integer, two integers r and s are
congruent modulo n, written

r ≡ s (mod n)

if
n
∣∣ (r − s)

REMARK. It is also common to say that r and s are equal modulo
n. The first systematic study of these type of equations was made by
Gauss in his Disquistiones Arithmeticae ([23]). Gauss wanted to find
solutions to equations like

anxn + · · ·+ a1x + a0 ≡ 0 (mod p)
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In Maxima terms, r ≡ s (mod n) if and only if
mod(r, n)=mod(s, n).

PROPOSITION 2.1.8. Equality modulo n respects addition and multi-
plication, i.e. if r, s, u, v ∈ Z and n ∈ Z with n > 0, and

r ≡ s (mod n)

u ≡ v (mod n)(2.1.5)

then

r + u ≡ s + v (mod n)

r · u ≡ s · v (mod n)(2.1.6)

This elementary result has some immediate implications:

EXAMPLE. Show that 5|(7k − 2k) for all k ≥ 1. First note, that 7 ≡
2 (mod 5). Equation 2.1.6, applied inductively, implies that 7k ≡ 2k

(mod 5) for all k > 1.

DEFINITION 2.1.9. If n is a positive integer, the set of equivalence
classes of integers modulo n is denoted Zn.

REMARK. It is not hard to see that the size of Zn is n and the
equivalence classes are represented by integers

{0, 1, 2, . . . , n − 1}

Proposition 2.1.8 implies that addition and multiplication is well-
defined in Zn. The Maxima command zn_add_table(n) returns a table
of Zn with the addition-operation. For instance:

zn_add_table ( 8 ) ;

returns table 2.1.1.



0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 0
2 3 4 5 6 7 0 1
3 4 5 6 7 0 1 2
4 5 6 7 0 1 2 3
5 6 7 0 1 2 3 4
6 7 0 1 2 3 4 5
7 0 1 2 3 4 5 6


TABLE 2.1.1. Addition table for Z8

It is interesting to speculate on when a number has a multiplica-
tive inverse modulo n. It turns out that:
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PROPOSITION 2.1.10. If n > 1 is an integer and x ∈ Zn, then there
exists y ∈ Zn with

x · y ≡ 1 (mod n)
if and only if gcd(x, n) = 1. When this is true, we say that x is relatively
prime to n.

Because of this, we are generally only interested in the elements
x ∈ Zn that are relatively prime to n. The set of such numbers is de-
noted Z×

n , where the superscript × indicates that we’re considering
the elements of Zn under multiplication rather than addition. Max-
ima has a command for computing the multiplication table for Z×

n :
zn_mult_table(n). For instance

zn_mult_table ( 8 ) ;

produces the table in 2.1.2.


1 3 5 7
3 1 7 5
5 7 1 3
7 5 3 1


TABLE 2.1.2. Multiplication table for Z×

8

We also have other commands for doing modular arithmetic:
� power_mod(a, n, m) — computes an (mod m). Note: there

are algorithms for computing powers modulo another num-
ber that are much faster than simply raising the number to
that power.

� inv_mod(n, m) — computes n−1 (mod m), if it exists (i.e., if
gcd(n, m) = 1), and false otherwise.

This section would not be complete without mention of the famous:

THEOREM 2.1.11 (Chinese Remainder Theorem). If n1, . . . , nk are a
set of positive integers with gcd(ni, nj) = 1 for all 1 ≤ i < j ≤ k, then the
equations

x ≡ a1 (mod n1)

...

x ≡ ak (mod nk)

have a unique solution modulo ∏k
i=1 ni.

REMARK. The Chinese Remainder Theorem was first published
sometime between the 3rd and 5th centuries by the Chinese mathe-
matician Sun Tzu (not to be confused with the author of “The Art of
Warfare”).
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Naturally, Maxima has a command that implements this: In
the notation of theorem 2.1.11 on the facing page, the command
chinese([a1, . . . , ak], [n1, . . . , nk]) returns x. If any of the conditions of
theorem 2.1.11 on the preceding page are not met, it returns false.

EXERCISES.

1. If n and m are two integers with gcd(n, m) = 1, what can you
say about the primes that appear in their factorizations?

2. If n and m are two integers with gcd(n, m) = 1, show that
Z×

n·m = Z×
n × Z×

m(the right side of this consists of pairs (a, b), where
a ∈ Z×

n and b ∈ Z×
m). Hint: use the Chinese Remainder Theorem.

2.2. Euler’s totient function

DEFINITION 2.2.1. If n is a positive integer then

ϕ(n)

is the number of generators of Zn — or the number of elements in Z×
n ,

or
� If n > 1 it is the number of integers, d, with 1 ≤ d < n with

gcd(d, n) = 1.
� If n = 1, it is equal to 1.

This is called the Euler ϕ-function. Euler also called it the totient. The
Maxima command for computing this is called totient(n).

REMARK. If p is a prime number, then ϕ(p) = p − 1 since the
integers 1 ≤ i ≤ p − 1 are all relatively prime to p.

Exercise 2 shows that, if n and m are integers with gcd(n, m) = 1,
then

(2.2.1) ϕ(mn) = ϕ(n)ϕ(m)

This ϕ-function has some interesting applications

PROPOSITION 2.2.2. If n and m are integers > 1 with gcd(n, m) = 1,
then

(2.2.2) mϕ(n) ≡ 1 (mod n)

It follows that, for any integers a and b

(2.2.3) ma ≡ mb (mod n)

whenever
a ≡ b (mod ϕ(n))
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REMARK. Fermat proved this for n a prime number — in that case,
it is called Fermat’s Little Theorem.

EXERCISES.

1. Why is 7999 ≡ 7−1 (mod 100)?

2.3. The Goldbach Conjecture

The Goldbach Conjecture is that:
Every even integer > 2 is the sum of two primes.

Christian Goldbach (1690 – 1764) was a Prussian mathematician con-
nected with some important research mainly in number theory; he
also studied law and took an interest in and a role in the Russian court.
After traveling around Europe in his early life, he landed in Russia in
1725 as a professor at the newly founded Saint Petersburg Academy
of Sciences. Goldbach jointly led the Academy in 1737. However, he
relinquished duties in the Academy in 1742 and worked in the Rus-
sian Ministry of Foreign Affairs until his death in 1764. He is remem-
bered today for Goldbach’s conjecture and the Goldbach–Euler Theo-
rem. He had a close friendship with famous mathematician Leonard
Euler, serving as inspiration for Euler’s mathematical pursuits.

The conjecture has been shown to hold for all integers less than
4 × 1018 but remains unproven despite considerable effort. We’ll use
this as an opportunity to introduce several new Maxima commands,
namely commands involving sets — see section E.11 on page 311.

A set is a kind of list delimited by curly brackets in which every
element is unique: If you type

{1, 2, 3, 2}
Maxima comes back with

{1, 2, 3}
having eliminated the extra 2. We need three set-operations to

explore Goldbach’s conjecture:
(1) integer_partitions(n, m) — Returns a set of lists of length m

of positive integers that sum up to n.
(2) every(F, s) — returns true if F(x) is true for every x ∈ s,

where s is a set or list.
(3) subset(a, F) — the subset of s of elements x ∈ s for which

F(x) is true.
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EXERCISES.

1. Find all the ways 100 can be written as a sum of two primes.
Hint: look at the code on page 315.

2.4. Public-key cryptography

“Well, a regular code is like a strongbox with a key. You lock
your message in it and nobody can read it without the key.”

“I understand. But Ed needs the key to read the mes-
sages, right? How do you get it to him without the bad guys
also seeing it?”

“That’s the beauty of this system. It’s like a magic box
that comes with two different keys. When you lock it with
one key, only the other key can open it.”

“You can’t use the original one?” she said.
“No,” I replied. “So, I send Ed one key and keep the

other for myself. Even if the bad guys get his key, they can’t
use it to decode my messages. Only the one I keep will do
that.”

— Constance Fairchild, in the novel Bloodline (with the
author’s permission). See [59].

The idea of a public-private key cryptosystem is attributed to
Whitfield Diffie and Martin Hellman, who published the concept in
1976.

Bailey Whitfield ‘Whit’ Diffie (1944–) An American cryptographer and
mathematician and one of the pioneers of public-key cryptography
along with Martin Hellman and Ralph Merkle. Diffie and Hellman’s
1976 paper, [16], introduced a radically new method of distributing
cryptographic keys, that helped solve key distribution — a fundamen-
tal problem in cryptography. They lacked a good implementation of
their ideas.

Martin Edward Hellman (1945–) is an American cryptographer and
mathematician, best known for his involvement with public key cryp-
tography in cooperation with Whitfield Diffie and Ralph Merkle. Hell-
man is a longtime contributor to the computer privacy debate, and has
applied risk analysis to a potential failure of nuclear deterrence.
Hellman was elected a member of the National Academy of Engineer-
ing in 2002 for contributions to the theory and practice of cryptogra-
phy.

In 1977, Ron Rivest, Adi Shamir and Leonard Adleman, described
an efficient algorithm for public key encryption based on proposi-
tion 2.2.2 on page 15. A description of the algorithm was published in
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August 1977, in Scientific American magazine’s Mathematical Games
column2.

Clifford Cocks, an English mathematician working for the British
intelligence agency Government Communications Headquarters
(GCHQ), described an equivalent system in an internal document
in 1973. His description was classified until the RSA algorithm
appeared.

Ronald Linn Rivest (1945–) is a cryptographer and computer scientist
whose work has spanned the fields of algorithms and combinatorics,
cryptography, machine learning, and election integrity. He is an Insti-
tute Professor at the Massachusetts Institute of Technology (MIT) and
a member of MIT’s Department of Electrical Engineering and Com-
puter Science and its Computer Science and Artificial Intelligence Lab-
oratory.
Along with Adi Shamir and Len Adleman, Rivest is one of the inven-
tors of the RSA algorithm. He is also the inventor of the symmetric key
encryption algorithms RC2, RC4, and RC5, and co-inventor of RC6.
(RC stands for "Rivest Cipher". He also devised the MD2, MD4, MD5
and MD6 cryptographic hash functions.

Adi Shamir (1952–) is an Israeli cryptographer. He is a co-inventor of
the Rivest–Shamir–Adleman (RSA) algorithm (along with Ron Rivest
and Len Adleman), a co-inventor of the Feige–Fiat–Shamir identifi-
cation scheme (along with Uriel Feige and Amos Fiat), one of the in-
ventors of differential cryptanalysis and has made numerous contri-
butions to the fields of cryptography and computer science

Leonard Adleman (1945–) is an American computer scientist. He is
one of the creators of the RSA encryption algorithm, for which he re-
ceived the 2002 Turing Award. He is also known for the creation of
the field of DNA computing.

The basic idea:
Let p and q be two large (30 digits or more) primes,
and let n = pq so ϕ(n) = (p − 1)(q − 1). Now let a, b
be integers such that

ab ≡ 1 (mod ϕ(n))

If 1 ≤ x ≤ n is any number, then

(xa)b = xab ≡ x1 (mod n)

So, to encode x, raise it to the ath power modn. The
“encoded message” is (n, y), where y ≡ xa (mod n).

2To the consternation of the CIA!
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To “decode” the message, compute yb mod n, result-
ing in the original a.

Make the value of n and a widely available. If
anyone wants to send you a message, they raise it to
the ath power modn and transmit it. When you re-
ceive it, you raise it to the bth power modn and re-
trieve the original message.

How would a malicious person crack this code? They know a and n
because these numbers were widely publicized. If they could compute
ϕ(n) it would be fairly easy3 to compute b ≡ a−1 (mod ϕ(n)). So the
whole problem of cracking this code boils down to computing ϕ(n),
given n. It turns out that there’s no known way of doing this without
factoring n to get p and q.

The conventional way to factor numbers involves trying primes
like 2, 3, . . . , 17 and reducing the size of the number until it is manage-
able. Suppose the smallest prime that divides a number has 30 digits!
Factoring that number will be quite difficult. Faster algorithms for fac-
toring numbers have been discovered4, but they are not substantially
faster in all cases.

This is called the RSA encryption algorithm after its developers’
surnames. Since converting a long message to numbers and raising
them to a high power is computationally expensive, the “messages”
sent via this algorithm are usually keys for other, more conventional
ciphers — which is why it’s called a key-distribution algorithm.

Its security depends on the difficulty of factoring cer-
tain large numbers.

Nowadays, the RSA algorithm uses the Carmichael λ-function rather
than the ϕ-function:

DEFINITION 2.4.1. If n > 1 is an integer, the Carmichael function,
λ(n), is the smallest integer 1 ≤ k ≤ n such that

ak ≡ 1 (mod n)

for all a ∈ Z such that gcd(n, a) = 1.

If p and q are primes, it turns out that λ(p · q) = lcm(p − 1, q −
1) ≤ (p − 1)(q − 1), and computing this still requires factoring p · q.
It’s used these days simply because it is usually smaller than ϕ(p · q)5.

Naturally, Maxima has a command for computing λ(n):

zn_carmichael_lambda ( n )

For instance

3As it turns out!
4See appendix D on page 295.
5So the computations are slightly faster.
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t o t i e n t ( 1 0 0 )

returns 40, while

zn_carmichael_lambda ( 1 0 0 )

returns 20.
We have the related command

zn_order ( x , n )

which computes the lowest exponent t such that

xt ≡ 1 (mod n)

The computation uses a factorization of ϕ(n) (i.e. totient(n)). Since
this might be time-consuming (or practically impossible), the user can
“help the command” by supplying such a factorization6 as the second
parameter in the notation of ifactors.

So our cryptographic scheme involve the following steps:
(1) Choose two large prime numbers q < p. To make factoring

harder, p and q should be chosen at random, be both large
and have a large difference: If

1
2q

(
p − q

2

)2

is small, Fermat factorization can easily factor p · q — see ap-
pendix D on page 295. For choosing the primes, the standard
method is to choose random integers and test for primality
(using prime_p in Maxima, for instance) until two primes are
found. The primes p and q are kept secret.

(2) Compute n = pq. This product, n, is used as the modulus
for both the public and private keys. Its length, usually ex-
pressed in bits, is the key length.

(3) Compute λ(n) = lcm(p − 1, q − 1).
(4) Choose an integer e such that 2 < e < λ(n) and

gcd(e, λ(n)) = 1. e having a short bit-length and small
Hamming weight (number of 1’s in its binary representation)
results in more efficient encryption — the most commonly
chosen value for e is 216 + 1 = 65537. The smallest (and
fastest) possible value for e is 3, but such a small value for e
has been shown to be less secure in some settings. The public
key is the pair (n,e). This is widely publicized.

(5) e is released as part of the public key. Determine d ≡ e−1

(mod λ(n)). The number, d, is kept secret as the private key
exponent. The private key is (n, d) — this is kept secret.

6Acquired by some magic, perhaps!
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CLAIM. Everyone who has ever purchased something on the net-
work has used a public key cryptosystem. The web server (for in-
stance, the vendor selling things) generates a public and private key
pair. Then it sends the public key to the web browser, which replies
with an encrypted message containing a randomly generated key for
a secure conventional cryptosystem (the message also includes a code
for the desired type of conventional cryptosystem; most browsers and
servers support many of them). The web server decrypts that and all
further communication between the web server and the browser is en-
crypted via the conventional system using that key.

Another important application of public-key cryptosystems is in digi-
tal signatures. This passage from Bloodline says it all:

. . . Then use your private key to lock your message in the box.
Although your message is locked away, anyone can

read it — using your public key to unlock it. That’s fine
— this time, your aim wasn’t to hide the message. The very
fact that your public key works proves you locked the mes-
sage in the box: Only the mate of the key that locked the
magic box can unlock it. . .

— from the novel Bloodline (with the author’s permis-
sion). See [59].

In real life, a kind of summary of the message (a MD5-hash, for
instance) is encrypted with the private key (not the whole message!)
and sent along with the original message.

2.5. Diffie-Hellman-Merkle key exchange

Ralph C. Merkle (1942–) is a computer scientist and mathematician.
He is one of the inventors of public-key cryptography, the inventor of
cryptographic hashing, and more recently a researcher and speaker on
cryonics.
Merkle is a renowned cryptographer, known for devising Merkle’s
Puzzles, co-inventing the Merkle–Hellman knapsack cryptosystem,
and inventing cryptographic hashing (Merkle–Damgård construction)
and Merkle trees. He received the IEEE Richard W. Hamming Medal
in 2010 and has published works on molecular manipulation and self-
replicating machines. He also serves on the board of directors for the
cryonics organization Alcor Life Extension Foundation and appears in
the science fiction novel The Diamond Age.

This is a variation on the public-key cryptography described in
the last section, in that there is no private key. Let n > 1 be an integer
and consider the multiplicative set Z×

n . This has ϕ(n) elements and

DEFINITION 2.5.1. Given an integer, n, a primitive root modulo n,
x ∈ Z×

n , is an element with the property that for any y ∈ Z×
n there

exists an integer m such that y = xm (mod n).
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REMARK. Primitive roots exist if n = 2, 4, pk or 2pk with p a prime
> 2 — see [23] or [67].

Maxima has a command for computing primitive elements if they
exist:

zn_primroot ( n )

or false if they don’t.
The parameter zn_primroot_limit determines how many

attempts it will make (the default is 1000). The computation
uses a factorization of ϕ(n) (i.e. totient(n)). Since this might be
time-consuming (or practically impossible), the user can “help
the command” by supplying such a factorization as the second
parameter in the notation of ifactors:

zn_primroot ( n , f a c t o r i z a t i o n )

Example

p:2^142 + 2 1 7 ;
i f s : i f a c t o r s ( t o t i e n t ( p ) ) ;
g : zn_primroot ( p , i f s ) ;

Our public key is the pair (n, x) where x is a primitive root modulo n;
there is no private key. When A and B wish to communicate, they both
select random numbers a and b modulo n.

A sends B the message xa (mod n), and B sends A the message xb

(mod n). When A receives this, he raises it to the ath power modulo
n, and B raises A’s message to the bth power modulo n.

As the end of this exchange, both A and B have a shared secret

xa·b (mod n)

that no one else knows. This secret can be used as a key for a more con-
ventional (agreed-upon) cryptosystem7 that is used for further com-
munication.

Its security depends on computing a (mod n), given n, x, and
xa (mod n) — the so-called discrete logarithm problem: In a manner of
speaking a = logx xa, the logarithm of xa — or it would be if computa-
tions were done over R rather than Z×

n .
There are no known efficient algorithms for solving this other

than raising x to all possible powers and comparing the result
with xa (mod n). Since a might be a large number, this could be
computationally expensive.

Compare this with the treatment of elliptic-curve cryptography in
[60, section 6.2.2].

7Which may also be publicly-known.
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After all this, it’s important to mention that Maxima has a discrete
logarithm command

zn_log ( a , g , n )

If g is a primitive root modulo n, this solves the congruence gx ≡ a
(mod n), if a solution exists.

EXERCISES.

1. Modify the key-exchange algorithm to give a shared secret to
m people, where m > 2.

2. Implement electronic signatures using Diffie-Hellman-Merkle
key exchange.

2.6. Continued fractions

Here’s an example of a continued fraction:
√

2 = 1 +
1

2 + 1
2+ 1

2+ 1
2+ 1

2+ 1
2+ 1

2+ 1
2+ 1

2+ 1
2+ 1

2 ···

Euler developed much of the theory of continued fractions, proving
that

arctan(x) =
x

1 + 12x2

3−x2+ 32x2
5−3x2+···

for |x| ≤ 1, where the general term is

(2k − 1)2x2

2k + 1 − (2k − 1)x2 + · · ·
Setting x = 1 gives a nice continued fraction for π/4.

The standard form for continued fractions have numerators equal
to 1, and it can be proved that every continued fraction is equal to one
in the standard form (see [49]).

In Maxima, continued fractions are represented as lists
√

2 = [1, 2, 2, 2, 2, . . . ]

The results of truncating a continued fraction at a point is called a
convergent of the fraction. In the case of algebraic numbers like

√
2,
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the terms repeat indefinitely and Maxima usually simply lists the se-
quence that repeats, so we get

cf ( sqr t ( 2 ) )
[ 1 , 2 ]

The cf-command attempts to find a continued fraction form of its pa-
rameter. It can work with linear combinations of square roots of in-
tegers (which all produce repeating continued fractions) and floating
point numbers:

cf (%pi ) ;
cf : %pi i s not a continued f r a c t i o n . / * e r r o r message ! * /

f : cf ( f l o a t (%pi ) ) ;
[ 3 , 7 , 1 5 , 1 , 2 9 2 , 1 , 1 , 1 , 2 , 1 , 3 , 1 , 1 4 ]

The command cfdisrep displays a continued fraction in its normal
mode

c f d i s r e p ( f )

returns

3 +
1

7 + 1
15+ 1

1+ 1
292+ 1

1+ 1
1+ 1

1+ 1
2+ 1

1+ 1
3+ 1

1+ 1
14

The reader might wonder why we’re interested in continued fractions
(aside from the intriguing display they form on a printed page!). The
answer is that their convergents (i.e. the results of truncating them af-
ter some finite point on) are rational numbers that converge to a real
number faster than any other known representation — if the contin-
ued fraction is in standard form.

For instance, the command

cf ( sqr t ( 2 ) )

returns

[ 1 , 2 ]

which is not the answer8! The square root of 2 is the infinite periodic
continued fraction

[ 1 , 2 , 2 , 2 , 2 , 2 , 2 , , . . . ]

8It is a rational number!
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where the first term is the only one that isn’t repeated. In mathemat-
ical notation, the nonperiodic portion is usually distinguished via a
semicolon:

[ 1 ; 2 , 2 , 2 , 2 , 2 , 2 , , . . . ]

Maxima doesn’t do this, which might be confusing if one doesn’t
know that

√
2 is irrational from the outset.

The parameter cflength determines the number of periods of a
periodic continued fraction that will be displayed. The default is 1.
The author recommends setting this to something > 1 !

In theory, then, if we want to build a computer that works with
real numbers, we should store them as continued fractions. Unfortu-
nately, performing basic arithmetic with continued fractions is diffi-
cult.

There’s a lengthy theory of continued fractions and how they can
be used to prove numbers are irrational or transcendental. Again, see
[49].





CHAPTER 3

Basic algebra and calculus

“L’algèbre n’est qu’une géométrie écrite; la géométrie n’est
qu’une algèbre figurée.” (Algebra is merely geometry in
words; geometry is merely algebra in pictures)
— Sophie Germain, [26]

3.1. Introduction

We can type z :( a+b)^5. Try typing expand(z) to eliminate the
parentheses and multiply out a + b five times. The result is

b5 + 5ab4 + 10a2b3 + 10a3b2 + 5a4b + a5

Maxima can also factor rational algebraic expressions1: type
z:a^10+b^10 and Cell▷Evaluate Cell(s) , then factor (z) and

Cell▷Evaluate Cell(s) to get(
a8 − a6b2 + a4b4 − a2b6 + b8

)(
a2 + b2

)
In the above, the letter z is an expression, and we can plug values in

for its variables. For instance, type z(a=1) and Cell▷Evaluate Cell(s)
to get

( b^8 − b^6 + b^4 − b^2 + 1 ) * ( b^2 + 1)

Maxima can solve equations with the solve command. Typing

solve ( a * x^2+b * x+c =0 , x )

solves for x and reproduces the familiar quadratic formula[
x = −

√
b2 − 4ac + b

2a
, x =

√
b2 − 4ac − b

2a

]
If we type

solve ( a * x^3+b * x^2+c * x+d=0 , x )

we get Tartaglia’s formula for the roots of a cubic equation in
figure 3.1.1 on the following page.

1See section 3.1.1 on page 30.

27
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FIGURE 3.1.1. Roots of a cubic equation

Niccolò Fontana Tartaglia (1499/1500 – 1557) was a mathematician, ar-
chitect, surveyor, and bookkeeper in the then-Republic of Venice (now
part of Italy). Tartaglia was the first to apply mathematics to com-
puting the trajectories of cannonballs, known as ballistics, in his Nova
Scientia, “A New Science.”

He outlined his formula for the roots of a cubic polynomial in a poem
based on Dante’s Inferno.

Tartaglia had a tragic life. As a child, he was one of the few survivors
of the massacre of the population of Brescia by French troops in the
War of the League of Cambrai. His wounds made speech difficult or
impossible, prompting the nickname Tartaglia (“stammerer”).

We can also do this for a fourth degree polynomial, resulting in a
much more complex formula. Something interesting happens if we go
to the fifth degree. Maxima gives back the same polynomial we input.
This is because no general formula exists for the roots of a polynomial of
degree 5 or higher. See [58, chapter 8] for a proof of this.

To some extent, we can find approximate roots of polynomials (and
other functions) numerically. Numeric methods have difficulty com-
puting complex roots, and can fail in many cases. The advantage of the
formulas is that they give exact answers (and they always work).
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Suppose we have a polynomial x4 + 2x3 − 3x+ 5. Since it’s fourth-
degree, a formula exists for computing its roots exactly. Note that the
messy equation in figure 3.1.1 on the preceding page is enclosed in
square brackets. This means it is a Maxima-list. We access members of
a list via square brackets and an integer, starting from 1. If we type

r o o t s : solve ( x^4+2*x^3−3*x+5=0 ,x )

the 4 roots are roots[1], roots[2], roots[3], and roots[4].
Typing roots[1] and Cell▷Evaluate Cell(s) gives

x = −
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If we apply the bfloat-command or menu-item Numeric▷To Bigfloat
to the expression, we get the same expression, with decimal
numbers instead of exact integers! This is a complex number,
so we can apply the rectform-command or menu-item
Simplify▷Complex Simplification▷Convert to Rectform to try to

put it into standard complex notation. This gives us

x = −1.603712691810368b0%i√
2

− 1.814527633159785b0√
2

− 5.0b − 1

Applying the bfloat-command or menu-item Numeric▷To Bigfloat
to this gives

(3.1.1) x = −1.133996119454043b0%i − 1.78306479405766b0

How do we check this? We use the subst-command or select
Simplify▷Substitute . The command’s format is

subst ( new_value , o ld_var iab le , express ion )

and it gives

(−1.133996119454043b0%i − 1.78306479405766b0)4

+ 2.0b0(−1.133996119454043b0%i − 1.78306479405766b0)3

− 3.0b0 (−1.133996119454043b0%i − 1.78306479405766b0) + 5.0b0
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which is not particularly enlightening. How do we get Maxima
to multiply out the parenthesized expressions? We use the
expand-command or menu-item Simplify▷Expand Expression to
get

6.661338147750939b − 16%i + 4.662936703425657b − 15

which is very close to 0. This shows that equation 3.1.1 on the preced-
ing page defines an (approximate) root of x4 + 2x3 − 3x + 5.

The next root, roots[2], turns out to be its complex conjugate

x = 1.133996119454043b0%i − 1.78306479405766b0

roots[3] and roots[4] also turn out to be a complex conjugate pair.
If we try this with a fifth-degree polynomial

solve ( x^5+2*x −5=0 ,x ) ;

we get [
0 = x5 + 2x − 5

]
which simply says that the roots of this polynomial are the roots — i.e.,
Maxima cannot find exact roots. In this case, we can ask Maxima to
use a numeric algorithm via

a l l r o o t s ( x^5+2*x − 5 ) ;

to get

(3.1.2)
x = 1.208917813386895, x = 0.9409544200647337%i− 1.167042002184507,

x = −0.9409544200647337%i − 1.167042002184507,
x = 1.234436184384532%i + 0.5625830954910601,

x = 0.5625830954910601 − 1.234436184384532%i

In some cases, numeric algorithms do not converge.

3.1.1. Subtleties of factorization. The basic factor command
works with rational real numbers. If you type

f a c t o r ( x ^4+1) ;

you get
x4 + 1

implying that there is no other way to factor it. If you type

f a c t o r ( x^4+1 , a ^2 −2=0);

implying that the square root of 2 exists, you get(
x2 − ax + 1

) (
x2 + ax + 1

)
Typing
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expand ( ( x^2− s q r t ( 2 ) * x + 1 ) * ( x^2+ s q r t ( 2 ) * x + 1 ) ) ;

you get

x4 + 1

The optional second parameter to factor must be a polynomial of
a single variable that represents a new element adjoined to the ratio-
nal field. If you want to factor the polynomial in a field with several
new element added, you must refer to the Primitive Element Theorem
(theorem 7.2.13 in [58]).

EXERCISES.

1. Suppose we only want a list of the roots of a polynomial rather
than a list of equations like x=root. Hint: use the rhs and map com-
mands (look them up in the index or appendix E on page 299).

3.2. Functions and programming

We have seen that identifiers like ’z’, ’a’, or ’b’ can represent
variables or expressions. They can also equal functions: type
f (x):=x^2−3*x+3 and Cell▷Evaluate Cell(s) to define the identifier f
to be a function. Note that := is used to define a function. We can also
define “anonymous” functions using the lambda-command:

lambda ( [ x , y ] , x * y )

Having defined a function, we can plot it with the command
plot2d(f ,[ x ,0,3]) to get figure 3.2.1 on the following page

Standard form of this command:

plot2d ( func t ion / * o r l i s t * / [ f1 , f2 , . . . , fn ] ,
[ x , low_x , high_x ]
/ * o p t i o n a l : * / , [ y , low_y , high_y ]

)

The list of functions allows you to plot multiple functions in a single
plot. Note that text between /* and */ is regarded as a comment and is
treated as white space by Maxima.

We can plot lambda-functions in a command



32 3. BASIC ALGEBRA AND CALCULUS

x
^
2
-3

*
x
+

3

x

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3

FIGURE 3.2.1. Simple plot
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FIGURE 3.2.2. Lambda plots

plot2d ( [ lambda ( [ x ] , x ^2) , lambda ( [ x ] , x ^3) ,
lambda ( [ x ] , x ^ 7 ) ] , [ x , 0 , 1 ] )

to get figure 3.2.2.
Now that we have functions, we can also do calculus. Maxima has

a derivative-command that does what its name implies. Its format is

d e r i v a t i v e ( expression , v a r i a b l e ) ;

An alternate way computing derivatives uses the diff-command

d i f f ( expression , v a r i a b l e ) ;

which also allows for multiple derivatives

d i f f ( expression , var iab le , number ) ;

So typing

d i f f ( x ^2 , x , 2 ) ;
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gives 2.
Typing derivative(x^x, x ); gives

xx (log (x) + 1)

If the expression has several variables, this becomes the partial
derivative with respect to the variable listed2. For instance,
derivative(x^(x*y), x ); and hitting Cell▷Evaluate Cell(s) gives

xxy (log (x)y + y)

and derivative(x^(x*y), y); and hitting Cell▷Evaluate Cell(s) gives

xxy+1 log (x)

Since we can compute derivatives, we can compute Taylor series,
using the taylor-command3

t a y l o r ( funct ion , var iab le , center , highest_power ) ;

So

t a y l o r ( s i n ( x ) , x , 0 , 1 0 ) ;

gives

x − x3

6
+

x5

120
− x7

5040
+

x9

362880
+ . . .

Unfortunately, the Taylor series one gets is treated differently
than a general polynomial. It doesn’t get computed until a number is
plugged into it. If you write

g ( x ) : = t a y l o r ( s i n ( x ) , x , 0 , 2 0 ) ;

and then type

g ( 2 ) ;

Maxima will complain that 2 is not a variable! A workaround is to
type

at ( g ( x ) , x = 2 ) ;

which will produce
241114102582
265165275375

The at-command evaluates a function at a value, and does this after
the Taylor series has been computed. We could have also written

v ( x ) : = at ( t a y l o r ( s i n ( y ) , y , 0 , 2 0 ) , y=x ) ;

2The listed variable is regarded as the only variable; all others are treated as con-
stants.

3We’ll leave out the “hitting Cell▷Evaluate Cell(s) ” from now on; it’s implied.
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There is the closely related powerseries-command that attempts to
compute a formula for the general coefficient. Its general form is

powerseries ( funct ion , var iab le , c e n t e r ) ;

For example

powerseries ( s i n ( x ) , x , 0 ) ;
/* Note t h a t the number of terms i s not s p e c i f i e d */

gives
∞

∑
i1=0

(−1)i1x2i1+1

(2i1 + 1) !

In cases where the powerseries-command “doesn’t know” a formula
for the general term (for example, sin(sin(x))), it repeats the input. The
taylor-command just computes derivatives and grinds out the taylor
series to the required precision:

t a y l o r ( s i n ( s i n ( x ) ) , x , 0 , 1 0 ) ;

gives

x − x3

3
+

x5

10
− 8x7

315
+

13x9

2520
+ · · ·

Returning to f (x):=x^2−3*x+3, typing integrate( f (x ), x) gives

x3

3
− 3x2

2
+ 3x

For definite integrals, we give the limits of integration:
integrate( f (x ), x ,0,2); to get 8

3 . The general form of this command is

i n t e g r a t e ( expression , v a r i a b l e )

with optional limits of integration. As with differentiation, the vari-
able listed in the command is regarded as the only variable; the others
are treated as constants. So

i n t e g r a t e ( x * y * z , y )

results in
xy2z

2
The integrate () -command “knows” all the rules of integration

taught in a calculus course (or in a table of integrals at the back of a
textbook). For instance, if you type integrate(1/(1+x^5),x), Maxima
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comes back with
√
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This is clearly correct ,!
In some cases, Maxima will simply return one’s input. For in-

stance, typing integrate(x^x,x) gives∫
xxdx

which says “the integral is the integral”. This is Maxima’s way of say-
ing it doesn’t “know” how to get a more concrete formula for the inte-
gral of xx.

If we type integrate(x*log(x ), x, a, b); , Maxima asks us whether
1 < a and later, whether a < b. We can answer these questions before-
hand via the assume-command:

assume ( x >1)
assume ( b>a )

type this prior to doing the integration, and Maxima won’t ask ques-
tions.

Maxima has a complete programming language built into it for
defining more complex functions. Suppose we want to define a func-
tion as follows:

(3.2.1) f (x) =


0 x < −1
1 −1 ≤ x < 0
x2 0 ≤ x ≤ 1
0 x > 1

To implement this function, we need if-statements and relational op-
erators — see table 3.2.1 on the following page. We could implement
it as a complex nested if-statement

f ( x ) : = i f ( x<−1) then 0
e lse i f ( x <0) then 1
e lse i f ( x <=1) then x^2
e lse 0 ;

Maxima allows you to remove the space between else and if to form
an elseif-command that does the same thing.
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= equality
> left side greater than right
< right side greater than left

<= less than or equal
>= greater than or equal
# not equal

TABLE 3.2.1. Maxima relational operators

x : 2 ;
block ( [ x : 0 , y , z ] , / * a l o c a l v a r i a b l e named x * /

x : 3 ,
1 ) ;

/ * x i s s t i l l e q u a l t o 2 * /

FIGURE 3.2.4. Local variables in a block-command

Maxima has a block-statement that can make it easier to define
complex logical and other types of programs. Its general format given
in figure 3.2.3.

block ( [ l o c a l _ v a r i a b l e s or empty l i s t ] ,
statement1 ,
statement2 ,
. . . ,
value ) ;

FIGURE 3.2.3. the block command

The value at the end is the result of the block-command executing.
The local variables are created inside the block and never conflict with
variables of the same name outside of it. Figure 3.2.4 illustrates this.
The list of local variables can also (optionally) assign initial values to
them.

If there are no local variables, the block-command still requires an
empty list. Another way to exit a block is with the return-command.
It exits the block with whatever value (enclosed in parentheses) it has
as its parameter.

To summarize:
A block is the word block followed by a comma-separated se-

quence in parentheses
(1) The first element is a list of local variables or an empty list.
(2) The remaining entries (before the last one) are expressions.
(3) The last entry is a (numeric or symbolic) value.
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f ( x ) := block ( [ ] , / * no l o c a l v a r i a b l e s * /
i f ( x<−1) then return ( 0 ) ,
i f ( x <0) then return ( 1 ) ,
i f ( x <=1) then return ( x ^2) ,
0 ) ; / * d e f a u l t f i n a l v a l u e * /

FIGURE 3.2.5. f(x) written using a block-command

(4) block statements can be nested to any depth.
One exits the block by either

(1) dropping through the last entry, or
(2) a return statement. Note: this only jumps out of the block

containing it, not necessarily out of the function in which it
appears4. If there are several nested blocks, this must be taken
into account.

So our discontinuous function in equation 3.2.1 could be coded as in
figure 3.2.5.

Unfortunately, the derivative and integrate commands do not un-
derstand the logic of these little programs and we have to use a bit of
ingenuity to compute them. For instance, to compute∫ ∞

−∞
f (x)dx

we have to rewrite it as

(3.2.2)
∫ ∞

−∞
f (x)dx =

∫ 0

−1
1dx +

∫ 1

0
x2dx =

4
3

Plotting functions defined by programs also presents some special
considerations. Maxima first tries to evaluate the function and then
sends it to the plotting routines. For instance,

plot2d ( f ( x ) , [ x , − 5 , 5 ] )

produces a very uninteresting result: figure 3.2.6 on the next page,
where f(x) appears to be identically 0. This is because x starts out as
< −1 and the first if statement is activated.

Oddly enough, we must suppress this initial evaluation of f(x) via
the quote-command which sends the literal function-code to the plot-
ting routines,

plot2d ( ’ f ( x ) , [ x , − 5 , 5 ] )

to produce figure 3.2.7 on the following page. Note that only a single
quote is required.

4Which is somewhat atypical in programming languages.
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FIGURE 3.2.6. False plot of f(x)
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FIGURE 3.2.7. First plot of f(x)

It is somewhat difficult to see the behavior of this function from
this particular plot. The plotting routines only use the minimum range
of y-values necessary to represent the plot. It is better if we extend the
range of y-values and restrict the x-values somewhat. Doing

plot2d ( ’ f ( x ) , [ x , − 2 , 2 ] , [ y , − . 5 , 1 . 5 ] )

gives figure 3.2.8 on the next page
The programming language built into Maxima has many standard

features that we will introduce as needed.
In many cases, it’s difficult to analytically integrate a function and

we have to resort to numerical methods. Calculus classes cover many
methods for doing this, like Euler’s Method, the Trapezoid Rule, and
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FIGURE 3.2.8. Better plot of f(x)

Simpson’s Rule. One of the main Maxima commands for numeric in-
tegration is the quad_qag-command5. Its general format is

quad_qag ( expression , var iab le , low , high , algorithm )

where algorithm is an integer from 1 to 6. The result is a list of four
elements

[ est imated i n t e g r a l ,
est imated error ,
number of i t e r a t i o n s ,
e r r o r code ]

If we compute ∫ 1

.01
sin
(

1
x

)
dx

via

i n t e g r a t e ( s i n (1/ x ) , x , . 0 1 , 1 ) ;

we get

2 sin (1) + gamma_incomplete (0, i) + gamma_incomplete (0,−i)
2

− 0.5 gamma_incomplete (0, 100i)− 0.5 gamma_incomplete (0,−100i)
+ 0.005063656411097588

5“quad” refers to quadrature, the act of estimating an area bounded by a curve
(in ancient Greek, ‘quad’ literally refers to constructing a square of a given area). The
author has no idea what ‘qag’ represents!



40 3. BASIC ALGEBRA AND CALCULUS

After typing bfloat and expand, we get

5.039818931754155b − 1

which we will regard as the (semi-)exact value. The numerical meth-
ods produce results close to this:

quad_qag ( s i n (1/ x ) , x , . 0 1 , 1 , 1 ) ;

produces

[0.5039818931754158, 2.307129694260507 ∗ 10−9, 615, 0]

Clearly, these numeric methods can produce very accurate estimates
of definite integrals. Algorithm 6 gives a slightly more accurate esti-
mate but the difference is not significant.

It is interesting that these numeric algorithms can handle func-
tions defined like f (x) defined in figure 3.2.5 on page 37. Typing

quad_qag ( f ( x ) , x , − 5 , 5 , 1 ) ;

gives 0. If we change this to

quad_qag ( ’ f ( x ) , x , − 5 , 5 , 1 ) ;

we still get
[0.0, 0.0, 15, 0]

But if we use another algorithm,

quad_qag ( ’ f ( x ) , x , − 5 , 5 , 2 ) ;

we get [
1.333333332896747, 1.138680744111984 · 10−8, 2415, 0

]
which is very close to the correct value of 4/3. The other numeric
algorithms give similar results.

EXERCISES.

1. There’s a function c(n) defined on positive integers by

c(n) =


1 if n = 1
n/2 if n is even
3n + 1 if n if odd

The unsolved (as of 2024) Collatz Conjecture states that the process of
replacing n by c(n) over and over again eventually results in 1, re-
gardless of what n started out as. Code this in Maxima and test this
conjecture for various starting values of n. Hint: check the predicates
in the appendix on the Maxima language.
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3.3. Limits

Maxima can compute limits using L’Hôpital’s rule and others. The
limit-command has the format

l i m i t ( expression , var iab le , goal )

and can include an optional direction. For instance

l i m i t ( ( x^3−x ) / ( x +1) , x , −1)

produces the result 2. The command

l i m i t ( x * log ( x ) , x , zeroa )

takes the limit of x log(x) as x → 0+, and is completely equivalent to
the command6

l i m i t ( x * log ( x ) , x , 0 , plus )

�

3.4. Elimination theory

We consider the question
Given polynomials

f (x) = anxn + · · ·+ a0(3.4.1)
g(x) = bmxm + · · ·+ b0(3.4.2)

when do they have a common root?
Sylvester studied this problem and solved it using a matrix from which he
derived the resultant of the polynomials, Res( f , g, x).

PROPOSITION 3.4.1. The polynomials f (x) and g(x) have a common root if
and only if Res( f , g, x) = 0.

PROOF. See [58, section 6.2.4]. □

James Joseph Sylvester (1814–1897) was an English mathematician
who made important contributions to matrix theory, invariant theory,
number theory and other fields.

EXAMPLE. For instance, suppose we type

f : x^2−2*x +5;
g : x^3+x −3;

Then

r e s u l t a n t ( f , g , x )

gives 169, so these two polynomials have no common roots.

6So the constants zeroa and zerob are unnecessary.
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There are many interesting applications of the resultant. Suppose we are given
parametric equations for a curve

x =
f1(t)
g1(t)

y =
f2(t)
g2(t)

where fi and gi are polynomials, and want an implicit equation for that curve,
i.e. one of the form

F(x, y) = 0
This is equivalent to finding x, y such that the polynomials

f1(t)− xg1(t) = 0
f2(t)− yg2(t) = 0

have a common root (in t). So the condition is

Res( f1(t)− xg1(t), f2(t)− yg2(t), t) = 0

This resultant will be a polynomial in x and y. We have eliminated the variable
t — and the study of such algebraic techniques is the basis of Elimination
Theory.

EXAMPLE 3.4.2. Let

x = t2

y = t2(t + 1)

Then typing

r e s u l t a n t ( t ^2−x , t ^2*( t +1)−y , t )

gives
y2 − 2xy − x3 + x2

Issue the command

subst ( t ^2 ,x , y^2−2*x *y−x^3+x ^2)

to get

y^2−2* t ^2*y− t ^6+ t ^4

and

subst ( t ^2*( t +1) , y , y^2−2* t ^2*y− t ^6+ t ^4)

to get

t ^4*( t +1)^2− t ^6+ t ^4−2* t ^4*( t +1)

Now, typing

expand (%)

gives 0. So
−x3 + y2 − 2 yx + x2 = 0

after plugging in the parametric equations for x and y.
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What is the connection with elimination theory? If we had the equations

x − t2 = 0

y − t2(t + 1) = 0

We could ask the question: “What conditions must x and y, alone, satisfy for
these two equations to be satisfied?” or “How can we eliminate t from the
original equations?”

Exercise 4 uses this to solve two simultaneous algebraic equations. This
is the main application of the resultant. Solving more complex systems of
algebraic equations requires a construction known as a Gröbner basis, which
we will explore later.

EXERCISES.

1. Compute an implicit equation for the curve defined parametrically by

x = t/(1 + t2)

y = t2/(1 − t)

2. Compute an implicit equation for the curve

x = t/(1 − t2)

y = t/(1 + t2)

3. Compute an implicit equation for the curve

x = (1 − t)/(1 + t)

y = t2/(1 + t2)

4. Solve the equations

x2 + y2 = 1

x + 2y − y2 = 1

by computing a suitable resultant to eliminate y.

5. Find implicit equations for x, y, and z if

x = s + t
y = s2 − t2

z = 2s − 3t2

Hint: Compute resultants to eliminate s from every pair of equations and then
eliminate t from the resultants.





CHAPTER 4

Differential Equations

“Science is a differential equation. Religion is a boundary
condition.”
— Alan Turing.

4.1. Introduction

Suppose we have a first-order differential equation

dy
dx

= f (x, y)

At each point, the function f (x, y) defines a direction, i.e. a slope.
A solution to the differential equation is a curve through the points
whose slope matches the direction-field defined by f (x, y). Intuition
tells us that a solution passes through each point where f (x, y) is well-
defined. Simply draw a curve in the direction the arrows point. Intu-
ition also tells us that this solution will be unique: if you steer a car
the same way two times in a row, you end up at the same destination.
This is the Cauchy-Lipschitz Theorem — see [65].

For instance, the equation

(4.1.1)
dy
dx

= x + y

defines the direction-field in figure 4.1.1 on the following page, and a
solution is the curve whose direction matches the arrows. We can see
this direction-field by using the plotdf-command:

plotdf ( x+y , [ x , − 2 , 2 ] , [ y , − 2 , 2 ] )

One nice feature of the resulting plot is that clicking on the plot pro-
duces a solution-curve (computed numerically) to equation 4.1.1 that
passes through the point you clicked.

If the variables in the plot are not x and y, one must list them:

plotdf ( u*v , [ u , v ] , [ u , − 2 , 2 ] , [ v , − 2 , 2 ] )

This is a very complex command with many options that can be ac-
cessed from a menu on the plot itself or in the command-line. Each
option in the command-line is enclosed in a list with the name of the
option and its value:

45
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FIGURE 4.1.1. Direction-field defined by equa-
tion 4.1.1 on the preceding page

(1) [tstep,value] the size of the steps taken in approximating a
solution to the differential equation. The default is .1.

(2) [nsteps,value] the number of steps taken to draw the
solution-curve. Default is 100.

(3) [direction, option] defines the direction of the independent
variable that will be followed to compute an integral curve.
Possible values are forward, to make the independent vari-
able increase nsteps times, with increments tstep, backward,
to make the independent variable decrease, or both that will
lead to an integral curve that extends nsteps forward, and
nsteps backward. The keywords right and left can be used
as synonyms for forward and backward. The default value is
both.

(4) [tinitial,value] defines the initial value of variable t used to
compute integral curves. Since the differential equations are
autonomous, that setting will only appear in the plot of the
curves as functions of t. The default value is 0. This refers
to an alternate form of the plotdf-command in analyzing a
system of two differential equations:

dx
dt

= f (x, y)

dy
dt

= g(x, y)(4.1.2)

and we plot the behavior of x versus y (the dependent vari-
ables could have other names, but the independent variable is
always named t) in a command-line

plotdf ( [ f , g ] , [ x , y ] , [ x , − 2 , 2 ] , [ y , − 2 , 2 ] )
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(5) [versus_t,number] is used to create a second plot window,
with a plot of an integral curve, as two functions x, y, of the
independent variable, t. If versus_t is given any value differ-
ent from 0, the second plot window will be displayed. The
second plot window includes another menu, similar to the
menu of the main plot window. The default value is 0.

(6) [trajectory_at,coordinates] defines the coordinates xinitial
and yinitial for the starting point of an integral curve. The
option is empty by default. You can set this simply by
clicking on the plot.

(7) [“parameter1=val1,parameter2=val2. . . ” ] defines a list
of parameters, and their numerical values, used in the
definition of the differential equations. The name and
values of the parameters must be given in a string with a
comma-separated sequence of pairs name=value.

(8) [sliders, “par1=min:max,par2=min:max. . . ”] defines a list of
parameters that will be changed interactively using slider
buttons, and the range of variation of those parameters.
The names and ranges of the parameters must be given in
a string with a comma-separated sequence of elements
name=min:max.

(9) [xfun, “function1,function2,. . . ”] defines a string with semi-
colon-separated sequence of functions of x to be displayed,
on top of the direction field.

(10) [x,min,max] sets up the minimum and maximum values
shown on the horizontal axis. If the variable on the
horizontal axis is not x, then this option should have the
name of the variable on the horizontal axis. The default
horizontal range is from -10 to 10.

(11) [y,min,max] sets up the minimum and maximum values
shown on the vertical axis. If the variable on the vertical
axis is not y, then this option should have the name of the
variable on the vertical axis. The default vertical range is
from -10 to 10.

Maxima “knows” the basic methods for symbolically solving first and
second-order differential equations. One of the main commands for
this is the ode2-command , which has the basic form

ode2 ( equation , dependent−var , independent −var )

For example

ode2 ( ’ d i f f ( y ( x ) , x )= x+y ( x ) , y ( x ) , x )

results in

y(x) =
(
(−x − 1) ∗ %e−x + %c

)
∗ %ex
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where %c is an arbitrary constant. We must quote the diff-command
because we don’t want it to compute the derivative; we just want to
indicate that differentiation takes place. If we type

expand (%)

we get the simplified form

y(x) = %c%ex − x − 1

The ic1-command selects (by adjusting the arbitrary constant) the so-
lution that passes through a given point.

Given

s o l : ode2 ( ’ d i f f ( y ( x ) , x )= x+y ( x ) , y ( x ) , x )

and

i c 1 ( sol , x =2 ,y ( x ) =3 )

we get

y(x) = %e−2
(
(y(2) + 3)%ex − %e2x − %e2

)
and expand(%) gives

y(x) = y(2)%ex−2 + 3%ex−2 − x − 1

The ode2-command also handles second-order differential equa-
tions. For instance

s o l : ode2 ( x * ( ’ d i f f ( y , x , 2 ) ) − ’ d i f f ( y , x )+ x =0 ,y , x ) ;

produces the output

y = −2x2 log (x)− x2

4
+ %k2x2 − %k1

2

where %k1 and %k2 are arbitrary constants1.
As with first order differential equations, there’s a command to

set the arbitrary constants to appropriate values to satisfy initial con-
ditions: the ic2-command.

i c 2 ( sol , x =1 , y=2 , ’ d i f f ( y , x ) = 1 ) ;

produces

y = −2x2 log (x)− x2

4
+

x2

2
+

5
4

1We can “absorb” the quotient by 2 into %k1!
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This is a perfect opportunity to introduce the ratsimp-command
which simplifies rational expressions2. Typing ratsimp(%) gives

y = −2x2 log (x)− 3x2 − 5
4

In cases where Maxima doesn’t “know” how to solve a differential
equation, it returns with False.

Other interesting “simplification” commands are radcan and full-
ratsimp, which applies ratsimp over and over again until there’s no
change.

Consider the differential equation

dy
dx

=

√
y
x

We code this via

z : ode2 ( ’ d i f f ( y ( x ) , x )= s q r t ( y ( x )/ x ) , y ( x ) , x ) ;

which produces a very unhelpful result

−
2x
√

y(x)
x − 2 y(x)√

y(x)
= %c

ratsimp, expand, and solve will not simplify this in any way. On
the other hand radcan puts radicals in a standardized form and pro-
duces

2
√

y(x)− 2
√

x = %c

at which point solve gives

y(x) =
4x + 4%c

√
x + %c2

4

EXAMPLE 4.1.1. The Logistics Equation. Imagine there is a popu-
lation, P, and a disease is circulating through it. The function y(t) is
the number of people infected and, of course, P − y(t) is the number
uninfected. The probability of people getting infected is proportional
to the product of these, so we get a differential equation

(4.1.3)
dy
dt

= ky
(

1 − y
P

)
We type

l s o l : ode2 ( ’ d i f f ( y , t )=k * y*(1 −y/P ) , y , t )

2Simplifying an expression is a complex process, and Maxima has several com-
mands for doing this in different ways. It’s not always clear what constitutes
simplification.
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FIGURE 4.1.2. The Logistic Curve

and get

− log (y − P)− log (y)
k

= t + %c

Now, we decide that the first case of this disease happened at time 0
and issue the command

i c 1 ( l s o l , t =0 ,y = 1 ) ;

to get

− log (y − P)− log (y)
k

=
kt − log (1 − P)

k
which doesn’t quite solve the problem. If we issue the logcontract-
command, we get

log
(

y
y−P

)
k

=
kt − log (1 − P)

k
which is slightly more useful. At this point, we can type

solve (% ,y ) ;

to get [
y =

P%ekt

%ekt + P − 1

]
If we set P = 100 and k = 1, we can plot this via

plot2d ((100*% e^ t )/(%e^ t + 9 9 ) , [ t , 0 , 1 0 ] ) ;

to get the well-known Logistic Curve or the Sigmoid Curve in
figure 4.1.2 Equation 4.1.3 on the preceding page was first proposed
by Pierre-François Verhulst in modeling population growth with
limited resources. In this case, P represents the carrying capacity of
the environment. The logistic curve is also used to model bacterial
growth.
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Pierre-François Verhulst (1804 – 1849) was a Belgian mathematician
from the University of Ghent. He is best known for the logistic growth
model in his notable paper of 1845. His use of the term “logistic” was
probably influenced by his association with the Belgian military (he
briefly taught in their military academy). For the military, the word
“logistics” represent supplies and shipping.

We also have the desolve-command for solving systems of linear
ordinary differential equations. The general format is

desolve ( [ l i s t of equat ions ] , [ l i s t of f u n c t i o n s ] )

EXAMPLE 4.1.2. Suppose we have equations

eqn_1 : ’ d i f f ( f ( x ) , x , 2 ) = s i n ( x ) + ’ d i f f ( g ( x ) , x ) ;
eqn_2 : ’ d i f f ( f ( x ) , x ) + x^2 − f ( x ) = 2 * ’ d i f f ( g ( x ) , x , 2 ) ;

We solve them by typing

desolve ( [ eqn_1 , eqn_2 ] , [ f ( x ) , g ( x ) ] )

and get a huge expression. We can simplify this somewhat by giving
initial conditions

atvalue ( ’ d i f f ( f ( x ) , x ) , x =0 , a ) ;
atvalue ( f ( x ) , x = 0 , 1 ) ;

specifying that f (0) = 1 and

d f
dx

∣∣∣∣
x=0

= a

and re-issue the desolve-command to get

f(x) = −3 sin (x)
5

+
cos (x)

5
+(

(4(2a−2)− 16
5 ) sin ( x

2 )
2 − 8 cos ( x

2 )
5

)
%e

x
2

2

− 2%e−x

5
+ x2 + 2x + 2

and

g(x) = − sin (x)
5

+
2 cos (x)

5
+( (

2(10a−18)
5 + 16

5

)
sin ( x

2 )
2 +

(10a−18) cos ( x
2 )

5

)
%e

x
2

2

+
2%e−x

5
+ 2x − a + g(0) + 1
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Important note: In using desolve, functions must be written as
such: in other words, one must write f (x) rather than just f !

Suppose we have a differential equation like

(4.1.4)
dy
dx

= 3 sin(sin(y))

This is highly nonlinear, and ode2 comes back with∫ 1
sin (sin (y))dy

3
= x + %c

which isn’t very helpful. Maxima’s puny brain simply can’t handle it.
In this case, we are reduced to solving it numerically.

Euler proposed the first numeric algorithm for solving an equa-
tion like

dy
dx

= f (x, y)

It involved replacing the derivative by finite differences:

(4.1.5)
∆y
∆x

= f (x, y)

so
f (xi+1) = f (xi) + (xi+1 − xi) · f (xi, yi)

This crude approximation becomes more accurate the smaller xi+1 −
xi becomes. Maxima uses a similar but more sophisticated algorithm
called the fourth-order Runge-Kutta algorithm.

Carl David Tolmé Runge (1856 – 1927) was a German mathematician,
physicist, and spectroscopist.
He was co-developer and co-eponym of the Runge–Kutta method, in
the field of what is today known as numerical analysis. In addition to
pure mathematics, he did experimental work studying spectral lines
of various elements (together with Heinrich Kayser), and was very
interested in the application of this work to astronomical spectroscopy.

Martin Wilhelm Kutta (1867 – 1944) was a German mathematician.
In 1901, he co-developed the Runge–Kutta method, used to solve
ordinary differential equations numerically. He is also remembered
for the Zhukovsky–Kutta aerofoil (used in modern airplanes), the
Kutta–Zhukovsky theorem and the Kutta condition in aerodynamics.

Maxima implements this with the rk-command, which takes one
of the following two forms:

rk ( diff −equation , dependent−var iab le , i n i t i a l −value
[ independent −var , s t a r t , f i n i s h , d e l t a ] )
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FIGURE 4.1.3. Output of the Runge-Kutta algorithm

Note: since the algorithm assumes that all equations are of the form

dy
dx

= f (x, y)

you only list the ’ f (x, y)’ in the algorithm.
The smaller delta is, the more accurate the approximation.
For equation 4.1.4 on the preceding page, we could program this

as

rk ( 3 * s i n ( s i n ( y ) ) , y , 2 , [ x , 0 , 5 , . 0 1 ] )

The command comes back with a long list of the form

[ [ x1 , y1 ] , [ x2 , y2 ] , e t c ]

We can plot this using the ’discrete’ option to the plot2d-command.
This has the general form

plot2d ( [ discre te , [ [ x1 , y1 ] , [ x2 , y2 ] , e t c . ] , [ y , lowy , highy ] )

So we run

p o i n t _ l i s t : rk ( 3 * s i n ( s i n ( y ) ) , y , 2 , [ x , 0 , 5 , . 0 1 ] )

and

plot2d ( [ discre te , p o i n t _ l i s t ] , [ y , 0 , 5 ] )

to get the plot in figure 4.1.3. One nice feature of the rk-command is
that it can handle systems of differential equations. In this form, it is
coded

rk ( [ ode1 , ode2 , etc , ] , [ var1 , var2 , etc , ] ,
[ i n i t 1 , i n i t 2 , e t c . ] , [ independent −var , low , high , d e l t a ] )
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FIGURE 4.1.4. Plot of two solutions

We can solve the system

dx
dt

= 3x − 4y(4.1.6)

dy
dt

= 2x + 3y

via

r e s u l t s : rk ( [ 3 * x −4*y , 2 * x+3*y ] , [ x , y ] , [ 2 , 3 ] , [ t , 0 , 4 , . 0 1 ] )

The output (results) is a list of the form

[ [ t1 , x1 , y1 ] , [ t2 , x2 , y2 ] , e t c . ]

which must be reformatted (via the makelist-command) to suit the
plot2d-command:

xgraph : makelist ( [ p [ 1 ] , p [ 2 ] ] , p , r e s u l t s )

and

ygraph : makelist ( [ p [ 1 ] , p [ 3 ] ] , p , r e s u l t s )

Now we can plot both solutions via

plot2d ( [ [ discre te , xgraph ] , [ discre te , ygraph ] ] ,
[ y , − 1 0 0 , 1 0 0 ] ) ;

to get figure 4.1.4.



4.2. INTO THE WILD 55

EXERCISES.

1. Solve equations 4.1.6 on the facing page exactly via the desolve-
command.

2. Convert the equation

dy2

dx2 − 3
(

dy
dx

)3
+ 2y = 0

into a system of first-degree equations suitable for solving via the rk-
command.

3. Plot a solution to the differential equation

dy
dx

= x − y2

with y(−1) = 3 with a comparison plot of
√

x.

4. Plot solutions to the system of differential equations

dz
dx

= v

dv
dt

= −kz/m

through the point (z, v) = (6, 0) with k = 2 and a slider for varying m
from 1 to 5.

5. Try simplifying the output of desolve in example 4.1.2 on
page 51 using ratsimp. The result will look more complicated,
showing that simplification of an expression is a complex question
with no obvious solution. Can these expresssions be further
simplified?

4.2. Into the wild

Consider a forest with two populations: rabbits and foxes. The
rabbits live in a leporine paradise — with unlimited resources allow-
ing them to breed with reckless abandon. At least it would be a par-
adise were it not for the voracious foxes. Encounters between rabbits
and foxes end badly for the rabbits and well for the foxes. Rabbits are
the foxes’ only sources of food.

The chances of rabbits meeting foxes is proportional to the prod-
uct of their populations. If r(t) and f (t) represent the rabbit and fox
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populations, respectively, we get the differential equations

dr
dt

= αr − βr · f

d f
dt

= −γ f + δr · f

where α, β, γ, δ are nonnegative constants.
At first, we’re tempted to use the desolve command to handle

these equations. Unfortunately, the desolve-command only handles
linear differential equations. The terms r · f make these equations very
nonlinear.

Alfred James Lotka (1880 – 1949) was a US mathematician, physical
chemist, and statistician, famous for his work in population dynamics
and energetics. An American biophysicist, Lotka is best known for his
proposal of the predator–prey model, developed simultaneously but
independently by Vito Volterra. The Lotka–Volterra model is still the
basis of many models used in the analysis of population dynamics in
ecology.

Vito Volterra (1860 – 1940) was an Italian mathematician and physi-
cist, known for his contributions to mathematical biology and integral
equations, and being one of the founders of functional analysis.

We initially fall back on the trusty plotdf-command.

plotdf ( [ a * r −b * r * f , − c * f +d* r * f ] , [ r , f ] ,
[ parameters , " a = . 2 , b = . 2 , c = . 1 , d = . 2 " ] ,
[ s l i d e r s , " a = . 1 : 5 , b = . 1 : 5 , c = . 1 : 5 , d = . 1 : 5 " ] )

To produce figure 4.2.1 on the facing page. The fact that there is a
closed curve shows that there is a periodic phenomena involved. It is
interesting to move the sliders and see where the plot goes.

To see actual plots of foxes and rabbits, re-run the command with
the versus_t option set to something nonzero:

plotdf ( [ a * r −b * r * f , − c * f +d* r * f ] , [ r , f ] ,
[ parameters , " a = . 2 , b = . 2 , c = . 1 , d = . 2 " ] ,
[ s l i d e r s , " a = . 1 : 5 , b = . 1 : 5 , c = . 1 : 5 , d = . 1 : 5 " ] ,
[ versus_t , 1 ] )

We get a second plot window with actual solutions for rabbits and
foxes in figure 4.2.2 on the next page.

Again, moving the sliders around varies the behavior of the plots.
They show that, when the fox-population is low, the rabbits freely
multiply. Then the foxes have an abundant food-source and they mul-
tiply, causing the rabbit-population to plunge. This cycle repeats, with
slight variations. This phenomena has been observed in the wild —
see [53].
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FIGURE 4.2.2. Rabbits and foxes

To get a more accurate (and quantitative solution) we can use the
rk-command:

populat ions : rk ( [ r − . 01 * r * f , − f + . 01 * r * f ] , [ r , f ] ,
[ 1 0 0 0 , 1 0 ] , [ t , 0 , 1 0 , . 0 1 ] ) ;

If you examine the numbers coming from this simulation, you
will notice fractional rabbits and foxes — the famous atto-fox problem
— where an atto-fox is 10−18 of a fox3. See [42].

3In this simulation, you may see more atto-rabbits than foxes!
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EXERCISES.

1. If a cannon is inclined 30◦and fired with a muzzle-velocity
of 1000 meters per second, what is the maximum altitude the shell
will reach? Assume air-resistance is negligible and the acceleration of
gravity is -9.8 m/second.

2. Same problem as the above with air-resistance given by

(4.2.1) F =
1
2

CDρAv2

where CD is a dimensionless constant (assume it is .47), ρ is the den-
sity of the air (assume it is 1.225kg/m3 at sea-level and doesn’t change
with altitude), and A is the cross-sectional area of the cannonball (as-
sume it is .2 square meters). Assume the cannonball weighs 4kg.

4.3. The Heat Equation

Imagine a wire that is heated in some fashion. The flow and diffu-
sion of heat through the wire is expressed by the one-dimensional heat
equation

1
a2

∂2ψ(x, t)
∂x2 =

∂ψ(x, t)
∂t

where ψ(x, t) is temperature, x is distance, and t is time. We will dis-
cuss its “meaning” later. In this equation, a is a constant that repre-
sents how fast heat flows through the material in question; we will
simplify matters by assuming it is 1.

In his research on this equation, Fourier discovered that trigono-
metric polynomials play an important part. What is a trigonometric
polynomial? For our purposes, it is a linear combination

(4.3.1) f (x) = b0 +
k

∑
j=1

aj sin(jx) + bj cos(jx)

where the coefficients, {ai, bi} are real numbers.

Jean-Baptiste Joseph Fourier (1768 – 1830) was a French mathemati-
cian and physicist born in Auxerre and best known for initiating
the investigation of Fourier series, which eventually developed into
Fourier analysis and harmonic analysis, and their applications to
problems of heat transfer and vibrations. The Fourier transform and
Fourier’s law of conduction are also named in his honor. Fourier is
also generally credited with discovering the greenhouse effect.
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Suppose someone provides us with an unknown function, g(x),
(a “black box” that gives us a function-value when we supply a value
for x) and whispers “This is a trigonometric polynomial”. How are we
to check this claim or compute its coefficients?

If we type

i n t e g r a t e ( s i n ( n* x ) , x,−%pi ,% pi )

we get 0. If we type

i n t e g r a t e ( cos ( n* x ) , x,−%pi ,% pi )

we get

2* s i n (%pi *n)/n

Of course, this is for an arbitrary value of n (like 2.7, for instance). If
we insist that n is an integer, via the declare-command

declare ( n , i n t e g e r )

then

i n t e g r a t e ( cos ( n* x ) , x,−%pi ,% pi )

gives 0, so that ∫ π

−π
sin(nx)dx =

∫ π

−π
cos(nx)dx = 0

for n an integer. For f (x) in equation 4.3.1 on the facing page, it fol-
lows that ∫ π

−π
f (x)dx = b0

∫ π

−π
dx = 2πb0

so

(4.3.2) b0 =
1

2π

∫ π

−π
f (x)dx

Next, Fourier noted that

(4.3.3)
∫ π

−π
sin(nx) cos(mx)dx = 0

because this is an odd function4 integrated over a symmetric range. It
follows that

(4.3.4)
∫ π

π
f (x) sin(nx)dx = a1

∫ π

−π
sin(x) sin(nx)dx+

· · ·+ an

∫ π

−π
sin2(nx)dx + · · ·+ ak

∫ π

−π
sin(nx) sin(kx)dx

+ 0 + · · ·+ 0

If we type

4A function, f (x), is called odd if f (−x) = − f (x).
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declare (m, i n t e g e r ) ;
i n t e g r a t e ( s i n ( n* x ) * s i n (m* x ) , x,−%pi ,% pi ) ;
i n t e g r a t e ( cos ( n* x ) * cos (m* x ) , x,−%pi ,% pi ) ;

we learn that get ∫ π

−π
sin(nx) sin(mx)dx = 0(4.3.5) ∫ π

−π
cos(nx) cos(mx)dx = 0(4.3.6)

if n ̸= m.
Incidentally, the reader might wonder what difference there is be-

tween the assume-command on page 35 and the declare-command
used here. The assume-command describes numeric relations (usually
inequalities) that exist between numeric identifiers, and the declare-
command describes properties identifiers have (they might not be nu-
meric ones).

If we type

i n t e g r a t e ( s i n ( n* x )^2 , x , −%pi ,% pi )

we learn that

(4.3.7)
∫ π

−π
sin(nx) sin(nx)dx = π

It follows that equation 4.3.4 on the previous page can be rewritten as∫ π

π
f (x) sin(nx)dx = a1 · 0 + · · ·+ an · π + · · ·+ ak · 0

from which we get

(4.3.8) an =
1
π

∫ π

−π
f (x) sin(nx)dx

A similar line of reasoning shows that

(4.3.9) bn =
1
π

∫ π

−π
f (x) cos(nx)dx

So we have an answer to our question:

g(x) is a trigonometric polynomial if only a
finite number of the an and bn, computed using
equations 4.3.8 and 4.3.9 are nonzero.

This would’ve ended matters if Fourier hadn’t taken the next step: ap-
ply these equations to a function that is definitely not a trigonometric
polynomial — for instance the bizarre function, f (x), plotted in fig-
ure 3.2.8 on page 39! Recall that it is defined via
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f ( x ) := block ( [ ] , / * no l o c a l v a r i a b l e s * /
i f ( x<−1) then return ( 0 ) ,
i f ( x <0) then return ( 1 ) ,
i f ( x <=1) then return ( x ^2) ,
0 ) ;

We will define functions to compute the coefficients in equations 4.3.8
on the preceding page and 4.3.9 on the facing page (following the ex-
ample of equation 3.2.2 on page 37):

a ( k ) : = ( i n t e g r a t e ( s i n ( k * x ) , x , − 1 , 0 )
+ i n t e g r a t e ( s i n ( k * x ) * x ^2 ,x ,0 ,1 ) )/% pi

If we type a(3), we get
2 sin (2)−cos (2)

4 + cos (2)−1
2 − 1

4
π

which is a bit awkward. This expression should be simplified or con-
solidated. If we type ratsimp(%), we get

2 sin (2) + cos (2)− 3
4π

which is more compact. We incorporate this into our function for a(k):

a ( k ) : = ratsimp ( ( i n t e g r a t e ( s i n ( k * x ) , x , − 1 , 0 )
+ i n t e g r a t e ( s i n ( k * x ) * x ^2 ,x ,0 ,1 ) )/% pi )

We also have a similar function to compute the cosine coefficients

b ( k ) : = ratsimp ( ( i n t e g r a t e ( cos ( k * x ) , x , − 1 , 0 )
+ i n t e g r a t e ( cos ( k * x ) * x ^2 ,x ,0 ,1 ) )/% pi )

If we define b0 via equations 4.3.2 on page 59 and 3.2.2 on page 37,

b0 :2/(3*% pi ) ;

Now we write a function to add up terms of the trigonometric polyno-
mials with these coefficients. There are several ways to do this. We’ll
start with the while-command with a general format

while condi t ion do
(
statement1 ,
statement2 ,
. . .
statementn
)

To compute the sum of the first n terms of our trigonometric polyno-
mial, we code
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FIGURE 4.3.1. First three terms

f i r s t _ n ( n , x ) : = block (
[sum:2/(3*% pi ) , k : 1 ] , / * l o c a l v a r i a b l e s * /
while k<=n do
(
sum : sum+a ( k ) * s i n ( k * x )+b ( k ) * cos ( k * x ) ,
k : k+1 / * i n c r e m e n t t h e c o u n t e r * /
) ,
sum / * v a l u e r e t u r n e d * /
)

Now we can plot these trigonometric polynomials via

plot2d ( f i r s t _ n ( 3 , x ) , [ x , − 3 , 3 ] ) ;

to get figure 4.3.1. This doesn’t tell us much but, like Fourier, we per-
sist.

The sum of the first 10 terms gives figure 4.3.2 on the next page,
which is evocative. Plotting this with f(x) (or Wxmaxima-menu item
Plot▷Plot 2d via

plot2d ( [ f i r s t _ n ( 1 0 , x ) , ’ f ( x ) ] , [ x , − 3 , 3 ] ) ;

gives figure 4.3.3 on the facing page.
At this point, we go for broke and compare the first 100 terms via

plot2d ( [ f i r s t _ n ( 1 0 0 , x ) , ’ f ( x ) ] , [ x , − 3 , 3 ] ) ;

to get figure 4.3.4 on page 64.
This is very evocative! Although f(x) is not a trigonometric poly-

nomial, an infinite series of trigonometric terms seems to converge to
it almost everywhere. This is the famous Fourier Series, and was the
beginning of a whole field of mathematics called harmonic analysis.
Notice that Fourier series are more “powerful” than, say, Taylor series.
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FIGURE 4.3.2. First 10 terms

x

’f(x)
fun2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3

FIGURE 4.3.3. Comparison of first 10 with f(x)

They can represent functions that are not necessarily differentiable or
even continuous.

Since all the functions that go into a Fourier series are periodic, so
is the series itself — see figure 4.3.5 on the following page.

You may notice that the Fourier series “overshoots” and “under-
shoots” f(x) at the points where it is discontinuous. This is called Gibbs
Phenomena and is illustrated by typing

plot2d ( [ ( f i r s t _ n ( 1 0 0 , x) − ’ f ( x ) ) ^ 2 ] , [ x , − 3 , 3 ] ) ;

to get figure 4.3.6 on page 65.
This does not go away as we add more terms; the peaks simply

become narrower. This leads to the question:

In what sense does the Fourier series converge to f (x)?
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FIGURE 4.3.4. The first 100 terms
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FIGURE 4.3.5. Periodicity of a Fourier series

It turns out5 that if f (x) is any function that can be integrated from −π
to π and if Sn(x) is the sum of the first n terms of the Fourier series for
f (x), then

(4.3.10) lim
n→∞

∫ π

−π
(Sn(x)− f (x))2 dx = 0

In other words, the “space between the curves” of f (x) and Sn(x) goes
to zero as n goes to infinity. This is called L2-convergence.

If the original function, f (x), is continuous, the “space between
the curves” of f (x) and Sn(x) going to zero intuitively implies that
Sn(x) converges to f (x) for every value of x. This is called “pointwise
convergence”. See [54] for the details.

Claim: Virtually all readers of this book have used Fourier series.

5In other words, it is well-known but we won’t prove it here. See [54].
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How? The mp3 audio and the jpeg graphic formats are based on
Fourier series. The jpeg format uses a two-dimensional version of it.
The actual jpeg file is a string of Fourier coefficients. If the spikes in
the Gibbs phenomena are narrower than a pixel, they have no effect
on the final image. Something similar happens with mp3 files: the
narrow spikes are high-frequency signals above the range of human
hearing.

Maxima has a sum-command that would have eliminated the
need for programming! Its general form is

sum( expression , index_var iable , low , high ) ;

and we could’ve written our function as

f i r s t _ n ( k , x ) : = 2/(3*% pi )
+sum( a ( j ) * s i n ( j * x )+b ( j ) * cos ( j * x ) , j , 1 , k ) ;

4.4. Solution to the Heat Equation

At this point, the reader may wonder what all of this has to do
with the Heat Equation. Recall that this is

1
a2

∂2ψ(x, t)
∂x2 =

∂ψ(x, t)
∂t

where we assume a = 1. Fourier attempted a particularly simple so-
lution in the form

ψ(x, t) = u(x) · v(t)

Plugging this into the heat equation gives

u′′v = uv′



66 4. DIFFERENTIAL EQUATIONS

and we divide by uv to get

u′′(x)
u(x)

=
v′(t)
v(t)

How can a function of one variable equal another of an unrelated vari-
able? They both equal the same constant! So we have

u′′(x)
u(x)

=
v′(t)
v(t)

= c

We have
v′(t) = c · v(t)

This is a simple differential equation, but we’ll pretend we don’t know
the solution and use Maxima’s ode2-command for solving ordinary
differential equations of degree ≤ 2. We’ll start with the equation for
v(t):

ode2 ( ’ d i f f ( v , t )= c *v , v , t ) ;

Note that we must quote the diff-command because we don’t want
Maxima to try to compute a derivative; we just want to indicate that
differentiation takes place.

We get
v = %c%ect

Here %c is an arbitrary constant that is completely unrelated to c. If
c > 0, then, depending on the sign of %c, we realize that the tempera-
ture becomes exponentially hot over time or exponentially cold.

This is a reminder that not all solutions of the heat equation phys-
ically occur!

To avoid being burned alive or frozen, we’ll assume that c < 0.
This is traditionally written as

u′′(x)
u(x)

=
v′(t)
v(t)

= −λ

where λ > 0. The command

ode2 ( ’ d i f f ( v , t )=−lambda *v , v , t ) ;

gives
v = %c%e−t lambda

and the command

ode2 ( ’ d i f f ( u , x ,2)= − lambda *u , u , x ) ;

prompts the question of whether lambda is positive, negative or zero6.
We answer ‘positive’ and get

u = %k1 sin
(

x
√

lambda
)
+ %k2 cos

(
x
√

lambda
)

6Of course we could’ve preceded the ode2 command with assume(lambda>0).
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FIGURE 4.4.1. ψ(x, .01)

where %k1 and %k2 are arbitrary constants. This gives a basic solution
to the Heat Equation

ψ(x, t) =
(

%k1 sin
(

x
√

lambda
)
+ %k2 cos

(
x
√

lambda
))

e−lambdat

Since the Heat Equation is linear, any linear combination of these basic
solutions is also a solution.

At this point, we can set
√

lambda = n, an integer, and get a basic
solution7

ψn(x, t) = (%k1n sin (nx) + %k2n cos (nx)) e−n2t

When t = 0, this looks like a term of a trigonometric polynomial. We
hit upon Fourier’s solution to the Heat Equation:

(1) expand ψ(x, 0) — the initial heat distribution — in a Fourier
series,

(2) Multiply the nth term of this Fourier series by e−n2t. The re-
sulting series defines ψ(x, t) for t ≥ 0.

We can test this with our Fourier series for the discontinuous function
f (x) defined in equation 3.2.1 on page 35. We replace our command
for partial sums of this with

psi_n ( k , x , t ) : = 2/(3*% pi )
+sum ( ( a ( j ) * s i n ( j * x )
+b ( j ) * cos ( j * x ))*% e^(− j ^2* t ) , j , 1 , k ) ;

Figures 4.4.1 through 4.4.4 on the following page shows the
time-evolution of ψ: Heat flows from the hotter parts of the wire to
the cooler ones. The “sharp” edges of the function become smooth,
and it’s clear that the heat-distribution becomes constant in the limit
as t → ∞.

7We have absorbed the constant %c into %k1 and %k2.
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FIGURE 4.4.2. ψ(x, .02)
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FIGURE 4.4.3. ψ(x, .1)
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FIGURE 4.4.4. ψ(x, 1)
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� �

4.5. Finer points of plotting

Maxima has no built-in plotting capabilities. It uses a very powerful inde-
pendent software package called Gnuplot (automatically installed with Max-
ima). It also uses powerful plotting commands built into wxMaxima.

The commands plot2d (and plot3d!) only use the most basic features of
Gnuplot. Since we have mentioned plot3d we may as well discuss it. It’s
general form is

plot3d ( two−var iab le −expression , [ x , low , high ] , [ y , low , high ] ) ;

For example

plot3d ( s i n ( x^2+y ^ 3 ) , [ x , − 2 , 2 ] , [ y , − 2 , 2 ] ) ;

produces figure 4.5.1. The wxMaxima-menu Plot▷Plot 3d prompts you for
all the necessary parameters. One nice thing about these plots is that you can
rotate them with the mouse and see them from many different angles.

We can use the complete repertoire of Gnuplot commands to generate
plots and diagrams. We would like to produce an animated image of the heat-
flow in the wire. wxMaxima provides the with_slider_draw-command for for
this. Its general format is given in figure 4.5.2. This command cycles through

with_slider_draw (
var iab le , / * v a r i a b l e t o a t t a c h t o t h e s l i d e r * /
l i s t of values ,
plot −command, / * p l o t * /
plot −opt ions / * o p t i o n a l

g r a p h i c command * /
) ; / * end o f w i t h _ s l i d e r _ d r a w −command * /

FIGURE 4.5.2. with_slider_draw
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with_slider_draw (
t , / * v a r i a b l e t o a t t a c h t o t h e s l i d e r * /
makelist ( j , j , 0 , 1 0 0 ) , / * l i s t o f i n t e g e r s * /
e x p l i c i t ( psi_n ( 1 0 0 , x , . 0 1 * t ) , x,−%pi ,% pi ) , / * p l o t * /
yrange= [ 0 , 1 . 2 ] / * o p t i o n a l

g r a p h i c command * /
) ; / * end o f w i t h _ s l i d e r _ d r a w −command * /

FIGURE 4.5.3. Evolution of the heat equation

the list of values, setting the variable to each of them and runs the correspond-
ing plot command.

We would like to plot the flow of heat in our heated wire. We use the
command in figure 4.5.3.

and wait a long time (Maxima is computing 101 plots of the ψ-function).
Afterward, a window appears with a slider that animates the passage of time.
The slider allows us to move time forward or backward and see how the pro-
cess changed. One can right-click this plot to save it as an animated gif file.

In this context, explicit means plotting in the normal fashion that plot2d
follows. The alternative is implicit, which plots points satisfying an equation

draw2d ( i m p l i c i t ( x^4+y^4=1 ,x , −2 ,2 , y , − 2 , 2 ) )

Before you click Cell▷Evaluate Cell(s) , several explanations are in order.
The second parameter of with_slider_draw must be a list, i.e. data like

[1, 2, 3]

This particular list would make for a pathetic animation, though — with only
3 frames! What we really need is a list of integers from 0 to 100. Rather than
typing out 101 numbers, we use the all-important makelist-command. It has
several forms and can be used to create or modify lists.

(1) makelist(expression, variable, i0 , i1 ) Makes a list of the expres-
sion with the variable set equal to integers from i0 to i1 (incremented
by 1 each iteration). For instance

makelist ( i , i , 1 , 5 )

produces the list
[1, 2, 3, 4, 5]

and

makelist ( x= i ^2 , i , 1 , 5 )

produces the list

[x = 1, x = 4, x = 9, x = 16, x = 25]

(2) makelist(expression, variable, list ) Cycles through the elements
of the list, setting the variable equal to each of them and creating
a list of the expression evaluated at these values. For instance,

makelist ( x=y , y , [ a , b , [ 1 , 2 ] ] )
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produces

[x = a, x = b, x = [1, 2]]

This form of the command can be used to reformat lists. Suppose

a: [[1, 2, 3], [u, v, w], [i, j, k]]

and we issue the command makelist([p[2],p[1],p [2]], p,a). We get
the result

[[2, 1, 2], [v, u, v], [j, i, j]]

Incidentally, these repeated computations (of a(k) and b(k)) could benefit from
a process called memoization. Since a(k) and b(k) only depend on k it would
be better if the functions stored their results and simply did a table-lookup
whenever the same value of k is used a second time. This is called memoizing
the computations. Maxima makes this very simple:

a [ k ] : = ratsimp ( ( i n t e g r a t e ( s i n ( k * x ) , x , − 1 , 0 )
+ i n t e g r a t e ( s i n ( k * x ) * x ^2 ,x ,0 ,1 ) )/% pi )

b [ k ] : = ratsimp ( ( i n t e g r a t e ( cos ( k * x ) , x , − 1 , 0 )
+ i n t e g r a t e ( cos ( k * x ) * x ^2 ,x ,0 ,1 ) )/% pi )

All we have done here is replace a(k) by a[k] and b(k) by b[k]. This is a sig-
nal to Maxima to store the computed values in an array. If an array-position
already has a value in it, Maxima suppresses rerunning the function and sim-
ply returns the array-entry. This creates a problem if the program has bugs:
it remembers the incorrect values. To erase these incorrect values, issue the
kill-command: kill(a), kill(b).

We also have to rewrite the psi_n function slightly.

psi_n ( k , x , t ) : = 2/(3*% pi )
+sum ( ( a [ j ] * s i n ( j * x ) / * r e p l a c e d a ( j ) by a [ j ] * /
+b [ j ] * cos ( j * x ))*% e^(− j ^2* t ) , j , 1 , k ) ;

Now you can click Cell▷Evaluate Cell(s) !
For more information on plotting, see Appendix F on page 323.

4.6. The Wave Equation

4.6.1. Introduction. The one-dimensional wave equation looks like
the heat equation with a slight difference

(4.6.1)
∂2ψ(x, t)

∂x2 =
1
c2

∂2ψ(x, t)
∂t2

— the time derivative is second-order. One is to imagine a vibrating
string, where the function ψ(x, t) represents the displacement of the
string at any given position and time.

The one-dimensional version was discovered by d’Alembert; the
higher dimensional wave equation was discovered by Euler.
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Jean-Baptiste le Rond d’Alembert (1717 – 1783) was a French math-
ematician, mechanician, physicist, philosopher, and music theorist.
Until 1759 he was, together with Denis Diderot, a co-editor of the En-
cyclopédie. D’Alembert’s formula for obtaining solutions to the wave
equation is named after him. The wave equation is sometimes referred
to as d’Alembert’s equation, and the fundamental theorem of algebra
is named after d’Alembert in French.

D’Alembert found a completely general solution to the
one-dimensional wave equation:

ψ(x, t) = f (x + ct) + g(x − ct)

where f and g are arbitrary twice-differentiable functions8. As clever
as this is, it is not clear how apply it to interesting situations. We will
use a Fourier series approach.

As before, we assume c = 1 and write

ψ(x, t) = u(x) · v(t)

Plugging this into equation 4.6.1 on the preceding page gives

u′′(x) · v(t) = u(x) · v′′(t)

or
u′′(x)
u(x)

=
v′′(t)
v(t)

= −λ

and (via ode2, for instance) we get

u(x) = α cos(x
√

λ + β sin(x
√

λ)

v(t) = γ cos(t
√

λ) + δ sin(t
√

λ)

where α, β, γ, δ are arbitrary constants.
Now imagine that our string is fixed between supports at x = 0

and x = π so that ψ(0, t) = 0 = ψ(π, t), for all values of t. The
simplest way to ensure this is to set α = 0 and sin(π

√
λ) = 0, or√

λ = n, an integer.
We will consider two important special cases.

4.6.2. The plucked string. This is the kind of string found in a
guitar or harpsichord.

In this case, the string is initially not in motion, so that

(4.6.2)
∂ψ

∂t
= 0

when t = 0. Since a basic solution is

ψk(x, t) = ak sin(kx) (bk sin(kt) + ck cos(kt))

8The reader is invited to verify that this actually satisfies equation 4.6.1 on the
previous page.
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the easiest way to ensure equation 4.6.2 on the preceding page is to set
bk = 0 for all k. Our basic solutions reduce to

ψk(x, t) = ak sin(kx) cos(kt)

and
ψk(x, 0) = ak sin(kt)

If the initial configuration of the string (the “plucking” function)
is f (x) for 0 ≤ x ≤ π, we can define an odd function from −π to π:

f1(x) =

{
f (x) if x ≥ 0
− f (−x) otherwise

and we can expand this in a Fourier series. Since f1(x) is odd, the
cosine terms will all vanish:

bk =
1
π

∫ π

−π
f1(x) cos(kx)dx

=
1
π

∫ 0

−π
f1(x) cos(kx)dx +

1
π

∫ π

0
f1(x) cos(kx)dx

= − 1
π

∫ π

0
f1(x) cos(kx)dx +

1
π

∫ π

0
f1(x) cos(kx)dx

= 0

The sine-terms tend to “double up”

ak =
1
π

∫ π

−π
f1(x) sin(kx)dx

=
1
π

∫ 0

−π
f1(x) sin(kx)dx +

1
π

∫ π

0
f1(x) sin(kx)dx

=
1
π

∫ π

0
f1(x) sin(kx)dx +

1
π

∫ π

0
f1(x) sin(kx)dx

=
2
π

∫ π

0
f1(x) sin(kx)dx

So, we expand f (x) in a Fourier series of sines, and the solution to the
wave equation is

ψ(x, t) =
∞

∑
k=1

ak sin(kx) cos(kt)

If we type

s i n ( n* x ) * cos ( n* t )

and issue the trigreduce-command (one of several commands for sim-
plifying trigonometric expressions) we get

sin (nx + nt)
2

+
sin (nx − nt)

2
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so

ψ(x, t) =
1
2

(
∞

∑
k=1

ak sin (kx + kt) +
∞

∑
k=1

ak sin (kx − kt)

)
Now we ask ourselves “What is ∑∞

k=1 ak sin (kx)?”
Well

∞

∑
k=1

ak sin (kx) =


f (x) if 0 ≤ x ≤ π

− f (−x) if − π ≤ x ≤ 0
Periodic with period 2π

So we get a closed form solution to the plucked wave equation:
Given a “plucking function9,” f (x), for 0 ≤ x ≤ π define

f̄ (x) =


f (x) if 0 ≤ x ≤ π

− f (−x) if − π ≤ x ≤ 0
Periodic with period 2π

Then

ψ(x, t) =
1
2
(

f̄ (x + t) + f̄ (x − t)
)

Let’s compute!
We start with a “realistic” plucking function

f (x) =

{
x/2 for 0 ≤ x < 1
− x−π

2π−2 for 1 ≤ x ≤ π

This programs as

f ( x ) : = block ( [ ] ,
i f ( x <1) then return ( x /2) ,
−(x−%pi )/(2*% pi −2)
)

and we can plot it via

plot2d ( ’ f ( x ) , [ x ,0 ,% pi ] , [ y , −1/2 ,1/2] )

and we get figure 4.6.1 on the facing page.
Now we define f̄ (x):

f _bar ( x ) : = block ( [ ] ,
i f ( x>%pi ) then return ( f_bar ( x−2*%pi ) ) ,
i f ( x<=−%pi ) then return ( f_bar ( x+2*%pi ) ) ,
i f ( x >=0) then return ( f ( x ) ) ,
− f ( −x )
) ;

and, to check this, we plot it

9I.e., shape of the string at time 0.
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FIGURE 4.6.1. “Realistic” plucking function
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FIGURE 4.6.2. The extended plucking function

plot2d ( ’ f_bar ( x ) , [ x , − 1 0 , 1 0 ] , [ y , −1/2 ,1/2] )

and get figure 4.6.2.

psi_p ( x , t ) : = ( f_bar ( x+ t )+ f_bar ( x− t ) ) / 2

Which we can plot via

with_slider_draw (
t , / * v a r i a b l e t o a t t a c h t o t h e s l i d e r * /
makelist ( j , j , 0 , 1 0 0 ) , / * l i s t o f i n t e g e r s * /
e x p l i c i t ( ’ psi_p ( x , . 1 * t ) , x ,0 ,% pi ) , /* p l o t */
yrange= [ −1/2 ,1/2] /* opt iona l graphic command */
) ; /* end of with_slider_draw −command */

4.6.3. The “hammered” string. These occur in pianos or ham-
mered dulcimers. We return to our basic solution

ψk(x, t) = ak sin(kx) (bk sin(kt) + ck cos(kt))



76 4. DIFFERENTIAL EQUATIONS

Since ψ(x, 0) = 0, we set the ck to 0, so our basic solution looks like

ψk(x, t) = ak sin(kx) sin(kt)

and
∂ψ

∂t
= ak · k sin(kx) cos(kt)

If we set t = 0, this becomes
∂ψ

∂t

∣∣∣∣
t=0

= ak · k sin(kx)

If h(x) is our “hammering” function — the state of motion of the
string at time 0 — to solve the wave equation we

(1) expand h(x) in a Fourier sine-series as in the plucked case,
with coefficients

ak =
2
π

∫ π

0
h(x) sin(kx)dx

(2) the resulting series for ψ(x, t) is

ψ(x, t) =
∞

∑
k=1

ak
k

sin(kx) sin(kt)

For instance, we can define our hammering function by

h(x) =


0 if 0 ≤ x < 1/2
1 if 1/2 ≤ x ≤ 3/4
0 if 3/4 < x ≤ π

h ( x ) : = block ( [ ] ,
i f ( x <1/2) then return ( 0 ) ,
i f ( x<=3/4) then return ( 1 ) ,
0
) ;

and, to check this, we plot it. We define

a ( k):=(2/% pi ) * i n t e g r a t e ( s i n ( k * x ) , x ,1/2 ,3/4)

Now we define

psi_h ( x , t ) : =sum( a ( j ) * s i n ( j * x ) * s i n ( j * t )/ j , j , 1 , 1 0 0 )

and plot it with

with_slider_draw (
t , / * v a r i a b l e t o a t t a c h t o t h e s l i d e r * /
makelist ( j , j , 0 , 1 0 0 ) , / * l i s t o f i n t e g e r s * /
e x p l i c i t ( psi_h ( x , . 1 * t ) , x ,0 ,% pi ) , / * p l o t * /
yrange= [ −1/2 ,1/2] / * o p t i o n a l

g r a p h i c command * /
) ; / * end o f w i t h _ s l i d e r _ d r a w −command * /
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You will benefit from memoizing these computations (as with the heat
equation).

EXERCISES.

1. Find a closed-form solution of the wave-equation for a ham-
mered string.

� �

4.6.4. The two-dimensional case. In this case, the wave equation looks
like

∂2ψ

∂x2 +
∂2ψ

∂y2 =
1
c2

∂2ψ

∂t2

where ψ(x, y, t) is the displacement of a rectangular drum-head. We try the
trick we used before:

ψ(x, y, t) = u(x)v(y)w(t)
and get the equation

d2u
dx2 v(y)w(t) + u(x)

d2v
dy2 w(t) =

1
c2 u(x)v(y)

d2w
dt2

and divide by u(x)v(y)w(t) to get

1
u(x)

d2u
dx2 +

1
v(y)

d2v
dy2 =

1
c2

1
w(t)

d2w
dt2

As before, functions of x and y can only equal a function of t if they are equal
to the same constant:

1
c2

1
w(t)

d2w
dt2 = −λ

1
u(x)

d2u
dx2 +

1
v(y)

d2v
dy2 = −λ

The second of these equations implies that

1
u(x)

d2u
dx2 = −λ − 1

v(y)
d2v
dy2

so, again, we have a function of x equal to a function of y: they must both
equal the same constant! We have equations

1
c2

1
w(t)

d2w
dt2 = −(a + b)

1
u(x)

d2u
dx2 = −a

1
v(y)

d2v
dy2 = −b
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FIGURE 4.6.3. Initial position of a two dimen-
sional membrane

Note that the solutions to the differential equations are

u(x) = r sin(
√

ax) + s cos(
√

ax)(4.6.3)

v(y) = r′ sin(
√

by) + s′ cos(
√

by)

w(t) = r̄ sin(c
√

a + bt) + s̄ cos(c
√

a + bt)

Suppose our vibrating surface is L units long, W units wide, and is rigidly
fixed on its boundaries. We’ll also suppose the membrane is at rest initially
and has a shape given by f (x, y), so

f (0, y) = f (L, y) = 0

f (x, 0) = f (x, W) = 0

We can expand f (x, y) in a two-dimensional Fourier series
∞

∑
n,m=1

cn,m sin
(nπx

L

)
sin
(mπy

W

)
where

cn,m =
4

LW

∫ L

0

∫ W

0
f (x, y) sin

(nπx
L

)
sin
(mπy

W

)
dxdy

So equations 4.6.3 imply that an elementary solution looks like

(4.6.4) sin
(nπx

L

)
sin
(mπy

W

)
cos

cπt

√
n2

L2 +
m2

W2


We will assume W = 1 , L = 2, c = 1, and define f (x, y) = xy(1− x2)(8−

y3), which plots as figure 4.6.3

declare ( n , i n t e g e r ) ;
declare (m, i n t e g e r ) ;
coef [ n ,m] : = 2 * i n t e g r a t e ( i n t e g r a t e ( x * y*(1 − x ^2)*
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FIGURE 4.6.4. First three terms of a two-
dimensional Fourier series

(8 −y ^3)* s i n (%pi *n* x ) * s in (%pi *m* y /2) ,
x , 0 , 1 ) , y , 0 , 2 ) ;

which gives

coef(n, m) = −
12
(
− (384π2m2−768)(−1)m

π5m5 − 768
π5m5

)
(−1)n

π3n3

Now we write a function to add up terms of the two-dimensional Fourier
series

f i r s t _ n ( n , x , y ) : = block (
[ ] ,
sum(sum(

coef [ i , j ] * s i n (%pi * i * x ) * s in (%pi * j * y/2)
, i , 1 , n ) , j , 1 , n ) )

If we plot the first three terms, via

plot3d ( f i r s t _ n ( 3 , x , y ) , [ x , 0 , 1 ] , [ y , 0 , 2 ] ) ;

we get figure 4.6.4, which is not bad.
Now we apply equation 4.6.4 on the preceding page to get a solution of

the wave equation

∞

∑
n=1

∞

∑
m=1

coef(n, m) sin (nπx) sin
(mπy

2

)
cos

(
πt

√
n2 +

m2

4

)
which we code up via

v ibra te_n ( n , x , y , t ) : = block (
[ ] ,
sum(sum(
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FIGURE 4.6.5. After .4 time units

coef [ i , j ] * s i n (%pi * i * x )
* s i n (%pi * j * y/2)
* cos(%pi * t * s q r t ( i ^2+ j ^2/4))

, i , 1 , n ) , j , 1 , n ) )

At time t = .4, our plot

plot3d ( v ibra te_n ( 3 , x , y , . 4 ) , [ x , 0 , 1 ] , [ y , 0 , 2 ] ) ;

looks like figure 4.6.5. Notice that the vibration is asymmetric (you might have
to rotate it a bit to see this).

EXERCISES.

2. Show that∫ π

−π

∫ π

π
sin (nx) sin (my) · sin (n̄x) sin (m̄y) dxdy = 0

if n ̸= n̄ or m ̸= m̄.



CHAPTER 5

Integral transforms

“We are rag dolls made out of many ages and skins,
changelings who have slept in wood nests or hissed in the
uncouth guise of waddling amphibians. We have played
such roles for infinitely longer ages than we have been
men. Our identity is a dream. We are process, not reality,
for reality is an illusion of the daylight — the light of our
particular day.”

— Loren Eiseley.

5.1. The Fourier Transform

In this chapter we will begin by approaching Fourier series from
another direction, using the simple fact that∫ π

−π
einx · e−imxdx =

{
2π if n = m
0 otherwise

If f (x) is a function, we can compute coefficients via

ak =
1

2π

∫ π

−π
f (x)e−ikxdx

and get a series

f (x) =
∞

∑
k>−∞

akeikx

If we expand our old friend, f (x), defined in equation 3.2.1 on page 35,
we get

ak =
1

2π

(∫ 0

−1
e−ikxdx +

∫ 1

0
x2e−ikxdx

)
or

a [ k ] : = ( i n t e g r a t e (%e^(−% i * k * x ) , x , − 1 , 0 )
+ i n t e g r a t e ( x^2*%e^(−% i * k * x ) , x , 0 , 1 ) ) / ( 2 * % pi )

f i r s t _ n ( k , x ) : = sum( a [ j ]*%e^(% i * j * x ) , j , −k , k ) ;

Now, suppose we want to expand our horizons from [−π, π] to
[−L, L]. We rewrite the equations above to

ak =
1

2L

∫ L

−L
f (x)e−i2πkx/Ldx

81
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and the Fourier series becomes

f (x) =
∞

∑
k>−∞

ake2πikx/L

and we will rewrite this slightly

ak/L =
∫ L

−L
f (x)e−2πixk/Ldx

and

f (x) =
1

2L

∞

∑
k>−∞

ak/Le2πikx/L

Now, we let L → ∞ and set s = k/L and get

as = a(s) =
∫ ∞

−∞
f (x)e−2πixsdx

f (x) =
∫ ∞

−∞
a(s)e2πixsds

and a(s) is defined to be the Fourier Transform of f (x) — if these inte-
grals are well-defined!

Let’s compute the Fourier transform of our old friend, f (x), de-
fined in 3.2.5 on page 37 and plotted in figure 3.2.8 on page 39.

a(s) =
∫ 0

−1
e−2πixsdx +

∫ 1

0
x2e−2πixsdx

or

a ( s ) : = i n t e g r a t e (%e^(−2*% pi*% i * s * x ) , x , − 1 , 0 )
+ i n t e g r a t e ( x^2*%e^(−2*% pi*% i * s * x ) , x , 0 , 1 )

Now we plot the real and imaginary parts of a(s)

plot2d ( [ r e a l p a r t ( a ( s ) ) , imagpart ( a ( s ) ) ] , [ s , − 4 , 4 ] ) ;

to get figure 5.1.1 on the facing page. The plot-command complains
about division by zero, although it manages to generate the plot.

To see why, do indefinite integrals:

i n t e g r a t e (%e^(−2*% pi*% i * s * x ) , x )

gives
ie−2πixs

2πs
i n t e g r a t e ( x^2*%e^(−2*% pi*% i * s * x ) , x )

gives (
2π2is2x2 + 2πsx − i

)
e−2πixs

4π3s3

with s in the denominator in both cases! On the other hand a(0) is a
perfectly well-defined 4/3, as the plot shows.
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FIGURE 5.1.1. Fourier transform of f (x)

We have effectively decomposed f (x) into a continuous infinity of
periodic functions. The Fourier transform recognizes periodic behavior
of a function and gives its intensity at different frequencies.

5.2. The discrete Fourier transform

Although Maxima doesn’t have built-in commands to implement
Fourier transforms analytically, it does implement fast numeric algo-
rithms for discrete Fourier transforms.

If {xj} i = 1 . . . n is a sequence of numbers, its discrete Fourier
transform is defined via

(5.2.1) y(k) =
1
n

n−1

∑
j=0

x(j)e2πi·jk/n

and its inverse is defined by

(5.2.2) x(j) =
n−1

∑
j=0

y(k)e−2πi·jk/n

These are the definitions used by Maxima; there are many oth-
ers. Many (most?) authors swap these definitions — they define the
Fourier transform via equation 5.2.2 and the inverse via 5.2.1.

Although these are straightforward enough, they become cum-
bersome when the sequences are long (as they are in practice). An
algorithm was discovered when n = 2m for some integer m > 0 — at-
tributed to Cooley and Tukey (but really discovered centuries earlier
by Gauss!), called the Fast Fourier Transform.
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James William Cooley (1926 – 2016) was an American mathematician.
He was a programmer on John von Neumann’s computer at the Insti-
tute for Advanced Study, Princeton, NJ, from 1953 to 1956, where he
notably programmed the Blackman–Tukey transformation.
He worked on quantum mechanical computations at the Courant In-
stitute, New York University, from 1956 to 1962, when he joined the
Research Staff at the IBM Watson Research Center, Yorktown Heights,
NY. Upon retirement from IBM in 1991, he joined the Department of
Electrical Engineering, University of Rhode Island, Kingston, where
he served on the faculty of the computer engineering program.

John Wilder Tukey (1915 – 2000) ) was an American mathematician
and statistician, best known for the development of the fast Fourier
Transform (FFT) algorithm and box plot. The Tukey range test, the
Tukey lambda distribution, the Tukey test of additivity, and the Teich-
müller–Tukey lemma all bear his name. He is also credited with coin-
ing the term ‘bit’ and the first published use of the word ‘software’.

The Fast Fourier Transform commands occur in a library loaded
via

load ( " f f t " )

The most basic commands in question are fft and inverse_fft. The
following code shows that they really are inverses.

load ( " f f t " ) ;
fpprintprec : 4 ; /* number of d i g i t s to p r i n t */
L : [ 1 , 1 + %i , 1 − %i , −1 , −1 , 1 − %i , 1 + %i , 1 ] ;
L1 : f f t ( L ) ;
[ 0 . 5 , 0 . 5 , 0 . 2 5 %i − 0 . 2 5 , ( − 0 .3536 %i ) − 0 . 3 5 3 6 ,
0 . 0 , 0 . 5 , ( − 0 . 2 5 %i ) − 0 . 2 5 , 0 .3536 %i + 0 . 3 5 3 6 ]
L2 : i n v e r s e _ f f t ( L1 ) ;
[ 1 . 0 , 1 . 0 %i + 1 . 0 , 1 . 0 − 1 . 0 %i , − 1 . 0 , − 1 . 0 ,

1 . 0 − 1 . 0 %i , 1 . 0 %i + 1 . 0 , 1 . 0 ]
lmax ( abs ( L2 − L ) ) ;

0 . 0

The most straightforward application of the discrete Fourier transform
is detecting periodic behavior in sequences of numbers.

To introduce a more interesting (and widely-used) application, we
need:

DEFINITION 5.2.1. Let A = {ai}, i = 0, . . . , n − 1 and B = {bj},
j = 0, . . . m − 1 be sequences of numbers. The convolution A⋆B =
{ck}, k = 0, . . . , n + m − 1 of these sequences is defined by

ct =
t

∑
i=0

aibt−i
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where ai = 0 if i /∈ 0, . . . n − 1 and bj = 0 if j /∈ 0, . . . , m.

REMARK. This also well-defined in the continuous case

f⋆g(s) =
∫ ∞

−∞
f (x)g(s − x)dx

We have the well known

THEOREM 5.2.2 (Convolution Theorem). If A is a sequence of num-
bers, let F(A) denote the discrete Fourier transform of A. If A and B are
finite sequences of numbers of length n, then F(A⋆B)i = n · F(A)i · F(B)i
for all i. In particular

(5.2.3) A⋆B = n · F−1 (F(A) · F(B))

where ‘·’ represents element-by-element multiplication.

REMARK. See [50] for a proof. So Fourier transforms convert con-
volutions into simple multiplications. If we follow the widespread
convention mentioned above, the factor of n is unnecessary. In other
words, using Maxima’s conventions

(5.2.4) A⋆B = F
(
F−1(A) · F−1(B)

)
A similar result is true in the continuous case (without the factor of

n!).
The fast Fourier transformation and its inverse are so fast, equa-

tion 5.2.3 is faster than direct computation — at least if the sequences
are sufficiently large.

The reader might ask

Why do we care about convolutions?

They have applications to

(1) Analyzing signals.
(2) Multiplication of polynomials (the coefficients of the prod-

uct are a convolution of the coefficients of the factors), if the
polynomials are large (hundreds of terms).

(3) Multiplication of numbers with hundreds of digits — we can
regard them as polynomials evaluated at 10 with coefficients
that are integers 0 . . . 9.

EXAMPLE 5.2.3. Suppose we want to form the convolution of the
sequences

{1, 4, 2, 5} and {3, 1, 3, 2}
representing coefficients of cubic polynomials 1 + 4x + 2x2 + 5x3 and
3 + x + 3x2 + 2x3. Their convolution will be of length 7 so we extend
these to length 8 = 23 by zeroes on the right and execute the code:
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load ( " f f t " ) ;
fpprintprec : 4 ; /* number of d i g i t s to p r i n t */
A : [ 1 , 4 , 2 , 5 , 0 , 0 , 0 , 0 ] ;
B : [ 3 , 1 , 3 , 2 , 0 , 0 , 0 , 0 ] ;
fa : f f t (A) ;
fb : f f t ( B ) ;
f c : fa * fb ; / * element by element m u l t i p l i c a t i o n */
C : r e a l p a r t ( 8 * i n v e r s e _ f f t ( f c ) ) ;

You will notice that the output of the inverse_fft command has imag-
inary parts that are very small (∼ 10−17). All the intermediate compu-
tations used complex numbers that don’t quite cancel in the end due
to round-off errors. The simplest way to deal with these is to take the
realpart.

There are other Maxima commands to take transforms of
real-valued sequences (with a faster algorithm) or to use bfloat’s in the
computations (so the round-off errors are much smaller).

EXERCISES.

1. Show that convolution is commutative and associative. In other
words, if A, B, and C are sequences of numbers, show that

A⋆B = B⋆A

A⋆(B⋆C) = (A⋆B)⋆C

2. In example 5.2.3 on the preceding page, why did we extend the
sequences until they had length 8?

3. Run example 5.2.3 on the previous page using equation 5.2.4
on the preceding page.

4. Compute the cube of the polynomial 2 − 4x + x2 − x3 using
convolution and equation 5.2.4 on the previous page.

5.3. The Laplace Transform

The Fourier transform inspired Laplace to develop a variation of
it that is useful in solving linear differential equations. The Laplace
Transform of a function, f (x), is defined by

(5.3.1) L( f )(s) =
∫ ∞

0
e−sx f (x)dx



5.3. THE LAPLACE TRANSFORM 87

(if the integral is well-defined!) with an inverse

L−1(F)(x) = lim
T→∞

1
2πi

∫ γ+iT

γ−iT
exsF(s)ds

where γ is a real number set to something that makes the integral con-
verge (if possible!).

Pierre-Simon, marquis de Laplace (1749 – 1827) was a French scholar
whose work was important to the development of engineering, math-
ematics, statistics, physics, astronomy, and philosophy. He summa-
rized and extended the work of his predecessors in his five-volume
Mécanique céleste (Celestial Mechanics) (1799–1825). This work trans-
lated the geometric study of classical mechanics to one based on calcu-
lus, opening up a broader range of problems. In statistics, the Bayesian
interpretation of probability was developed mainly by Laplace.
Laplace formulated Laplace’s equation, and pioneered the Laplace
transform which appears in many branches of mathematical physics,
a field that he took a leading role in forming. The Laplacian differen-
tial operator, widely used in mathematics, is also named after him. He
restated and developed the nebular hypothesis of the origin of the So-
lar System and was one of the first scientists to suggest an idea similar
to that of a black hole.
Laplace is regarded as one of the greatest scientists of all time. Some-
times referred to as the French Newton or Newton of France, he has
been described as possessing a phenomenal natural mathematical fac-
ulty superior to that of almost all of his contemporaries. He was
Napoleon’s examiner when Napoleon attended the École Militaire in
Paris in 1784. Laplace became a count of the Empire in 1806 and was
named a marquis in 1817, after the Bourbon Restoration.

Both the Laplace transform and its inverse are built in to Maxima
(it’s not necessary to load any libraries):

laplace ( x ^3 ,x , s ) ; /* The Laplace transform . */

gives
6
s4

i l t (6/ s ^4 , s , x ) ; /* The Inverse Laplace transform . */

recovers x3.
As we said earlier, the Laplace Transform is useful in solving lin-

ear differential equations. To see why, note that

L( f ′(x) = s ·L( f )− f (0)

which you can see by integrating equation 5.3.1 on the facing page by
parts or typing
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FIGURE 5.3.1. Harmonic oscillator

laplace ( ’ d i f f ( f ( x ) , x ) , x , s ) ;

to get

s * laplace ( f ( x ) , x , s ) − f ( 0 )

Suppose we want to solve the differential equation of a harmonic os-
cillator as in figure 5.3.1.

We assume the mass bobs back and forth without friction and get
a differential equation like

(5.3.2)
d2 f
dx2 + 3 f = 0

where f is the displacement of the mass and x is time. We apply the
Laplace Transform to get

− f ′(0) + s2L( f ) + 3L( f )− s f (0) = 0

and solve for L( f ) to get

L( f ) =
s f (0) + f ′(0)

s2 + 3
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FIGURE 5.3.2. Simple harmonic motion

The command

i l t ( ( s * f ( 0 ) + fp ( 0 ) ) / ( s ^2+3) , s , x ) ;

shows that

f (x) =
f ′(0) sin

(√
3x
)

√
3

+ f (0) cos
(√

3x
)

Figure 5.3.2 shows a plot of the motion when f ′(0) = 0 and f (0) = 1.
Now consider the case of a forcing function:

d2 f
dx2 + 3 f = sin(2x)

Here, the function sin(2x) is driving the oscillator. We apply the
Laplace Transform to both sides of the equation to get

(5.3.3) − f ′(0) + s2L( f ) + 3L( f )− s f (0) =
2

s2 + 4
We can solve this for L( f ) (using solve!) to get

L( f ) =
f (0)s3 + f ′(0)s + 4s f (0) + 4 f ′(0) + 2

s4 + 7s2 + 12
Now we take the inverse Laplace Transform to get

f (x) =
( f ′(0) + 2) sin(

√
3x)√

3
+ f (0) cos(

√
3x)− sin(2x)

One nice aspect of this solution is that it explicitly shows the effect of
initial conditions.
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FIGURE 5.3.3. Forced harmonic motion

If f ′(0) = 0 and f (0) = 1, we get the motion in figure 5.3.3.
One shortcoming of the Maxima’s Laplace transform package is

its failure to deal with Heavyside functions. These are functions of the
form H(x − α) where H(x) is defined by

H(x) =

{
0 if x < 0
1 if x ≥ 0

These are interesting because:

� every piecewise-defined function can be expressed as a linear
combination of Heavyside functions and ordinary functions

� Laplace transforms of such functions can be easily calculated

LEMMA 5.3.1. Let f (x) be a function that has a Laplace transform and
let α ∈ R be such that α ≥ 0. Then

(5.3.4) L (H(x − α) f (x)) = e−αsL( f (x + α))

It follows that

(5.3.5) L−1 (e−αsg(s)
)
= H(x − α) ·L−1(g)(x − α)

PROOF. From the definition

L(H(x − α) f (x)) =
∫ ∞

0
e−xsH(x − α) f (x)dx

=
∫ ∞

α
e−xs f (x)dx
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Now let u = x − α, so x = u + α and substitute∫ ∞

α
e−xs f (x)dx =

∫ ∞

0
e−(u+α)s f (u + α)dx

= e−αs
∫ ∞

0
e−us f (u + α)dx

e−αsL( f (u + α))

□

EXAMPLE 5.3.2. Suppose the driving force of our harmonic oscil-
lator is given by

d(x) =

{
1 if 1/2 ≤ x ≤ 1
0 otherwise

Then d(x) = H(x − 1/2)− H(x − 1) and our version of equation 5.3.3
on page 89 is

− f ′(0) + s2L( f ) + 3L( f )− s f (0) = e−s/2 − e−s

giving

L( f ) =
s f (0) + f ′(0) + e−s/2 − e−s

s2 + 3

=
s

s2 + 3
f (0) +

1
s2 + 3

f ′(0) +
e−s/2

s2 + 3
− e−s

s2 + 3
(5.3.6)

Now we isolate each term of the form

e−asr(s)

where a is a real number and compute

H(x − a)L−1(r)(x − a)

In the case of equation 5.3.6, we take the inverse Laplace transform
using the ilt-command for the first two terms, and the ilt-command
coupled with equation 5.3.5 on the facing page to handle the remain-
ing two terms:

f (x) = cos(
√

3 · x) f (0) +
sin(

√
3 · x)√
3

f ′(0)

+ H(x − 1/2) · sin(
√

3 · (x − 1/2))√
3

− H(x − 1) · sin(
√

3 · (x − 1))√
3

If we assume that the string was initially at rest, we get

f (x) = H(x− 1/2) · sin(
√

3 · (x − 1/2))√
3

− H(x− 1) · sin(
√

3 · (x − 1))√
3

which is plotted in figure 5.3.4 on the next page. Here, we have coded
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FIGURE 5.3.4. Discontinuous driving force

H( x ) : = block (
[ ] ,
i f ( x >=0) then return ( 1 ) ,
0 )

EXERCISES.

1. Is the function depicted in figure 5.3.3 on page 90 periodic?

2. Represent the piecewise function

f (x) =


0 if x < 2
x2 if x < 3
−x if x < 5
0 if x ≥ 5

as a linear combination of Heavyside functions (the coefficients may
be arbitrary ordinary functions).

3. Use Laplace transforms to solve the differential equation

d2y
dx2 +

dy
dx

+ x = f (x)

where f (x) is defined in exercise 2.



CHAPTER 6

Orthogonal polynomials

“It is a matter for considerable regret that Fermat, who culti-
vated the theory of numbers with so much success, did not
leave us with the proofs of the theorems he discovered. In
truth, Messrs Euler and Lagrange, who have not disdained
this kind of research, have proved most of these theorems,
and have even substituted extensive theories for the iso-
lated propositions of Fermat. But there are several proofs
which have resisted their efforts.”
— Adrien-Marie Legendre.

6.1. Introduction

As we saw in section 4.3 on page 58, it is possible to expand func-
tions (even discontinuous ones!) in a series of sines and cosines. How
was this possible? After some thought, it becomes clear that the key
was equations 4.3.3 on page 59, 4.3.5 on page 60, and 4.3.7 on page 60
— the so-called orthogonality relations.

Is it possible to find similar relations between other sets of func-
tions?

We will construct a set of orthogonal polynomials {Pi(x)} with

(6.1.1)
∫ 1

−1
Pi(x)Pj(x)dx = 0

if i ̸= j.
The simplest candidate for P0 is 1, so we will pick it. The linear

polynomial is of the form a0 + a1x∫ 1

−1
1 · (a0 + a1x)dx = 2a0

For the polynomials to be orthogonal, we set a0 = 0 and set a1 = 1, so
p1(x) = x. We also have ∫ 1

−1
P1(x)2dx =

2
3

The general form of P2(x) is a0 + a1x + a2x2. We get

i n t e g r a t e ( 1 * ( a_0+a_1 * x+a_2 * x ^2) , x , − 1 , 1 ) ; ratsimp ( % ) ;

93
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which gives
2a2 + 6a0

3
i n t e g r a t e ( x * ( a_0+a_1 * x+a_2 * x ^2) , x , − 1 , 1 ) ; ratsimp ( % ) ;

gives
2a1

3
We uniquely determine coefficients by requiring Pi(1) = 1:

solve ( [ 2 * a_2 +6* a_0 =0 ,2* a_1 =0 , a_0+a_1+a_2 =1] ,
[ a_0 , a_1 , a_2 ] )

and get [[
a0 = −1

2
, a1 = 0, a2 =

3
2

]]
so

P2(x) =
3
2

x2 − 1
2

In this fashion, we can inductively construct a sequence of polynomi-
als {Pi(x)} satisfying equation 6.1.1 on the preceding page. Of course,
we are not the first people to think of this. The {Pi(x)} are called the
Legendre Polynomials after the first person to study them.

Adrien-Marie Legendre (1752 – 1833) was a French mathematician
who made numerous contributions to mathematics. Well-known and
important concepts such as the Legendre polynomials and Legendre
transformation are named after him.
In 1782, he first introduced his polynomials as coefficients in the ex-
pansion of the Newtonian Potential energy

1
|x − x′| =

1√
|x|2 + |x′|2 − 2|x||x′| cos θ

(6.1.2)

=
∞

∑
ℓ=0

|x′|ℓ

|x|ℓ+1 Pℓ(cos θ)

where θ is the angle between the vectors x and x′, and |x′| < |x| — see
figure 6.1.1 on the next page.
Figure 6.1.2 on the facing page show plots of the first six Legendre
polynomials.

Nowadays, they crop up when one converts the heat and wave
equations to spherical coordinates (latitude, longitude, and radius).
Since the Schrödinger Wave equation is related to the Heat equation,
Legendre polynomials also are widely used in Quantum Mechanics.

Legendre and others have discovered some of their properties:
Besides orthogonality, we have

(6.1.3)
∫ 1

−1
Pn(x)2dx =

2
2n + 1
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FIGURE 6.1.2. The first six Legendre polynomials

(this isn’t obvious!).
Luckily, people have compiled a Maxima library of Legendre

polynomials (and many other systems of orthogonal polynomials)
accessed by

load ( " orthopoly " )

The Legendre polynomials are given by legendre_p(n,x). If we type

legendre_p ( 5 , x )

we get

−15 (1 − x)− 63(1 − x)5

8
+

315(1 − x)4

8
− 70(1 − x)3 +

105(1 − x)2

2
+ 1
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and expand(%) gives a simplified form

63x5

8
− 35x3

4
+

15x
8

Recall our old friend, the discontinuous function f (x), plotted in 3.2.8
on page 39:

f ( x ) := block ( [ ] , / * no l o c a l v a r i a b l e s * /
i f ( x<−1) then return ( 0 ) ,
i f ( x <0) then return ( 1 ) ,
i f ( x <=1) then return ( x ^2) ,
0 ) ; / * d e f a u l t f i n a l v a l u e * /

We’ll expand this in a series of Legendre polynomials using the same
methods as for Fourier series:

ak =

∫ 1
−1 legendre_p(k, x) f (x)dx∫ 1
−1 legendre_p(k, x)2dx

Translated into Maxima, this is

a [ n ] : = ( ( 2 * n + 1 ) / 2 ) * ( i n t e g r a t e ( legendre_p ( n , x ) , x , − 1 , 0 )
+ i n t e g r a t e ( legendre_p ( n , x ) * x ^2 ,x , 0 , 1 ) ) ;

where
2n + 1

2
=

1∫ 1
−1 legendre_p(k, x)2dx

— see equation 6.1.3 on page 94. We finally get our series:

part ia l_sum ( k , x ) : =sum( a [ n ] * legendre_p ( n , x ) , n , 0 , k )

If we plot the first five terms against f (x):

plot2d ( [ ’ f ( x ) , part ia l_sum ( 5 , x ) ] , [ x , − 1 , 1 ] ) ;

we get figure 6.1.3 on the next page.
If we try 20 terms, we get figure 6.1.4 on the facing page. The Le-

gendre series is clearly trying to approximate f (x) — just as a Fourier
series did.

As with Fourier series, it turns out1 that the Legendre series con-
verges in the manner

lim
n→∞

∫ 1

−1
(partial_sum(n, x)− f (x))2 dx = 0

Many applications of Legendre polynomials come from
equation 6.1.2 on page 94: if we are in spherical coordinates and have
a charge situated at the end of vector x′, the potential energy at the
end of vector x is expressed in the series of Legendre polynomial
given above.

1I.e., we’re not going to prove this here!
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FIGURE 6.1.3. First 5 terms of a Legendre series
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FIGURE 6.1.4. First 20 terms of a Legendre series

EXERCISES.

1. Legendre polynomials satisfy Bonnet’s Recursion Formula

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

Write a Maxima function to compute Pn(x), using this.

2. Expand sin x in a series of Legendre polynomials and compare
with the Taylor series of the sine-function.

3. Do three-dimensional plots of P2(cos θ), P3(cos θ), P4(cos θ) in
cylindrical coordinates, where θ is the angle from the x − y-plane and
radius is 1.
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FIGURE 6.2.1. The first four Chebyshev polynomials

6.2. Weighted orthogonality

There are many other systems of orthogonal polynomials in com-
mon use. We will only touch on a few of them.

6.2.1. Chebyshev Polynomials. We begin with Chebyshev Poly-
nomials, {Tn(x)}, defined by

(6.2.1) Tn(cos θ) = cos nθ

They are orthogonal in the sense that2

(6.2.2)
∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx =


0 if |m| ̸= |n|
π if n = m = 0
π/2 if n = m > 0

so they are orthogonal with a weight-function

1√
1 − x2

Pafnuty Lvovich Chebyshev (Пафну́тий Льво́вич Чебышёв) (1821 –
1894) was a Russian mathematician and considered to be the founding
father of Russian mathematics.

Figure 6.2.1 shows the first four Chebyshev polynomials.

2This is easily derived from definition 6.2.1, equations 4.3.3 on page 59, 4.3.6 on
page 60, and 4.3.7 on page 60 and a suitable u-substitution.
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a0 :(1/% pi ) * ( i n t e g r a t e (1/ s q r t (1 −x ^2) , x , − 1 , 0 )
+ i n t e g r a t e ( x^2/ s q r t (1 −x ^2) , x , 0 , 1 ) ) ;
a [ n]:=(1/% pi ) *
( i n t e g r a t e ( chebyshev_t ( n , x )/ s q r t (1 −x ^2) , x , − 1 , 0 )
+ i n t e g r a t e ( chebyshev_t ( n , x ) * x^2/ s q r t (1 −x ^2) , x , 0 , 1 ) ) ;
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FIGURE 6.2.2. First 20 terms of a Chebyshev expansion

When we expand a functions (like f (x)) in a series of Chebyshev
polynomials, we must take the weight function into account:

a0 =
1
π

∫ 1

−1

f (x)√
1 − x2

dx

ak>0 =
2
π

∫ 1

−1

f (x)Tk(x)√
1 − x2

dx

In Maxima’s orthopoly package, they are called
chebyshev_t (n, x). Our Maxima commands are and we sum up
terms of the series via

part ia l_sum ( k , x ) : = a0+
sum( a [ n ] * chebyshev_t ( n , x ) , n , 1 , k )

If we plot the first twenty terms against our discontinuous function
f (x):

plot2d ( [ ’ f ( x ) , part ia l_sum ( 2 0 , x ) ] , [ x , − 1 , 1 ] ) ;

we get figure 6.2.2. The weight-function plays a part in how the
Chebyshev series converges to f (x). We have

lim
n→∞

∫ 1

−1

(partial_sum(n, x)− f (x))2
√

1 − x2
dx = 0
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FIGURE 6.2.3. Weight-function for Chebyshev expansions

As figure 6.2.3 shows, it prioritizes the endpoints of the interval
[−1, 1].

It is known (which we won’t prove!) that for continuous func-
tions (something our f (x) isn’t) the Chebyshev series converges more
rapidly than any other series of orthogonal polynomials — see [43].
This means they have important applications in numerical analysis.
For instance many software-library functions for sines and cosines use
Chebyshev expansions.

6.2.2. Laguerre Polynomials. Laguerre Polynomials are defined
as certain solutions of the Laguerre Differential equation:

x
d2y
dx2 + (1 − x)

dy
dx

+ ny = 0

where n ≥ 0 is an integer. The only nonsingular solution of this is the
nth Laguerre polynomial, Ln(x) =laguerre (n, x). These polynomials
are orthogonal with respect to the weight function e−x:∫ ∞

0
e−xlaguerre(n, x) · laguerre(m, x)dx = 0 if n ̸= m

and3 ∫ ∞

0
e−xlaguerre(n, x)2dx = 1

3These are not obvious!
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FIGURE 6.2.4. Laguerre polynomials

Edmond Nicolas Laguerre (1834 – 1886) was a French mathematician
and a member of the Académie des sciences (1885). His main works
were in the areas of geometry and complex analysis. He also inves-
tigated orthogonal polynomials. Laguerre’s method is a root-finding
algorithm tailored to polynomials.

The Laguerre polynomials arise in quantum mechanics, in the ra-
dial part of the solution of the Schrödinger equation for a one-electron
atom. We will expand our discontinuous function in these polynomi-
als with coefficients

a0 : i n t e g r a t e (%e^(−x ) * x ^2 ,x , 0 , 1 ) ;
a [ n ] : = i n t e g r a t e ( l aguerre ( n , x ) * x^2*%e^(−x ) , x , 0 , 1 ) ;

and partial sum

part ial_sum ( k , x ) : = a0+sum( a [ n ] * laguerre ( n , x ) , n , 1 , k )

If we plot the first 100 terms of the series, we get figure 6.2.5, which
doesn’t look very good until you realize that it only converges with
the weight function e−x.

In other words ∫ ∞

0
e−x| f (x)− pn(x)|dx → 0
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FIGURE 6.2.5. Expansion of f(x) in 100 Laguerre polynomials

as n → ∞, where pn(x) is the nth partial sum of a Laguerre series.
Since e−x tapers off rapidly as x increases, we don’t really care what
pn(x) does for large values of x.

Laguerre polynomials are often used to numerically estimate in-
tegrals of the form ∫ ∞

0
e−x f (x)dx

(for the degree-n form of the equation with n ≥ 1) via the Gauss-
Laguerre quadrature formula

(6.2.3)
∫ ∞

0
e−x f (x)dx ≈

n

∑
i=1

wi f (xi)

where the {xi} are the roots of Ln(x) and the weights {wi} are given
by

(6.2.4) wi =
xi

(n + 1)2Ln+1(xi)

see [55].
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EXERCISES.

1. Code a function that does Gauss-Laguerre quadrature using
equations 6.2.3 and 6.2.4 on the preceding page . Hint: use the allroots
command to find the roots of Ln(x)).

6.2.3. Hermite polynomials. These are orthogonal with respect
to the weight function e−x2

. They exist in two closely-related forms,
the physicist’s Hermite polynomials, defined by

Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
and the probability-theorist’s form

Hen(x) = (−1)nex2/2 dn

dxn

(
e−x2/2

)
We will consider the physicist’s form here, which appear naturally in
the Schrödinger wave equation for a harmonic oscillator in quantum
mechanics.

Their orthogonality relations are∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx =

{
0 if n ̸= m√

π2nn! otherwise

In the orthopoly library, the nth Hermite polynomial is denoted her-
mite(n,x). The first five Hermite polynomials are plotted in figure 6.2.6
on the following page.

Charles Hermite (1822 – 1901) was a French mathematician who did
research concerning number theory, quadratic forms, invariant theory,
orthogonal polynomials, elliptic functions, and algebra.
Hermite polynomials, Hermite interpolation, Hermite normal form,
Hermitian operators, and cubic Hermite splines are named in his
honor. One of his students was Henri Poincaré.
He did not discover Hermite polynomialsa: Hermite polynomials were
defined by Pierre-Simon Laplace in 1810 and studied in detail by
Pafnuty Chebyshev in 1859. Chebyshev’s work was overlooked, and
they were named later after Charles Hermite, who wrote on the poly-
nomials in 1864, describing them as new.

aSee Stigler’s Law of Eponymy in the index!
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x

1
2*x

-2*(1-2*x^2)
-12*x*(1-(2*x^2)/3)

12*((4*x^4)/3-4*x^2+1)

-10

-5

 0

 5

 10

 0  1  2  3  4  5

FIGURE 6.2.6. Hermite polynomials

EXERCISES.

2. Expand our discontinuous function, f (x), (see equation 3.2.1
on page 35) in Hermite polynomials.



CHAPTER 7

Linear Algebra

“Life stands before me like an eternal spring with new and
brilliant clothes.”
— Carl Friedrich Gauss.

7.1. Introduction

We assume the reader is familiar with the basic concepts of linear
algebra — see [58, chapter 6] as a general reference.

Initially, the focus of linear algebra was solving systems of lin-
ear equations in multiple variables. Some 4000 years ago, Babyloni-
ans were able to solve pairs of linear equations in two unknowns. In
200BC, the Chinese publication, “Nine Chapters of the Mathematical
Art” (see [36]) showed how to solve systems of three equations in three
unknowns.

The solve-command can handle simple systems of linear equa-
tions:

Given

2x + 3y = 5

6x − y = 2(7.1.1)

where we must solve for x and y. If we type

solve ( [ 2 * x+3*y =5 ,6* x−y = 2 ] , [ x , y ] )

and Maxima replies with[[
x =

11
20

, y =
13
10

]]
Here’s another example:

x + 2y − z = 0
3x − y + 2z = 0

which we code as

solve ( [ x+2*y−z =0 ,3* x−y+2* z = 0 ] , [ x , y , z ] )

and Maxima replies with[[
x = −3%r1

7
, y =

5%r1
7

, z = %r1
]]

105
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Here, Maxima has introduced an auxiliary variable, %r1, that can take
on arbitrary values, showing that there are an infinite number of solu-
tions to this system.

In 1848, Sylvester realized that an array of coefficients was all that
really mattered in these equations and coined the term “matrix” for
them from the Latin word for “mother” and “womb”.

Coding matrices in Maxima is done with the matrix-command:

a : matrix ( [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] )

gives 1 2 3
4 5 6
7 8 9


The usual operations ‘+’ and ‘-’ work for matrices. The multiplication-
operation, ‘∗′ multiplies them element-by-element, which is not what
we want. To correctly multiply matrices, use the ‘.’-operator.

For instance, if we type

b : matrix ( [ 1 , 2 , − 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 1 0 ] )

then

a . b

produces  30 36 39
66 81 78

102 126 117


a+b

produces  2 4 0
8 10 12

14 16 19


wxmaxima has a short-cut to entering matrices: select the menu-

item Matrix▷Enter Matrix .

NOTE 7.1.1. Matrices are always assumed to be two-dimensional,
even if they only have one row! So, if we define

a : matrix ( [ 1 , 2 , − 3 ] )

we access the elements with two subscripts,

a [ 1 , 1 ] , a [ 1 , 2 ] , a [ 1 , 3 ]

rather than one.
Given a matrix, one can determine how many rows it has via the

length-command:
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length ( b )

returns
3

7.1.1. Matrix-creation commands. Besides the matrix-command,
we have several others to create matrices:

(1) the ident(n)-command creates an n × n identity matrix. If M
is an n × n matrix, identfor(M) is an n × n identity matrix.

(2) the zeromatrix(m, n)-command creates an m × n matrix of
zeroes.

(3) the genmatrix(ident,m,n)-command is the most powerful of
the matrix-creation commands. If ident is an identifier with
no other properties, genmatrix produces an m × n matrix
with subscripted copies of ident. For example

genmatrix ( a , 3 , 4 )

produces a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4


If ident is the name of a memoized function of two variables,
genmatrix plugs row and column numbers into ident and
posts the value of the function to the array

b [ i , j ] : = i + j ;
genmatrix ( b , 3 , 4 )

produces 2 3 4 5
3 4 5 6
4 5 6 7


ident can also be an anonymous lambda-function, so

genmatrix ( lambda ( [ i , j ] , i − j ) , 3 , 4 )

produces 0 −1 −2 −3
1 0 −1 −2
2 1 0 −1


7.1.2. Matrix operations. The transpose-command does what

you’d expect it to do:

transpose ( a )
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gives 1 4 7
2 5 8
3 6 9


We will also be concerned with vectors, which we will regard as

matrices with a single row or, more often, a single column. The ‘.’
operation doubles as the dot product for vectors, so

r : transpose ( matrix ( [ 1 , 2 , − 3 ] ) )

produces  1
2
−3


and

s : transpose ( matrix ( [ 4 , 5 , 6 ] ) )

produces 4
5
6


Now

r . s

is undefined as a matrix-product, but gives the dot-product of r and s
as vectors, namely −4. Technically, the valid matrix product is

transpose ( r ) . s

which also produces the dot-product, −4.
We can write a simple function for the norm of a vector

norm ( v ) : = s q r t ( v . v ) ;

or, the technically more correct

norm ( v ) : = s q r t ( transpose ( v ) . v ) ;

Matrix-assignment, like

x : b

merely causes x to become an alias for b. Changes to x like

x [ 2 , 1 ] : − 1 0 0
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will be immediately reflected in b: 1 2 −3
−100 5 6

7 8 10


If we want an independent copy of a matrix, we must use the copyma-
trix-command

x : copymatrix ( b )

We can easily compute integral powers of matrices too:1

a^^2

produces  30 36 42
66 81 96

102 126 150


b^^−1

produces the inverse

b−1 =

 2
15 − 44

15
9
5

2
15

31
15 − 6

5
− 1

5
2
5 − 1

5


DEFINITION 7.1.2. To analyze more complex linear systems,

we simplify the matrix of coefficients by performing elementary
row-operations:
Type 1: subtracting a multiple of one row from another. Maxima com-

mand: rowop(M, i, j, theta) replaces row i in the matrix M by
row i - theta*row j.

Type 2: involves swapping two rows of a matrix. Maxima command:
rowswap(M,i,j) which swaps rows i and j of the matrix M.

Type 3: involves multiplying a row of a matrix by a nonzero constant.
There is no Maxima command to do this.

If the matrix consists of coefficients of a linear system, these oper-
ations produce a system that is mathematically equivalent to the orig-
inal. Our goal is to make the matrix triangular:

DEFINITION 7.1.3. An n × n matrix, A, is called upper-triangular
ifAi,j = 0 whenever i > j. The matrix, A, is lower triangular if Ai,j = 0
whenever j > i.

1The use of a single carat, ^, is also well defined but it raises the entries in the matrix
to powers, which is not correct.
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REMARK. The term “upper-triangular” comes from the fact that
A looks like 

A1,1 A1,2 · · · A1,n−1 A1,n

0 A2,2
. . . A2,n−1 A2,n

0 0
. . .

...
...

...
...

. . . An−1,n−1 An−1,n
0 0 · · · 0 An,n


The process of converting a matrix to upper triangular form is

called Gaussian Elimination.

Carl Friedrich Gauss (1777 – 1855) was a German mathematician and
physicist who made significant contributions to many fields in math-
ematics and science. Sometimes referred to as the Princeps mathemati-
corum (Latin for “the foremost of mathematicians”) and “the greatest
mathematician since antiquity”, Gauss had an exceptional influence
in many fields of mathematics and science, and is ranked among his-
tory’s most influential mathematicians.
In surveying land around Hannover, he invented many modern sur-
veying instruments and the field of differential geometry. This paved
the way for Riemannian geometry and Einstein’s theory of General
Relativity. He also discovered least-squares approximations (see sec-
tion 7.3.1 on page 119) for estimating orbits of planets and asteroids
given many slightly differing observations. Least squares was used to
predict the future location of the newly discovered asteroid, Ceres.
Ironically, Gauss didn’t discover Gaussian Elimination, which was first
mentioned (in Europe) by Isaac Newton. He did discover the fast
Fourier transform 160 years before its official discoverers, Cooley and
Tukey. This is a time-honored tradition in mathematics called Stigler’s
law of eponymya of naming results after people who didn’t discover
them.

aTrue to itself, it was first proposed by the sociologist, Robert Merton, not
Stigler ,!

Maxima has a triangularize-command to do this

t r i a n g u l a r i z e ( a )

produces 1 2 3
0 −3 −6
0 0 0


The related echelon-command produces a normalized form of this
matrix with the first nonzero entry of each row set to 1. The 1 that
begins each nonzero row is called its pivot. So

echelon ( a )
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/ * We must w r i t e a f u n c t i o n t o compute
r e d u c e d e c h e l o n form * /

reduced_echelon ( a ) : = block ( [ rows , co ls , k , temp ] ,
[ rows , c o l s ] : matrix_size ( a ) ,
temp : echelon ( a ) , / * t h i s c o p i e s a * /
k : min ( rows , c o l s ) ,
for i thru min ( rows , c o l s )

/ * Find p i v o t * /
do ( i f temp [ i , i ]=0 then

( k : i −1 , return ( ) ) ) ,
/ * C l e a r out column i * /

for i : k thru 2 step −1 do
( for j from i −1 thru 1 step −1

do temp : rowop ( temp , j , i , temp [ j , i ] ) ) ,
temp ) / * r e t u r n t h e r e s u l t * /

FIGURE 7.1.1. Code for a reduced echelon matrix

produces 1 2 3
0 1 2
0 0 0


where we have highlighted the pivots.

To solve a linear system, we really want a reduced echelon ma-
trix where we perform additional row-operations to make the pivot in
each row the only nonzero element in its column — see figure 7.1.1.

So

reduced_echelon ( a )

subtracts 2× row 2 from row 1 to produce1 0 −1
0 1 2
0 0 0


DEFINITION 7.1.4. If s = {v1, . . . , vn} are elements of Rn,their

span, Span(s) is the set of all possible linear combinations
n

∑
i=1

αivi

for αi ∈ R. It forms a subspace of Rn.

Recall that the column space of a matrix, A, is the vector space of
all vectors of the form Av for all vectors v. We have a columnspace-
command to compute this

columnspace ( a )
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span

1
4
7

 ,

2
5
8


Recall that the null space, Null(A), of a matrix, A, is the set of vectors,
v, such that Av = 0. This is the nullspace-command:

nullspace ( a )

span

−3
6
−3


Recall that determinants are defined by

DEFINITION 7.1.5. If M is an n × n matrix, its determinant, det(M)
is defined by

(7.1.2) det(M) = ∑
σ∈Sn

℘(σ)M1,σ(1) · · · Mn,σ(n)

where the sum is taken over all n! permutations in Sn. Here ℘(σ) is the
parity of a permutation, defined in terms of the number of inversions it
produces. An inversion exists for a permutation, σ, if there is a pair of
elements x, y such that x < y and σ(x) > σ(y).

℘(σ) =

{
+1 if the total number of inversions is even
−1 otherwise

REMARK. Equation 7.1.2 is due to Euler. It is not particularly
suited to computation of the determinant since it is a sum of n! terms.

DEFINITION 7.1.6. If B = ∏n
i=1[ai, bi] is a box in Rn, its volume,

vol(B) is defined by

vol(B) =
n

∏
i=1

(bi − ai)

This is used to define the Lebesgue measure:

DEFINITION 7.1.7. If R ⊂ Rn is a region, its outer Lebesgue measure
is defined by

λ(R) =

inf

{
∑

B∈C
vol(B):C is a countable set of boxes whose union covers R

}
Recall the geometric interpretation of the determinant:

THEOREM 7.1.8. If A is an n × n matrix, R ⊂ Rn, then

λ(A(R)) = |det A| · λ(R)
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REMARK. So the determinant gives the effect of a linear transfor-
mation on volumes. Analytic geometry and manifold theory considers
volumes to have signs, in which case we do not take the absolute value
of the determinant.

See [58] for a proof.

Maxima has a determinant-command that computes these effi-
ciently

determinant ( a )

0

determinant ( b )

15

More recently, Fateman has implemented a newdet-command
that is faster than determinant but uses more memory — see [25]. If

z =

 2x − 1 37 −9
3x2 + x 2x 3x

51 2x 7


then

newdet ( z )

produces

−66x3 − 761x2 + 6306x

EXERCISES.

1. What is the volume of the parallelepiped spanned by the three
vectors

v1 =

 1
5
6

 , v2 =

 2
1
3

 v3 =

 1
0
−1


?

2. What might the sign of the volume mean (when a determinant
has a negative sign)?



114 7. LINEAR ALGEBRA

7.2. Changes of basis

Recall that a basis of a vector-space is like a “coordinate system”
for it: every vector can be uniquely written as a linear combination of
the basis-elements.

Suppose we have a vector-space with basis {ei}, i = 1, . . . , n and
we are given a new basis {bi}. If x1

...
xn


is a vector in this new basis, then

x1b1 + · · ·+ xnbn =
[

b1 · · · bn
]
·

 x1
...

xn


is the same vector in the old basis, where P =

[
b1 · · · bn

]
is an

n × n matrix whose columns are the basis-vectors. Since the basis-
vectors are linearly independent, P is invertible. Since P converts from
the new basis to the old one, P−1 performs the reverse transformation.

For instance, suppose R3 has the standard basis and we have a
new basis

b1 =

 28
−25

7

 , b2 =

 8
−7
2

 , b3 =

 3
−4
1


We form a matrix from these columns:

P =

 28 8 3
−25 −7 −4

7 2 1


whose determinant is verified to be 1. The vector 1

−1
1


in the new basis is

b1 − b2 + b3 = P

 1
−1
1

 =

 23
−36
10


If we want to convert the vector 1

2
3


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in the standard basis into the new basis, we get

P−1

 1
2
3

 =

 1 −2 −11
−3 7 37
−1 0 4

 1
2
3

 =

 −36
122
11


and a simple calculation shows that

−36b1 + 122b2 + 11b3 =

 1
2
3


For matrices, changes of basis are a bit more complicated. Suppose

V is an n-dimensional vector-space and an n × n matrix, A, represents
a linear transformation

f : V → V
with respect to some basis. If {b1, . . . , bn} is a new basis for V, let

P = [b1, . . . , bn]

be the matrix whose columns are the bi. We can compute the matrix
representation of f in this new basis, Ā, via

Vold
A // Vold

P−1

��

Vnew

P

OO

Ā
// Vnew

In other words, to compute a matrix representation for f in the new
basis:

(1) convert to the old basis (multiplication by P)
(2) act via the matrix A, which represents f in the old basis
(3) convert the result to the new basis (multiplication by P−1).

We summarize this with

THEOREM 7.2.1. If A is an n × n matrix representing a linear trans-
formation

f : V → V
with respect to some basis {e1, . . . , en} and we have a new basis {b1, . . . , bn}
with

P =
[

b1 · · · bn
]

then, in the new basis, the transformation f is represented by

Ā = P−1 AP
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EXERCISES.

1. Solve the system of linear equations

2x + 3y + z = 8
4x + 7y + 5z = 20

−2y + 2z = 0

2. Solve the system

2x + 3y + 4z = 0
x − y − z = 0

y + 2z = 0

3. If V is a 3-dimensional vector-space with a standard basis and

b1 =

 8
4
3

 , b2 =

 −1
0
−1

 , b3 =

 2
1
1


is a new basis, convert the matrix

A =

 1 0 −1
2 1 3
−1 2 1


to the new basis.

7.3. Dot-products and projections

Dot-products have a great deal of geometric significance. We start
with:

DEFINITION 7.3.1. If v ∈ Rn, define ∥v∥ =
√

v • v — the norm of
v. A unit vector u ∈ Rn is one for which ∥u∥ = 1.

THEOREM 7.3.2. Let x, y ∈ Rn be two vectors with an angle θ between
them. Then

(7.3.1) cos(θ) =
x • y

∥x∥ · ∥y∥

PROOF. See theorem 6.2.66 in [58]. □

One immediate consequence is:

REMARK 7.3.3. Vectors u and v are perpendicular if and only if

u • v = 0
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u

v

Projuv

v⊥

θ

FIGURE 7.3.1. Projection of a vector onto another

DEFINITION 7.3.4. Let u ∈ Rn be a unit vector and v ∈ Rn be
some other vector. Define the projection of v onto u via

Projuv = (u • v)u

Also define
v⊥ = v − Projuv

REMARK. Note that Projuv is parallel to u with a length of ∥v∥ ·
cos θ, where θ is the angle between u and v. Also note that

u • v⊥ = u • (v − (u • v)u)

= u • v − (u • v)u • u
= u • v − u • v = 0

so v⊥ is perpendicular to u as per remark 7.3.3 on the preceding page.
Since v = Projuv+ v⊥, we have represented v as a sum of a vector

parallel to u and one perpendicular to it. See figure 7.3.1.

We can generalize projection to multiple dimensions:

DEFINITION 7.3.5. Let u1, . . . , uk ∈ Rn be a set of vectors. This set
is defined to be orthonormal if

(7.3.2) ui • uj =

{
1 if i = j
0 otherwise

As with a single vector, we can define projections in this case.

DEFINITION 7.3.6. If V is an inner-product space, v ∈ V, and S =
{u1, . . . , uk} is an orthonormal set of vectors with W = Span(S), then
define

ProjWv =
k

∑
i=1

(ui • v) ui

If v /∈ W, what is the relation between v and ProjWv?

PROPOSITION 7.3.7. If S = {u1, . . . , uk} is an orthonormal set of vec-
tors that span W ⊂ Rn, and v is any other vector, then

v⊥ = v − ProjWv
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has the property that v⊥ • uj = 0 for all j = 1, . . . , k, making it perpendic-
ular to all of W. It follows that ProjWv is the vector in W closest to v in the
sense that

∥v − w∥ > ∥v − ProjWv∥
for any w ∈ W with w ̸= ProjWv.

PROOF. See proposition 6.2.88 in [58]. □

Maxima has a library called eigen that adds additional functions
to the system. For instance:

load ( " eigen " ) ;
x : matrix ( [ 1 , 2 , 3 ] ) ;
u n i t v e c t o r ( x ) ;

results in (
1√
14

2√
14

3√
14

)
so it returns x

∥x∥

EXERCISES.

1. Compute the angle between the vectors 1
2
3

 and

 1
−2
0


2. Consider the unit vector

u =

 1/
√

3
1/

√
3

1/
√

3


If

v =

 1
2
3


compute Projuv and v⊥. Write Maxima functions to do this.

3. Given vectors

v1 =


1
2
3
4

 , v2 =


1
0
−1
1

 , v3 =


2
−1
−2
−1


in R4, find an orthonormal set {u1, u2, u3} with

Span{u1, u2, u3} = Span{v1, v2, v3}
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Hint: u1 = v1/∥v1∥. Now project v2onto u1, compute (v2)⊥,
and make that into a unit vector, etc. This process is called the Gram-
Schmidt Algorithm. The eigen library has a gramschmidt-command
that almost carries this out.

7.3.1. Linear least squares. Suppose we are given a collection of
data {(x1, y1), . . . , (xn, yn)} and would like to find a function f (x)
such that f (xi) = yi. Or, failing this, we would like to find a func-
tion that fits this data “as closely as possible”. What do we mean by
this?

Least squares tries to find a function that minimizes
n

∑
i=1

( f (xi)− yi)
2

as in figure 7.3.2 on the next page.
We will begin with the simplest case: f (x) = c1x + c0. We get a

vector

D =


c1x1 + c0 − y1
c1x2 + c0 − y2

...
c1xt−1 + c0 − yt−1

c1xt + c0 − yt

 =


x1 1
x2 1
...

...
xt−1 1

xt 1


[

c1
c0

]
−


y1
y2
...

yt−1
yt


or

D = XC − Y
where

X =


x1 1
x2 1
...

...
xt−1 1

xt 1

 , C =

[
c1
c0

]

and

Y =


y1
y2
...

yt−1
yt


We want to minimize ∥D∥2 = DtD. We get

(XC − Y)t (XC − Y) = (CtXt − Yt)(XC − Y)

= CtXtXC − CtXtY − YtXC + YtY
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FIGURE 7.3.2. Least squares fit

Now we differentiate by the ci (i.e.form the gradient) and set it to zero,
to get

2XtXC − 2XtY = 0

since CtXtY = YtXC (why?2).
Our least-squares problem becomes

(7.3.3) XtXC = XtY

This simple (i.e., degree-1) case is often used in the business world,
where it’s called linear regression. It shows whether random-appearing
data is (on the average) trending upward or downward.

Incidentally, equation 7.3.3 will be used in much more complex
examples of least-squares fits; only the definition of X will change.

EXAMPLE 7.3.8. Suppose

Y =


1.827619199225791

0.3903692355955774
0.9647810497032392
0.7108801143185723
0.5044777533707618


and xi = i

X =


1 1
2 1
3 1
4 1
5 1


2They’re both scalars!
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FIGURE 7.3.3. Linear regression

then equation 7.3.3 on the preceding page is[
55 15
15 5

] [
c1
c0

]
=

[
10.86861004365476
4.398127352213942

]
from which we get[

c1
c0

]
=

[
−0.2325772012987064

1.577357074338908

]
or

y ∼ x · (−0.2325772012987064) + 1.577357074338908

so the data is trending downwards. We can plot it with

plot2d ( [ [ discre te , [ [ 1 , y [ 1 , 1 ] ] , [ 2 , y [ 2 , 1 ] ] , [ 3 , y [ 3 , 1 ] ] ,
[ 4 , y [ 4 , 1 ] ] , [ 5 , y [ 5 , 1 ] ] ] ] ,
x * ( −0 .2325772012987064)+1 .577357074338908] ,

[ x , 1 , 5 ] , [ s tyle , [ points , 4 , 7 , 1 ] , [ l ines , 2 , 1 ] ] ,
[ legend , " Data " , " Trend l i n e " ] ) ;

to get figure 7.3.3.

Incidentally, the [style ,[ points ,4,7,1],[ lines ,2,1]] trailing
the rest of the plot-specifications gives the respective styles of
the two function-plots. These always follow the other options.
The specification [points ,4,7,1] specifies that the first plot is
disconnected points (the default is to connect the points with lines). The
specification takes the form [points,diameter,type_of_point,color].
See table F.1.1 on page 327 in appendix F on page 323 for the codes.

Now we’ll look at a more complex example: finding a fourth-
degree polynomial that is a “formula” for the first 10 prime numbers.
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EXAMPLE 7.3.9. In this case

Y =



2
3
5
7

11
13
17
19
23
29


and, since we’re approximating these by f (x) = c4x4 + c3x3 + c2x2 +
c1x + c0 with xi = i for i = 1, . . . , 10, we get Xi,j = i5−j and use the
command

X : genmatrix ( lambda ( [ i , j ] , i ^(5− j ) ) , 1 0 , 5 )

to get

X =



1 1 1 1 1
16 8 4 2 1
81 27 9 3 1

256 64 16 4 1
625 125 25 5 1

1296 216 36 6 1
2401 343 49 7 1
4096 512 64 8 1
6561 729 81 9 1
10000 1000 100 10 1


so XtX is

167731333 18080425 1978405 220825 25333
18080425 1978405 220825 25333 3025
1978405 220825 25333 3025 385
220825 25333 3025 385 55
25333 3025 385 55 10


and XtY is 

585514
66118
7726
952
129


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x

Primes
Least squares

 5

 10

 15

 20

 25

 30

 1  2  3  4  5  6  7  8  9  10

FIGURE 7.3.4. “Formula” for prime numbers

and C is given by

(XtX)−1(XtY) = C =


41

3432
− 147

572
6869
3432
− 542

143
25
6


so that our “formula” for the prime numbers is

41 ·x4

3432
− 147 ·x3

572
+

6869 ·x2

3432
− 542 ·x

143
+

25
6

and figure 7.3.4 shows a comparison plot.
In the most general form of linear least squares, we approximate

data via a formula

f (x) =
n

∑
i=1

cigi(x)

where the gj are some functions (not necessarily powers of x), and
Xi,j = gj(xi). In our examples above, the gj(x) were xj.

EXERCISES.

4. Find a fifth degree polynomial that least-squares approximates
the first 20 prime numbers, which are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71
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7.4. Eigenvalues and the characteristic polynomial

Suppose V is a vector space and A: V → V is a linear transforma-
tion. Recall how eigenvalues and eigenvectors are defined in terms of
each other

(7.4.1) Av = λv

where we require v ̸= 0 and λ to be a scalar. A nonzero vector, v,
satisfying this equation is called an eigenvector of A and the value of λ
that makes this work is called the corresponding eigenvalue.

Eigenvectors and eigenvalues are defined in terms of each other,
but eigenvalues are computed first.

We rewrite equation 7.4.1 as

Av = λIv

where I is the suitable identity matrix and get

(A − λI)v = 0

This must have solutions for nonzero vectors, v. This can only happen
if

det(A − λI) = 0

DEFINITION 7.4.1. If A is an n × n matrix

det(λI − A) = χA(λ)

is a degree-n polynomial called the characteristic polynomial of A. Its
roots are the eigenvalues of A. Maxima has a charpoly-command

EXAMPLE 7.4.2. If type

b : matrix ( [ 1 , 2 , 3 , 4 ] , [ 5 , 6 , 7 , 8 ] , [ 7 , 8 , 9 , 1 0 ] , [ 1 1 , 1 2 , 1 3 , 1 4 ] ) ;

to get 
1 2 3 4
5 6 7 8
7 8 9 10
11 12 13 14


Its characteristic polynomial is computed by the charpoly-command

charpoly ( b , x )

The first parameter is the matrix, and the second is the variable to ap-
pear in the polynomial. This generally gives a messy output expres-
sion that can be simplified by the expand-command to get

χb(x) = x4 − 30x3 − 64x2

with roots (eigenvalues of b) that can be computed directly (i.e., without
first issuing the charpoly-command) by the eigenvalues-command
which has a shorter abbreviation, eivals
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eigenvalues ( b )

to get
[[−2, 32,0] , [1,1,2]]

These two lists give, respectively, the eigenvalues themselves, and
their corresponding multiplicities. So our eigenvalues are 0,−2, 32
with multiplicities 2, 1, 1, respectively.

The eigenvectors are computed by the eigenvectors-command
which finds the eigenvalues and then the corresponding
eigenvectors3

[[[−2, 32, 0] , [1, 1, 2]] ,[[[
1,

3
11

,− 1
11

,− 9
11

]]
,
[[

1,
7
3

, 3,
13
3

]]
, [[1, 0,−3, 2] , [0, 1,−2, 1]]

]
This output consists of a list of

(1) Eigenvalues and multiplicities (identical to the output of the
eigenvalues-command),

(2) For each eigenvalue, a list of the corresponding eigenvectors
(there might be more than one). In this example, the
eigenvalue 0 has two linearly independent eigenvectors.
These vectors are listed as row-vectors rather than the
column-vectors used in section 7.2 on page 114.

We will try to do what was done in section 7.2 on page 114 using the
matrix b. We cut and paste the eigenvectors computed earlier into a
matrix

First, we type

pt : matrix ( [1 ,3/11 , −1/11 , −9/11] , [1 ,7/3 ,3 ,13/3] ,
[ 1 , 0 , − 3 , 2 ] , [ 0 , 1 , − 2 , 1 ] ) ;

to get 
1 3

11 − 1
11 − 9

11
1 7

3 3 13
3

1 0 −3 2
0 1 −2 1


Since this has row vectors rather than the column vectors we want, we
use the transpose-command

p : transpose ( pt )

3It isn’t necessary to issue the charpoly command or the eigenvalues command
first.
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to get

p =


1 1 1 0
3

11
7
3 0 1

− 1
11 3 −3 −2

− 9
11

13
3 2 1


Now we are ready to play!

d : ( p^^ −1).b . p

gives

d =


−2 0 0 0
0 32 0 0
0 0 0 0
0 0 0 0


so the matrix b simply multiplies the first basis-vector by −2, the sec-
ond by 32, and kills the remaining basis vectors.

The expression

p . d . ( p^^−1)

recovers our original b-matrix.
Since diagonal matrices behave like scalars

dn =


(−2)n 0 0 0

0 32n 0 0
0 0 0 0
0 0 0 0


for n > 0. We can get a closed form of the nth power of b by writing

p . d^n . ( p^^−1)

(here, we’re using the fact that a single carat simply raises each element
of the matrix to a power) to get a closed form expression for bn:

11 ·(−2)n

17 + 39 ·32n−1

17
45 ·32n−1

17 − 11 ·(−2)n−1

17 3 ·32n−1 57 ·32n−1

17 +
11 ·(−2)n−1

17
3 ·(−2)n

17 + 91 ·32n−1

17
105 ·32n−1

17 − 3 ·(−2)n−1

17 7 ·32n−1 133 ·32n−1

17 +
3 ·(−2)n−1

17
117 ·32n−1

17 − (−2)n

17
135 ·32n−1

17 + (−2)n−1

17 9 ·32n−1 171 ·32n−1

17 − (−2)n−1

17
169 ·32n−1

17 − 9 ·(−2)n

17
195 ·32n−1

17 +
9 ·(−2)n−1

17 13 ·32n−1 247 ·32n−1

17 − 9 ·(−2)n−1

17


which we can ratsimp to

39 ·32n−11 ·(−2)n+5

544
11 ·(−2)n+4+45 ·32n

544 3 ·32n−1 57 ·32n−11 ·(−2)n+4

544
91 ·32n−3 ·(−2)n+5

544
3 ·(−2)n+4+105 ·32n

544 7 ·32n−1 133 ·32n−3 ·(−2)n+4

544
(−2)n+5+117 ·32n

544
135 ·32n−(−2)n+4

544 9 ·32n−1 (−2)n+4+171 ·32n

544
9 ·(−2)n+5+169 ·32n

544
195 ·32n−9 ·(−2)n+4

544 13 ·32n−1 9 ·(−2)n+4+247 ·32n

544


The reader might wonder why we are interested in eigenvalues

and eigenvectors. The answer is simple:
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Equation 7.4.1 on page 124 shows that A behaves like
a scalar when it acts on an eigenvector.

If we could find a basis for our vector space of eigenvectors, A would
become a diagonal matrix in that basis — because it merely multiplies
each basis-vector by a scalar.

EXAMPLE 7.4.3. It is also possible for eigenvectors to not span a
vector space. Consider the matrix

B =

[
1 1
0 1

]
This has a single eigenvalue, λ = 1, and its eigenspace is
one-dimensional, spanned by [

1
0

]
so there doesn’t exist a basis of R2 of eigenvectors of B. All matrices
(even those like B above) have a standardized form that is “almost”
diagonal called Jordan Canonical Form.

We conclude this section with (see [58, chapter 6] for a proof):

THEOREM 7.4.4 (Cayley-Hamilton). If A is an n × n matrix with
characteristic polynomial

χA(λ)

then χA(A) = 0.

REMARK. In other words, every matrix “satisfies” its characteris-
tic polynomial.

The Cayley-Hamilton Theorem can be useful in computing powers
of a matrix. For instance, if the characteristic polynomial of a matrix,
A, is λ2 − 5λ + 3, we know that

A2 = 5A − 3I

so all integer powers of A will be linear combinations of A and I. Since
A is invertible

A = 5I − 3A−1

or

A−1 =
1
3
(5I − A)

This can also be used to calculate other functions of a matrix. If

f (X)

is a high-order polynomial or even an infinite series, write

f (X) = χA(X) · g(X) + r(X)

where r(X) is the remainder with deg r(X) < deg χA(X) and

f (A) = r(A)
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This also one of the reasons we have a charpoly-command in Max-
ima: sometimes the characteristic polynomial is useful in its own right
and not only as a way to compute eigenvalues.

Sir William Rowan Hamilton, (1805 – 1865) was an Irish physicist, as-
tronomer, and mathematician who made major contributions to math-
ematical physics (some had applications to quantum mechanics), op-
tics, and algebra. He invented quaternions, a generalization of the
complex numbers (see [58, chapter 9]).

EXERCISES.

1. If

A =

 −9 2 −3
8 1 2

44 −8 14


compute a closed form expression for An.

2. Compute a square root of the matrix, A.

3. Generate a 10 × 10 matrix whose entries are the row minus the
column. Find its eigenvalues.

4. Consider two sequences recursively defined by

an+1 = 2an + 2bn

bn+1 = kan + 7bn

with a0 = 1 and b0 = 0. How do you choose the real number, k, so
that

lim
n→∞

an+1

an
= 5

? In this case, find

lim
n→∞

bn+1

an

7.4.1. Population dynamics. We will use linear algebra to study
age-distributions of populations. Suppose we have a population of
organisms that has a maximum lifespan of k years (or units of time
that might not be years). Let ni ≥ 0 denote the number of creatures
alive at year i, let 0 ≤ si ≤ 1 be the fraction of creatures that survive
from year i to year i + 1, and let 0 ≤ fi be the average number of
offspring creatures at age i have.



7.4. EIGENVALUES AND THE CHARACTERISTIC POLYNOMIAL 129

We have what is called the Leslie Matrix, describing the dynamics
of this system (see [41])

 n0
...

nk−1


t+1

=



f0 · · · · · · · · · fk−1

s0 0 · · · . . . 0
0 s1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 sk−2 0


 n0

...
nk−1


t

or
Nt+1 = TNt

We are interested in
(1) Ratios between the various age groups, when the population

stabilizes,
(2) How fast it grows after this stabilization.

The population’s age-ratios will have stabilized when

Nt+1 = λNt

for some scalar, λ — i.e., when Nt is an eigenvector of T. The corre-
sponding eigenvalue, λ, shows how rapidly the overall population
grows or shrinks.

Let’s do an example.

EXAMPLE 7.4.5. A study of tribbles on planet ceti-alpha-6 shows
that their Leslie Matrix is

T =


0 1 3 1 0

0.9 0 0 0 0
0 0.6 0 0 0
0 0 0.5 0 0
0 0 0 0.3 0


We dutifully type

eigenvalues ( T )

and get a lengthy string of square roots and other radicals. Typing
bfloat(%) gives

[ [ ( −7 .693353249757961 b−1 %i ) −6.381300992460435b−1 ,
7 .693353249757961b−1 %i − 6.381300992460435b−1 ,
−1.84947536902627b−1 , 1 .461207735394714 b0 , 0 . 0 b0 ] ,
[ 1 . 0 b0 , 1 . 0 b0 , 1 . 0 b0 , 1 . 0 b0 , 1 . 0 b0 ] ]

If we ask for eigenvectors, Maxima pauses for a long time and finally
reports that there aren’t any!

What has gone wrong?
Consider the eigenvalue 1.461207735394714.
The nullspace of
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U: T−1.461207735394714* ident ( 5 )

should be the eigenvector associated with this eigenvalue. If we type

nullspace (U)

Maxima comes back with

[ ? ]

What has happened? Is Maxima broken? For U to have a nullspace, its
determinant must vanish. The command

determinant (U)

gives

(7.4.2) 1.110223024625157 · 10−16

which is very small but not zero. This illustrates the strength and
weakness of Maxima: it insists on exact arithmetic. The number
1.461207735394714 is very close to an eigenvalue but not exactly
equal to one4. We need a linear algebra system that can work with
non-exact arithmetic.

Luckily, there’s a library of linear algebra routines that will treat
numbers like that in equation 7.4.2 as zero. We load it with the com-
mand

load ( " lapack " )

One command that is available is

dgeev ( t , u , f ) ;

where t is a square matrix of real numbers and u and f are truth-values
(they default to ‘false’ if omitted). The output is the set of eigenvalues
and their multiplicities. If u is not false, it outputs an array of right-
eigenvectors, i.e.

tv = λv

If f is not false, it also outputs left eigenvectors

vHt = λvH

where vH is the conjugate-transpose of v. All we want are right eigen-
vectors, so we type

dgeev ( t , true , f a l s e ) ;

4It can’t possibly be; the actual eigenvalue is irrational.
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and get a list of eigenvalues

0
1.461207735394714

0.7693353249757966 · i − 0.6381300992460446
−0.7693353249757966 · i − 0.6381300992460446

−0.1849475369026271

and a huge 5 × 5 array whose columns are corresponding eigenvec-
tors.

The only positive real eigenvalue is 1.461207735394714, so we
pick that. Its corresponding eigenvector is the second column of the
eigenvector-matrix: 

0.8301290523484829
0.5113004325232492
0.2099497915887227
0.07184118537806998
0.01474968622965787


We normalize this to sum up to 1 (how is this done?) and get

(7.4.3)


0.5068035295561001
0.3121549151101902
0.1281768119134142
0.04385988686228456

0.009004856558010907


so this is the population-distribution of tribbles when it stabilizes.

In each time unit, the population is multiplied by the eigenvalue
1.461207735394714, so tribbles multiply rapidly5.

In general, there’s nothing wrong with Maxima’s exact compu-
tations (and a lot that is right). In dealing with approximate data
and purely numeric computations, the lapack library may be advan-
tageous.

That library contains a number of other routines:
dgeqrf(A) Computes the QR decomposition of the matrix A: A = QR,

where Q is a square orthonormal6 matrix with the same
number of rows as A and R is an upper-triangular matrix.

dgesv(A,b) Solves the linear algebra problem Ax = b, where A and b
are made up of real, floating point numbers.

� dgemm(A,B) dgemm (A, B, options) Compute the product of
two matrices and optionally add the product to a third ma-
trix.

5As anyone who has seen the old Star Trek episode, The Trouble with Tribbles,
knows!

6If C and C′ are any two distinct columns of the matrix, then C · C = 1 and C · C′ =
0.
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In the simplest form, dgemm(A, B) computes the product
of the two real matrices, A and B.

In the second form, dgemm computes the alpha * A * B
+ beta * C where A, B, C are real matrices of the appropri-
ate sizes and alpha and beta are real numbers. Optionally, A
and/or B can be transposed before computing the product.
The extra parameters are specified by optional keyword ar-
guments: The keyword arguments are optional and may be
specified in any order. They all take the form key=val. The
keyword arguments are:
C The matrix C that should be added. The default

is false, which means no matrix is added.
alpha The product of A and B is multiplied by this

value. The default is 1.
beta If a matrix C is given, this value multiplies C

before it is added. The default value is 0, which
implies that C is not added, even if C is given.
Hence, be sure to specify a non-zero value for
beta.

transpose_a If true, the transpose of A is used instead of A
for the product. The default is false.

transpose_b If true, the transpose of B is used instead of B
for the product. The default is false.

zgeev(A) zgeev (A, right_p, left_p) Like dgeev, but the matrix A is
complex.

zheev(A) zheev(A, eigvec_p) Like zgeev, but the matrix A is
assumed to be a square complex Hermitian matrix. If
eigvec_p is true, then the eigenvectors of the matrix are
also computed.

No check is made that the matrix A is, in fact, Hermit-
ian.

A list of two items is returned, as in dgeev: a list of
eigenvalues, and false or the matrix of the eigenvectors.
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EXERCISES.

5. Write a function that takes a vector (representing the initial
number of tribbles available in each age-group) and an integer n that
returns the population-distribution of tribbles in time-unit n. How
fast does this converge to the stable distribution in equation 7.4.3 on
page 131? Is there an initial distribution that doesn’t converge to the
stable distribution?

7.4.2. The 25-billion-dollar eigenvector7. Although several
search engines predated Google (Yahoo, etc.), Google distinguished
itself by the quality of its results. It seemed to find the most relevant
web pages so one did not have to wade through countless links to
find interesting information. This largely due to Google’s Page rank
algorithm, which manages to pick out these web pages.

This raises a question:
How can one determine relevance in any search?
Doesn’t it depend on the subject matter?

Google solved this problem by counting the number of pages that link
to a given web page, i.e. the number of back-links the page possesses:
the more back-links, the more people are interested in the page — re-
gardless of the subject-matter. See the groundbreaking paper [10].

Consider the web in figure 7.4.1 on the following page.
If xi is the importance of node i, then back-link-counts gives us
� x1 = x9 = x10 = 0
� x2 = x4 = x5 = x6 = x7 = 1
� x8 = 4
� x3 = 6

so the most important node is 3.
On the other hand, we should take into account the importance of

a page that links to another so we get equations like
� x3 = x2 + x4 + x9 + x10
� x2 = x1, x4 = x1
� etc.

Another consideration is the number of outgoing links a page has: the
more of these, the greater the page’s influence on the whole process.
We remedy that by normalizing the effect of the links: each link of a
page that has n outgoing links gets a weight of 1/n. Every web page
has the same effect on the final result.

7This is the approximate value of Google when the company went public in 2004.
This section of the book uses material from the excellent paper, [11].
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FIGURE 7.4.1. A sample web

If page k has nk outgoing links, then the equations above are rewrit-
ten as

(7.4.4) xi = ∑
k∈Bi

xk
nk

where Bi is the set of back-links of page i. We can enter this data into
an n × n matrix, L, called the link matrix, where

Li,j =

{
0 if there’s no link from page j to page i
1/nj if there’s a link from page j to page i

For instance, the graph in figure 7.4.1 has a link matrix of

(7.4.5) L =



0 0 0 0 0 0 0 .5 0 0
.25 0 0 0 0 0 0 0 0 0
.25 .5 0 1 0 1 0 0 1 1
.25 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 .5 0 0
0 0 0 0 .5 0 0 0 0 0
0 0 0 0 .5 0 0 0 0 0

.25 .5 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


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and if X is a 10 × 1 matrix (i.e., vector) of the importance-values, then

LX = X

i.e., plugging the values into the right side of equations 7.4.4 on the fac-
ing page should give the importance-values back. In other words, X is
an eigenvector of L with eigenvalue 1. The matrix, L has two properties

(1) All of its entries are nonnegative,
(2) Its columns all sum up to 1.

These properties make it what is called a column-stochastic matrix. This
turns out to guarantee that it has 1 as an eigenvalue.

Typing

eigenvalues ( L ) ;

gives an incredibly messy answer, but shows that L does have an
eigenvalue of 1. Typing

eigenvectors ( L ) ;

causes Maxima to complain that it cannot compute the first four eigen-
vectors8, but the one corresponding to the eigenvalue 1 is

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]t

showing that the most important page is number 4, a surprising result!
If we

load ( " lapack " )

and type

dgeev ( L , true , f a l s e ) ;

we get a similar numeric result.
In the example above, the eigenspace corresponding to the eigen-

value 1 was one-dimensional, so we got a unique ranking. Suppose
we had r disjoint sub-webs of our original web. In this case, our link-
matrix would look like

L =

D1 · · · 0
...

. . .
...

0 · · · Dr


where Di is the link-matrix of the ith sub-web. Each of these sub-webs
will have a ranking independent of the others so that the eigenspace of
L corresponding to the eigenvalue 1 will be r-dimensional. If we com-
pute this eigenspace we get r vectors that span it, not necessarily the
rank vectors of the sub-webs (which will be some linear combination
of those r vectors).

8Because it’s trying to find exact values, solving degree-10 polynomials.
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Google solved this problem by “slightly connecting” the sub-webs
together. Let the total number of web-pages be n and let S be an n × n
matrices whose entries are all 1/n. Then form

(7.4.6) M = (1 − c)L + cS

where c is some small number. Google initially used c = .15. The
resulting M matrix will still be column-stochastic but will have a one-
dimensional eigenspace for the eigenvalue 1.

Although Google has enormous computing power at its
disposal, it is certainly unable to process billion-by-billion matrices
in the usual fashion (in finding eigenvalues and eigenvectors, for
instance). Google uses the power method to compute the eigenvector
corresponding to the eigenvalue 1.

Very crudely (!), the idea is

MM∞X = M∞+1X =M∞X

where X is a “typical” nonzero vector. We start with some nonzero
vector X0 and define

Xk+1 = MXk

and hope this converges to the actual eigenvector, X̄ as k → ∞. We also
normalize Xk+1 so it doesn’t grow or shrink in this process: If v is an
n-dimensional vector with components {vi}, define

∥v∥1 =
n

∑
i=1

|vi|

and our iterative process is

(7.4.7) Xk+1 =
MXk

∥MXk∥1

See [61] for an analysis of when this type of process converges.
Here’s an interpretation of taking powers of the original link ma-

trix, L: (
L2
)

i,j
> 0

if and only if there a path of length ≤ 2 that connects node j to node i.
Why? (

L2
)

i,j
=

n

∑
k=1

Li,kLk,j

and this is > 0 if both Li,k and Lk,j are > 0 for at least one value of k. A
simple induction shows that

(Lr)i,j > 0

if and only if there’s a path of length ≤ r connecting j to i. So:
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Taking powers of the L-matrix is similar to randomly
surfing the web and counting how many times we
reach each page. The more often we reach a page,
the more important that page is. The initial vector X0
represents the starting position of this random walk.

EXERCISES.

6. Write a Maxima function to implement the iteration used in the
power method (equation 7.4.7 on the preceding page). Test it using
the link matrix, L, in equation 7.4.5 on page 134 converted to M via
equation 7.4.6 on the preceding page with c = .15. Does it converge?

Compare this with the actual eigenvector, computed via dgeev.

7.5. Functions of matrices

If M is a matrix, we can plug it into power series to compute func-
tions like eM or sin M and cos M.

If a matrix can be diagonalized, it’s easy to compute functions like
these. Consider the matrix

E =


1 2 3 4
5 6 7 8
7 8 9 10

11 12 13 14


from section 7.4 on page 124. We know that E can be diagonalized to

d =


−2 0 0 0
0 32 0 0
0 0 0 0
0 0 0 0


where E=p.d.(p^^-1) and

p =


1 1 1 0
3

11
7
3 0 1

− 1
11 3 −3 −2

− 9
11

13
3 2 1


Then

ed =


e−2 0 0 0
0 e32 0 0
0 0 1 0
0 0 0 1


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eE = p.ed.p^^-1

giving


e−2(39e34+153e2+352)

544
e−2(45e34−221e2+176)

544
3e32−3

32
e−2(57e34+119e2−176)

544
e−2(91e34−187e2+96)

544
e−2(105e34+391e2+48)

544
7e32−7

32
e−2(133e34−85e2−48)

544
e−2(117e34−85e2−32)

544
e−2(135e34−119e2−16)

544
9e32+23

32
e−2(171e34−187e2+16)

544
e−2(169e34+119e2−288)

544
e−2(195e34−51e2−144)

544
13e32−13

32
e−2(247e34+153e2+144)

544


The exponential is so important that Maxima has a command to

produce it, namely the matrixexp-command.
Its format is

matrixexp ( thematrix , opt iona l s c a l a r m u l t i p l i e r ) ;

If the scalar multiplier is omitted, it is assumed to be 1. The reason for
this multiplier will become clear momentarily.

Suppose we have a system of differential equations

dx
dt

= 3x − 4y

dy
dt

= 2x − y

written more compactly as

dv
dt

= Mv

where

v =

[
x
y

]
and

M =

[
3 −4
2 −1

]
The well-known solution is[

x
y

]
= et·M ·

[
x(0)
y(0)

]
If you differentiate the power-series for et·M with respect to t, you get
Met·M. Typing

m: matrix ( [ 3 , − 4 ] , [ 2 , − 1 ] )
matrixexp (m, t ) ;

results in− %e−2 ·%i ·t ·
(
(%i−1) ·%e4 ·%i ·t+t+(−%i−1) ·%et

)
2 %e−2 ·%i ·t ·

(
%i ·%e4 ·%i ·t+t − %i ·%et

)
−

%e−2 ·%i ·t ·
(

%i ·%e4 ·%i ·t+t−%i ·%et
)

2
%e−2 ·%i ·t ·

(
(%i+1) ·%e4 ·%i ·t+t+(1−%i) ·%et

)
2


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Since the original problem didn’t include any imaginary numbers,
it’s safe to assume we should convert these imaginary exponentials to
sines and cosines.

The demoivre-command replaces all occurrences of eix by
cos(x) + i sin(x):

demoivre (%)

but applying it as once might not be the best approach. A few experi-
mental sequences of commands shows that

expand ( % ) ;
demoivre ( % ) ;
trigsimp ( % ) ;

provides the simplest result:[
%et · sin (2 ·t) + %et · cos (2 ·t) −2 ·%et · sin (2 ·t)

%et · sin (2 ·t) %et · cos (2 ·t)− %et · sin (2 ·t)

]
Here, the trigsimp-command can be used to simplify some

trigonometric expressions. Alternatively, we could have applied the
realpart-command to the matrix.

Other trigonometric commands are trigreduce and trigrat.
Note: the opposite of demoivre is the exponentialize-command

which converts trigonometric functions into their exponential form.

EXERCISES.

1. Find the sine and cosine of the matrix[
1 2
3 4

]
Hint: use De Moivre’s formula and use the realpart and imagpart
commands.

2. If x is a scalar variable, compute

x

[
1 2
3 4

]
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7.5.1. Affine groups and motions in space. In this section we will
analyze groups that originate in geometry — groups of symmetries
and motions.

To understand the geometry of Rn, it is not enough to simply be
able to rotate space about a fixed point (namely, the origin — which
matrix-operations do). We must also be able to move objects through
space, to displace them. This leads to the affine groups.

Regard Rn as the plane xn+1 = 1 in Rn+1. An (n + 1)× (n + 1)
matrix of the form

(7.5.1) D(a1, . . . , an) =



1 0 · · · 0 a1

0 1
. . .

...
...

...
. . . . . . 0 an−1

...
. . . 0 1 an

0 · · · · · · 0 1


preserves this imbedded copy of Rn and displaces it so that the origin
is moved to the point (a1, . . . , an). A simple calculation shows that

D(a1, . . . , an) · D(b1, . . . , bn) = D(a1 + b1, . . . , an + bn)

which implies that the matrices of the form D(a1, . . . , an) ∈ GL(n, R)
form a subgroup, S ⊂ GL(n + 1, R) isomorphic to Rn.

DEFINITION 7.5.1. If n > 0 is an integer and G ⊂ GL(n, F) is a
subgroup, the subgroup of GL(n + 1, F) generated by matrices

M =

[
g 0
0 1

]
for g ∈ G and matrices of the form D(a1, . . . , an) with the ai ∈ F is
called the affine group associated to G and denoted Aff(G).

Recall that

DEFINITION 7.5.2. An n × n matrix, A will be called orthogonal if

AAt = I

REMARK. Recall the properties of orthogonal matrices (as always,
see [58])

(1) They form a group, O(n),called the orthogonal group,
(2) if A is an orthogonal matrix, then det A = ±1. If det A = 1,

A will be called special orthogonal.
(3) An orthogonal matrix, A, as a linear transformation A: Rn →

Rn preserves angles between vectors and lengths of vectors.
In other words, the matrices in O(n) represent rotations and
reflections. The group SO(n, R) eliminates the reflections.
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Recall that if we want to represent rotation in R2 via an angle of θ
in the counterclockwise direction, we can use a matrix[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
: R2 → R2

Regard R2 as the subspace, z = 1, of R3. The linear transformation

(7.5.2) f =

 cos(θ) − sin(θ) a
sin(θ) cos(θ) b

0 0 1

 : R3 → R3

in Aff(SO(2, R)) sends  x
y
1

 ∈ R2 ⊂ R3

to  x cos(θ)− y sin(θ) + a
x sin(θ) + y cos(θ) + b

1

 ∈ R2 ⊂ R3

and represents
(1) rotation by θ (in a counterclockwise direction), followed by
(2) displacement by (a, b).

Affine group-actions are used heavily in computer graphics: creating
a scene in R3 is done by creating objects at the origin of R3 ⊂ R4 and
moving them into position (and rotating them) via linear transforma-
tions in R4. A high-end (and not so high end) computer graphics card
performs millions of affine group-operations per second.

7.6. Linear Programming

7.6.1. Introduction. We will discuss an application of linear alge-
bra to a widely used industrial function.

Here’s an example of a linear programming problem:

EXAMPLE 7.6.1. A calculator company produces a scientific cal-
culator and a graphing calculator. Long-term projections indicate an
expected demand of at least 100 scientific and 80 graphing calculators
each day.

(1) Because of limitations on production capacity, no more than
200 scientific and 170 graphing calculators can be made daily.

(2) To satisfy a shipping contract, a total of at least 200 calculators
much be shipped each day.

(3) If each scientific calculator sold results in a $2 loss, but each
graphing calculator produces a $5 profit, how many of each
type should be made daily to maximize net profits?
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FIGURE 7.6.1. Feasible region

Let s denote the number of scientific calculators and g the number of
graphing calculators produced each day.

The word problem translates into a series of inequalities

s + g ≥ 200
s ≤ 200
g ≤ 170
s ≥ 100
g ≥ 80

And we must maximize P = −2s + 5g, which is called the objective
function of the problem. The inequalities define a polygonal region
with 5 vertices as in figure on the current page. Points that satisfy the
inequalities are called feasible solutions, and the set of them is called
the feasible region. They don’t necessarily solve the problem (maximize
profits) but are potential solutions.

The line on the lower right of figure on this page is the profit-line,
P = −2s + 5g = 100. It may be translated parallel to itself, and we
arrive at the solution to the problem in figure on the next page, with a
profit of 650.

Several things stand out:
The objective function is linear, so we can’t find its extrema by set-

ting its derivatives to 0. To see what happens, consider the function
f (x) = 2x − 1 on the closed interval [1, 5]. Its derivative never van-
ishes, but its maximum occurs at x = 5. In greater generality, the
extrema occur at critical points (where derivatives vanish) or on the
boundary of the region.
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FIGURE 7.6.2. Linear programming solution

Induction shows that the extrema of an objective function occur
at the vertices (i.e., boundary of the boundary of the. . . ) of the feasible
region.

So we could solve linear programming problems by:
(1) Computing all the vertices, using linear algebra.
(2) Plugging the objective function into each of these vertices.

Unfortunately, an n-dimensional cube has 2n vertices and other con-
straints could easily increase this number. This exponential complex-
ity can overwhelm the fastest computers; some industrial problems
have n > 500.

In the mid 1940’s, George Dantzig invented the simplex algorithm
for solving linear programming problems. It attempts to minimize the
number of vertices computed and move toward the one that solves
the optimization problem.

George Bernard Dantzig (1914 – 2005) was an American mathematical
scientist who made contributions to industrial engineering, operations
research, computer science, economics, and statistics.

We will not go into the simplex method’s details; the interested
reader is referred to [22]. Maxima has a library implementing it in-
voked by

load ( " simplex " )

It’s fairly easy to use. We have a command:

maximize_lp ( o b j e c t i v e , condit ions , [ pos ] )
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The optional argument [pos] is a list of variables that are assumed to
be positive (putting them in this list turns out to be more efficient that
simply defining them to be > 0 in the list of conditions).

For instance, the sample problem at the beginning of this section
could be solved by

maximize_lp ( 5 * g−2* s , [ s <=200 , s >=100 ,
g<=170 ,g>=80 , s+g >=200])

to produce
[650, [g = 170, s = 100]]

We also have a

minimize_lp ( o b j e c t i v e , condit ions , [ pos ] )

command whose action is self-explanatory.
For much more complex problems (where it’s hard to simply give

a list of inequalities), we have the command

linear_program (A, b , c )

Here:
A is a matrix and b and c are vectors. The command computes a

vector, x, that minimizes c · x among all the vectors with the property
that Ax = b, and x ≥ 0 .

Here’s an example:

A: matrix ( [ 1 , 1 , − 1 , 0 ] , [2 , −3 ,0 , −1] , [ 4 , − 5 , 0 , 0 ] ) ;
b : [ 1 , 1 , 6 ] ;
c : [ 1 , − 2 , 0 , 0 ] ;
linear_program (A, b , c ) ;

resulting in [[
13
2

, 4,
19
2

, 0
]

,−3
2

]
where the first list gives the vector, x, and the second value is the ob-
jective function at that point.

There are two error-messages that these commands give:
� Problem not feasible! — in this case, the inequalities contradict

each other so there are no feasible solutions. Example: x >=
2, x <= 1.

� Problem not bounded! — in this case the feasible region is un-
bounded and the solution is infinite. Example

maximize_lp ( x , [ x >=0])
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EXERCISES.

1. A manufacturer of ski clothing makes ski pants and ski jackets.
The profit on a pair of ski pants is $3.00 and on a jacket is $2.00. Both
pants and jackets require the work of sewing operators and cutters.
There are 60 minutes of sewing operator time and 48 minutes of cutter
time available. It takes 8 minutes to sew one pair of ski pants and
4 minutes to sew one jacket. Cutters take 4 minutes on pants and 8
minutes on a jacket.

Find the maximum profit and the amount of pants and jackets to
maximize the profit.

2. A farmer has a field of 70 acres in which he plants potatoes
and corn. The seed for potatoes costs $20/acre, the seed for corn costs
$60/acre and the farmer has set aside $3000 to spend on seed. The
profit per acre of potatoes is $150 and the profit for corn is $50 an acre.

Find the optimal solution for the farmer.

7.6.2. Integer programming and “industrial strength” problems.
All of the problems we have considered must be regarded as “toy”
problems: The number of variables and constraints are small enough
to be listed in a command. In addition, we don’t have constraints that
require some variables to be integers. It turns out that last considera-
tion makes linear programming infinitely harder. The mere simplex
algorithm cannot handle it.

For these problems, we need specialized software, namely ‘glpk’,
developed (in the early 2000’s) by the Department for Applied Infor-
matics, Moscow Aviation Institute, Moscow, Russia. They used it for
designing airplane and jet engines.

It has been released into the public domain (and is, therefore free
software) and enhanced many times in the intervening years.

� Most Linux distributions have a packaged version of it.
� The original source code can be found at

https://www.gnu.org/software/glpk/
� A Windows port can be found at

https://winglpk.sourceforge.net/
� A Macintosh version can be found at

https://ports.macports.org/port/glpk/
It implements its own (fairly simple) programming language that al-
lows for

� arrays of variables, constraints, and data
� requiring some variables to be integers or even binary (0 or 1)
� reading these arrays from files
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The manual that is packaged with the software is almost 200 pages,
but most of it is devoted to accessing glpk from a C or C++ program
(so, in particular, one can do that!). It can also be accessed from python
programs.

We will want to run it in a standalone mode, which is relatively
simpler.

Here’s a sample program in the GNU MathProg modeling lan-
guage:

# A TRANSPORTATION PROBLEM
#
# This problem f i n d s a l e a s t c o s t shipping schedule t h a t meets
# requirements a t markets and suppl ies a t f a c t o r i e s .
#
# References :
# Dantzig G B , " Linear Programming and Extensions . "
# Princeton Univers i ty Press , Princeton , New Jersey , 1963 ,
# Chapter 3 −3.

s e t I ;
/ * canning p l a n t s * /

s e t J ;
/ * m a r k e t s * /

param a { i in I } ;
/ * c a p a c i t y o f p l a n t i in c a s e s * /

param b { j in J } ;
/ * demand a t marke t j in c a s e s * /

param d { i in I , j in J } ;
/ * d i s t a n c e in t h o u s a n d s o f m i l e s * /

param f ;
/ * f r e i g h t in d o l l a r s p e r c a s e p e r thousand m i l e s * /

param c { i in I , j in J } := f * d [ i , j ] / 1000 ;
/ * t r a n s p o r t c o s t in t h o u s a n d s o f d o l l a r s p e r c a s e * /

var x { i in I , j in J } >= 0 ;
/ * sh ipment q u a n t i t i e s in c a s e s * /

minimize c o s t : sum{ i in I , j in J } c [ i , j ] * x [ i , j ] ;
/ * t o t a l t r a n s p o r t a t i o n c o s t s in t h o u s a n d s o f d o l l a r s * /

s . t . supply { i in I } : sum{ j in J } x [ i , j ] <= a [ i ] ;
/ * o b s e r v e sup p ly l i m i t a t p l a n t i * /

s . t . demand{ j in J } : sum{ i in I } x [ i , j ] >= b [ j ] ;
/ * s a t i s f y demand a t marke t j * /

data ;
s e t I := S e a t t l e San−Diego ;
s e t J := New−York Chicago Topeka ;

param a := S e a t t l e 350
San−Diego 6 0 0 ;

param b := New−York 325
Chicago 300
Topeka 2 7 5 ;

param d : New−York Chicago Topeka :=
S e a t t l e 2 . 5 1 . 7 1 . 8
San−Diego 2 . 5 1 . 8 1 . 4 ;

param f := 9 0 ;

end ;
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You run this (in Linux) by putting it into a file ‘transp.mod’ and typing

g l p s o l −m transp .mod −o output . t x t

Normally, this only prints the whether the program succeeded and
some other information. The actual results of the program (i.e., the
solution to the problem) go into the file ‘output.txt’, which is
Problem : transp
Rows : 6
Columns : 6
Non−zeros : 18
S t a t u s : OPTIMAL
Objec t ive : c o s t = 153 .675 (MINimum)

No. Row name St A c t i v i t y Lower bound Upper bound Marginal
−−−−−− −−−−−−−−−−−− −− −−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−−

1 c o s t B 153 .675
2 supply [ S e a t t l e ]

NU 350 350 < eps
3 supply [ San−Diego ]

B 550 600
4 demand[New−York ]

NL 325 325 0 .225
5 demand[ Chicago ]

NL 300 300 0 .153
6 demand[ Topeka ]

NL 275 275 0 .126

No. Column name St A c t i v i t y Lower bound Upper bound Marginal
−−−−−− −−−−−−−−−−−− −− −−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−−

1 x [ S e a t t l e ,New−York ]
B 50 0

2 x [ S e a t t l e , Chicago ]
B 300 0

3 x [ S e a t t l e , Topeka ]
NL 0 0 0 .036

4 x [ San−Diego ,New−York ]
B 275 0

5 x [ San−Diego , Chicago ]
NL 0 0 0 .009

6 x [ San−Diego , Topeka ]
B 275 0

Karush−Kuhn−Tucker o p t i m a l i t y condi t ions :

KKT. PE : max . abs . e r r = 0 . 0 0 e+00 on row 0
max . r e l . e r r = 0 . 0 0 e+00 on row 0
High q u a l i t y

KKT. PB : max . abs . e r r = 0 . 0 0 e+00 on row 0
max . r e l . e r r = 0 . 0 0 e+00 on row 0
High q u a l i t y

KKT.DE: max . abs . e r r = 0 . 0 0 e+00 on column 0
max . r e l . e r r = 0 . 0 0 e+00 on column 0
High q u a l i t y

KKT.DB: max . abs . e r r = 0 . 0 0 e+00 on row 0
max . r e l . e r r = 0 . 0 0 e+00 on row 0
High q u a l i t y

End of output

Several points become clear:
(1) The program has three types of identifiers: sets, params, and

vars. Elements of sets can be names or numbers and are used
to index identifiers.

Examples: A=1..10 (this is the set 1,2,3,4,5,6,7,8,9,10),
B=0..1 by .1 (this is the set 0,.1,.2,.3,.4,.5.,6,.7,.8,.9,1; by is an
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optional keyword), Weekdays=monday tuesday wednesday
thursday friday. Sets do not need to have names: {1,2,7},
{a,b,1..50}.

(2) The constraints are all labeled and begin with ‘s.t.’ (meaning
‘subject to’, which can also be spelled out).

(3) The program is in three parts: declarations, constraints (includ-
ing the objective function), and data.

The statement

param c { i in I , j in J } := f * d [ i , j ] / 1000 ;

shows how one implicitly iterates over all elements of a set without
coding loop-commands (although these also exist in this language).

The statement

minimize c o s t : sum{ i in I , j in J } c [ i , j ] * x [ i , j ] ;
/ * t o t a l t r a n s p o r t a t i o n c o s t s in

t h o u s a n d s o f d o l l a r s * /

defines the objective function and illustrates a command, ‘sum’ that
combines results of iterations over sets. Such “combining commands”
include‘prod’, ‘min’, and ‘max’.

The difference between ‘var’s and ‘param’s is that
(1) ‘param’s are assumed to be given, and
(2) ‘var’s are assumed to be initially undefined, and glpk

attempts to assign values to the ‘var’s that satisfy the
constraints.

Although this is a “toy” program, the data section could easily have
had thousands of entries and be read from a file. If data is in a separate
file, it could be named transp.dat and the program would be run via

g l p s o l −m transp .mod −−data transp . dat −o output . t x t

Data could also be read in a csv file (comma-separated values, a format
spreadsheets use), or a mysql database.

The following example shows how linear programming with in-
teger variables takes a problem out of the realm of linear algebra into
that of arbitrary logic and general programming.
/ * ZEBRA, Who Owns t h e Zebra ? * /

/ * Wr i t t en in GNU MathProg by Andrew Makhorin <mao@mai2 . r c n e t . ru> * /

# #######################################################################
# The Zebra Puzzle i s a well −known l o g i c puzzle .
#
# I t i s o f ten c a l l e d " E i n s t e i n ’ s Puzzle " or " E i n s t e i n ’ s Riddle "
# because i t i s sa id to have been invented by Albert E i n s t e i n as a boy ,
# with the common claim t h a t E i n s t e i n sa id " only 2 percent of the
# world ’ s population can solve " . I t i s a l s o sometimes a t t r i b u t e d to
# Lewis C a r r o l l . However , there i s no known evidence for E i n s t e i n ’ s or
# C a r r o l l ’ s authorship .
#
# There are s e v e r a l vers ions of t h i s puzzle . The vers ion below i s
# quoted from the f i r s t known p u b l i c a t i o n in L i f e I n t e r n a t i o n a l
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# magazine on December 17 , 1962 .
#
# 1 . There are f i v e houses .
# 2 . The Englishman l i v e s in the red house .
# 3 . The Spaniard owns the dog .
# 4 . Coffee i s drunk in the green house .
# 5 . The Ukrainian drinks tea .
# 6 . The green house i s immediately to the r i g h t of the ivory house .
# 7 . The Old Gold smoker owns s n a i l s .
# 8 . Kools are smoked in the yellow house .
# 9 . Milk i s drunk in the middle house .
# 1 0 . The Norwegian l i v e s in the f i r s t house .
# 1 1 . The man who smokes C h e s t e r f i e l d s l i v e s in the house next to the
# man with the fox .
# 1 2 . Kools are smoked in the house next to the house where the horse
# i s kept .
# 1 3 . The Lucky S t r i k e smoker drinks orange j u i c e .
# 1 4 . The Japanese smokes Parl iaments .
# 1 5 . The Norwegian l i v e s next to the blue house .
#
# Now, who drinks water ? Who owns the zebra ?
#
# In the i n t e r e s t of c l a r i t y , i t must be added t h a t each of the f i v e
# houses i s painted a d i f f e r e n t color , and t h e i r i n h a b i t a n t s are of
# d i f f e r e n t n a t i o n a l e x t r a c t i o n s , own d i f f e r e n t pets , drink d i f f e r e n t
# beverages and smoke d i f f e r e n t brands of American c i g a r e t t e s . One
# other thing : In statement 6 , r i g h t means your r i g h t .
#
# ( From Wikipedia , the f r e e encyclopedia . )
# #######################################################################

s e t HOUSE := { 1 . . 5 } ;

s e t COLOR := { " blue " , " green " , " ivory " , " red " , " yellow " } ;

s e t NATIONALITY := { " Englishman " , " Japanese " , " Norwegian " , " Spaniard " ,
" Ukranian " } ;

s e t DRINK := { " c o f f e e " , " milk " , " orange_ ju ice " , " t ea " , " water " } ;

s e t SMOKE := { " C h e s t e r f i e l d " , " Kools " , " Lucky_Strike " , " Old_Gold " ,
" Parl iament " } ;

s e t PET := { " dog " , " fox " , " horse " , " s n a i l s " , " zebra " } ;

var c o l o r {HOUSE, COLOR} , binary ;
c1 { h in HOUSE} : sum{ c in COLOR} c o l o r [ h , c ] = 1 ;
c2 { c in COLOR} : sum{ h in HOUSE} c o l o r [ h , c ] = 1 ;

var n a t i o n a l i t y {HOUSE, NATIONALITY} , binary ;
n1 { h in HOUSE} : sum{ n in NATIONALITY} n a t i o n a l i t y [ h , n ] = 1 ;
n2 { n in NATIONALITY } : sum{ h in HOUSE} n a t i o n a l i t y [ h , n ] = 1 ;

var drink {HOUSE, DRINK} , binary ;
d1 { h in HOUSE} : sum{ d in DRINK} drink [ h , d ] = 1 ;
d2 { d in DRINK } : sum{ h in HOUSE} drink [ h , d ] = 1 ;

var smoke {HOUSE, SMOKE} , binary ;
s1 { h in HOUSE} : sum{ s in SMOKE} smoke [ h , s ] = 1 ;
s2 { s in SMOKE} : sum{ h in HOUSE} smoke [ h , s ] = 1 ;

var pet {HOUSE, PET } , binary ;
p1 { h in HOUSE} : sum{ p in PET } pet [ h , p ] = 1 ;
p2 { p in PET } : sum{ h in HOUSE} pet [ h , p ] = 1 ;

/ * t h e Englishman l i v e s in t h e r e d house * /
f2 { h in HOUSE} : n a t i o n a l i t y [ h , " Englishman " ] = c o l o r [ h , " red " ] ;

/ * t h e S p a n i a r d owns t h e dog * /
f3 { h in HOUSE} : n a t i o n a l i t y [ h , " Spaniard " ] = pet [ h , " dog " ] ;

/ * c o f f e e i s drunk in t h e g r e e n house * /
f4 { h in HOUSE} : drink [ h , " c o f f e e " ] = c o l o r [ h , " green " ] ;

/ * t h e Ukra in i an d r i n k s t e a * /
f5 { h in HOUSE} : n a t i o n a l i t y [ h , " Ukranian " ] = drink [ h , " tea " ] ;

/ * t h e g r e e n house i s i m m e d i a t e l y t o t h e r i g h t o f t h e i v o r y house * /
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f6 { h in HOUSE} :
c o l o r [ h , " green " ] = i f h = 1 then 0 e lse c o l o r [ h−1 , " ivory " ] ;

/ * t h e Old Gold smoker owns s n a i l s * /
f7 { h in HOUSE} : smoke [ h , " Old_Gold " ] = pet [ h , " s n a i l s " ] ;

/ * K o o l s a r e smoked in t h e y e l l o w house * /
f8 { h in HOUSE} : smoke [ h , " Kools " ] = c o l o r [ h , " yellow " ] ;

/ * mi l k i s drunk in t h e mi dd l e house * /
f9 : drink [ 3 , " milk " ] = 1 ;

/ * t h e Norwegian l i v e s in t h e f i r s t house * /
f10 : n a t i o n a l i t y [ 1 , " Norwegian " ] = 1 ;

/ * t h e man who smokes C h e s t e r f i e l d s l i v e s in t h e house nex t t o t h e man
with t h e f o x * /

f11 { h in HOUSE} :
(1 − smoke [ h , " C h e s t e r f i e l d " ] ) +
( i f h = 1 then 0 e lse pet [ h−1 , " fox " ] ) +
( i f h = 5 then 0 e lse pet [ h+1 , " fox " ] ) >= 1 ;

/ * K o o l s a r e smoked in t h e house nex t t o t h e house where t h e h o r s e i s
k e p t * /

f12 { h in HOUSE} :
(1 − smoke [ h , " Kools " ] ) +
( i f h = 1 then 0 e lse pet [ h−1 , " horse " ] ) +
( i f h = 5 then 0 e lse pet [ h+1 , " horse " ] ) >= 1 ;

/ * t h e Lucky S t r i k e smoker d r i n k s o r an ge j u i c e * /
f13 { h in HOUSE} : smoke [ h , " Lucky_Strike " ] = drink [ h , " orange_ ju ice " ] ;

/ * t h e J a p a n e s e smokes P a r l i a m e n t s * /
f14 { h in HOUSE} : n a t i o n a l i t y [ h , " Japanese " ] = smoke [ h , " Parl iament " ] ;

/ * t h e Norwegian l i v e s nex t t o t h e b l u e house * /
f15 { h in HOUSE} :

(1 − n a t i o n a l i t y [ h , " Norwegian " ] ) +
( i f h = 1 then 0 e lse c o l o r [ h−1 , " blue " ] ) +
( i f h = 5 then 0 e lse c o l o r [ h+1 , " blue " ] ) >= 1 ;

solve ;

p r i n t f "\n" ;
p r i n t f "HOUSE COLOR NATIONALITY DRINK SMOKE PET\n" ;
for { h in HOUSE}
{ p r i n t f "%5d" , h ;

p r i n t f { c in COLOR: c o l o r [ h , c ] } " %−6s " , c ;
p r i n t f { n in NATIONALITY : n a t i o n a l i t y [ h , n ] } " %−11s " , n ;
p r i n t f { d in DRINK: drink [ h , d ] } " %−12s " , d ;
p r i n t f { s in SMOKE: smoke [ h , s ] } " %−12s " , s ;
p r i n t f { p in PET : pet [ h , p ] } " %−6s " , p ;
p r i n t f "\n" ;

}
p r i n t f "\n" ;

end ;

This program contains several new elements:
(1) the ‘solve’ command that tells glpk to assign values to all of

the ‘var’s that satisfy the constraints. It appears at the end
of the constraints section, where a ‘maximize’ or ‘minimize’
command might appear.

(2) the ‘binary’ declaration. This forces a variable to only take
on the values 0 or 1.

(3) the ‘printf’ statement that causes data to be printed out as
the program executes, so one does not need to locate the in-
formation in the output file. The format-string is like that
used in the C programming language.



CHAPTER 8

Wavelets

“Then dulcet music swelled
Concordant with the life-strings of the soul;
It throbbed in sweet and languid beatings there,
Catching new life from transitory death;
Like the vague sighings of a wind at even
That wakes the wavelets of the slumbering sea... ”
— Percy Bysshe Shelley1 (see [56]).

8.1. Introduction

In this section, we will discuss a variation on Fourier Expansions
that has gained a great deal of attention in recent years. It has many
applications to image analysis and data-compression. We will only
give a very abbreviated overview of this subject — see [44] and [62]
for a more complete description.

Recall the Fourier Expansions

f (x) =
∞

∑
k=0

ak sin(kx) + bk cos(kx)

The development of wavelets was originally motivated by efforts
to find a kind of Fourier Series expansion of transient phenomena2. If
the function f (x) has large spikes in its graph, the Fourier series expan-
sion converges very slowly. This makes some intuitive sense — it is
not surprising that it is difficult to express a function with sharp tran-
sitions or discontinuities in terms of smooth functions like sines and
cosines. Furthermore, if f (x) is localized in space (i.e., vanishes out-
side an interval) it may be hard to expand f (x) in terms of sines and
cosines, since these functions take on nonzero values over the entire
x-axis.

We solve this problem by trying to expand f (x) in series involving
functions that themselves may have such spikes and vanish outside of a
small interval. These functions are called wavelets. The term “wavelet”
comes from the fact that these functions are not complete waves; they

1According to the Oxford English Dictionary, this is the first recorded use of the
word ‘wavelet’.

2Wavelet expansions grew out of problems related to seismic analysis — see [28].
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x

y

A “wave”

A wavelet

FIGURE 8.1.1. An example of a wavelet

vanish outside an interval. If a periodic function like sin(x) has a se-
quence of peaks and valleys over the entire x-axis, we think of this as
a “wave”, we think of a function with, say only small number of peaks
or valleys, as a wavelet — see figure 8.1.

Incidentally, the depiction of a wavelet in figure 8.1 is accurate
in that the wavelet is “rough” — in many cases, wavelets are fractal
functions, for reasons we will discuss a little later.

We will focus on Ingrid Daubechies’s theory of wavelets, which
lends itself to numerical computation.

Baroness Ingrid Daubechies (1954 –) is a Belgian-American physicist
and mathematician. She is best known for her work with wavelets
in image compression. Daubechies is recognized for her study of the
mathematical methods that enhance image-compression technology.
She is a member of the National Academy of Engineering, the Na-
tional Academy of Sciences, and the American Academy of Arts and
Sciences. She is a 1992 MacArthur Fellow. She also served on the
Mathematical Sciences jury for the Infosys Prize from 2011 to 2013.
The name Daubechies is widely associated with the orthogonal
Daubechies wavelet and the biorthogonal CDF wavelet. A wavelet
from this family of wavelets is now used in the JPEG 2000 standard.

If we want to expand arbitrary functions like f (x) in terms of
wavelets, w(x), like the one in figure 8.1, several problems are im-
mediately apparent:

(1) How do we handle functions with spikes “sharper” than that
of the main wavelet? This problem is solved in conventional
Fourier series by multiplying the variable x by integers in the
expansion. For instance, sin(nx) has peaks that are 1/nth as
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wide as the peaks of sin(x). For various reasons, the solution
that is used in wavelet-expansions, is to multiply x by a power
of 2 — i.e., we expand in terms of w(2jx), for different values
of j. This procedure of changing the scale of the x-axis is
called dilation.

(2) Since w(x) is only nonzero over a small finite interval, how
do we handle functions that are nonzero over a much larger
range of x-values? This is a problem that doesn’t arise in con-
ventional Fourier series because they involve expansions in
functions that are nonzero over the whole x-axis. The solu-
tion use in wavelet-expansions is to shift the function w(2jx)
by an integral distance, and to form linear combinations of
these functions: ∑k w(2jx − k). This is somewhat akin to tak-
ing the individual wavelets w(2jx − k) and assemble them
together to form a wave. The reader may wonder what has
been gained by all of this — we “chopped up” a wave to form
a wavelet, and we are re-assembling these wavelets back into
a wave. The difference is that we have direct control over
how far this wave extends — we may, for instance, only use
a finite number of displaced wavelets like w(2jx − k).

The upshot of this discussion is that a general wavelet expansion of of
a function is doubly indexed series like:

(8.1.1) f (x) = ∑
−1≤j<∞
−∞<k<∞

Ajkwjk(x)

where

wjk(x) =

{
w(2jx − k) if j ≥ 0
ϕ(x − k) if j = −1

The function w(x) is called the basic wavelet of the expansion and ϕ(x)
is called the scaling function associated with w(x).

We will begin by describing methods for computing suitable func-
tions w(x) and ϕ(x). We will usually want conditions like the follow-
ing to be satisfied:

(8.1.2)
∫ ∞

−∞
wj1k1(x)wj2k2(x) dx =

{
2−j1 if j1 = j2 and k1 = k2

0 otherwise

—these are called orthogonality conditions. Compare these to equa-
tions 4.3.5 on page 60, 4.3.6 on page 60, and 4.3.7 on page 60.

The reason for these conditions is that they make it very easy (at
least in principle) to compute the coefficients in the basic wavelet ex-
pansion in equation (8.1.1): we simply multiply the entire series by
w(2jx − k) or ϕ(x − i) and integrate. All but one of the terms of the re-
sult vanish due to the orthogonality conditions (equation (8.1.2)) and
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we get:

(8.1.3) Ajk =

∫ ∞
−∞ f (x)wjk(x) dx∫ ∞

−∞ w2
jk(x) dx

= 2j
∫ ∞

−∞
f (x)wjk(x) dx

In order to construct functions that are only nonzero over a finite
interval of the x-axis, and satisfy the basic orthogonality condition,
we carry out a sequence of steps. We begin by computing the scaling
function associated with the wavelet w(x).

A scaling function for a wavelet must satisfy the conditions3:
(1) Its support (i.e., the region of the x-axis over which it takes

on nonzero values) is some finite interval. This is the same
kind of condition that wavelets themselves must satisfy. This
condition is simply a consequence of the basic concept of a
wavelet-series.

(2) It satisfies the basic dilation equation:

(8.1.4) ϕ(x) =
∞

∑
i>−∞

ξiϕ(2x − i)

Note that this sum is not as imposing as it appears at first
glance — the previous condition implies that only a finite
number of the {ξi} can be nonzero. We write the sum in this
form because we don’t want to specify any fixed ranges of
subscripts over which the {ξi} may be nonzero.

This condition is due to Daubechies — see [15]. It is the
heart of her theory of wavelet-series. It turns out to imply
that the wavelet-expansions are orthogonal and easy to com-
pute.

(3) Note that any multiple of a solution of equation (8.1.4) is also
a solution. We select a preferred solution by imposing the
condition

(8.1.5)
∫ ∞

−∞
ϕ(x) dx = 1

One points come to mind when we consider these conditions from a
computer science point of view:

Equation 8.1.4, the finite set of nonzero values of ϕ(x)
at integral points, and the finite number of nonzero
{ξi} completely determine ϕ(x). They determine it
at all dyadic points (i.e., values of x of the form p/q,
where q is a power of 2). For virtually all modern
computers, such points are the only ones that exist, so
ϕ(x) is completely determined.

3Incidentally, the term scaling function, like the term wavelet refers to a whole class
of functions that have certain properties.
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Of course, from a function theoretic point of view ϕ(x) is far from being
determined by its dyadic values. What is generally done is to perform
a iterative procedure: we begin by setting ϕ0(x) equal to some simple
function like the box function equal to 1 for 0 ≤ x < 1 and 0 otherwise.
We then define

(8.1.6) ϕi+1(x) =
∞

∑
k>−∞

ξkϕi(2x − k)

It turns out that this procedure converges to a limit ϕ(x) = ϕ∞(x),
that satisfies equation (8.1.4) exactly. Given a suitable scaling-function
ϕ(x), we define the associated wavelet w(x) by the formula

(8.1.7) w(x) =
∞

∑
i>−∞

(−1)iξ1−iϕ(2x − i)

We will want to impose some conditions upon the coefficients
{ξi}.

DEFINITION 8.1.1. The defining coefficients of a system of
wavelets will be assumed to satisfy the following two conditions:

(1) Condition O: This condition implies the orthogonality con-
dition of the wavelet function (equation 8.1.2 on page 153):

(8.1.8)
∞

∑
k>−∞

ξkξk−2m =

{
2 if m = 0
0 otherwise

The orthogonality relations mean that if a function can be
expressed in terms of the wavelets, we can easily calculate the
coefficients involved, via equation 8.1.3 on the facing page.

(2) Condition A: There exists a number p > 1, called the degree
of smoothness of ϕ(x) and the associated wavelet w(x), such
that

∞

∑
k>−∞

(−1)kkmξk = 0, for all 0 ≤ m ≤ p − 1

It turns out that wavelets are generally fractal functions —
they are not differentiable unless their degree of smoothness
is > 2.

This condition guarantees that the functions that interest
us4 can be expanded in terms of wavelets. If ϕ(x) is a scaling
function with a degree of smoothness equal to p, it is possible
to expand the functions 1, x,. . . ,xp−1 in terms of series like

∞

∑
j>−∞

Anϕ(x − n)

4This term is deliberately vague.
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W2(x) = φ (2x) - φ (2x-1)

FIGURE 8.1.2. The Haar Wavelet

In order for wavelets to be significant to us, they (and their
scaling functions) must be derived from a sequence of coeffi-
cients {ξi} with a degree of smoothness > 0.

In [15], Daubechies discovered a family of wavelets W2, W4,
W6,· · · whose defining coefficients (the {ξi}) satisfy these conditions.
All of these wavelets are based upon scaling functions that result
from iterating the box function

ϕ0(x) =

{
1 if 0 ≤ x < 1
0 otherwise

in the dilation-equation 8.1.6 on the previous page. The different ele-
ments of this sequence of wavelets are only distinguished by the sets
of coefficients used in the iterative procedure for computing ϕ(x) and
the corresponding wavelets.

(Note: this function, must vanish at one of the endpoints of the in-
terval [0, 1].) This procedure for computing wavelets (i.e., plugging
the box function into equation (8.1.4) and repeating this with the re-
sult, etc.) is not very practical. It is computationally expensive, and
only computes approximations to the desired result5.

Fortunately, there is a simple, fast, and exact algorithm for comput-
ing wavelets at all dyadic points using equation (8.1.4) and the values
of ϕ(x) at integral points. Furthermore, from the perspective of com-
puters, the dyadic points are the only ones that exist. We just perform
a recursive computation of ϕ(x) at points of the form i/2k+1 using the

5This slow procedure has theoretical applications — the proof that the wavelets
are orthogonal (i.e., satisfy equation 8.1.2 on page 153) is based on this construction.
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FIGURE 8.1.3. Daubechies degree-4 scaling function

values at points of the form i/2k and the formula

(8.1.9) ϕ(i/2k+1) = ∑
−∞<m<∞

ξmϕ(
i

2k − m)

It is often possible for the dilation-equation to imply relations between
the values of a scaling function at distinct integral points. We must
choose the value at these points in such a way as to satisfy the dilation-
equation.

EXAMPLE 8.1.2. Daubechies’ W2 Wavelet. This is the simplest el-
ement of the Daubechies sequence of wavelets. This family is defined
by the fact that the coefficients of the dilation-equation are ξ0 = ξ1 =
1, and all other ξi = 0.

In this case ϕ(x) = ϕ0(x), the box function. The corresponding
wavelet, W2(x) has been described long before the development of
wavelets — it is called the Haar function. It is depicted in figure 8.1
on the preceding page.

EXAMPLE 8.1.3. Daubechies’ W4 Wavelet. Here we use the coef-
ficients ξ0 = (1 +

√
3)/4, ξ1 = (3 +

√
3)/4, ξ2 = (3 −

√
3)/4, and

ξ3 = (1 −
√

3)/4 in the dilation-equation. This wavelet has smooth-
ness equal to 2 (so it is continuous, but not differentiable), and its
scaling function ϕ(x) is called D4(x). We can compute the scaling
function, D4(x) at the dyadic points by the recursive procedure de-
scribed above. We cannot pick the values of ϕ(1) and ϕ(2) arbitrarily
because they are not independent of each other in the equation for
ϕ(x) = D4(x).
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FIGURE 8.1.4. Daubechies degree-4 wavelet

Equation 8.1.9 on the preceding page implies they satisfy

ϕ(1) =
3 +

√
3

4
ϕ(1) +

1 +
√

3
4

ϕ(2)

ϕ(2) =
1 −

√
3

4
ϕ(1) +

3 −
√

3
4

ϕ(2)

This is an eigenvalue problem6 like

Ξx = λx

where x is the vector composed of ϕ(1) and ϕ(2), and Ξ is the matrix(
3+

√
3

4
1+

√
3

4
1−

√
3

4
3−

√
3

4

)
We enter this into Maxima via

v : matrix ( [ ( 3 + sqr t ( 3 ) ) / 4 , ( 1 + sqr t ( 3 ) ) / 4 ] ,
[ (1 − sqr t ( 3 ) ) / 4 , ( 3 − sqr t ( 3 ) ) / 4 ] )

and find its eigenvalues via

eigenvalues ( v )

these turn out to be 1 and 1/2. The problem only has a solution if
λ = 1 is a valid eigenvalue of Ξ — in this case the correct values
of ϕ(1) and ϕ(2) are given by some scalar multiple of the eigenvector
associated with the eigenvalue 1. The corresponding eigenvectors are
given by

eigenvectors ( v )

6See 7.4.1 on page 124 for the definition of an eigenvalue.
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which produces[[[
1,

1
2

]
, [1, 1]

]
,
[[[

1,
√

3 − 2
]]

, [[1,−1]]
]]

So the matrix (Ξ) does have an eigenvalue of 1, and its associated
eigenvector is (

1√
3 − 2

)
We can normalize this so that it sums up to 1 by dividing by

√
3− 1 to

get (
1+

√
3

2
1−

√
3

2

)
and these become, from top to bottom, our values of ϕ(1) and ϕ(2),
respectively. The scaling function, ϕ(x), is called D4(x) in this case7

and is plotted in figure 8.1 on page 157.
Notice the fractal nature of the function. It is actually much more

irregular than it appears in this graph. The associated wavelet is called
W4 and is depicted in figure 8.1.3 on the preceding page.

EXERCISES.

1. Write a program to compute D4(x) and W4(x) at dyadic points,
using the recursive formula in equation 8.1.9 on page 157 described
above. Generally we measure the extent to which D4(x) has been
computed by measuring the “fineness of the mesh” upon which we
know the values of this function — in other words, 1/2n.

2. Write Maxima code to plot ϕ(x) by only evaluating it at points
of the form { n

210

}
where 0 ≤ n ≤ 3 · 210. Hint: look at appendix E on page 299 (especially
makelist) and discrete plots in appendix F on page 323.

7In honor of Daubechies.
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8.2. Discrete Wavelet Transforms

Now we are in a position to discuss how one does a discrete ver-
sion of the wavelet transform. We will give an algorithm for comput-
ing the wavelet-series in equation 8.1.1 on page 153 up to some finite
value of j — we will compute the Aj,k for j ≤ p. We will call the param-
eter p the fineness of mesh of the expansion, and 2−p the mesh-size.

DEFINITION 8.2.1. Define Br,j by

Br,j = 2r
∫ ∞

−∞
ϕ(2rx − j) f (x) dx

where 0 ≤ r ≤ p and −∞ < j < ∞.

These quantities are important because they allow us to compute
the coefficients of the wavelet-series.

In general, the Br,j are nonzero for at most a finite number of values
of j:

PROPOSITION 8.2.2. In the notation of 8.2.1, above, suppose that f (x)
is only nonzero on the interval a ≤ x ≤ b and ϕ(x) is only nonzero on
the interval 0 ≤ x ≤ R. Then Br,j = 0 unless L(r) ≤ j ≤ U(r), where
L(r) = ⌊2ra − R⌋ and U(r) = ⌈2rb⌉.

We will follow the convention that L(−1) = ⌊a − R⌋, and U(−1) =
⌈b⌉

PROOF. In order for the integral 8.2.1 to be nonzero, it is at least
necessary for the domains in which f (x) and ϕ(2rx − j) are nonzero
to intersect. This means that

0 ≤ 2rx − j ≤ R
a ≤x ≤ b

If we add j to the first inequality, we get:

j ≤ 2rx ≤ j + R

or

2rx − R ≤ j ≤ 2rx

The second inequality implies the result. □

The first thing to note is that the quantities Bp,j determine the Br,j
for all values of r such that 0 ≤ r < p:

PROPOSITION 8.2.3. For all values of r ≤ p

Br,j =
∞

∑
m>−∞

ξm−2jBr+1,m

2
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PROOF. This is a direct consequence of the basic dilation equa-
tion 8.1.4 on page 154:

Br,j =2r
∫ ∞

−∞
ϕ(2rx − j) f (x) dx

=2r
∫ ∞

−∞

∞

∑
s>−∞

ξsϕ(2(2rx − j)− s) f (x) dx

=2r
∫ ∞

−∞

∞

∑
s>−∞

ξsϕ(2r+1x − 2j − s) f (x) dx

setting m = 2j + s

=2r
∫ ∞

−∞

∞

∑
m>−∞

ξm−2jϕ(2r+1x − m) f (x) dx

=2r
∞

∑
m>−∞

ξm−2j

∫ ∞

−∞
ϕ(2r+1x − m) f (x) dx

□

The definition of w(x) in terms of ϕ(x) implies that

PROPOSITION 8.2.4. Let Ar,k denote the coefficients of the wavelet-
series, as defined in equation 8.1.3 on page 154. Then

Ar,k =


∞

∑
m>−∞

(−1)m ξ1−m+2kBr+1,m

2
if r ≥ 0

B−1,k if r = −1

PROOF. This is a direct consequence of equation 8.1.7 on
page 155. We take the definition of the Ar,k and plug in equation 8.1.7
on page 155:

Ar,k =2r
∫ ∞

−∞
f (x)w(2rx − k) dx

=2r
∫ ∞

−∞
f (x)

∞

∑
s>−∞

(−1)sξ1−sϕ(2(2rx − k)− s) dx

=2r
∫ ∞

−∞
f (x)

∞

∑
s>−∞

(−1)sξ1−sϕ(2r+1x − 2k − s) dx

now we set m = 2k + s

=2r
∫ ∞

−∞
f (x)

∞

∑
m>−∞

(−1)mξ1−m+2kϕ(2r+1x − m) dx

=2r
∞

∑
m>−∞

(−1)mξ1−m+2k

∫ ∞

−∞
f (x)ϕ(2r+1x − m) dx

□
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We can code Maxima functions to compute these. Our algorithm
computes all of the Ar,k, given the values of Bp+1,k:

Bk,i =
1
2

U(k+1)

∑
j=L(k+1)

ξ j−2i · Bk+1,j(8.2.1)

Ak,i =
1
2

U(k+1)

∑
j=L(k+1)

(−1)jξ1−j+2i · Bk+1,j

where i runs from L(k) to U(k), and k runs from p + 1 down to 1. The
Ak,∗ are, of course, the coefficients of the wavelet-expansion.

The only elements of this algorithm that look a little mysterious
are the quantities

Bp+1,j = 2p+1
∫ ∞

−∞
ϕ(2p+1x − j) f (x) dx

First we note that
∫ ∞
−∞ ϕ(u) du = 1 (by equation (8.1.5) on page

154), so
∫ ∞
−∞ ϕ(2p+1x − j) dx = 2−(p+1) (set u = 2p+1 − j, and dx =

2−(p+1)du) and

Bp+1,j =

∫ ∞
−∞ ϕ(2p+1x − j) f (x) dx∫ ∞

−∞ ϕ(2p+1x − j) dx

so that Bp+1,j is nothing but a weighted average of f (x) weighted by
the function ϕ(2p+1x − j). Now note that this weighted average is
really being taken over a small interval 0 ≤ 2p+1x − j ≤ R, where
[0, R] is the range of values over which ϕ(x) ̸= 0. This is always some
finite interval — for instance if ϕ(x) = D4(x) (see figure 8.1 on page
157), this interval is [0, 3]. This means that x runs from j2−(p+1) to
(j + R)2−(p+1).

At this point we make the assumption:

ASSUMPTION 8.2.5. The width of the interval
[j2−(p+1), (j + R)2−(p+1)], is small enough that f (x) doesn’t vary in
any appreciable way over this interval. Consequently, the weighted
average is equal to f (j2−(p+1)).

So we begin the inductive computation of the Ak,j in 8.2.1 by set-
ting

(8.2.2) Bp+1,j = f (j/2p+1)

We regard the set of values { f (j/2p+1)} with 0 ≤ j < 2p+1 as the
inputs to the discrete wavelet transform algorithm.

The output of the algorithm is the set of wavelet-coefficients {Ak,j},
with −1 ≤ k ≤ p, −∞ < j < ∞. Note that j actually only takes on a
finite set of values — this set is usually small and depends upon the
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type of wavelet under consideration. In the case of the Haar wavelet,
for instance 0 ≤ j ≤ 2k − 1, if k ≤ 0, and j = 0 if k = −1. In the case of
the Daubechies W4 wavelet this set is a little larger, due to the fact that
there are more nonzero defining coefficients {ξi}.

Now we will give a fairly detailed example of this algorithm. Let
f (x) be the function defined by:

f (x) =


0 if x ≤ 0
x if 0 < x ≤ 1
0 if x > 1

We will expand this into a wavelet-series using the degree-4
Daubechies wavelet defined in 8.1.3 on page 157. We start with
mesh-size equal to 2−5, so p = 4, and we define B5,∗ by

B5,i =


0 if i ≤ 0
i/32 if 1 ≤ i ≤ 32
0 if i > 32

In the present case, the looping phase of equation 8.2.1 on the fac-
ing page involves the computation:

Bk,i =
1 +

√
3

8
Bk+1,2i +

3 +
√

3
8

Bk+1,2i+1 +
3 −

√
3

8
Bk+1,2i+2 +

1 −
√

3
8

Bk+1,2i+3

Ak,i =
1 −

√
3

8
Bk+1,2i−2 −

3 −
√

3
8

Bk+1,2i−1 +
3 +

√
3

8
Bk+1,2i −

1 +
√

3
8

Bk+1,2i+1

� Iteration 1: The B4,∗ and the wavelet-coefficients, A4,∗ are all
zero except for the following cases:



B4,−1 =
1

256
−

√
3

256

B4,j =
4j + 3 −

√
3

64
for 0 ≤ j ≤ 14

B4,15 =
219
256

+
29

√
3

256

B4,16 =1/8 +

√
3

8





A4,0 =− 1
256

−
√

3
256

A4,16 =
33

256
+

33
√

3
256

A4,17 =1/8 −
√

3
8


Notice that most of the {A4,i} are 0. This is how the original
function has been compressed: we replaced its values by these
coefficients.

Now we can calculate B3,∗ and A3,∗:
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� Iteration 2:

B3,−2 =
1

512
−

√
3

1024

B3,−1 =
11

256
− 29

√
3

1024

B3,j =
8j + 9 − 3

√
3

64
for 0 ≤ j ≤ 5

B3,6 =
423
512

− 15
√

3
1024

B3,7 =
121
256

+
301

√
3

1024

B3,8 =1/16 +

√
3

32





A3,−1 =
1

1024

A3,0 =
1

1024
− 5

√
3

512

A3,7 =− 33
1024

A3,8 =
5
√

3
512

− 65
1024

A3,9 =− 1/32


� Iteration 3:

B2,−2 =
35

2048
− 39

√
3

4096

B2,−1 =
259

2048
− 325

√
3

4096

B2,0 =
21
64

− 7
√

3
64

B2,1 =
37
64

− 7
√

3
64

B2,2 =
1221
2048

+
87

√
3

4096

B2,3 =
813

2048
+

1125
√

3
4096

B2,4 =
5

256
+

3
√

3
256





A2,−1 =
23

4096
−

√
3

512

A2,0 =− 27
4096

− 3
√

3
256

A2,3 =
15

√
3

512
− 295

4096

A2,4 =
315
4096

− 35
√

3
256

A2,5 =− 1
256

−
√

3
256



� Iteration 4:

B1,−2 =
455
8192

− 515
√

3
16384

B1,−1 =
2405
8192

− 2965
√

3
16384

B1,0 =
2769
8192

− 381
√

3
16384

B1,1 =
2763
8192

+
3797

√
3

16384

B1,2 =
7

1024
+

√
3

256





A1,−1 =
275

16384
− 15

√
3

2048

A1,0 =− 339
16384

− 67
√

3
4096

A1,2 =
531

16384
− 485

√
3

4096

A1,3 =− 1
512

−
√

3
1024


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FIGURE 8.2.1. First term of the wavelet-series

� Iteration 5: In this phase we complete the computation of the
wavelet-coefficients: these are the A0,∗ and the B0,∗ = A−1,∗.

B0,−2 =
4495
32768

− 5115
√

3
65536

B0,−1 =
2099
16384

− 3025
√

3
32768

B0,1 =
19

8192
+

11
√

3
8192





A0,−1 =
2635
65536

− 155
√

3
8192

A0,0 =
919

√
3

16384
− 5579

32768

A0,2 =− 5
8192

− 3
√

3
8192


We will examine the convergence of this wavelet-series. The A−1,∗
terms are:

S−1 =

(
4495
32768

− 5115
√

3
65536

)
D4(x+ 2)+

(
2099
16384

− 3025
√

3
32768

)
D4(x+ 1)

+

(
19

8192
+

11
√

3
8192

)
D4(x)

This expression is analogous to the constant term in a Fourier series.
It is plotted against f (x) in figure 8.2 — compare this (and the fol-

lowing plots with the partial-sums of the Fourier series in figures 4.3.2
on page 63 to 4.3.4 on page 64. If we add in the A0,∗-terms we get:

S0(x) = S−1(x)+

(
2635

65536
− 155

√
3

8192

)
W4(x+ 1)+

(
919

√
3

16384
− 5579

32768

)
W4(x)

−
(

5
8192

+
3
√

3
8192

)
W4(x − 2)

It is plotted against the original function f (x) in figure 8.2.
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FIGURE 8.2.2. First two terms of wavelet-series
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FIGURE 8.2.3. First three terms

The next step involves adding in the A1,∗-terms

S1(x) = S0(x)+

(
275

16384
− 15

√
3

2048

)
W4(2x+ 1)−

(
339

16384
+

67
√

3
4096

)
W4(2x)

−
(

531
16384

− 485
√

3
4096

)
W4(2x − 2)−

(
1

512
+

√
3

1024

)
W4(2x − 3)

Figure 8.2 shows how the wavelet-series begins to approximate f (x).
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FIGURE 8.2.4. First four terms

The A3,∗ contribute:

S2(x) = S1(x) +

(
23

4096
−

√
3

512

)
W4(4x + 1)−

(
27

4096
+

3
√

3
256

)
W4(4x)

+

(
15

√
3

512
− 295

4096

)
W4(4x − 3)

+

(
315
4096

− 35
√

3
256

)
W4(4x − 4)−

(
1

256
+

√
3

256

)
W4(4x − 5)

As with Fourier series (see equation 4.3.10 on page 64), this series
converges in following sense

(8.2.3) lim
n→∞

∫ ∞

−∞
( f (x)− Sn(x))2 dx → 0

This means that the area of the space between the graphs of f (x)
and Sn(x) approaches 0 as n approaches ∞. This does not necessar-
ily mean that Sn(x) → f (x) for all values of x. It is interesting that
there are points x0 where limn→∞ Sn(x0) ̸= f (x0). For instance, x = 1
is such a point8. Equation 8.2.3 implies that the total area of this set
of points is zero. Luckily, most of the applications of wavelets only
require the kind of convergence described in equation 8.2.3.

We will conclude this section with a discussion of the converse of
the algorithm defined by equation 8.2.1 on page 162 — it is an algo-
rithm that computes partial sums of a wavelet-series, given the coef-
ficients {Aj,k}. Although there is a straightforward method for doing
this that involves simply plugging values into the functions w(2jx− k)

8This is Gibbs phenomena again!
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and plugging these values into the wavelet-series, there is also a faster
algorithm for this. This algorithm is very similar to the algorithm for
computing the {Aj,k} in the first place.

We make use of the recursive definition of the scaling and
wavelet-functions in equation 8.1.4 on page 154. This leads to the
reconstruction-algorithm for wavelets:

(8.2.4) Bk+1,i =
U(k)

∑
j=L(k)

(
ξi−2jBk,j + (−1)jξ1−i+2j Ak,j

)
where i runs from L(k + 1) to U(k + 1), and k runs from −1 to p + 1.
At this point, the reader might wonder:

In what sense have we evaluated the wavelet series? All
we’ve done is compute the

{
Bp+1,i

}
using the{

Ak,j

}
(recall that B−1,j = A−1,j).

Equation 8.2.2 on page 162 states that Bp+1,i = f (2−p−1i), so we have

actually reconstructed f (x) — at least at the points
{

j
2p+1

}
.

8.3. Discussion and Further reading

The defining coefficients for the Daubechies wavelets W2n for n >
2 are somewhat complex — see [15] for a general procedure for finding
them. For instance, the defining coefficients for W6 are

c0 =

√
5 + 2

√
10

16
+ 1/16 +

√
10

16
(8.3.1)

c1 =

√
10

16
+

3
√

5 + 2
√

10
16

+
5

16

c2 =5/8 −
√

10
8

+

√
5 + 2

√
10

8

c3 =5/8 −
√

10
8

−
√

5 + 2
√

10
8

c4 =
5

16
− 3

√
5 + 2

√
10

16
+

√
10

16

c5 =1/16 −
√

5 + 2
√

10
16

+

√
10

16

In [63], Sweldens and Piessens give formulas for approximately
computing coefficients of wavelet-expansions:

Br,j = 2r
∫ ∞

−∞
ϕ(2rx − j) f (x) dx
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(defined in 8.2.1 on page 160). For the Daubechies wavelet W4(x) the
simplest case of their algorithm gives:

Br,j ≈ f

(
2j + 3 −

√
3

2r+1

)
(the accuracy of this formula increases with increasing r). This is more
accurate than the estimates we used in the example that appeared in
pages 163 to 167 (for instance, it is exact if f (x) = x). We didn’t go
into this approximation in detail because it would have taken us too
far afield.

The general continuous wavelet-transform of a function f (x) with
respect to a wavelet w(x), is given by

T f (a, b) =
1√
a

∫ ∞

−∞
w̄
(

x − b
a

)
f (x) dx

where ∗̄ denotes complex conjugation. The two variables in this func-
tion correspond to the two indices in the wavelet-series that we have
been discussing in this section. This definition was proposed by Mor-
let, Arens, Fourgeau and Giard in [3]. It turns out that we can recover
the function f (x) from its wavelet-transform via the formula

f (x) =
1

2πCh

∫ ∞

−∞

∫ ∞

−∞

T f (a, b)√
|a|

w
(

x − b
a

)
da db

where Ch is a suitable constant (the explicit formula for Ch is some-
what complicated, and not essential for the present discussion).

The two equations 8.2.1 on page 162 and 8.2.4 on the preceding
page are, together, a kind of wavelet-analogue to the FFT algorithm.
In many respects, the fast wavelet transform and its corresponding
reconstruction algorithm are simpler and more straightforward than
the FFT algorithm. They use basic linear algebra rather than sines and
cosines.

Wavelets that are used in image processing are two-dimensional.
It is possible to get such wavelets from one-dimensional wavelets via
the process of taking the tensor-product. This amounts to making defi-
nitions like:

W(x, y) = w(x)w(y)
In fact the image-compression standard called JPEG2000 uses
Daubechies wavelet transforms rather than Fourier series — see [64].
There many graphics applications that use it, including the virtual
reality system OpenSimulator (and Second Life).

The concept of wavelets predate their “official” definition in [28].
Discrete Wavelet-transforms of images that are based upon tensor-

products of the Haar wavelet were known to researchers in image-
processing — such transforms are known as quadtree representations
of images.
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Many authors have defined systems of wavelets that remain non-
vanishing over the entire x-axis. In every case, these wavelets decay
to 0 in such a way that conditions like equation 8.1.2 on page 153 are
still satisfied. The wavelets of Meyer decay like 1/xk for a suitable
exponent k — see [46].

See [8] for an interesting application of wavelets to astronomy — in
this case, the determination of large-scale structure of the universe.

See [35] as an excellent general reference.

EXERCISES.

1. Write a program to compute wavelet-coefficients using equa-
tion 8.2.1 on page 162.

2. Find a wavelet-series for the function

f (x) =

{
1 if 0 ≤ x ≤ 1/3
0 otherwise

and plot partial sums.

3. Suppose that

Sn(x) =
n

∑
i=−1

∞

∑
j>−∞

Ak,jw(2kx − j)

is a partial sum of a wavelet-series, as in 8.2.4 on page 168. Show that
this partial sum is equal to

(8.3.2) Sn(x) =
∞

∑
j>−∞

Bn,jϕ(2nx − j)

so that wavelet-series correspond to series of scaling functions.

4. Write a routine to compute D6(x) (using the parameters in
equation 8.3.1 on page 168) and plot them at dyadic points.



CHAPTER 9

Graph Theory

“The origins of graph theory are humble, even frivolous. . .
The problems which led to the development of graph the-
ory were often little more than puzzles, designed to test the
ingenuity rather than the stimulate the imagination.”
— Norman L. Biggs ([7]).

9.1. Königsberg bridge problem

Graph theory is the study of combinatorial structures similar to the
diagram in figure 7.4.1 on page 134. The idea is that we have points,
called nodes (or vertices), connected by arcs, called edges, and we are
interested with many questions that arise.

The great Leonhard Euler invented graph theory to solve the fa-
mous Königsberg bridge problem. See figure 9.1.1.

The Pregel River flows through the city of Königsberg (now
called Kaliningrad) and around the two islands of Kneiphof and
Lomse. There are seven bridges (marked in figure 9.1.1) connecting
the north and south banks of the river and these two islands. The
Königsberg bridge problem is:

FIGURE 9.1.1. Königsberg (1736)

171
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North

Kneiphof

Lomse

South

FIGURE 9.1.2. Graph for Königsberg

How can one visit the two banks and two islands by
traversing each of the bridges exactly once?

Euler replaced the diagram in figure 9.1.1 on the previous page by
the more abstract diagram — a graph — in figure 9.1.2, realizing that
the shapes of the respective landmasses were unimportant. The only
thing that mattered was how they were interconnected.

At this point, Euler realized that if you enter a node or vertex (syn-
onymous with node) by one edge and leave it by a different edge, there
must be an even number of edges incident on that node. The only ex-
ceptions would be the nodes where the path started and ended, which
could have an odd number of incident edges. In the diagram in fig-
ure 9.1.2, all four vertices have an odd number of edges, so there cannot
be a path through the diagram that hits each edge once.

A path in a graph that crosses each edge exactly once is called an
Euler path or Eulerian path. Euler showed that a necessary condition for
the existence of an Eulerian path is that all vertices except two must
have an even numbers of edges incident on them. He also stated but
didn’t prove that this condition was sufficient for the existence of an
Eulerian path. The first complete proof of this latter claim (and an
algorithm for finding an Euler path) was published posthumously in
1873 by Carl Hierholzer in [31] — also see [7].

An Eulerian circuit or cycle is a closed path. For the existence of
such, it is necessary and sufficient for for all vertices to have an even
number of edges incident on them.

Nowadays, graph theory is used for analyzing networks of all
kinds: computer networks, highway systems, electrical grids, etc.

The type of graph in figure 9.1.2 is called a multigraph since it has
more than one edge connecting the same two nodes. A graph with at
most one edge connecting two nodes is said to be simple.

This gives us an opportunity to introduce a new Maxima pro-
gramming construct: structures. See section E.10 on page 310.



9.1. KÖNIGSBERG BRIDGE PROBLEM 173

A structure is a kind of list where the entries in the list have names
and are referred to by those names. We define types of structures with
the defstruct-command:

d e f s t r u c t ( structure_name ( name_1 , . . . , name_n ) ) ;

We create structures via the new-command

z : new( structure_name ( value_1 , . . . , value_n ) ) ;

Example:

d e f s t r u c t ( dog ( legs , eyes , c o l o r ) ) ;

This defines a kind of structure called ‘dog’. We create a actual structure
(i.e., a ‘dog’) with

f ido : new( dog ( 4 , 2 , " brown " ) ) ;

We access these fields via the ’@’-command:

f ido@legs ;

and Maxima returns 4. If we simply type fido, Maxima prints

dog ( l e g s =4 , eyes =2 , c o l o r =" brown " ) ;

Note that one cannot create a new structure using these ‘=’ commands.
After a tragic accident

f ido@legs : 3 ;

and, if we simply type fido, we get

dog ( l e g s =3 , eyes =2 , c o l o r =" brown " ) ;

With multigraphs, we can

d e f s t r u c t ( mgraph (V, E ) ) ;

where V is set of vertices and E is a set of edges (see section E.11 on
page 311 on sets). Given this, we define

konigsberg : new( mgraph ( {A, B , C,D} ,
{ [ a , { A, B } ] ,

[ b , { A, B } ] ,
[ c , { A,C} ] ,
[ d , { A,C} ] ,
[ e , { A,D} ] ,
[ f , { B ,D} ] ,
[ g , { C,D } ] } ) ) ;
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Each edge is a list

[name, {set of endpoints}]

Now
konigsberg@V

prints

{A, B, C, D}

and

konigsberg@E

prints{
[a, {A, B}] , [b, {A, B}] , [c, {A, C}] ,

[d, {A, C}] , [e, {A, D}] , [ f , {B, D}] , [g, {C, D}]
}

To access the endpoints of an edge, we use the assoc-command

assoc ( a , konigsberg@E )

which prints out

{A, B}

A path through a graph is a sequence of vertices and edges

[v0, e1, v1, . . . , vi−1, ei, vi, . . . , en, vn]

where the endpoints of ei are vi−1 and vi. We can write a function to
recognize valid paths through a multigraph:

i s_path (G, P ) : = block (
[ r e s u l t : t rue ] ,
for i : 2 step 2 thru ( length ( P) −1) do (

r e s u l t : r e s u l t and
i s ( { P [ i −1] , P [ i +1 ] } = assoc ( P [ i ] , G@E) )

) ,
return ( r e s u l t )

)

An Euler path is one for which

(1) no edge is repeated
(2) every edge in the graph appears.
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FIGURE 9.1.3. “Eulersberg”

edges_unique (G, P ) : = block (
[ edge_set : { } , val : t rue ] ,
for i : 2 step 2 thru ( length ( P) −1) do (

i f ( elementp ( P [ i ] , edge_set ) ) then
( val : fa lse , return ( f a l s e ) )
e lse edge_set : adjoin ( P [ i ] , edge_set )
) ,

return ( val )
) ;

Note that the return statement in the do-loop only exits that loop, not
the entire block.

So: if we know that all edges are unique, we can test whether all
edges of the graph are used by checking the length of the path:

e u l e r i a n (G, P ) : = (
i s ( i s_path (G, P ) ) and edges_unique (G, P )
and i s ( length ( P ) >= 2* length (G@E) )

)

In his paper, [21], Euler proposed a variation of Königsberg with extra
bridges for which an Eulerian path does exist — see figure 9.1.3.

We “declare” Eulersberg via the code in algorithm 1 on the follow-
ing page. And we define Euler’s magic path, via

s : "EaFbBcFdAeFfCgAhCiDkAmEnApBoElD" ;
magic : ( eval_s t r ing , c h a r l i s t ( s ) )

This allows us to discuss new commands:
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Algorithm 1 Declaration of Eulersberg

eulersberg : new( mgraph ( {A, B , C,D, E , F } ,
{ [ a , { E , F } ] ,

[ b , { B , F } ] ,
[ c , { B , F } ] ,
[ d , { A, F } ] ,
[ e , { A, F } ] ,
[ f , { C, F } ] ,
[ g , { A,C} ] ,
[ h , { A,C} ] ,
[ i , { C,D} ] ,
[ j , { D, E } ] ,
[ k , { A,D} ] ,
[ l , { E ,D} ] ,
[m, { A, E } ] ,
[ n , { A, E } ] ,
[ o , { B , E } ] ,
[ p , { A, B } ]
} ) ) ;

� charlist — converts a string into a list of characters, which
are strings of length 1.

� eval_string — takes a string and evaluates it as if you typed
it into wxMaxima and clicked “evaluate cell”. In this case, it
turns strings of length 1 into Maxima variables or symbols.
By default, Maxima displays strings without quotes so they
look like variables (which can be confusing, since strings are
not variables). The variable stringdisp controls this. By de-
fault, it is false. Setting it to true causes strings to be dis-
played with double-quotes.

� map — executes eval_string on each element of the list,
charlist(s).

Now we use our function to verify that ‘magic’ is, indeed, an Eulerian
path:

e u l e r i a n ( eulersberg , magic )

which returns true.
Given an Eulerian mgraph, we’d like a way to construct an Euler

tour. We will follow Hierholzer ’s algorithm (in [31]), recursively:
(1) We select an edge incident on the starting vertex
(2) we locate the other end of this edge: newvert
(3) we remove this edge from the graph (or put it on a forbidden

list)
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Algorithm 2 Euler tour (Hierholzer ’s algorithm)

euler_path ( mgr , v e r t ) := block (
[ s o f a r : [ ] , n_edges : c a r d i n a l i t y (mgr@E) ,

temp : [ ] ] ,
s o f a r : p a r t i a l _ p a t h ( mgr , v e r t ) ,
while ( c a r d i n a l i t y ( forbidden ) < n_edges ) do (

for i : 1 step 2 thru length ( s o f a r ) −1 do (
newvert : s o f a r [ i ] ,
temp : p a r t i a l _ p a t h ( mgr , newvert ) ,
s_ len : length ( s o f a r ) ,
i f ( length ( temp ) >0) then
( s o f a r : append ( f i r s t n ( sofar , i −1) ,

temp , l a s t n ( sofar , s_len − i + 1 ) ) ) ,
/ * s p l i c e t h e new p a r t i a l _ p a t h i n t o s o f a r * /

temp : [ ]
)

) ,
s o f a r
) ;

(4) we continue the search from newvert and the remaining
edges of the graph (i.e., call euler_path, again)

(5) we adjoin the starting vertex and edge to the path returned
by this recursive call and return the result.

(6) If we get stuck before visiting all of the edges in the graph,
we rerun steps 1-4 on a vertex of the partial path we have con-
structed. Iterate through the edges of the partial path until
all edges are visited.

The code is in figure 2 and 3 on the following page.
Notes:

� We get the other end of the current edge via

newvert : f i r s t ( l i s t i f y ( dis jo in ( vert , l a s t ( x ) ) ) ) ,

Here, last(x) extracts the two-element set of endpoints of the
edge given by first(x), and disjoin deletes the starting vertex
from it. We now have a one-element set containing the other
end of that edge. We extract that one element via listify and
first. The function first alone may work, but future versions
of Maxima might no long support first for sets.

The main program partial_path in 3 on the next page.
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Algorithm 3 Partial path (Hierholzer ’s algorithm)

forbidden : { } ;
p a r t i a l _ p a t h ( mgr , v e r t ) : = block (

[ x , keepgoing : true , r e t v a l : [ ] ] ,
for x in mgr@E while ( keepgoing ) do (
i f ( not ( ( elementp ( f i r s t ( x ) , forbidden ) ) )

and elementp ( vert , l a s t ( x ) ) ) then
( block (

[ newvert : f i r s t ( l i s t i f y ( dis jo in ( vert ,
l a s t ( x ) ) ) ) ,

/ * v e r t e x a t end o f c u r r e n t edge * /
val ] ,

forbidden : adjoin ( f i r s t ( x ) , forbidden ) ,
/ * Put t h e c u r r e n t edge in f o r b i d d e n * /
keepgoing : fa lse ,
/ * Stop f o r − l o o p a f t e r an edge l o c a t e d * /
val : p a r t i a l _ p a t h ( mgr , newvert ) ,
/ * Cont inue t h e s e a r c h with

t h e r e s t o f t h e graph * /
r e t v a l : append ( [ vert , f i r s t ( x ) ] , val ) )

)
) ,

r e t v a l / * Return with t h i s v a l u e * /
) ;

9.2. Simple graphs

9.2.1. Introduction. Most graphs used in applications are simple:
they only have a single edge between two vertices. Maxima has a
very comprehensive library of routines for handling these graphs see
Appendix G on page 345.

We begin with a few definitions:

(1) degree of a vertex — the number of edges attached to it. For a
directed graph, we have in-degree and out-degree.

(2) walk — a path through a graph that can contain repeated
edges and vertices

(3) trail — a walk with no repeated edges.
(a) Eulerian trail — one that contains every edge in the

graph. Euler stated but didn’t prove that an Eulerian
trail exists if and only if the graph has precisely two
vertices of odd degree.

(4) circuit — a path through a graph that begins and ends at the
same vertex, and never repeats an edge.
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(a) Eulerian circuit — visits every edge of the graph. Euler
stated but didn’t prove that a graph has an Eulerian cir-
cuit if and only if the degree of each vertex is even. This,
and the earlier claim of Euler were proved by Carl Hi-
erholzer in 1873, who developed an algorithm for com-
puting Euler paths and circuits — see [7].

(b) Hamiltonian circuit — visits every vertex of the graph ex-
actly once.

(5) cycle — a circuit that never repeats a vertex. Every cycle is a
circuit but the converse is not necessarily true. On the other
hand, a Hamiltonian circuit is a cycle.

(6) A matching of a graph is a selection of edges, no two of which
are incident on the same vertex. It’s called a matching be-
cause each edge pairs up (i.e. “matches”) its endpoints.

We type:

load ( graphs ) ;

Now we illustrate the kinds of problems graph theory can solve.

EXAMPLE 9.2.1. What is the largest set of integers from 1 to 100
with the property that no two integers differ by a perfect square?

First, we code a function to recognize a perfect square:

square_p [ n ] : = block (
[ sqval : i s q r t ( n ) ] ,
i s ( n=sqval ^2)

) ;

Then, we create a graph whose vertices are the integers from 1 to
100 and whose edges connect numbers that differ by a perfect square:

sq : make_graph ( 1 0 0 , lambda ( [ i , j ] , square_p [ abs ( i − j ) ] ) ) ;

Now we identify an independent set in this graph: an independent set
is a set of vertices no two of which are connected by an edge in that
graph. We actually want a maximal independent set in the graph, sq.

indep : max_independent_set ( sq ) ;

At this point, be prepared to wait: it’s well-known that the problem of
finding a maximum independent set is very hard1 (even NP-hard —
see [48]). We eventually get a list of 24 numbers:

[1, 3, 6, 8, 14, 20, 25, 27, 32, 35, 38, 40,

46, 53, 59, 66, 80, 83, 85, 88, 90, 93, 98, 100]

1Incidentally, finding an independent set is easy. The hard part is finding a maximal
independent set.
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FIGURE 9.2.1. A weighted graph

Now we consider another example: the GPS problem:

EXAMPLE 9.2.2. In this case, the edges of the graph represent high-
ways and streets. It’s not enough to represent the network of roads:
we must use a weighted graph where each edge has a number associated
with it called its weight. In a GPS system, the weight could represent
the time it takes to traverse a road at the posted speed limit. We’ll
make the simplifying assumption that all roads are two-way.

roads : create_graph ( [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 ] ,
[ [ [ 1 , 2 ] , 5 ] , [ [ 1 , 3 ] , 2 ] , [ [ 3 , 9 ] , 1 0 ] , [ [ 2 , 1 0 ] , 3 ] ,
[ [ 3 , 5 ] , 1 ] , [ [ 2 , 1 3 ] , 5 ] , [ [ 2 , 7 ] , 3 ] , [ [ 4 , 8 ] , 7 ] ,
[ [ 5 , 7 ] , 1 ] , [ [ 4 , 1 0 ] , 1 ] , [ [ 7 , 8 ] , 4 ] , [ [ 6 , 8 ] , 5 ] , [ [ 2 , 6 ] , 1 0 ] ,
[ [ 4 , 5 ] , 1 ] , [ [ 7 , 9 ] , 2 ] , [ [ 4 , 1 1 ] , 6 ] ,
[ [ 1 1 , 1 2 ] , 3 ] , [ [ 4 , 1 3 ] , 5 ] , [ [ 1 2 , 1 3 ] , 1 ] ]
) ;

We can see what this graph looks like via the command

draw_graph ( roads , show_id=true , show_weight=true ,
ver tex_type= c i r c l e , v e r t e x _ s i z e = 4 ) ;

which produces figure 9.2.1. Note: vertex_type and vertex_size are
coded because the default display is not very readable. The show_id
command causes the vertex-numbers to be displayed.

Now, if we want the shortest weighted path2 from vertex 1 to ver-
tex 11, we type

gps : shortest_weighted_path ( 1 , 1 1 , roads ) ;

2There’s also a shortest_path command that gives the path with the fewest edges
(regardless of weight). This produces a different outcome in this case (try it!).
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FIGURE 9.2.2. Shortest weighted path

which results in

(9.2.1) [10, [1, 3, 5, 4, 11]]

where the first number is just the “distance” or total weight of the
path, and the second list is the list of vertices.

We can display this path in the image of the graph via the com-
mand

draw_graph ( roads , show_id=true , show_weight=true ,
show_edges=v e r t i c e s _ t o _ p a t h ( l a s t ( gps ) ) ,
show_edge_width =5 ,
vertex_type= c i r c l e , v e r t e x _ s i z e = 4 ) ;

which produces figure 9.2.2.
Notes: the option, show_edges, causes some edges to be

displayed in a different format than the others, determined by the
show_edge_width command. The command last(gps) extracts the
list of vertices from equation 9.2.1, and vertices_to_path converts this
list of vertices into a list of edges.

EXERCISES.

1. Why does the command for generating the graph in exam-
ple 9.2.1 on page 179 have a lambda-expression? Why couldn’t it just
be

sq : make_graph ( 1 0 0 , square_p [ abs ( i − j ) ] ) ;

?
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9.3. The Traveling Salesperson Problem

9.3.1. Introduction. This is a classic problem in graph theory. The
background story:

A salesman must travel to, say, 100 cities around the
country pitching his wares. How can this travel be
done in a manner that the total distance covered is a
minimum?

Modern formulation:

Given a complete weighted graph on n vertices, find
the minimum-total-weight Hamiltonian path through
it.

This type of problem frequently occurs in transportation networks:

� the problem of arranging school bus routes to pick up the
children in a school district (Vehicle Routing Problem).

� the scheduling of a machine to drill holes in a circuit board
or other object, the cost of travel is the time it takes to move
the drill head from one hole to the next.

� routing workers through a warehouse to assemble orders (for
a company like Amazon).

Unfortunately, the traveling salesperson problem is well-known to be
NP-complete (see [48]), which means it is computationally very diffi-
cult.

We start with a complete graph whose vertices represent 6 cities:

� New York
� Chicago
� New Orleans
� Los Angeles
� Phoenix
� Denver

and weight it by the distances between these cities in miles. We use
the command

draw_graph ( z ,
show_weight=true ,
show_label=true ,
program=fdp ,
vertex_type= c i r c l e ,
v e r t e x _ s i z e =5 , redraw= t rue )

to get figure 9.3.1 on the next page. Recall that ‘fdp’ is part
of the free ‘graphviz’ package that can be downloaded from
https://graphviz.org. It does a much better job of displaying
the graph.
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FIGURE 9.3.1. Complete weighted graph

9.3.2. Exhaustive search. The only method guaranteed to
produce an optimal solution is exhaustive search. This is easily
programmed in Maxima using some set-theoretic commands.
The most straightforward code involves generating a list of all
permutations of the vertices:

paths : permutations ( v e r t i c e s ( g ) ) ;

which produces a set containing lists of permuted vertices. Each rep-
resents a possible tour through the complete graph.

For each list of vertices, we compute the total distance traveled

t o t a l _ l e n g t h ( l i , g ) : = block (
[ len : length ( l i ) , i , t _ l e n : 0 ] ,
for i : 1 step 1 thru len −1 do (

t _ l e n : t _ l e n +
get_edge_weight ( [ l i [ i ] , l i [ i + 1 ] ] , g )

) ,
t _ l e n : t _ l e n +

get_edge_weight ( [ l i [ len ] , l i [ 1 ] ] , g ) ,
return ( t _ l e n )

) ;

Now we merely cycle through all permutations of the vertices of our
graph and find the one with the shortest total length. The code for this
appears in algorithm 4 on the following page. For our sample graph,
this prints out
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Algorithm 4 The Traveling salesman Problem

show_labels ( l i , g ) : =
for i in l i do

block (
[ lab : g e t _ v e r t e x _ l a b e l ( i , g ) ] ,
display ( lab )

) ;

exhaust ive ( g ) : = block (
[ paths : permutations ( v e r t i c e s ( g ) ) ,

f i r s t _ t i m e : true ,
s _ d i s t : 0 ,
s_path : [ ] ] ,

for p in paths do block (
[ c u r r e n t _ d i s t : t o t a l _ l e n g t h ( p , g ) ] ,
i f f i r s t _ t i m e then

block ( s _ d i s t : c u r r e n t _ d i s t , s_path : p ) ,
f i r s t _ t i m e : fa lse ,
i f c u r r e n t _ d i s t < s _ d i s t then block (

[ ] ,
s _ d i s t : c u r r e n t _ d i s t ,
s_path : p

)
) ,

display ( s _ d i s t , s_path ) ,
show_labels ( s_path , g )

) ;

s _ d i s t =6009.2
s_path = [ 0 , 1 , 5 , 2 , 4 , 3 ]
lab="NY"
lab=" Chi "
lab="Den"
lab="LA"
lab=" Phoe "
lab="NO"

so our shortest tour is

NY → Chi → Den → LA → Phoe → NO

with a total length of roughly 6009 miles.
Although this program had no trouble solving the traveling sales-

man problem, there were only 6 cities, giving rise to 6! = 720 per-
mutations to be checked. We could decrease this number by noting
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that cyclic permutations of a path give the same path — so we have
6!/6 = 5! = 120. With n cities, there are (n − 1)! possibilities, and for
large n this quickly goes beyond the capacity of a computer. For in-
stance, if we have 100 cities, we must still consider 99! cases — a very
large number3!

It’s not hard to see that we can cyclically permute every permuta-
tion of

[0, . . . , n − 1]

to 0 followed by a permutation of

[1, . . . , n − 1]

so we can generate these (n − 1)! tours in this fashion.

EXERCISES.

1. Rewrite the code in this section to only test the (n − 1)! permu-
tations: 0 followed by a permutation of

[1, . . . , n − 1]

2. The code in this section requires all of the permutations to be
stored in memory at the same time. The combinatorics package —
loaded via load("combinatorics") — has a perm_next(permutation)-
function that generates permutations one by one. Rewrite the code in
this section to use that, so only one permutation at a time must be in
memory. If perm_next(permutation) gives you the next permutation,
what is the first one?

9.3.3. An approximation algorithm. Practical algorithms for the
traveling salesman problem involve approximation algorithms for tours,
especially those based on minimal spanning trees:

DEFINITION 9.3.1. Given a weighted graph, G, a minimal spanning
tree, T, of G is a subgraph of G that

� is a tree (i.e., it has no cycles),
� it spans G, i.e., it contains all of the vertices of G,
� has a minimal total weight among the (many!) possible span-

ning trees.

3Type it into Maxima!
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REMARK. It turns out that there are fast and efficient algorithms
for finding minimum spanning trees. Besides the traveling salesman
problem, minimum spanning trees are widely used in network design.

In a weighted graph, G, the total weight of a subgraph H ⊂ G will
be called w(H). Suppose Z ⊂ G is a minimum-weight salesman’s tour.
Then deleting one edge from Z will form a spanning tree (a special
type, with only one path). If T ⊂ G is a minimum spanning tree, it
follows that

w(T) ≤ w(Z)
In fact, if E ⊂ Z is the edge with the greatest weight, then

w(T) ≤ w(Z)− w(E)

since we could delete E from Z to turn it into a spanning tree.
So our strategy for approximating a minimum salesman’s tour is:

(1) create a complete graph of all the cities the salesman must
visit, weighted by distances between the cities (this has al-
ready been done in section 9.3.1 on page 182),

(2) find a minimum spanning tree, T, of this,
(3) double all the edges of this graph to form an mgraph,
(4) find an Euler tour of this (using the algorithm in 2 on

page 177 and 3 on page 178). This will have a total weight of
2w(T) < 2w(Z),

(5) “short-cutting” this path by eliminating duplicate
vertices. This results in a tour whose total weight is
< 2w(T) < 2w(Z).

Now we get a minimum spanning tree of this via

t : minimum_spanning_tree ( z ) ;

and draw this via

draw_graph ( z ,
show_weight=true ,
show_label=true ,
show_edges=edges ( t ) ,
show_edge_width =5 ,
program=fdp ,
vertex_type= c i r c l e ,
v e r t e x _ s i z e =5 , redraw= t rue )

to get figure 9.3.2 on the facing page.
At this point, we create an mgraph with two edges for each edge

of the minimum spanning tree in algorithm 5 on the next page and

m: double_up ( z , t ) ;

returns
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FIGURE 9.3.2. Minimum spanning tree

Algorithm 5 Converting a tree into a multigraph

double_up ( gra , t r e e ) : = block ( [ mgr , count : 0 ] ,
/ * We use ’ gra ’ f o r v e r t e x − l a b e l s

( so v e r t i c e s o f ’ gra ’ must have l a b e l s * /
mgr : new( mgraph ( { } , { } ) ) ,
for x in v e r t i c e s ( t r e e ) do

block (
[ lab ] ,

lab : g e t _ v e r t e x _ l a b e l ( x , gra ) ,
mgr@V: adjoin ( e v a l _ s t r i n g ( lab ) ,mgr@V)

) ,
for e in edges ( t r e e ) do block (
[ i 1 : e [ 1 ] , i 2 : e [ 2 ] , lab1 , lab2 , name_for , name_back ] ,

count : count +1 ,
lab1 : e v a l _ s t r i n g ( g e t _ v e r t e x _ l a b e l ( i1 , gra ) ) ,
lab2 : e v a l _ s t r i n g ( g e t _ v e r t e x _ l a b e l ( i2 , gra ) ) ,
name_for : e v a l _ s t r i n g ( concat ( " e " , count ) ) ,
name_back : e v a l _ s t r i n g ( concat ( " f " , count ) ) ,
mgr@E : adjoin ( [ name_for , s e t ( lab1 , lab2 ) ] , mgr@E) ,
mgr@E : adjoin ( [ name_back , s e t ( lab1 , lab2 ) ] , mgr@E)

) ,
return (mgr )

) ;

mgraph (V={ Chi , Den , LA,NO,NY, Phoe } ,
E = { [ e1 , { Chi , Den } ] , [ e2 , { Chi ,NO} ] ,

[ e3 , { Den , Phoe } ] , [ e4 , { Chi ,NY} ] ,
[ e5 , { LA, Phoe } ] , [ f1 , { Chi , Den } ] ,
[ f2 , { Chi ,NO} ] , [ f3 , { Den , Phoe } ] ,
[ f4 , { Chi ,NY} ] , [ f5 , { LA, Phoe } ] } )



188 9. GRAPH THEORY

At this point, we can find an Euler Tour of this with

euler_path (m,NY) ;

to get

[NY, e4 , Chi , e1 , Den , e3 , Phoe , e5 , LA, f5 ,
Phoe , f3 , Den , f1 , Chi , e2 ,NO, f2 , Chi , f4 ]

Now we short-cut this by eliminating duplicate vertices to get our
tour

(9.3.1) NY → Chi → Den → Phoe → LA → NO

and back to NY, roughly 6186 miles — 177 miles longer than the opti-
mal tour.

Although this code looks more complicated that that in
section 9.3.2 on page 183, it executes much more rapidly when the
number of cities is large.

Many algorithms for finding optimal routes start with an approxi-
mate solution like that in 9.3.1 and improve it by making many small
changes — see [29]. These methods were used to get an optimal so-
lution through 15,112 German cities (Applegate, Bixby, Chvátal, and
Cook, 2001). The current record is an 85,900-city tour that arose in a
chip-design application.

EXERCISES.

3. Muddy city problem: Once upon a time there was a city (fig-
ure 9.3.3 on the facing page) that had no roads. Getting around the
city was particularly difficult after rainstorms because the ground be-
came very muddy, and cars got stuck in the mud, and people got their
boots dirty. The mayor of the city decided that some of the streets
must be paved but specified two conditions:

� Enough streets must be paved so that it is possible for ev-
eryone to travel from their house to anyone else’s house only
along paved roads, and

� The paving should cost as little as possible.
The number of paving stones along each path in this diagram — fig-
ure 9.3.3 on the next page — represents the cost of paving that path
(the bridge does not need to be paved).
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FIGURE 9.3.3. The Muddy City





CHAPTER 10

Calculus of Finite Differences

“In the following exposition of the Calculus of Finite Differ-
ences, particular attention has been paid to the connexion
of its methods with those of the Differential Calculus — a
connexion which in some instances involves far more than
a merely formal analogy.”
— George Boole, in the introduction to [9].

10.1. A discrete introduction to finite differences

In this chapter, we will consider a discrete analogue to differential
calculus. Isaac Newton invented it at roughly the same time as he
invented calculus and used it to perform exacting numerical compu-
tations.

Isaac Newton FRSa(1642 – 1726/27) was an English polymath active as
a mathematician, physicist, astronomer, alchemist, theologian, and au-
thor who was described in his time as a natural philosopher. He was a
key figure in the Scientific Revolution and the Enlightenment that fol-
lowed. His pioneering book Philosophiæ Naturalis Principia Mathemat-
ica (Mathematical Principles of Natural Philosophy), first published
in 1687, consolidated many previous results and established classical
mechanics. Newton also made seminal contributions to optics, and
shares credit with the German mathematician Gottfried Wilhelm Leib-
niz for developing infinitesimal calculus, though Newton developed
calculus years before Leibniz (and gave it the more appropriate name,
fluxions). He is considered one of the greatest and most influential sci-
entists in history.

aFellow of the Royal Society

As we have seen, Maxima has built-in commands diff and inte-
grate (among others) for ordinary calculus, while it has none for finite-
difference calculus. We’ll program these commands using a very pow-
erful Maxima programming language feature called macros.

What commands do we need to implement? The most basic ones
are:

DEFINITION 10.1.1. If f (x) is a function, define
(1) E( f )(x) = f (x + 1)

191
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(2) ∆ f (x) = f (x + 1)− f (x) = E( f )− f or ∆ = E − 1.
(3) Σb

a f (x) = ∑b
x=a f (x) (we assume a, b, and x are integers).

REMARK. The operations ∆ and Σ are approximate inverses be-
cause of the Fundamental Theorems of finite-difference calculus:

Σb
a∆ f (x) = E( f )(b)− f (a)(10.1.1)

∆Σx
a f (x) = E( f )

Because of this, Σ is sometimes written as ∆−1.

One breakthrough in differential calculus occurred when it was
discovered that

dxn

dx
= nxn−1

so that ∫
xndx =

xn+1

n + 1
Something similar happens in finite difference calculus with Pochham-
mer symbols or falling factorials:

DEFINITION 10.1.2. If n is an integer and x is a real number, then
the falling factorial of x is defined by

x(n) =


x · (x − 1) · · · (x − n + 1) if n ≥ 1
1 if n = 0

1
(x+1)···(x−n) if n < 0

REMARK. Falling factorials were initially only defined for positive
values of n. This is easily extended by noting that

x(n+1)

x(n)
= x − n

which implies (setting n = 0) that x(0) = 1, and

(10.1.2) x(−1) =
1

x + 1

At the end of section 14.1 on page 245 this definition is extended
to arbitrary complex values of n.

Leo August Pochhammer (1841 – 1920) was a Prussian mathematician
who was known for his work on special functions and introducing the
Pochhammer symbol.

PROPOSITION 10.1.3. Let n be an integer and let x ∈ C. Then

(10.1.3) ∆x(n) = n · x(n−1)
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Since this has the same structural properties as derivatives of func-
tions like xn, we can prove the finite-difference version of the Taylor Se-
ries:

f (x) = f (a) + ∆[ f ](a)(x − a)(1) +
∆2[ f ](a)(x − a)(2)

2!
(10.1.4)

+
∆3[ f ](a)(x − a)(3)

3!
+ · · ·(10.1.5)

called Gregory–Newton interpolation formula. Newton proved its valid-
ity for f a polynomial.

James Gregory FRSa (1638 – 1675) was a Scottish mathematician and
astronomer. His surname is sometimes spelled as Gregorie, the orig-
inal Scottish spelling. He described an early practical design for the
reflecting telescope — the Gregorian telescope — and made advances
in trigonometry, discovering infinite series representations for several
trigonometric functions.
In his book Geometriæ Pars Universalis (1668) Gregory gave both the
first published statement and proof of the fundamental theorem of
calculus (from a geometric point of view, and only for a special class
of curves).

aFellow of the Royal Society

It’s not hard to see that, if a ∈ R then

∆ax = (a − 1)ax

so that
∆2x = 2x

It follows that 2x is the finite-difference version of ex in regular calcu-
lus.

Let D denote the differential operator, so

(D f )(x) = f ′(x)

The conventional Taylor series implies that

f (x + 1) = f (x) + D f (x) · 1 +
D2 f (x)

2!
12 + · · ·

or

f (x + 1) =
(

1 + D +
D2

2!
+ · · ·

)
f (x)

Since the bracketed series looks like that for ex, we conclude

E = eD

and
∆ = eD − 1

or
∆ + 1 = eD
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from which we conclude

D = ln(1 + ∆)(10.1.6)

= ∆ − ∆2

2
+

∆3

3
− ∆4

4
+ · · ·

It looks as though we have played very fast and loose with these oper-
ators, but this equation is valid when applied to any polynomial, and
many other functions. One problem is that, even when it converges, it
does so very slowly.

The interested reader is referred to Boole’s classic, [9], which is
still very relevant today.

Incidentally, Boole is famous in his own right for boolean algebras
and boolean operations used in designing modern computers.

George Boole (1815 – 1864) was a largely self-taught English mathe-
matician, philosopher, and logician, most of whose short career was
spent as the first professor of mathematics at Queen’s College, Cork
in Ireland. He worked in the fields of differential equations and al-
gebraic logic, and is best known as the author of The Laws of Thought
(1854) which contains Boolean algebra. Boolean logic is credited with
laying the foundations for the Information Age, alongside the work of
Claude Shannon.

Now we’ll investigate Harmonic numbers

H(n) =
n

∑
i=1

1
n

so ∆H(n) = 1/(n + 1) = n(−1) (see equation 10.1.2 on page 192).

PROPOSITION 10.1.4. If k ≥ 1, then

∆k H(n)(1) = (−1)k+1(k − 1)!n(−k)(1) =
(−1)k+1

k(k + 1)

PROOF. Induction on k: If true for k − 1, we have

∆k−1H(n)(1) = (−1)k(k − 1)!n(−k+1)(1)

and

∆k H(n) = ∆∆k−1H(n) = −(−1)k(k − 2)! · (k − 1) · n(−k)(1)

= (−1)k+1(k − 1)!n(−k)(1)

by proposition 10.1.3 on page 192. Definition 10.1.2 on page 192 shows
that

(−1)k+1(k − 1)!n(−k)(1) =
(−1)k+1(k − 1)!

(1 + 1)(1 + 2) · · · (1 + k)
=

(−1)k+1

k(k + 1)

□
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FIGURE 10.1.1. The harmonic numbers

The Gregory-Newton series for harmonic numbers is, therefore,
(10.1.7)

H(x) = 1 +
x − 1

2
−

(x − 1)(2)
6 · 2!

+ · · ·+
(−1)k+1(x − 1)(k)

k(k + 1)k!
+ · · ·

Now we implement falling factorials — and this series:

poch [ x , n ] : = block (
[ ] ,
i f n=0 then return ( 1 ) ,
i f n=1 then return ( x ) ,
poch [ x , n − 1 ] * ( x−n+1)

) ;

h ( x ) :=1+sum( ( − 1 ) ^ ( n+1)* poch [ x −1 ,n ] / ( n * ( n+1)*n ! ) ,
n , 1 , 5 0 ) ;

Plotting this with the command

plot2d ( h ( x ) , [ x , 1 , 2 0 ] ) ;

gives figure 10.1.1. The lack of wild oscillations shows that the
harmonic numbers lend themselves to representation by a polynomial
(compare this with what happens with prime numbers in the next
section!). See exercise 4 on page 248 (and its solution) for an extension
of H(x) to the entire complex plane.
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EXERCISES.

1. Compute
n

∑
x=0

x(−i)

where i ̸= 1, and x is an integer. How do we handle the case where
i = 1?

2. For n ≥ 0 an integer, show that xn can be written as a linear
combination of falling factorials. Hint: use induction on n.

3. Prove equation 10.1.3 on page 192.

4. Show that
x(n)
n!

=

(
x
n

)
5. Show that equation 10.1.4 on page 193 is true for all polynomi-

als.

6. Prove the Product Formula

(10.1.8) ∆( f g) = ∆( f )E(g) + f ∆(g)

or
∆( f g) = f ∆g + g∆ f + ∆ f ∆g

7. Prove Summation by Parts

(10.1.9) Σn
m f ∆g = E( f g)(n)− ( f g)(m)− Σn

mE(g)∆ f

where E(g)(x) = g(x + 1).

8. Is there a way to make equation 10.1.6 on page 194 rigorous?

9. Find a closed-form equation for
n

∑
k=0

k · 2k

Hint: Use summation by parts.

10. Prove Euler’s Formula for harmonic numbers

Hn =
∫ 1

0

1 − tn

1 − t
dt

This allows us to define Hn for n not an integer. For instance

H1/2 = 2 − 2 log(2) = 0.6137056388801094 . . .
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10.2. Functional Programming and Macros

In this section, we’ll implement the operators defined in the previ-
ous section in Maxima and apply them. Ideally, these operators could
be implemented in a functional programming language:

A programming language is said to be functional if
functions can be treated as data-items: i.e., they can
be passed to other functions as parameters or argu-
ments, and a function can return a function as its value.

There are many functional languages today:
Scheme (an interesting dialect of Lisp), Common
Lisp, Python, Haskell, etc. One might wonder
why Maxima doesn’t simply “inherit” functional
programming from Common Lisp. The problem is
that Maxima was originally written for Maclisp, an
early form of Lisp without functional programming.

Oddly, no volunteers have stepped up and
offered to rewrite Maxima (from scratch!) in modern
Lisp to implement functional programming.

In a functional language, we could write

Bdel ta ( f , x ) : = lambda ( [ f , x ] , f ( x+1)− f ( x ) )

and

Bdel ta ( sin , x )

would return

lambda ( [ sin , x ] , sin ( x+1)− sin ( x ) )

whereas Maxima actually returns

lambda ( [ f , x ] , f ( x+1)− f ( x ) )

It turns out we can “fake” features of a functional language using con-
structs called macros. When f (x, y, z) is called, Maxima

(1) evaluates x, y, z
(2) jumps to the function-code and plugs those values into the

body of f .
(3) then returns with the computed values

A macro f (x, y, z) superficially resembles a function but it
(1) executes the body of the macro on x, y, z and other expressions

(doing something like a text-edit), inserting it into the code
where it was called — i.e., no jumping and returning,

(2) then it executes the revised expression.
Here’s our code for the ∆-operator using a macro built in to Maxima
called buildq:
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Bdel ta ( f , x ) := buildq ( [ y : x , g : f ] ,
lambda ( [ y ] , g ( y+1)−g ( y ) )

) ;

The way this executes is:

(1) buildq edits the lambda-expression, replacing y by x and g
by f (think of it as a text-edit, although the actual algorithm is
faster)

(2) then it executes it

Bdel ta ( sin , x )

produces

lambda ( [ x ] , sin ( x+1)− sin ( x ) )

and

Bdel ta ( sin , x ) ( x )

produces

sin ( x+1)− sin ( x )

Having implemented ∆, we can try to implement ∆n:

Bdeltan ( f , x , n ) : = block ( [ ] ,
i f n=1 then return ( Bdel ta ( f , x ) ) ,
Bdel ta ( Bdeltan ( f , x , n −1) , x )
) ;

For instance, the command

Bdeltan ( sin , x , 3 ) ( x )

returns

sin (x + 3)− 3 sin (x + 2) + 3 sin (x + 1)− sin (x)

Now we’ll try our hand at the Gregory-Newton series (equation 10.1.4
on page 193)

d i s c r e t e _ s i n ( x ) : =sum(
poch [ x , n ] * ( Bdeltan ( sin , x , n ) ( 0 ) ) / n ! ,
n , 1 , 2 0 ) ;

After doing this, we plot the result with

plot2d ( d i s c r e t e _ s i n ( x ) , [ x , 0 , 1 0 ] )
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FIGURE 10.2.1. The Gregory-Newton series

to get figure 10.2.1, which shows that the Gregory-Newton series con-
verges for some non-polynomial functions.

Now, we will try something more ambitious: a formula for prime
numbers!

Let

primes : [ 2 , 3 , 5 , 7 , 1 1 , 1 3 , 1 7 , 1 9 , 2 3 ,
2 9 , 3 1 , 3 7 , 4 1 , 4 3 , 4 7 , 5 3 , 5 9 , 6 1 , 6 7 ,
7 1 , 7 3 , 7 9 , 8 3 , 8 9 , 9 7 , 1 0 1 , 1 0 3 , 1 0 7 ,
1 0 9 , 1 1 3 , 1 2 7 , 1 3 1 , 1 3 7 , 1 3 9 , 1 4 9 , 1 5 1 , 1 5 7 ]

denote a bunch of primes. We turn this into a function (because our
routines work with functions) via

prime_fun ( n ) : = primes [ n ]

and compute a bunch of ∆’s via

d e l l i s t : makelist ( Bdeltan ( prime_fun , x , n ) ( 1 ) , n , 2 0 ) ;

— note that we’re running this Gregory-Newton series from a = 1
rather than 0.

This gives

d e l l i s t : [ 1 ,1 , −1 ,3 , −9 ,23 , −53 ,115 ,
−237 ,457 , −801 ,1213 , −1389 ,
445 ,3667 , −15081 ,41335 ,
−95059 ,195769 , −370803] ;

Now we define the series itself

pol ( x ) :=2+sum( d e l l i s t [ k ] * poch [ x −1 ,k]/k ! , k , 1 , 2 0 ) ;

This gives a polynomial such that
(1) pol(1)=2
(2) pol(2)=3
(3) pol(7)=17
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FIGURE 10.2.2. Polynomial giving the first 10 primes
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FIGURE 10.2.3. Prime polynomial plot

Now, let’s plot it!

plot2d ( pol ( x ) , [ x , 1 , 1 0 ] )

What happened? It looks as though prime numbers don’t lend them-
selves to be expressed by a polynomial. While one can create a poly-
nomial that equals these primes, it oscillates wildly between them.

If we cut out the worst oscillations, we still get figure 10.2.3.
See chapter 15 on page 269 for a far more profound discussion of

prime numbers.
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EXERCISES.

1. Program equation 10.1.6 on page 194 for sin(x) and x = 0.

2. Does the Gregory-Newton series work for all analytic func-
tions? Hint: try expanding sin(πx) in a Gregory-Newton series.

3. Find a closed-form equation for ∆n f (x). Hint: write ∆n = (E −
1)n and use the Binomial Theorem.

4. Write a non-recursive version of the

Bdeltan

command, using the equation in exercise 3.

10.3. The Euler-Maclaurin Summation formula

In this section, we will explore the difference between

N

∑
k=M

f (k) and
∫ N

M
f (x)dx

In many cases, it’s easier to find a closed-form expression for the inte-
gral but not the sum — for instance, if f (x) = 1/x.

We begin by defining Bernoulli polynomials:

DEFINITION 10.3.1. If n > 0 is an integer, the nth Bernoulli polyno-
mial, Bn(x) is defined to be the unique polynomial satisfying

(10.3.1)
∫ x+1

x
Bn(t)dt = xn

In Maxima, the command bernpoly(x, n) returns the nth Bernoulli
polynomial. Bernoulli numbers are defined by

Bn = Bn(0)

and given by the Maxima command bern(n).

REMARK. Equation 10.3.1 turns out to imply that

B′
n(x) = nBn−1(x)

It also turns out that all odd-numbered Bernoulli numbers, except for
B1, vanish (this is not obvious!).
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Given these definitions, we can state the Euler-Maclaurin summa-
tion formula (first published in [19, and, 20]):

(10.3.2)
N

∑
k=M

f (k) =
∫ N

M
f (x)dx +

f (M) + f (N)

2

+
ν

∑
j=1

B2j

(2j)!
f (2j−1)(x)

∣∣∣∣N
M
+ R2ν

where

(10.3.3) R2ν =
1

(2ν + 1)!

∫ N

M
B̄2ν+1(x) f (2ν+1(x)dx

and
B̄2ν+1(x) = B2ν+1(x − ⌊x⌋)

where ν > 0 is some integer. The value of ν is important because the
series in equation 10.3.2 does not converge for most functions, f (x).
The terms get smaller for a time, but ultimately grow without limit.
The interesting thing is that the error term, given by equation 10.3.3,
is of the same order of magnitude as the first term omitted from equa-
tion 10.3.21. See [2] for a simplified derivation.

Example: f (x) = 1/x. The Euler-Mascheroni constant, γ, is de-
fined by

(10.3.4) γ = lim
n→∞

(
n

∑
k=1

1
k
− log(n)

)
This process converges very slowly, as can be seen via the code

cgamma( n ) : = f l o a t (sum(1/k , k , 1 , n) − log ( n ) ) ;

If we compute cgamma(100)−%gamma; we get 0.004991666749996071.
Now we code up the Euler-Maclaurin equation as

em( nu ) : = f l o a t (1/2 −
sum( bern ( 2 * k ) / ( 2 * k ) ! * at ( d i f f (1/x , x , 2 * k −1) ,
x =1) , k , 1 , nu ) ) ;

and em(2)−%gamma; gives −0.00221566490153291 which is
already more accurate than cgamma(100). The “sweet spot” is
em(3)−%gamma; which gives 0.001752589066721155 — even more
accurate. Larger values of ν give larger errors.

Equation 10.3.2 is an example of an asymptotic expansion — a diver-
gent series that can be used to estimate values of a function. If we could
compute the remainder in equation 10.3.3, we’d get an exact answer,
but that integral is usually at least as hard to evaluate as the original
sum.

1As with Taylor series.
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Since
N

∑
n=1

1
k
−
∫ N

1

dx
x

=
10

∑
n=1

1
k
−
∫ 10

1

dx
x

+
N

∑
k=10

1
k
−
∫ N

10

dx
x

− 1
10

for N > 10, and we can compute γ by directly computing

(10.3.5)
10

∑
n=1

1
k
− log(10)

and using the Euler-Maclaurin formula to compute

(10.3.6) lim
N→∞

N

∑
k=10

1
k
−
∫ N

10

dx
x

Since the term 1/10 appears twice in the sum (once in equation 10.3.5
and a second time in equation 10.3.6), we have to subtract off the extra
copy.

em10 ( nu ) : = f l o a t (cgamma( 1 0 )
+1/20−sum( bern ( 2 * k ) / ( 2 * k ) !

* at ( d i f f (1/x , x , 2 * k −1) , x =10) , k , 1 , nu) −1/10) ;

Since x = 10 in the lower limit, the derivatives of 1/x (and correspond-
ing correction terms) are much smaller2, and em10(3); is

0.5772156649424619

which is correct to 10 decimal places. Computing that via
equation 10.3.4 on the preceding page would require n = 1010.

In [37], Knuth used the Euler-Maclaurin equation to compute γ to
1,271 decimal places. He used N = 10, 000, and nu = 250.

2Recall that they are proportional to 1/102k .





CHAPTER 11

Nonlinear algebra

“Cantor illustrated the concept of infinity for his students
by telling them that there was once a man who had a ho-
tel with an infinite number of rooms, and the hotel was
fully occupied. Then one more guest arrived. So the owner
moved the guest in room number 1 into room number 2;
the guest in room number 2 into number 3; the guest in 3
into room 4, and so on. In that way room number 1 became
vacant for the new guest.

What delights me about this story is that everyone in-
volved, the guests and the owner, accept it as perfectly nat-
ural to carry out an infinite number of operations so that
one guest can have peace and quiet in a room of his own.
That is a great tribute to solitude.”

— Smilla Qaavigaaq Jaspersen, in the novel Smilla’s
Sense of Snow, by Peter Høeg (see [32]).

11.1. Introduction

As the previous chapter made clear, complex nonlinear algebraic
equations often arise in practical applications.

11.2. Ideals and systems of equations

Define
W = C[X1, . . . , Xn]

to represent the set of all polynomials in variables X1, . . . , Xn with
complex coefficients (i.e. coefficients in C)

This mathematical structure is called a ring. More formally:

DEFINITION 11.2.1. A ring, R, is a set equipped with two binary
operations, denoted + and multiplication, ·, such that, for all
r1, r2, r2 ∈ R,

(1) (r1 + r2) + r3 = r1 + (r2 + r3)
(2) (r1 · r2) · r3 = r1 · (r2 · r3)
(3) r1 · (r2 + r3) = r1 · r2 + r1 · r3
(4) (r1 + r2) · r3 = r1 · r3 + r1 · r3
(5) there exists elements 0, 1 ∈ R such that r + 0 = 0 + r = r and

r · 1 = 1 · r = r for all r ∈ R.

205
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(6) For every r ∈ R, there exists an element s ∈ R such that
r + s = 0.

The ring R will be called commutative if r1 · r2 = r2 · r1 for all r1, r2 ∈ R.
A division ring is one in which every nonzero element has a multi-

plicative inverse.
A subring S ⊂ R is a subset of R that is also a ring under the

operations + and ·.

REMARK. We will also regard the set containing only the number
0 as a ring with 0 + 0 = 0 = 0 · 0 — the trivial ring (the multiplicative
and additive identities are the same). When an operation is written
with a ‘+’ sign it is implicitly assumed to be commutative.

EXAMPLE. Perhaps the simplest example of a ring is the integers,
Z. This is simple in terms of familiarity to the reader but a detailed
analysis of the integers is a very deep field of mathematics in itself
(number theory). Its only units are ±1, and it has no zero-divisors.

We can use the integers to construct:

EXAMPLE. If m is an integer, the numbers modulo m, Zm is a ring
under addition and multiplication modulo m. In Z6, the elements 2
and 3 are zero-divisors because 2 · 3 = 0 ∈ Z6.

EXAMPLE 11.2.2. The rational numbers, Q, are an example of a
field. Other examples: the real numbers, R, and the complex numbers,
C.

REMARK. We have seen (and worked with) many examples of
rings before, Z, Zm, Q, R, and C. The rings Q, R, and C are com-
mutative division rings — also known as fields.

DEFINITION 11.2.3. If R is a ring, rings of polynomials R[X] is the
ring of polynomials where addition and multiplication are defined(

n

∑
i=0

aiXi

)
+

(
m

∑
i=0

biXi

)
=

max(n,m)

∑
i=0

(ai + bi)Xi

(
n

∑
i=0

aiXi

)(
m

∑
j=0

bjX j

)
=

n+m

∑
k=0

(
∑

i+j=k
aibj

)
Xk

with ai, bj ∈ R and ai = 0 if i > n and bi = 0 if i > m.
More formally, one can define R[X] as the set of infinite sequences

(11.2.1) (r0, . . . , ri, . . . )

with the property that all but a finite number of the ri vanish, and with
addition defined by

(r0, . . . , ri, . . . ) + (s0, . . . , si, . . . ) = (r0 + s0, . . . , ri + si, . . . )
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and multiplication defined by

(r0, . . . , ri, . . . )(s0, . . . , si, . . . ) = (t0, . . . , ti, . . . )

with

tn = ∑
i+j=n

i≥0,j≥0

risj

(the convolution of the lists of coefficients — see definition 5.2.1 on
page 84). In this case,

k

∑
i=0

riXi

becomes the notation for the sequence (r0, . . . , ri, . . . , rk, 0 · · · ).

We need one more definition:

DEFINITION 11.2.4. If R is a commutative ring, an ideal is a subset
closed under addition I ⊂ R such that x · r ∈ I for all r ∈ R.

(1) An ideal, I ⊂ R is prime if a · b ∈ I implies that a ∈ I or b ∈ I
(or both).

(2) The ideal generated by α1, . . . , αn ∈ R, denoted (α1, . . . αn) ⊆ R,
is the set of all linear combinations

n

∑
k=1

rk · αk · sk

where the ri and si run over all elements of R. The element 0
is an ideal, as well as the whole ring. The set α1, . . . , αn ∈ R
is called a basis for the ideal (α1, . . . αn).

(3) An ideal I ⊂ R is maximal if I ⊂ K, where K is an ideal,
implies that K = R. This is equivalent to saying that for any
r ∈ R with r /∈ I,

I+ (r) = R

(4) An ideal generated by a single element of R is called a principal
ideal.

(5) Given two ideals a and b, their product is the ideal generated
by all products {(a · b)|∀a ∈ a, b ∈ b}.

REMARK. We will usually denote ideals by Fraktur letters.

EXAMPLE. We claim that the ideals of Z are just the sets

(0) = {0}
(2) = {. . . ,−4,−2, 0, 2, 4, 6, 8, . . . }
(3) = {. . . ,−6,−3, 0, 3, 6, 9, 12, . . . }

...
(n) = {n · Z}
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for various values of n. Note that the ideal (1) = Z. An ideal (n) ⊂ Z

is prime if and only if n is a prime number.

Now, suppose f1, . . . , fs ∈ W = C[X1, . . . , Xn], and suppose we
want to solve the system of algebraic equations

f1(X1, . . . , Xn) = 0
...

fs(X1, . . . , Xn) = 0(11.2.2)

If g1, . . . , gt ∈ W is a set of polynomials with the property that

( f1, . . . , fs) = (g1, . . . , gt) = B

— i.e., the gj are another basis for the ideal generated by the fi, then
the equations in 11.2.2 are equivalent to

g1(X1, . . . , Xn) = 0
...

gt(X1, . . . , Xn) = 0

To see that, note that, since the fi are a basis for B and the gi ∈ B,
we have equations

gi =
s

∑
j=1

ai,j f j

where ai,j ∈ W for all i and j. It follows that f1 = · · · = fs = 0 implies
that g1 = · · · = gt = 0. Since the gj are also a basis for B, the reverse
implication is also true.

EXAMPLE 11.2.5. Suppose we want to find solutions to the system
of algebraic equations

xy = z2

xz = 1

x2 + y2 = 3

We first make these into equations set to zero

xy − z2 = 0
xz − 1 = 0

x2 + y2 − 3 = 0

and find another basis for the ideal these polynomials generate. It turns
out1 that

(xy − z2, xz − 1, x2 + y2 − 3) = (z8 − 3z2 + 1, y − z3, z7 − 3z + x)

1This is not at all obvious! Later, we will look at an algorithm for coming to this
conclusion.
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So our original equations are equivalent to the equations

z8 − 3z2 + 1 = 0

y − z3 = 0

z7 − 3z + x = 0

or

z8 − 3z2 + 1 = 0

y = z3

x = 3z − z7

so that it follows that our original set of equations had eight solutions:
find 8 roots of the polynomial in z and plug them into the equations
for x and y.

It follows that there are applications to finding “simplified” or
“improved” bases for ideals in polynomial rings.

11.3. Gröbner bases

One of the most powerful technique for computations in polyno-
mial rings use a special basis for an ideal, called a Gröbner basis. Gröb-
ner bases were discovered by Bruno Buchberger.

Bruno Buchberger 1942 – ) is Professor of Computer Mathematics at
Johannes Kepler University in Linz, Austria. In his 1965 Ph.D. thesis
(see [13]), he created the theory of Gröbner bases, and has refined this
construction in subsequent papers — see [14, 12]. He named these
objects after his advisor Wolfgang Gröbner. Since 1995, he has been
active in the Theoremaa project at the University of Linz.
In 1987 Buchberger founded and chaired the Research Institute for
Symbolic Computation (RISC) at Johannes Kepler University. In 1985
he started the Journal of Symbolic Computation, which has now be-
come the premier publication in the field of computer algebra.
Buchberger also conceived Softwarepark Hagenberg in 1989 and since
then has been directing the expansion of this Austrian technology park
for software.

aA system for automatic theorem-proving.

One key idea in the theory of Gröbner bases involves imposing an
ordering on monomials:

DEFINITION 11.3.1. Define an ordering on the elements of Nn

and an induced ordering on the monomials of F[X1, . . . , Xn] by α =
(a1, . . . , an) ≻ β = (b1, . . . , bn) implies that

∏ Xai
i ≻ ∏ Xbi

i
The ordering of Nn must satisfy the conditions:
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(1) if α ≻ β and γ ∈ Nn, then α + γ ≻ β + γ
(2) ≻ is a well-ordering: every set of elements of Nn has a minimal

element.
For any polynomial f ∈ F[X1, . . . , Xn], let LT( f ) denote its leading term
in this ordering — the polynomial’s highest-ordered monomial with
its coefficient.

REMARK. Condition 1 implies that the corresponding ordering of
monomials is preserved by multiplication by a monomial. Condition 2
implies that there are no infinite descending sequences of monomials.

DEFINITION 11.3.2. Suppose an ordering has been chosen for the
monomials of F[X1, . . . , Xn]. If a ∈ F[X1, . . . , Xn] is an ideal, let LT(a)
denote the ideal generated by the leading terms of the polynomials in
a.

(1) If a = ( f1, . . . , ft), then { f1, . . . , ft} is a Gröbner basis for a if

LT(a) = (LT( f1), . . . , LT( ft))

(2) A Gröbner basis { f1, . . . , ft} is minimal if the leading coeffi-
cient of each fi is 1 and for each i

LT( fi) /∈ (LT( f1), . . . , LT( fi−1), LT( fi+1), . . . LT( ft))

(3) A Gröbner basis { f1, . . . , ft} is reduced if the leading coeffi-
cient of each fi is 1 and for each i and no monomial of fi is
contained in

(LT( f1), . . . , LT( fi−1), LT( fi+1), . . . LT( ft))

REMARK. There are many different types of orderings that can be
used and a Gröbner basis with respect to one ordering will generally
not be one with respect to another.

DEFINITION 11.3.3. The two most common orderings used are:

(1) Lexicographic ordering2. Let N denote the natural numbers
and let Nn represents sequences of n natural numbers. Let
α = (a1, . . . , an), β = (b1, . . . , bn) ∈ Nn. Then α > β ∈ Nn

if, in the vector difference α − β ∈ Zn, the leftmost nonzero
entry is positive — and we define

∏ Xai
i ≻ ∏ Xbi

i

so
XY2 ≻ Y3Z4

This is the ordering that we will use.
(2) Graded reverse lexicographic order. Here, monomials are first or-

dered by total degree — i.e., the sum of the exponents. Ties are
resolved lexicographically (in reverse — higher lexicographic
order represents a lower monomial).

2Also called dictionary-ordering.
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REMARK. In Graded Reverse Lexicographic order, we get

X4Y4Z7 ≻ X5Y5Z4

since the total degree is greater. As remarked above, Gröbner bases
depend on the ordering, ≻: different orderings give different bases
and even different numbers of basis elements.

Gröbner bases give an algorithmic procedure for deciding
whether a polynomial is contained in an ideal and whether two
ideals are equal.

11.4. Buchberger’s Algorithm

Unfortunately, Buchberger’s algorithm can have exponential
time-complexity — for graded-reverse lexicographic ordering —
and doubly-exponential (een

) complexity for lexicographic ordering
(see [45]). This, incidentally, is why we discussed resultants of
polynomials: the complexity of computing Gröbner bases (especially
with lexicographic ordering, which leads to the Elimination Property)
can easily overwhelm powerful computers. Computing resultants is
relatively simple (they boil down to computing determinants).

In practice it seems to have a reasonable running time. In special
cases, we have:

(1) For a system of linear polynomials, Buchberger’s algorithm
reduces to Gaussian Elimination for putting a matrix in up-
per triangular form.

(2) For polynomials over a single variable, it becomes Euclid’s al-
gorithm for finding the greatest common divisor for two poly-
nomials.

In 1950, Gröbner published a paper ([27]) that explored an algorithm
for computing Gröbner bases, but could not prove that it ever termi-
nated. One of Buchberger’s signal contributions were the introduction
of constructs called S-polynomials. For details, see [58, chapter 5].

The main property of Gröbner bases that will interest us is:

PROPOSITION 11.4.1 (Elimination Property). Suppose {g1, . . . , gj}
is a Gröbner basis for the ideal a ∈ C[X1, . . . , Xn], computed using lexico-
graphic ordering with

X1 ≻ X2 ≻ · · · ≻ Xn

If 1 ≤ t ≤ n, then
a∩ C[Xt, . . . , Xn]

has a Gröbner basis that is

{g1, . . . , gj} ∩ C[Xt, . . . , Xn]

REMARK. This is particularly important in using Gröbner bases
to solve systems of algebraic equations. Here, we want to eliminate
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variables if possible and isolate other variables. In example 11.2.5 on
page 208, we have the ideal

B = (xy − z2, xz − 1, x2 + y2 − 3)

and can find a Gröbner basis for it with lexicographic ordering with
x ≻ y ≻ z of

(z8 − 3z2 + 1, y − z3, z7 − 3z + x)

Here, the basis element z8 − 3z2 + 1 is an element of
B ∩ C[z] ⊂ C[x, y, z] and the variables x and y have been eliminated
from it. It follows that z, alone, must satisfy

z8 − 3z2 + 1 = 0

and we can solve for x and y in terms of z:

y = z3

x = 3z − z7

PROOF. See [58, chapter 5]. □

Maxima has a package that computes Gröbner bases using lexico-
graphic ordering. To load it, type

load ( " grobner " )

Its main commands3 are

poly_grobner ( poly − l i s t , var − l i s t )

and

poly_reduced_grobner ( poly − l i s t , var − l i s t )

For example:

poly_grobner ( [ x^2+y^2 , x^3−y ^ 4 ] , [ x , y ] )

returns
(x2 + y2, x3 − y4, x4 + xy2, y6 + y4)

— the Gröbner basis with lexicographic order: x ≻ y. The command

poly_reduced_grobner ( [ x^2+y^2 , x^3−y ^ 4 ] , [ x , y ] )

returns [
y2 + x2, y4 + xy2, y6 + y4

]
a Gröbner basis with extraneous elements deleted.

3The ones that will interest us, anyway.
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11.5. Consistency of algebraic equations

In linear algebra it’s well known that systems like

x + y = 2
2x + 2y = 3

have no solution; they are inconsistent.
Given a system of algebraic equations

f1(x1, . . . , xn) = v1(11.5.1)
...

fm(x1, . . . , xn) = vm

we construct an ideal

A = ( f1(x1, . . . , xn)− v1, . . . , fm(x1, . . . , xn)− vm)

and try to find an “improved” basis for it, i.e,

A = (b1, . . . , bk)

so that the original equations are equivalent to

b1 = · · · = bk = 0

Suppose we discover that

1 ∈ A

This implies that
A = (1)

and that
1 = 0

is equivalent to the original set of equations. Since this is clearly im-
possible, it follows that the original set of equations was inconsistent.

A theorem due to David Hilbert, called the Nullstellensatz (see
[58], chapter 12, 12.2.3) shows that inconsistent equations always imply
that 1 ∈ A.

David Hilbert (1862–1943) was one of the most influential mathemati-
cians in the 19th and early 20th centuries, having contributed to alge-
braic and differential geometry, physics, and many other fields.

We conclude that
The system of equations in 11.5.1 is inconsistent if and only
if 1 ∈ A, which happens if and only if

poly_reduced_grobner ( [ f1 −v1 , . . . , fm−vm] ,
[ x1 , . . . , xn ] )

returns [1].
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EXERCISES.

1. Solve the equations

x2 + y2 = 0

x3 − y4 = 0

2. Solve the equations

a1a2 − b1b2 + a1 − 1 = 0

a2b1 + a1b2 + b1 − 1/2 = 0

a1
2 + b1

2 − 1 = 0

a2
2 + b2

2 − 1 = 0

3. If
(a2 + 1)(b2 + 1) + 25 = 10(a + b)

and
ab = 1

what is
a3 + b3

equal to?

4. Solve

x2 + xy + y2 = 39

y2 + yz + z2 = 49

z2 + zx + x2 = 19

5. Find a solution to the system

a1 · x15 + a2 · x25 + a3 · x35 = 1/6

a1 · x14 + a2 · x24 + a3 · x34 = 1/5

a1 · x13 + a2 · x23 + a3 · x33 = 1/4

a1 · x12 + a2 · x22 + a3 · x32 = 1/3

a1 · x1 + a2 · x2 + a3 · x3 = 1/2
a1 + a2 + a3 = 1



CHAPTER 12

Robot motion-planning

“Geometry is one and eternal shining in the mind of God.
That share in it accorded to men is one of the reasons that
Man is the image of God.”

— Johannes Kepler, Conversation with the Sidereal Mes-
senger (an open letter to Galileo Galilei), [52].

12.1. A simple robot-arm

Suppose we have a robot-arm with two links, as in figure 12.1.1.

If we assume that both links are of length ℓ, suppose the second
link were attached to the origin rather than at the end of the second
link.

Then its endpoint would be at (see equation 7.5.2 on page 141) ℓ cos(ϕ)
ℓ sin(ϕ)

1

 =

 cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 1 0 ℓ
0 1 0
0 0 1

 0
0
1


=

 cos(ϕ) − sin(ϕ) ℓ cos(ϕ)
sin(ϕ) cos(ϕ) ℓ sin(ϕ)

0 0 1

 0
0
1


In other words, the effect of moving from the origin to the end of

the second link (attached to the origin) is
(1) displacement by ℓ — so that (0, 0) is moved to

(ℓ, 0) = (ℓ, 0, 1) ∈ R3.
(2) rotation by ϕ

FIGURE 12.1.1. A simple robot arm

215
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This is the effect of the second link on all of R2. If we want to compute
the effect of both links, insert the first link into the system — i.e. rigidly
attach the second link to the first, displace by ℓ, and rotate by θ. The
effect is equivalent to multiplying by

M2 =

 cos(θ) − sin(θ) ℓ cos(θ)
sin(θ) cos(θ) ℓ sin(θ)

0 0 1


It is clear that we can compute the endpoint of any number of links
in this manner — always inserting new links at the origin and moving
the rest of the chain accordingly.

At this point, the reader might wonder

Where does algebra enter into all of this?

The point is that we do not have to deal with trigonometric functions
until the very last step. If a, b ∈ R are numbers with the property that

(12.1.1) a2 + b2 = 1

there is a unique angle θ with a = cos(θ) and b = sin(θ). This enables
us to replace the trigonometric functions by real numbers that satisfy
equation 12.1.1 and derive purely algebraic equations for

(1) the set of points in R2 reachable by a robot-arm
(2) strategies for reaching those points (solving for explicit an-

gles).

In the simple example above, let a1 = cos(θ), b1 = sin(θ), a2 = cos(ϕ),
b2 = sin(ϕ) so that our equations for the endpoint of the second link
become  x

y
1

 =

 a1 −b1 ℓa1
b1 a1 ℓb1
0 0 1

 ℓa2
ℓb2
1


=

 ℓa1a2 − ℓb2b1 + ℓa1
ℓb1a2 + ℓa1b2 + ℓb1

1


It follows that the points (x, y) reachable by this link are those for
which the system of equations

ℓa1a2 − ℓb2b1 + ℓa1 − x = 0
ℓb1a2 + ℓa1b2 + ℓb1 − y = 0

a2
1 + b2

1 − 1 = 0

a2
2 + b2

2 − 1 = 0(12.1.2)

has real solutions (for ai and bi). Given values for x and y, we can solve
for the set of configurations of the robot arm that will reach (x, y). We
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FIGURE 12.1.2. Reaching a point

set the lengths of the robot arms to 1. The system of equations 12.1.2
on the preceding page gives rise to the ideal

r = (a1a2 − b1b2 + a1 − x, a2b1 + a1b2 + b1 − y, a1
2 + b1

2 − 1, a2
2 + b2

2 − 1)

in C[a1, a2, b1, b2]. If we set x = 1 and y = 1/2, the Gröbner basis of r
(using the command ‘Basis(r,plex(a1,b1,a2,b2))’ in Maple) is

(−55 + 64 b2
2, 8 a2 + 3, 16 b2 − 5 + 20 b1,−5 − 4 b2 + 10 a1)

from which we deduce that a2 = −3/8 and b2 can be either +
√

55/8
in which case

a1 = 1/2 +
√

55/20

b1 = 1/4 −
√

55/10

or −
√

55/8 in which case

a1 = 1/2 −
√

55/20

b1 = 1/4 +
√

55/10

Another question we might ask is:
For what values of x are points on the line y = 1 − 2x
reachable?

In this case, we start with the ideal

r = (a1a2 − b1b2 + a1 − x, a2b1 + a1b2 + b1 + 2x − 1,

a1
2 + b1

2 − 1, a2
2 + b2

2 − 1)

and get the Gröbner basis

poly_reduced_grobner ( [ a1 * a2−b1 * b2+a1−x ,
a2 * b1+a1 * b2+b1+2*x −1 , a1^2+b1^2 −1 , a2^2+b2 ^2 −1] ,
[ a1 , b1 , a2 , b2 , x ] )
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to get

[−5 x2 + 4 x + 2 a2 + 1,

− 25 x4 + 40 x3 − 6 x2 − 8 x − 4 b2
2 + 3,

− 5 x3 + 4 x2 + 4 b2 x + 3 x + 4 b1 b2 − 2 b2,

− 5 x2 − 5 b1 x + 4 x − b2 + 2 b1 + a1 − 1,

− 10 x3 − 10 b1 x2 + 13 x2 − 2 b2 x + 8 b1 x − 6 x − 2 b1 + 1]

The second line

−25 x4 + 40 x3 − 6 x2 − 8 x − 4 b2
2 + 3

is significant: Since all variables are real, 4b2
2 ≥ 0, which requires

(12.1.3) −25 x4 + 40 x3 − 6 x2 − 8 x + 3 ≥ 0

If we type

solve ( −25* x^4+40*x^3−6*x^2−8*x +3=0 ,[ x ] )

we get [
x = −

√
19 − 2

5
, x =

√
19 + 2

5
, x = − i − 2

5
, x =

i + 2
5

]
Since our variables are all real, we discard the last two solutions. Since
the polynomial is > 0 for x = 0,we conclude that solution to the in-
equality in 12.1.3 is

x ∈
[

2 −
√

19
5

,
2 +

√
19

5

]
— so those are the only points on the line y = 1− 2x that the robot-arm
can reach.

12.2. A more complex robot-arm

We conclude this chapter with a more complicated robot-arm in
figure 12.2.1 on the next page— somewhat like a Unimation Puma
5601.

It has:
(1) A base of height ℓ1 and motor that rotates the whole assembly

by ϕ1 — with 0 being the positive x-axis.
(2) An arm of length ℓ2 that can be moved forward or backward

by an angle of θ1 — with 0 being straight forward (in the
positive x-direction).

1In 1985, this type of robot-arm was used to do brain-surgery! See [39].
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FIGURE 12.2.1. A more complicated robot arm

(3) A second arm of length ℓ3 linked to the first by a link of angle
θ2, with 0 being when the second arm is in the same direction
as the first.

(4) A little “hand” of length ℓ4 that can be inclined from the sec-
ond arm by an angle of θ3 and rotated perpendicular to that
direction by an angle ϕ2.

We do our computations in R4, start with the hand and work our way
to the base. The default position of the hand is on the origin and point-
ing in the positive x-direction. It displaces the origin in the x-direction
by ℓ2, represented by the matrix

D0 =


1 0 0 ℓ2

0 1 0 0

0 0 1 0

0 0 0 1


The angle ϕ1 rotates the arm in the xy-plane, and is therefore repre-
sented by 

cos(ϕ1) − sin(ϕ1) 0 0
sin(ϕ1) cos(ϕ1) 0 0

0 0 1 0
0 0 0 1


or

Z1 =


a1 −b1 0 0
b1 a1 0 0
0 0 1 0
0 0 0 1


with a1 = cos(ϕ2) andb1 = sin(ϕ2). The “wrist” inclines the hand in
the xz-plane by an angle of θ3, given by the matrix

Z2 =


a2 0 −b2 0
0 1 0 0
b2 0 a2 0
0 0 0 1


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with a2 = cos(θ3) and b2 = sin(θ3) and the composite is

Z2Z1D0 =


a2 −b2b1 −b2a1 a2ℓ4

0 a1 −b1 0

b2 a2b1 a2a1 b2ℓ4

0 0 0 1


The second arm displaces everything by ℓ3 in the x-direction, giving

D1 =


1 0 0 ℓ3

0 1 0 0

0 0 1 0

0 0 0 1


so

D1Z2Z1D0 =


a2 −b2b1 −b2a1 a2ℓ4 + ℓ3

0 a1 −b1 0

b2 a2b1 a2a1 b2ℓ4

0 0 0 1


so and then inclines it by θ2 in the xz-plane, represented by

Z3 =


a3 0 −b3 0
0 1 0 0
b3 0 a3 0
0 0 0 1


so that Z3D1Z2Z1D0 is

a3a2 − b3b2 (−a3b2 − b3a2) b1 (−a3b2 − b3a2) a1 (a3a2 − b3b2) ℓ4 + a3ℓ3

0 a1 −b1 0

b3a2 + a3b2 (a3a2 − b3b2) b1 (a3a2 − b3b2) a1 (b3a2 + a3b2) ℓ4 + b3ℓ3

0 0 0 1


Continuing in this fashion, we get a huge matrix, Z. To find the

endpoint of the robot-arm, multiply
0
0
0
1


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(representing the origin of R3 ⊂ R4) by Z to get

(12.2.1)


x
y
z
1

 =


((a5a3 + b5b4b3) a2 + (−a5b3 + b5b4a3) b2) ℓ4 + (a5a3 + b5b4b3) ℓ3 + a5ℓ2

((b5a3 − a5b4b3) a2 + (−b5b3 − a5b4a3) b2) ℓ4 + (b5a3 − a5b4b3) ℓ3 + b5ℓ2

(a4b3a2 + a4a3b2) ℓ4 + a4b3ℓ3 + ℓ1

1


where a3 = cos(θ2), b3 = sin(θ2), a4 = cos(θ1), b4 = sin(θ1) and
a5 = cos(ϕ1), b5 = sin(ϕ1). Note that a2

i + b2
i = 1 for i = 1, . . . , 5. We

are also interested in the angle that the hand makes (for instance, if we
want to pick something up). To find this, compute

(12.2.2) Z


1
0
0
1

− Z


0
0
0
1

 = Z


1
0
0
0

 =


(a5a3 + b5b4b3) a2 + (−a5b3 + b5b4a3) b2

(b5a3 − a5b4b3) a2 + (−b5b3 − a5b4a3) b2

a4b3a2 + a4a3b2

0


The numbers in the top three rows of this matrix are the direction-
cosines of the hand’s direction. We can ask what points the arm can
reach with its hand aimed in a particular direction.If we set ℓ1 = ℓ2 =
1, equation 12.2.1 implies that the endpoint of the robot-arm are solu-
tions to the system

a5a4a3 − a5b4b3 + a5a4 − x = 0
b5a4a3 − b5b4b3 + b5a4 − y = 0

b4a3 + a4b3 + b4 − z = 0
a2

3 + b2
3 − 1 = 0

a2
4 + b2

4 − 1 = 0

a2
5 + b2

5 − 1 = 0(12.2.3)

If we want to know which points it can reach with the hand pointing
in the direction  1/

√
3

1/
√

3
1/

√
3


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use equation 12.2.2 on the previous page to get

(a5a4a3 − a5b4b3) a2 + (−a5a4b3 − a5b4a3) b2 − 1/
√

3 = 0

(b5a4a3 − b5b4b3) a2 + (−b5a4b3 − b5b4a3) b2 − 1/
√

3 = 0

(b4a3 + a4b3) a2 + (a4a3 − b4b3) b2 − 1/
√

3 = 0

a2
2 + b2

2 − 1 = 0(12.2.4)

We regard these terms (in equations 12.2.3 on the preceding page
and 12.2.4 as generators of an ideal, P.

To understand possible configurations of the robot-arm, we com-
pute a Gröbner basis of P with lexicographic ordering. Unfortunately,
we run up against the een

-execution time: This Maxima program

poly_grobner ( [ a5 * a4 * a3−a5 * b4 * b3+a5 * a4−x ,
b5 * a4 * a3−b5 * b4 * b3+b5 * a4−y ,
b4 * a3+a4 * b3+b4−z ,
( a5 * a4 * a3−a5 * b4 * b3 ) * a2+(−a5 * a4 * b3−a5 * b4 * a3 ) * b2

−1/ s q r t ( 3 ) ,
( b5 * a4 * a3−b5 * b4 * b3 ) * a2+(−b5 * a4 * b3−b5 * b4 * a3 ) * b2

dis −1/ s q r t ( 3 ) ,
( b4 * a3+a4 * b3 ) * a2 +( a4 * a3−b4 * b3 ) * b2−1/ s q r t ( 3 ) ,
a2^2+b2^2 −1 ,
a3^2+b3^2 −1 ,
a4^2+b4^2 −1 ,
a5^2+b5 ^2 −1] ,
[ a5 , a4 , a3 , a2 , b5 , b4 , b3 , b2 , x , y , z ] ) ;

runs for several hours and crashes due to memory issues. We can
try another piece of free software, Macaulay 2, which can compute
Gröbner bases (among other things). The program

R=QQ[ a_5 , a_4 , a_3 , a_2 , b_5 , b_4 , b_3 , b_2 ,w, x , y , z ,
MonomialOrder=>Lex ]

Z= ideal ( a_5 * a_4 * a_3−a_5 * b_4 * b_3+a_5 * a_4−x ,
b_5 * a_4 * a_3−b_5 * b_4 * b_3+b_5 * a_4−y ,
b_4 * a_3+a_4 * b_3+b_4−z ,
( a_5 * a_4 * a_3−a_5 * b_4 * b_3 ) * a_2+
( − a_5 * a_4 * b_3−a_5 * b_4 * a_3 ) * b_2−w,
( b_5 * a_4 * a_3−b_5 * b_4 * b_3 ) * a_2+
( − b_5 * a_4 * b_3−b_5 * b_4 * a_3 ) * b_2−w,
( b_4 * a_3+a_4 * b_3 ) * a_2 +( a_4 * a_3−b_4 * b_3 ) * b_2−w,
a_2^2+b_2 ^2 −1 ,
a_3^2+b_3 ^2 −1 ,
a_4^2+b_4 ^2 −1 ,
a_5^2+b_5^2−1
)
P=gb Z



12.2. A MORE COMPLEX ROBOT-ARM 223

gens P

runs for several hours and crashes when it tries to allocate more than
4 gigabytes of memory (my computer has more, but the system seems
reluctant to allocate it).

We finally use the free system, Singular, from the University of
Karlsruhe in Germany. It uses newer and greatly improved algorithms
for computing Gröbner bases. It is, perhaps, the most advanced such
program in the world.

The cryptic Singular program

option ( redSB ) ; / / Causes S i n g u l a r t o
/ / compute a r e d u c e d
/ / Groebner b a s i s

ring R= ( 0 ) , ( a_5 , a_4 , a_3 , a_2 , b_5 , b_4 , b_3 , b_2 ,
x , y , z ,w) , lp ;

/ / numeric 0= r a t i o n a l c o e f f i c i e n t s
/ / l p = l e x i c o g r a p h i c o r d e r i n g
ideal s = a_5 * a_4 * a_3−a_5 * b_4 * b_3+a_5 * a_4−x ,
b_5 * a_4 * a_3−b_5 * b_4 * b_3+b_5 * a_4−y ,
b_4 * a_3+a_4 * b_3+b_4−z ,
( a_5 * a_4 * a_3−a_5 * b_4 * b_3 ) * a_2+

( − a_5 * a_4 * b_3−a_5 * b_4 * a_3 ) * b_2−w,
( b_5 * a_4 * a_3−b_5 * b_4 * b_3 ) * a_2+

( − b_5 * a_4 * b_3−b_5 * b_4 * a_3 ) * b_2−w,
( b_4 * a_3+a_4 * b_3 ) * a_2 +( a_4 * a_3−b_4 * b_3 ) * b_2−w,
a_2^2+b_2 ^2 −1 ,
a_3^2+b_3 ^2 −1 ,
a_4^2+b_4 ^2 −1 ,
a_5^2+b_5 ^2 −1;
slimgb ( s ) ; / / Causes S i n g u l a r t o t r y t o use t h e

/ / s m a l l e s t e x p r e s s i o n s

immediately comes back with the results in appendix A on page 285.
Here ‘0’ is the digit zero, which represents rational coefficients for the
polynomials. Since 1/

√
3 is not rational, we make it into a variable.

Incidentally, the commercial computer algebra software, Maple
16, also comes back with an answer quickly, but an incorrect one. This
author has not had the opportunity to test the other major commercial
system: Mathematica.

Several things leap out at us from the long list in appendix A on
page 285:

(1) 3*w^2-1
(2) 2*b_5^2-1
(3) a_5-b_5
(4) x-y
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Since all elements of the Gröbner basis are implicitly set to 0, this
means w = ±1/

√
3; no other values are possible2. The second line

implies that x = y — a very severe restriction on where the robot-arm
can reach (when the hand is pointed in that direction).

This example was meant to illustrate what is called “the combina-
torial explosion” where even fast computers can be overwhelmed by
the complexities of a problem.

Maxima will be able to handle all of the other examples we do
(and the exercises!).

Suppose we want to reach the point (1,1,1) and we don’t care how
the hand is aligned. We try the Maxima commands

poly_reduced_grobner ( [ a5 * a4 * a3−a5 * b4 * b3+a5 * a4 −1 ,
b5 * a4 * a3−b5 * b4 * b3+b5 * a4 −1 ,
b4 * a3+a4 * b3+b4 −1 ,
a2^2+b2^2 −1 ,
a3^2+b3^2 −1 ,
a4^2+b4^2 −1 ,
a5^2+b5 ^2 −1] ,
[ a5 , a4 , a3 , a2 , b5 , b4 , b3 , b2 ] ) ;

and Maxima comes back (immediately!) with

[b22 + a22 − 1, 12b42 − 12b4 + 1, 4b32 − 3,

2b3b4 − b3 + a5,−6b3b4 + 4b3 − 3a4, 1 − 2a3, b5 + 2b3b4 − b3]

Conclusions:
� a3 = 1/2
� b3 = ±

√
3/4

� solve(12*b4^2−12*b4+1=0,b4) gives[
b4 = −

√
6−3
6 , b4 =

√
6+3
6

]
� b5, a4, and a5 are uniquely determined by b3 and b4: a5 =

b3 − 2b3b4, b5 = b3 − 2b3b4 = a5, a4 = 4b3/3 − 2b3b4
� a2 and b2 are free, subject only to the equation a22 + b22 = 1.

They rotate the hand and have no effect on its position.
So there an infinite number of solutions and, for each choice of a2 and
b2, there are 4 solutions for the other variables:

(1) a3 = 1/2, b3 =
√

3/4, b4 = −
√

6−3
6 = .09175117, a4 =√

3
√

6+
√

3
6 = .995781,a5 = 1/

√
2 = b5

(2) a3 = 1/2, b3 = −
√

3/4,b4 = −
√

6−3
6 = .09175117, a4 =

−
√

3
√

6+
√

3
6 = −.995781,a5 = −1/

√
2 = b5

2We could’ve concluded this from geometric reasoning: this is the length of a unit-
vector manipulated by orthogonal transformations that leave length unchanged.
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(3) a3 = 1/2, b3 =
√

3/4, b4 =
√

6+3
6 = .9082482,

a4 =
√

3·
√

6-
√

3
6 = .4184316, a5 = 1/

√
2 = b5

(4) a3 = 1/2, b3 = −
√

3/4, b4 =
√

6+3
6 = .9082482, a4 =

−
√

3·
√

6-
√

3
6 = −.4184316, a5 = −1/

√
2 = b5

EXERCISES.

1. How far can the robot-arm in figure on page 219 reach? Hint:
add x2 + y2 + z2 − r2 to the list of expressions representing the robot-
arm and find reasonable values of r.

2. How can the robot-arm in figure on page 219 reach the point
(1/2,−1/3, 1)?

3. For the robot-arm in figure on page 219, why are there always
an even number of solutions (ignoring a2 and b2)? (Hint: consider its
geometry).





CHAPTER 13

Differential Game Theory, a Drive-by

“Everything has been thought of before, but the problem is
to think of it again.”
— Johann Wolfgang von Goethe.

13.1. Dances with Limousines

Steering with his right hand and sipping a martini1 with his left,
Dr. Evil is pursuing James Bond in a limousine. Bond is on foot so the
limousine is much faster but has a large turning radius.

The limousine is controlled by its steering wheel, and Bond can
run or jump in any direction. We will set up a system of differen-
tial equations to simulate this situation and solve them with the rk-
command.

Fixed parameters:
(1) limo_turning_radius
(2) limo_speed
(3) bond_speed
(4) kill_distance

State variables:
limo_x The limousine’s x-coordinate
limo_y The limousine’s y-coordinate
limo_theta The angle the limousine makes with respect to the x-axis.

Between −π and π.
limo_steering Position of the steering wheel. Between −π and π. It’s

the direction we want to go.
limo_dtheta The rate of change of limo_theta with respect to time, t

— determined by the steering wheel and turning_radius.
Since curvature is rate of change with respect to distance, s
and since

ds
dt

= limo_speed

we get

− 1
turning_radius

≤ limo_dtheta
limo_speed

≤ 1
turning_radius

1Stirred not shaken, of course!

227
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or

− limo_speed
turning_radius

≤ limo_dtheta ≤ limo_speed
turning_radius

so

limo_dtheta =min
(

max
(
− limo_speed

turning_radius
, limo_steering

)
,

limo_speed
turning_radius

)
limo_dx The limousine’s speed in the x-direction — limo_speed ·

cos(limo_theta)
limo_dy The limousine’s speed in the y-direction — limo_speed ·

sin(limo_theta)
bond_x
bond_y
bond_dx
bond_dy
The idea of this algorithm is that the limo’s direction is determined
by the angle limo_theta and its derivative with respect to arc-length
is given by the steering wheel. We determine the angle of a line con-
necting the limo to bond (using the atan2-function) and increase or de-
crease the steering wheel accordingly (subject to the turning radius).

limo_speed : 5 0 ;
l imo_turning_radius : 3 0 ;
t ime_step : . 0 1 ;

limo_dx ( l imo_theta ) : = limo_speed * cos ( l imo_theta ) ;
limo_dy ( l imo_theta ) : = limo_speed * s in ( l imo_theta ) ;

normalize ( t h e t a ) : = block ( [ ] ,
i f ( theta >=%pi ) then return ( theta −2*%pi ) ,
i f ( theta <−%pi ) then return ( t h e t a +2*%pi ) ,
t h e t a ) ;

/ * Aim s t r a i g h t f o r Bond ! * /
l im o_ s t ee r i ng ( bond_x , bond_y , limo_x , limo_y ,

l imo_theta )
:= block (
[ angle : atan2 ( bond_y−limo_y , bond_x−limo_x ) ] ,

angle −l imo_theta ) ;

/ * Take t u r n i n g r a d i u s i n t o a c c o u n t . * /
l imo_dtheta ( l im o_ s t ee r i ng ) : = block (
[ lim : limo_speed/l imo_turning_radius ] ,
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min (max( − lim , l i mo _s te er in g ) , lim )
) ;

/ * Bond ’ s s t r a t e g i e s * /

/ * Matador s t r a t e g y : don ’ t move
u n l e s s t h e l imo comes c l o s e ! * /

bond_dx ( bond_x , bond_y , limo_x , limo_y , l imo_theta )
:= block ( [ d i s t a n c e ] ,

d i s t a n c e= s q r t ( ( bond_x−limo_x )^2+( limo_y −bond_y ) ^ 2 ) ,
i f ( dis tance <5) then return

( cos ( l imo_theta+%pi /2)/ t ime_step ) ,
0 ) ;

bond_dy ( bond_x , bond_y , limo_x , limo_y , l imo_theta )
:= block ( [ d i s t a n c e ] ,

d i s t a n c e= s q r t ( ( bond_x−limo_x )^2+( limo_y −bond_y ) ^ 2 ) ,
i f ( dis tance <5) then return

( s i n ( l imo_theta+%pi /2)/ t ime_step ) ,
0 ) ;
/ * End o f Bond ’ s s t r a t e g i e s * /

/ * Run t h e s i m u l a t i o n ! * /
pursui t : rk ( [

limo_dx ( l imo_theta ) ,
limo_dy ( l imo_theta ) ,
l imo_dtheta ( l im o_ s t ee r i ng ( bond_x , bond_y ,

limo_x , limo_y , l imo_theta ) ) ,
bond_dx ( bond_x , bond_y , limo_x , limo_y ,

l imo_theta ) ,
bond_dy ( bond_x , bond_y , limo_x , limo_y ,

l imo_theta )
] ,

[ limo_x , limo_y , l imo_theta , bond_x , bond_y ] ,
[ 0 , 0 , 0 , 1 0 , 1 0 ] ,
[ t , 0 , 1 0 , t ime_step ]

) ;

Unfortunately, this reasonable-looking approach fails miserably2.
Suppose we abandon angles and reference a unit-vector giving the

direction of the limo’s motion. If u(t) is a unit vector then

u • u = 1

2Try running it!
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so
d(u • u)

dt
= 2u • du

dt
= 0

It follows that

u ⊥ du
dt

So the vector we pick for du/dt must be perpendicular to u. In
the following program u is called limo_direction and du/dt is
bond_at⊥(compare with definition 7.3.4 on page 117):

limo_speed : 5 0 ;
l imo_turning_radius : 3 0 ;
t ime_step : . 0 1 ;
max_angle : limo_speed/l imo_turning_radius ;

d i r e c t i o n _ d ( bond_position , l imo_posi t ion ,
l i m o _ d i r e c t i o n ) : = block (

[ bond_at , dis tance , dot_prod , perp , d_vect ,
p_comp ] ,

bond_at : f l o a t ( bond_position −l imo_pos i t ion ) ,
d i s t a n c e : f l o a t ( sqr t ( bond_at . bond_at ) ) ,
dot_prod : f l o a t ( bond_at . l i m o _ d i r e c t i o n ) ,
perp : f l o a t ( bond_at − dot_prod * l i m o _ d i r e c t i o n ) ,

/ * Compute t h e p r o j e c t i o n o f bond_at
on to l i m o _ d i r e c t i o n

Now compute t h e p e r p e n d i c u l a r v e c t o r , p e rp * /
perp_length : f l o a t ( sqr t ( perp . perp ) ) ,
i f ( perp_length < . 0 1 ) then return ( 0 ) ,

/ * We ’ r e p o i n t e d in t h e r i g h t d i r e c t i o n * /

/ * Impose t h e turning − r a d i u s r e s t r i c t i o n s * /
i f ( perp_length >max_angle ) then

return ( ( max_angle/perp_length ) * perp ) ,
perp
) ;

limo_d ( l i m o _ d i r e c t i o n ) : = limo_speed * l i m o _ d i r e c t i o n ;

/ * Bond ’ s s t r a t e g i e s * /

/ * Matador s t r a t e g y :
don ’ t move u n l e s s t h e l imo comes c l o s e ! * /

bond_d ( bond_position , l imo_posi t ion ,
l i m o _ d i r e c t i o n ) : = block (

[ bond_at : bond_position −l imo_posi t ion , d i s t a n c e ] ,
d i s t a n c e : f l o a t ( sqr t ( bond_at . bond_at ) ) ,

bond_hit : ( d is tance <1) ,
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/ * We ’ r e done . Bond i s dead * /

i f ( d i s t a n c e < 3) then
return ( 1 0 0 * matrix ([ − l i m o _ d i r e c t i o n [ 1 , 2 ] ,

l i m o _ d i r e c t i o n [ 1 , 1 ] ] ) ) ,
0 ) ;
/ * End o f Bond ’ s s t r a t e g i e s * /

/ * I n i t i a l c o n d i t i o n s * /
l imo_pos i t ion : matrix ( [ 0 , 0 ] ) ;
bond_posit ion : matrix ( [ 2 0 , − 2 0 ] ) ;
l i m o _ d i r e c t i o n : matrix ( [ − 1 , 0 ] ) ;
path : [ ] ;
bpath : [ ] ;
bond_hit : f a l s e ;
t imeout : f a l s e ;

/ * Run t h e s i m u l a t i o n ! * /
for t : 0 step t ime_step unless ( bond_hit or t imeout )

do (
timeout : ( t >100) ,
l imo_pos i t ion : l imo_pos i t ion

+ . 01 * limo_d ( l i m o _ d i r e c t i o n ) ,
bond_posit ion : bond_posit ion

+ . 01 * bond_d ( bond_position ,
l imo_posi t ion , l i m o _ d i r e c t i o n ) ,

l i m o _ d i r e c t i o n : l i m o _ d i r e c t i o n
+ . 01 * d i r e c t i o n _ d ( bond_position ,

l imo_posi t ion , l i m o _ d i r e c t i o n ) ,

/ * Record t h e l imo ’ s l o c a t i o n :
p l a c e t h e l imo ’ s c o o r d s
a t t h e end o f i t s pa th . * /

path : endcons ( [ l imo_pos i t ion [ 1 , 1 ] ,
l imo_pos i t ion [ 1 , 2 ] ] , path ) ,

/ * Normal i ze l i m o _ d i r e c t i o n
so i t r ema ins a uni t − v e c t o r * /

l i m o _ d i r e c t i o n :
f l o a t ( l i m o _ d i r e c t i o n

/sqr t ( l i m o _ d i r e c t i o n . l i m o _ d i r e c t i o n ) ) ,

/ * Record Bond ’ s l o c a t i o n :
p l a c e Bond ’ s c o o r d s a t t h e
end o f h i s pa th . * /
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bpath : endcons ( [ bond_posit ion [ 1 , 1 ] ,
bond_posit ion [ 1 , 2 ] ] , bpath )

) ; / * End o f f o r − l o o p * /

/ * Watch t h e dance ! * /
plot2d ( [ [ d i s c r e t e , path ] , [ d i s c r e t e , bpath ] ] ,

[ s t y l e , [ l i n e s , 1 ] , [ points , 1 ] ] ,
[ legend , " Limo " , "Bond" ] ) ;

Unfortunately, the rk-command requires its arguments to be real
scalars (argh!) and fails silently if they aren’t.

We dispense with the rk-command and use a finite-difference
approximation to derivatives (see Euler’s method, equation 4.1.5 on
page 52)

dlimo_direction
dt

∼ ∆limo_direction
∆t

which becomes more accurate the smaller ∆t is. We pick ∆t = .01 .
Since this is only an approximate derivative, limo_direction will grow
with each iteration of the for-loop. We reset it to being a unit-vector
via

l i m o _ d i r e c t i o n :
f l o a t ( l i m o _ d i r e c t i o n

/sqr t ( l i m o _ d i r e c t i o n . l i m o _ d i r e c t i o n ) ) ,

Take note of the command

/ * Record t h e l imo ’ s l o c a t i o n :
p l a c e t h e l imo ’ s c o o r d s
a t t h e end o f i t s pa th . * /

path : endcons ( [ l imo_pos i t ion [ 1 , 1 ] ,
l imo_pos i t ion [ 1 , 2 ] ] , path ) ,

for keeping a record of the limo’s position and compare to Note 7.1.1
on page 106.

If we run the code as given above, we get figure 13.1.1 on the fac-
ing page, which shows that it’s easy to evade a limo with a large turn-
ing radius that is close by — just stand in one spot!

If we set the turning radius to 10, we get figure 13.1.2 on the next
page, where Bond has to jump around a bit.

Note that this program works in n-dimensions, whereas the pro-
gram using angles would only work in two, at best3.

If Bond stands far away (x=100, for instance) even a large turning
radius limo manages to catch him — see figure 13.1.3 on page 234.
This suggests a strategy to use when the turning radius is large.

3Although finding 100-dimensional limos might be hard!
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FIGURE 13.1.1. Turning radius=30
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FIGURE 13.1.2. Turning radius=10

Note that the limo starts by facing away from Bond. This is the
initial condition

l i m o _ d i r e c t i o n : matrix ( [ − 1 , 0 ] ) ;

Something strange happens if Bond starts out on the positive x-axis,
say at (10,0). We get the plot in figure 13.1.4 on the next page, where
the limo frantically runs away from Bond! This is what is called the
Gimbel Problem: certain angles cause algorithms to lock up and execute
incorrectly. This problem occurs because we assume that, if perp=0,
we must be facing Bond whereas we might be facing away from him.
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FIGURE 13.1.4. Gimbel problem

Equation 7.3.1 on page 116 suggests the solution: if dot_prod > 0,
we are facing Bond, and if dot_prod < 0, we are facing away. We
amend the limo-code by replacing

perp_length : f l o a t ( sqr t ( perp . perp ) ) ,
i f ( perp_length < . 0 1 ) then return ( 0 ) ,

/ * We ’ r e p o i n t e d in t h e r i g h t d i r e c t i o n * /

with

perp_length : f l o a t ( sqr t ( perp . perp ) ) ,
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FIGURE 13.1.5. Solution to the Gimbel Problem

i f ( ( perp_length < . 0 1 ) and ( dot_prod >0))
then return ( 0 ) ,

/ * We ’ r e p o i n t e d in t h e r i g h t d i r e c t i o n * /

i f ( perp_length < . 0 1 ) then return
( matrix ([ − l i m o _ d i r e c t i o n [ 1 , 2 ] ,

l i m o _ d i r e c t i o n [ 1 , 1 ] ] ) ) ,
/ * Jump s ideways , s o we ’ r e no l o n g e r l i n e d up

with Bond * /

and this gives us figure 13.1.5.

EXERCISES.

1. Why does the initial program that uses angles and atan2 fail?

2. Why did we need the timeout logical variable?

3. Dr. Evil is afraid of spilling his martini if he makes a left turn4.
Rewrite the limo program so it only makes right turns.

4. Rewrite the limo program so it is capable of hitting Bond even if
its turning radius is large and Bond is nearby. Hint: If Bond is nearby,
put the limo into back-off mode and drive away. When it’s far enough
away, put it back into attack mode.

4Reminiscent of an old road-sign in Ireland: “Don’t drink while you drive; you
might spill some.”
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5. In the program given, Bond always jumps in a direction perpen-
dicular to the direction of the limo. Experiment with other angles.

6. Notice that Bond never gets tired and always jumps a huge
distance (100). Rewrite the program so Bond get tired after each jump,
and the distance jumped decreases until he is unable to jump at all.

13.2. Rock, Paper, Rocket

In this section we consider the opposite problem from the last:
Is it possible to hit a fast object with a slow one?

Clearly, if the slow object merely chases the fast one, it will miss. We
suppose the fast object is headed to a target and the slow one starts
out near the target. We’ll begin by assuming that the fast object heads
in a straight line to the target.

We begin by coding the main loop and the rocket’s equations of
motion:

rocket_speed : 1 0 0 ;
r o c k e t _ s t a r t : matrix ( [ 1 0 0 , 3 ] ) ;
t a r g e t _ l o c a t i o n : matrix ( [ 0 , 0 ] ) ;
t ime_step : . 0 1 ;
timeout : f a l s e ;
t a r g e t _ h i t : f a l s e ;
r o c k e t _ l o c a t i o n : copymatrix ( r o c k e t _ s t a r t ) ;
r o c k e t _ d i r : matrix ( [ 1 , 0 ] ) ;
rocket_path : [ ] ;

r o c k e t _ u n i t ( r o c k e t _ l o c a t i o n , t a r g e t _ l o c a t i o n ) : =
block (

[ v e c t o r _ t o _ t a r g e t , d i s t _ t o _ t a r g e t ] ,
v e c t o r _ t o _ t a r g e t : t a r g e t _ l o c a t i o n

− r o c k e t _ l o c a t i o n ,
d i s t _ t o _ t a r g e t :

f l o a t ( sqr t ( v e c t o r _ t o _ t a r g e t
. v e c t o r _ t o _ t a r g e t ) ) ,

i f ( d i s t _ t o _ t a r g e t < 1 . 0 ) then
return ( matrix ( [ 0 , 0 ] ) ) ,

f l o a t ( v e c t o r _ t o _ t a r g e t / d i s t _ t o _ t a r g e t )
) ;

for t : 0 step t ime_step unless
( timeout or t a r g e t _ h i t )

do (
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t imeout : t >100 ,
r o c k e t _ d i r : r o c k e t _ u n i t ( r o c k e t _ l o c a t i o n ,

t a r g e t _ l o c a t i o n ) ,
t a r g e t _ h i t : r o c k e t _ d i r . rocket_dir < . 5 ,

r o c k e t _ l o c a t i o n : r o c k e t _ l o c a t i o n
+time_step * rocket_speed * rocket_di r ,

rocket_path : endcons ( [ r o c k e t _ l o c a t i o n [ 1 , 1 ] ,
r o c k e t _ l o c a t i o n [ 1 , 2 ] ] ,
rocket_path )

) ;
plot2d ( [ d i s c r e t e , rocket_path ] ,

[ s t y l e , [ l i n e s , 1 ] , [ points , 1 ] ] ) ;

Now we add the code for the rock. We’ll begin by using the simplest
code possible: simply head in the direction of the rocket5. We have

rock_uni t ( r o c k e t _ l o c a t i o n , t a r g e t _ l o c a t i o n ,
r o c k _ l o c a t i o n ) : = block (

[ vec tor_ to_rocke t , d i s t _ t o _ r o c k e t ] ,
v e c t o r _ t o _ r o c k e t : r o c k e t _ l o c a t i o n

− rock_ loca t ion ,
d i s t _ t o _ r o c k e t :

f l o a t ( sqr t ( v e c t o r _ t o _ r o c k e t
. v e c t o r _ t o _ r o c k e t ) ) ,

i f ( d i s t _ t o _ r o c k e t < 1 . 0 ) then
return ( matrix ( [ 0 , 0 ] ) ) ,

f l o a t ( v e c t o r _ t o _ r o c k e t / d i s t _ t o _ r o c k e t )
) ;

and combining it with the previous code gives

rocket_speed : 1 0 0 ;
r o c k e t _ s t a r t : matrix ( [ 1 0 0 , 3 ] ) ;
t a r g e t _ l o c a t i o n : matrix ( [ 0 , 0 ] ) ;
t ime_step : . 0 1 ;
timeout : f a l s e ;
t a r g e t _ h i t : f a l s e ;
r o c k e t _ h i t : f a l s e ;
r o c k e t _ l o c a t i o n : copymatrix ( r o c k e t _ s t a r t ) ;
r o c k e t _ d i r : matrix ( [ 1 , 0 ] ) ;

rock_speed : 1 0 ;
r o c k _ o f f s e t : matrix ( [ 5 , 5 ] ) ;
rocket_path : [ ] ;
r o c k _ l o c a t i o n : t a r g e t _ l o c a t i o n + r o c k _ o f f s e t ;

5So our “rock” can be steered!
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rock_path : [ ] ;

r o c k e t _ u n i t ( r o c k e t _ l o c a t i o n , t a r g e t _ l o c a t i o n ) : = block (
[ v e c t o r _ t o _ t a r g e t , d i s t _ t o _ t a r g e t ] ,
v e c t o r _ t o _ t a r g e t : t a r g e t _ l o c a t i o n

− r o c k e t _ l o c a t i o n ,
d i s t _ t o _ t a r g e t : f l o a t ( sqr t ( v e c t o r _ t o _ t a r g e t

. v e c t o r _ t o _ t a r g e t ) ) ,
i f ( d i s t _ t o _ t a r g e t < 1 . 0 ) then

return ( matrix ( [ 0 , 0 ] ) ) ,
f l o a t ( v e c t o r _ t o _ t a r g e t / d i s t _ t o _ t a r g e t )
) ;

rock_uni t ( r o c k e t _ l o c a t i o n ,
r o c k _ l o c a t i o n ) : = block (

[ vec tor_ to_rocke t , d i s t _ t o _ r o c k e t ] ,
v e c t o r _ t o _ r o c k e t : r o c k e t _ l o c a t i o n

− rock_ loca t ion ,
d i s t _ t o _ r o c k e t : f l o a t ( sqr t ( v e c t o r _ t o _ r o c k e t

. v e c t o r _ t o _ r o c k e t ) ) ,
i f ( d i s t _ t o _ r o c k e t < 1 . 0 ) then

return ( matrix ( [ 0 , 0 ] ) ) ,
f l o a t ( v e c t o r _ t o _ r o c k e t / d i s t _ t o _ r o c k e t )
) ;

for t : 0 step t ime_step
unless ( timeout or t a r g e t _ h i t or r o c k e t _ h i t )

do (
timeout : t >100 ,
r o c k e t _ d i r : r o c k e t _ u n i t ( r o c k e t _ l o c a t i o n ,

t a r g e t _ l o c a t i o n ) ,
t a r g e t _ h i t : r o c k e t _ d i r . rocket_dir < . 5 ,

rock_dir : rock_uni t ( r o c k e t _ l o c a t i o n ,
r o c k _ l o c a t i o n ) ,

r o c k e t _ h i t : rock_dir . rock_dir < . 5 ,

r o c k e t _ l o c a t i o n : r o c k e t _ l o c a t i o n
+time_step * rocket_speed * rocket_di r ,

r o c k _ l o c a t i o n : r o c k _ l o c a t i o n
+time_step * rock_speed * rock_dir ,

rocket_path : endcons ( [ r o c k e t _ l o c a t i o n [ 1 , 1 ] ,
r o c k e t _ l o c a t i o n [ 1 , 2 ] ] ,

rocket_path ) ,
rock_path : endcons ( [ r o c k _ l o c a t i o n [ 1 , 1 ] ,

r o c k _ l o c a t i o n [ 1 , 2 ] ] , rock_path )
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FIGURE 13.2.1. Naive pursuit algorithm

) ;
plot2d ( [ [ d i s c r e t e , rocket_path ] , [ d i s c r e t e , rock_path ] ] ,

[ s t y l e , [ l i n e s , 1 ] , [ points , 1 ] ] ) ;

This produces the plot in figure 13.2.1. Clearly, we have failed to stop
the rocket! If we increase the rock speed to 30, we get the plot in fig-
ure 13.2.2 on the next page

As it nears the rocket, the rock simply chases it and will always
lose.

We will try a slightly more sophisticated algorithm:
(1) Determine how far away the rocket is,
(2) Determine how long it would take to reach that point (at the

speed the rock travels),
(3) Estimate the possible future location of the rocket at that

time, using the rocket’s direction,
(4) Aim for that location instead of the rocket’s present location.

/ * P r e d i c t i v e R o c k e t vs . Rock program * /
rocket_speed : 1 0 0 ;
r o c k e t _ s t a r t : matrix ( [ 1 0 0 , 3 ] ) ;
t a r g e t _ l o c a t i o n : matrix ( [ 0 , 0 ] ) ;
t ime_step : . 0 1 ;
timeout : f a l s e ;
t a r g e t _ h i t : f a l s e ;
r o c k e t _ h i t : f a l s e ;
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FIGURE 13.2.2. Rock speed 30

r o c k e t _ l o c a t i o n : copymatrix ( r o c k e t _ s t a r t ) ;
r o c k e t _ d i r : matrix ( [ 1 , 0 ] ) ;

rock_speed : 3 0 ;
r o c k _ o f f s e t : matrix ( [ 5 , 5 ] ) ;
rocket_path : [ ] ;

/ * The r o c k i s not l o c a t e d a t t h e t a r g e t ,
but o f f s e t from i t * /

r o c k _ l o c a t i o n : t a r g e t _ l o c a t i o n + r o c k _ o f f s e t ;
rock_path : [ ] ;

/ * The r o c k e t ’ s d i r e c t i o n o f t r a v e l * /
r o c k e t _ u n i t ( r o c k e t _ l o c a t i o n ,

t a r g e t _ l o c a t i o n ) : = block (
[ v e c t o r _ t o _ t a r g e t , d i s t _ t o _ t a r g e t ] ,
v e c t o r _ t o _ t a r g e t : t a r g e t _ l o c a t i o n

− r o c k e t _ l o c a t i o n ,
d i s t _ t o _ t a r g e t : f l o a t ( sqr t ( v e c t o r _ t o _ t a r g e t

. v e c t o r _ t o _ t a r g e t ) ) ,
i f ( d i s t _ t o _ t a r g e t < 1 . 0 ) then

return ( matrix ( [ 0 , 0 ] ) ) ,
f l o a t ( v e c t o r _ t o _ t a r g e t / d i s t _ t o _ t a r g e t )
) ;
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/ * The r o c k ’ s d i r e c t i o n o f t r a v e l * /
rock_uni t ( r o c k e t _ l o c a t i o n , rock_ loca t ion ,

r o c k e t _ d i r ) : = block (
[ vec tor_ to_rocke t , d i s t _ t o _ r o c k e t ,

rocket_ future , vec tor_ to_ fu ture ,
d i s t _ t o _ f u t u r e ] ,

v e c t o r _ t o _ r o c k e t : r o c k e t _ l o c a t i o n
− rock_ loca t ion ,

d i s t _ t o _ r o c k : f l o a t ( sqr t ( v e c t o r _ t o _ r o c k e t
. v e c t o r _ t o _ r o c k e t ) ) ,

i f ( d i s t_ to_rock < 1 . 0 ) then
return ( matrix ( [ 0 , 0 ] ) ) ,

/ * The r o c k e t ’ s p r e d i c t e d f u t u r e p o s i t i o n * /
r o c k e t _ f u t u r e : r o c k e t _ l o c a t i o n +

r o c k e t _ d i r * rocket_speed/rock_speed ,
v e c t o r _ t o _ f u t u r e : r o c k e t _ f u t u r e

−rock_ loca t ion ,
d i s t _ t o _ f u t u r e :

sqr t ( v e c t o r _ t o _ f u t u r e . v e c t o r _ t o _ f u t u r e ) ,
/ * Aim a t t h e f u t u r e p o s i t i o n ! * /

f l o a t ( v e c t o r _ t o _ f u t u r e / d i s t _ t o _ f u t u r e )
) ;

for t : 0 step t ime_step
unless ( timeout or t a r g e t _ h i t or r o c k e t _ h i t )

do (
timeout : t >100 ,
r o c k e t _ d i r : r o c k e t _ u n i t ( r o c k e t _ l o c a t i o n ,

t a r g e t _ l o c a t i o n ) ,
t a r g e t _ h i t : r o c k e t _ d i r . rocket_dir < . 1 ,
rock_dir : rock_uni t ( r o c k e t _ l o c a t i o n ,

rock_ loca t ion , r o c k e t _ d i r ) ,
r o c k e t _ h i t : rock_dir . rock_dir <.1 ,
i f ( r o c k e t _ h i t ) then p r i n t ( " Rocket h i t " ) ,
r o c k e t _ l o c a t i o n : r o c k e t _ l o c a t i o n

+time_step * rocket_speed * rocket_di r ,
r o c k _ l o c a t i o n : r o c k _ l o c a t i o n

+time_step * rock_speed * rock_dir ,
rocket_path : endcons ( [ r o c k e t _ l o c a t i o n [ 1 , 1 ] ,

r o c k e t _ l o c a t i o n [ 1 , 2 ] ] ,
rocket_path ) ,

rock_path : endcons ( [ r o c k _ l o c a t i o n [ 1 , 1 ] ,
r o c k _ l o c a t i o n [ 1 , 2 ] ] , rock_path )
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FIGURE 13.2.3. Predictive algorithm with rock
speed 30

) ;
plot2d ( [ [ d i s c r e t e , rocket_path ] , [ d i s c r e t e , rock_path ] ] ,

[ s t y l e , [ l i n e s , 1 ] , [ points , 1 ] ] ,
[ legend , " Rocket " , " Rock " ] ) ;

We will also print out “Rocket hit” if this happens. We get the plot in
figure 13.2.3, the “Rocket hit” phrase is printed, and the rocket doesn’t
get within 20 units of the target, even though it is traveling more than
3 times the rock’s speed!

EXERCISES.

1. Experiment with the predictive program and determine the
minimum speed the rock must be traveling to guarantee that the
rocket does not get within 10 distance-units of the target.

2. Experiment with different offsets of the rock-launch-point.

3. Try the program where the rocket follows a curved path rather
than a straight line.

4. Consider possible improvements to the predictive algorithm
and program them. Our program uses the first derivative of the rocket
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motion (its tangent vector). Consider how one could estimate its sec-
ond derivative and use that (and the first) to estimate its future loca-
tion. Hint: consider how much the rocket’s unit-vector changes be-
tween a given call to the rock-routine and the previous call.

5. Suppose the rocket has random fluctuations in its direction to
try to confuse the rock. These fluctuations must decrease to 0 as the
rocket approaches the target, or it won’t have a chance of hitting the
target. Program this!





CHAPTER 14

Special Functions

“Certain functions appear so often that it is convenient to
give them names. These are collectively called special func-
tions. There are many examples and no single way of look-
ing at them can illuminate all examples or even all the im-
portant properties of a single example of a special function.”
— Richard Askey.

14.1. The Gamma Function

In an attempt to define factorials over non-integers, Bernoulli de-
fined the function

(14.1.1) Γ(z) =
∫ ∞

0
e−ttz−1dt for ℜ(z) > 0

Integration by parts shows that

(14.1.2) Γ(z + 1) = zΓ(z)

Since Γ(1) = 1, an easy induction shows that

Γ(n) = (n − 1)!

for n a positive integer.

Daniel Bernoulli (1700 – 1782) was a Swiss mathematician and physi-
cist and was one of the many prominent mathematicians in the
Bernoulli family from Basel. He is particularly remembered for his
applications of mathematics to mechanics, especially fluid mechanics,
and for his pioneering work in probability and statistics. His name
is commemorated in the Bernoulli’s principle, a particular example of
the conservation of energy, which describes the mathematics of the
mechanism underlying the operation of two important technologies
of the 20th century: the carburetor and the airplane wing.

Maxima implements the Γ-function via the gamma-command.
For instance

map( ’gamma, [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] ) ;

returns
[1, 1, 2, 6, 24, 120, 720, 5040, 40320]

We can plot Γ(x) on the real line via

245
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FIGURE 14.1.1. The Γ-function

plot2d (gamma( x ) , [ x , − 5 , 5 ] , [ y , − 1 0 , 1 0 ] , [ s t y l e ,
[ l i n e s , 2 , 5 ] ] , [ grid , 1 0 , 2 0 ] ) ;

to get figure 14.1.1.
We also have the Euler Reflection equation (see [1, chapter 5]).

Γ(1 − z)Γ(z) =
π

sin(πz)
from which it is easy to derive the famous equation

Γ(1/2) =
√

π

or (
−1

2

)
! =

√
π

and
1
2

! =
√

π

2
Equation 14.1.2 on the preceding page allows us to extend the

gamma function over the whole complex plane, except for zero and
negative integers via

Γ(z) =
Γ(z + 1)

z
and the Euler reflection formula:

(14.1.3) Γ(z) · Γ(1 − z) =
π

sin(πz)
— see [1, chapter 5].

The command
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FIGURE 14.1.2. Plot of |Γ(z)|

plot3d ( cabs (gamma( u+%i *v ) ) , [ u , −5 , 5 ] , [ v , −5 , 5 ] ,
[ z , 0 , 2 0 ] , [ x labe l , " Reals " ] , [ y label , " Imag " ] ,
[ grid , 1 0 0 , 1 0 0 ] ) ;

produces figure 14.1.2.
Maxima also “knows” other functions of the gamma-function that

are used in number-theory.

� log_gamma(z) — self-explanatory.
� gamma_incomplete_lower(a, z) =

∫ z
0 e−tta−1dt

� gamma_incomplete(a, z)=
∫ ∞

z e−tta−1dt
� gamma_incomplete_regularized(a, z)

=gamma_incomplete(a, z)/ gamma(a)
� beta(a, b) — The beta function is defined as

gamma(a)*gamma(b)/gamma(a+b)
� psi[n](x) — The derivative of log(gamma(x)) of order n + 1.

Thus, psi[0](x) is the first derivative, psi[1](x) is the second
derivative, etc. Unfortunately this is only defined for real val-
ues of x.

There’s a form of some of these functions valid for complex argu-
ments. They must be loaded by load(bffac). The following functions
become available:

� bffac(x, n) — Bigfloat version of the factorial (shifted
gamma) function. The second argument is how many digits
to retain and return, it’s a good idea to request a couple of
extra.
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� bfpsi(n, z, p) — bigfloat version of psi[n](z), where p is the
number of digits of precision. Although the documentation
says it’s only valid for real values of z, it appears to work for
complex ones as well. bfpsi0(z, p)=bfpsi(0, z, p)

EXERCISES.

1. If x is a number and m is a positive integer, recall the falling fac-
torial or Pochhammer symbols (x)m from chapter 10 on page 191 defined
by

(x)m = x · (x − 1) · · · (x − m + 1)

Extend this definition to all complex values of x and m using the
gamma function. Note that, if x and m are integers and m > x, then
we get a factor (x − x) = 0 so the result is 0.

2. Write a Maxima function to compute falling factorials (x)n for
all complex values of x and n.

3. A simple induction shows that for any positive integer, k,

dkxn

dxk = n(n − 1) · · · (n − k + 1)xn−k

Extend this to arbitrary complex values of k, so one could define (for
instance)

d1/2x
dx1/2

4. If

H(x) =
x

∑
n=1

1
n

is the harmonic sum, show that

H(x) = γ +
d

dx
(log Γ(x + 1)) = γ +

Γ′(x + 1)
Γ(x + 1)

which can be programmed
load(bffac); H(x):=bfloat(%gamma+bfpsi0(x+1,15))
and plotted via

plot3d ( cabs ( ’H( x+%i * y ) ) , [ x , − 5 , 5 ] , [ y , − 5 , 5 ] , [ z , 0 , 1 0 ] ) ;

to get figure 14.1.3 on the next page.

This allows H(x) to be defined over the entire complex plane, ex-
cept for negative integers (where it becomes ∞).
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FIGURE 14.1.3. Harmonic sum on the complex plane

5. It turns out that the series

h(z) =
∞

∑
n=1

(
1
n
− 1

n + z

)
= z

∞

∑
n=1

1
nz + n2

converges (slowly!) for all complex values of z other than
z = −1,−2, . . . . Show that h(z) = H(z), for z a positive integer (it
also turns out to be true for all other values of z).

6. Compute
d1/2ex

dx1/2

by computing that for each term of its Taylor series. Plot this function
and ex.

14.2. Elliptic integrals and elliptic functions

Elliptic integrals and functions have a long and complex history
that impinges on numerous other areas of mathematics, including
complex analysis, number theory, and algebraic geometry.

The general elliptic integral is anything of the form∫ x

c
R
(

t,
√

P(t)
)

dt

where c is a constant, R(u, v) is a rational function, and P(t) is a poly-
nomial of degree 3 or 4 with no repeated roots. Any elliptic integral
can be transformed into a linear combination of an integral of a ratio-
nal function and Legendre elliptic integrals of the first, second, and third
kinds — see [69].
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Carl Gustav Jacob Jacobi (1804 – 1851) was a German mathematician
who made fundamental contributions to elliptic functions, dynamics,
differential equations, determinants, and number theory. His name is
occasionally written as Carolus Gustavus Iacobus Iacobi in his Latin
books, and his first name is sometimes given as Karl.

We will focus on elliptic integrals and Jacobi’s elliptic functions,
which initially arose in in an effort to parametrize the arc-length of an
ellipse. The incomplete elliptic integral of the first kind is

F(x, k) =
∫ x

0

dt√
(1 − t2)(1 − k2t2)

=
∫ ϕ

0

dt√
1 − k2 sin2 t

where 0 ≤ x ≤ 1, 0 ≤ ϕ ≤ π/2, and the quantity 0 ≤ k ≤ 1 is called
the modulus of the elliptic integral. The complete elliptic integral simply
has x = 1 (or ϕ = π/2).

The incomplete elliptic integral of the first kind is also sometimes
written

F(ϕ, k) =
∫ sin ϕ

0

dt√
(1 − t2)(1 − k2t2)

This is the form Maxima implements:

e l l i p t i c _ f ( phi , m)

where m = k2.
If we type

e l l i p t i c _ f ( x , 0 )

we get

x

and if we type

e l l i p t i c _ f ( x , 1 )

we get

log
(

tan
( x

2
+

π

4

))
EXAMPLE 14.2.1. We will discuss an application of the elliptic in-

tegral of the first kind. Consider the pendulum in figure 14.2.1 on the
facing page

The tangential force on the bob perpendicular to the rod is
−mg sin θ, where m is the bob’s mass and g is the acceleration of
gravity. This force is also equal to

m
dvT
dt

= m
d
dt

(
R

dθ

dt

)
= mR

d2θ

dt2
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FIGURE 14.2.1. Pendulum

Equating these quantities gives

mR
d2θ

dt2 = −mg sin θ

so the equation of motion becomes

(14.2.1)
d2θ

dt2 +
g
R

sin θ = 0

Compare this with equation 5.3.2 on page 88 for a harmonic oscillator
and figure 5.3.1 on page 88. The sine-term adds considerable complex-
ity.

Now we multiply by dθ/dt to get(
d2θ

dt2

)
dθ

dt
+

g
R

sin θ
dθ

dt
= 0

and integrate with respect to t to get

1
2

(
dθ

dt

)2
− g

R
cos θ = C

where C is the constant of integration. If we set dθ/dt = 0, we get
C = − g

R cos θ, which means θ = θ0, the pendulum’s initial angle. Our
equation becomes

dθ

dt
=

√
2
( g

R
cos θ − g

R
cos θ0

)
=

√
2g
R

√
cos θ − cos θ0

Now we apply the identity

cos θ = 1 − 2 sin2
(

θ

2

)
to get

dθ

dt
= 2

√
g
R

√
sin2

(
θ0

2

)
− sin2

(
θ

2

)



252 14. SPECIAL FUNCTIONS

so
dt
dθ

=
1
2

√
R
g

1√
k2 − sin2

(
θ
2

)
where k = sin(θ0/2). The complete period of the pendulum is

(14.2.2) T = 4 · 1
2

√
R
g
·
∫ θ0

0

dθ√
k2 − sin2

(
θ
2

)
Now we do a u-substitution, setting sin(θ/2) = k sin(u), which im-
plies that

cos
(

θ

2

)
dθ

2
= k cos(u)du

or

dθ =
2k cos(u)

cos
(

θ
2

) du =
2k
√

1 − sin2(u)√
1 − k2 sin2(u)

du

=
2
√

k2 − sin2(θ/2)√
1 − k2 sin2(u)

du(14.2.3)

Now we plug equation 14.2.3 into equation 14.2.2 to get the complete
elliptic integral of the first kind

(14.2.4) T = 4

√
R
g
·
∫ π/2

0

du√
1 − k2 sin2(u)

where we note that when θ = θ0, k = sin(θ0/2) = sin(θ0/2) sin(u), so
sin(u) = 1, and u = π/2.

The inverse of the elliptic integral of the first kind is the elliptic
function sn(x, k), a generalization of the sine-function. Indeed,
sn(x, 0) = sin x. These were first studied by Jacobi.

Maxima implements these things via

jacobi_sn ( u , m) ;

where m = k2.
See figure 14.2.2 on the next page1, which is a plot of the Jacobi

ellipse

x2 +
y2

b2 = 1

1This beautiful diagram was taken from Wikimedia, without attribution.
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FIGURE 14.2.2. Jacobi functions

with b real. The quantities m and b are related via

b2 =
1
m

The twelve Jacobi functions, vw(u,m), are shown, where
w, v = s, c, d, n and any function of the form ww is defined to be 1 for
the sake of completeness. In general

wv(u, m) =
1

vw(u, m)

In figure 14.2.2 note that

sin ϕ = sn(u, m)

cos ϕ = cn(u, m)

where u is arc-length along the ellipse (from the point (1,0)). This im-
plies that

sn2(u, m) + cn2(u, m) = 1
for all u, m.

Maxima “knows” some properties of these functions:

jacobi_sn ( u , 0 ) ;

produces sin(u) and typing

jacobi_sn ( u , 1 ) ;

produces tanh(u).
The command
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FIGURE 14.2.3. Plot of sn(x, .9)
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FIGURE 14.2.4. Plot of cn(x, .9)

plot2d ( jacobi_sn ( x , . 9 ) , [ x , 0 , 1 0 ] , [ s t y l e , [ l i n e s , 2 , 5 ] ] ) ;

produces the plot in figure 14.2.3.
Notice that the graph of sn(x, .9) looks like a sine curve that has

been “rounded”.
Figure 14.2.4 shows the complementary function.
Other elliptic functions that Maxima implements include

jacobi_dn ( u , m) ;
jacobi_ns ( u ,m)=1/ jacobi_sn ( u ,m) ;
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jacobi_sc ( u ,m)= jacobi_sn ( u ,m)/ jacobi_cn ( u ,m) ;
jacobi_cs ( u ,m)= jacobi_cn ( u ,m)/ jacobi_sn ( u ,m) ;
jacobi_nd ( u ,m)=1/ jacobi_dn ( u , m) ;
jacobi_ds ( u ,m)= jacobi_dn ( u , m)/ jacobi_sn ( u ,m) ;
jacobi_dc ( u ,m)= jacobi_dn ( u ,m)/ jacobi_cs ( u ,m) ;

Maxima also implements the inverses of all of these functions, although
the inverse of sn(u, m) is technically the elliptic integral of the first
kind. Their names are the word ‘inverse_’ followed by the Maxima
name of the function.

Now we will consider the elliptic integrals of the second

E(ϕ, m) =
∫ ϕ

0

√
1 − m sin2 θdθ =

∫ sin ϕ

0

√
1 − mt2
√

1 − t2
dt

and third kinds

Π(n, φ, m) =
∫ sin φ

0

dt
(1 − nt2)

√
(1 − mt)2(1 − t2)

The number n is called the characteristic and can take on any value.
These are coded into Maxima, respectively, as

e l l i p t i c _ e ( phi , m)

and

e l l i p t i c _ p i ( n , phi , m)

EXERCISES.

1. Using elliptic functions, give a parametric plot of an ellipse
with m = .9. Hint: Closely examine figure 14.2.2 on page 253.

2. What’s the period of a pendulum with R = 1 foot,
g = 32 feet/second2, and a starting angle of 45◦?

3. In a pendulum, as the starting angle approaches 180◦ the period
approaches ∞. What is going on?

14.3. Bessel functions

Bessel functions were first defined by Daniel Bernoulli and gener-
alized by Friedrich Bessel as solutions to Bessel’s differential equation

(14.3.1) x2 d2y
dx2 + x

dy
dx

+ (x2 − α2)y = 0
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for a complex number, α, which is called the order of the Bessel func-
tion. The most significant values for α are integer and half-integer
values. The integer values arise from converting the two-dimensional
wave equation (see section 4.6.4 on page 77) to polar or cylindrical co-
ordinates, and the half-integer values arise from converting it to spher-
ical coordinates.

The general solution to equation 14.3.1 on the previous page is

AJα(x) + BYα(x)

where Jα(x) and Yα(x) are called, respectively, Bessel functions of the
first and second kind.

Friedrich Wilhelm Bessel (1784 – 1846) was a German astronomer,
mathematician, and physicist. He was the first astronomer who de-
termined reliable values for the distance from the sun to another star
by the method of parallax. Certain important mathematical functions
were named Bessel functions after Bessel’s death, though they had
originally been discovered by Daniel Bernoulli before being general-
ized by Bessel.

To see how Bessel’s equation arises, we convert the wave equation
into polar coordinates.

In polar coordinates, (r, θ), we have

∂2ψ

∂x2 +
∂2ψ

∂y2 =
1
r

∂

∂r

(
r

∂ψ

∂r

)
+

1
r2

∂2ψ

∂θ2 =
1
c2

∂2ψ

∂t2

We write ψ(r, θ, t) = τ(t)Φ(r, θ) to get

τ
1
r

∂

∂r

(
r

∂Φ
∂r

)
+ τ

1
r2

∂2Φ
∂θ2 = Φ

1
c2

∂2τ

∂t2

or
1

Φr
∂

∂r

(
r

∂Φ
∂r

)
+

1
Φr2

∂2Φ
∂θ2 =

1
τc2

∂2τ

∂t2 = −λ

where λ is a constant (the only way a function of t could equal a func-
tion of other, independent, variables). So we get

d2τ

dt2 + λτ = 0

1
r

∂

∂r

(
r

∂Φ
∂r

)
+

1
r2

∂2Φ
∂θ2 + λΦ = 0

Now, we write Φ(r, θ) = R(r)Ξ(θ) and get

Ξ
1
r

∂

∂r

(
r

∂R
∂r

)
+ R

1
r2

∂2Ξ
∂θ2 + λRΞ = 0

and dividing by R(r)Ξ(θ) and multiplying by r2 gives

r
R

∂

∂r

(
r

∂R
∂r

)
+

1
Ξ

∂2Ξ
∂θ2 + λr2 = 0
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or
r
R

∂

∂r

(
r

∂R
∂r

)
+ λr2 = − 1

Ξ
∂2Ξ
∂θ2

Again, we are faced with a situation where a function of one variable
is equal to one of another, so they both equal the same constant

r
R

d
dr

(
r

dR
dr

)
+ λr2 = κ

1
Ξ

d2Ξ
dθ2 = −κ

The top equation is equal to

r2 d2R
dr2 + r

dR
dr

+ Rλr2 = κR

or

r2 d2R
dr2 + r

dR
dr

+ R(λr2 − κ) = 0

A change of scale (r̄ = r
√

λ) allows us to get rid of λ, and we get
Bessel’s differential equation. Maxima implements Bessel functions.
The first kind is called bessel_j(v, z) with mathematical notation Jv(z).
It can be defined via

Jv(z) =
∞

∑
k=0

(−1)k2v−2kzv+2k

k!Γ(v + k + 1)

or an integral representation

Jv(z) =
1
π

∫ π

0
cos (vt − z sin t) dt

If we type

plot2d ( [ b e s s e l _ j ( 0 , x ) , b e s s e l _ j ( 1 , x ) , b e s s e l _ j ( 2 , x ) ] ,
[ x , 0 , 1 0 ] , [ s t y l e , [ l i n e s , 2 , 5 ] ,
[ points , 1 , 4 , 5 ] , [ l i n e s , 2 , 1 ] ] ) ;

gives us figure 14.3.1 on the following page.
The second kind is called bessel_y(v, z) with mathematical nota-

tion Yv(z). These functions have a singularity at 0, going to −∞. We
can graph them

plot2d ( [ besse l_y ( 0 , x ) , besse l_y ( 1 , x ) , besse l_y ( 2 , x ) ] ,
[ x , . 1 , 1 0 ] , [ y , − 4 , 1 ] , [ s t y l e , [ l i n e s , 2 , 5 ] ,
[ points , 1 , 4 , 5 ] , [ l i n e s , 2 , 1 ] ] ) ;

to get figure 14.3.2 on the next page.
These are related to the J-Bessel functions via the equation

Yk(z) =
cos(πk)Jk(z)− J−k(z)

sin(πk)
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FIGURE 14.3.1. First three Bessel J-functions
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FIGURE 14.3.2. First three Bessel Y-functions

when k is not an integer. When it is (an integer), take the limit as k
approaches its integer value.

Bessel functions are used for
� Electromagnetic waves in a cylindrical waveguide.
� Pressure amplitudes of inviscid rotational flows.
� Heat conduction in a cylindrical object.
� Modes of vibration of a thin circular or annular acoustic

membrane or thicker plates such as sheet metal.
� Solutions to the radial Schrödinger equation (in spherical and

cylindrical coordinates) for a free particle.
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FIGURE 14.4.1. The Airy Functions

� Solving for patterns of acoustical radiation.
� Frequency-dependent friction in circular pipelines.
� Dynamics of floating bodies.
� Diffraction from helical objects, including DNA.
� Probability density function of product of two normally dis-

tributed random variables.

14.4. Airy functions

The two linearly independent Airy functions Ai(x) and Bi(x) are
solutions to Airy’s differential equation

d2y
dx2 − xy = 0

These functions have the interesting property that they switch from
being oscillatory when x < 0 to being exponential when x > 0. Their
Maxima definitions are, respectively,

a i r y _ a i ( x )

and

ai ry_bi ( x )

Their “switching” behavior is clear from figure 14.4.1.
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For real values of x we have the integral formulas

Ai(x) =
1
π

∫ ∞

0
cos

(
t3

3
+ xt

)
dt

Bi(x) =
1
π

∫ ∞

0

(
e−t3/3+xt + sin

(
t3

3
+ xt

))
dt

Maxima also implements first derivatives of the Airy functions

airy_dai ( x )

and

airy_dbi ( x )

The Airy function is the solution to the time-independent
Schrödinger equation for a particle confined within a triangular
potential well and for a particle in a one-dimensional constant force
field.

Sir George Biddell Airy (1801 – 1892) was an English mathemati-
cian and astronomer, and the seventh Astronomer Royal from 1835
to 1881. His many achievements include work on planetary orbits,
measuring the mean density of the Earth, a method of solution of
two-dimensional problems in solid mechanics and, in his role as As-
tronomer Royal, establishing Greenwich as the location of the prime
meridian.

Forming the Fourier transform of Airy’s differential equation
gives us the Fourier transform of Ai(x):

F (Ai(x))(s) = e(2πs)3/3

14.5. Logarithmic and exponential integrals

We begin with the logarithmic integral, defined via

(14.5.1) li(x) =
∫ x

0

dt
log t

The Maxima command for this is

e x p i n t e g r a l _ l i ( x )

The command

plot2d ( e x p i n t e g r a l _ l i ( x ) , [ x , 0 , 5 ] , [ y , − 5 , 5 ] ) ;

produces the plot in figure 14.5.1 on the next page.
The function 1/ log(x) has a singularity at x = 1, in which case,

we interpret equation 14.5.1 as the Cauchy principal value:

(14.5.2) li(x) = lim
ϵ→0+

(∫ 1−ϵ

0

dt
log t

+
∫ x

1+ϵ

dt
log t

)
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FIGURE 14.5.1. The li-function

whenever x > 1.
We also have

Li(x) =
∫ x

2

dt
log t

for x ≥ 2, which avoids the singularity at x = 1. We have the relation

Li(x) = li(x)− li(2)

Note: the Maxima documentation incorrectly states that

e x p i n t e g r a l _ l i ( x )

computes Li(x), but it actually2 computes li(x). We also have diloga-
rithms and polylogarithms

lik(z) =
∞

∑
n=1

zn

nk

In Maxima, this is coded as

l i [ k ] ( z )

We also have the exponential integrals:
(1) There is the integral

Ei(x) = −
∫ ∞

−x

e−t

t
dt

and the Maxima command is

e x p i n t e g r a l _ e i ( x )

2As its name implies.
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FIGURE 14.5.2. The Ei-function

where the singularity at t = 0 is handled via the Cauchy prin-
cipal value (as in equation 14.5.2 on page 260). This function
is related to li(x) via

(14.5.3) li(ex) = Ei(x)

and

plot2d ( e x p i n t e g r a l _ e i ( x ) , [ x , − 1 , 3 ] )

produces figure 14.5.2. Note,

e x p i n t e g r a l _ l i ( x )

can produce incorrect results if x is a complex number3. In
this case, equation 14.5.3 gives the correct value.

(2) The integral

E1(x) =
∫ ∞

x

e−t

t
dt

with a Maxima command

expintegral_e1 ( x )

that produces figure 14.5.3 on the facing page.

(3) The sine integral

Si(x) =
∫ x

0

sin t
t

dt

coded in Maxima as

3Maxima documentation states that it’s only defined for real values of x > 1.
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FIGURE 14.5.3. E1-function

e x p i n t e g r a l _ s i ( x )

which is plotted in figure 14.5.4 on the next page. It is well-
known that

lim
x→∞

Si(x) =
π

2
It turns out that the sine-integral is closely related to

Gibbs phenomena, mentioned on page 63. The size of the
jump (overshoot or undershoot) is approximately 9% and is
exactly given by

Si(π)

π
− 1

2
= 0.08948987223608362 . . .

called the Wilbraham-Gibbs constant — see [30]. Incidentally,
the phenomena was discovered by Wilbraham fifty years be-
fore Gibbs mentioned it, but it’s named after Gibbs (as per
mathematical tradition!).

(4) The cosine-integral

Ci(x) = −
∫ ∞

x

cos t
t

dt

coded in Maxima as

e x p i n t e g r a l _ c i ( x )

and plotted in figure 14.5.5 on the following page.
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FIGURE 14.5.4. The sine-integral
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FIGURE 14.5.5. The cosine-integral

(5) The hyperbolic sine integral:

Shi(x) =
∫ x

0

sinh t
t

dt

coded in Maxima via

expintegral_shi ( x )

(6) And the hyperbolic cosine integral:

Chi(x) = γ + log x +
∫ x

0

cosh t − 1
t

dt
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coded in Maxima via

expintegral_chi ( x )

Here γ is the Euler–Mascheroni constant, coded in Maxima
as %gamma.

EXERCISES.

1. Write a function to compute li(x) from equation 14.5.2 on
page 260 (i.e., without using Maxima’s expintegral_li-function).

2. Find a relation between the functions E1(x), Si(x), and Ci(x).

14.6. Lambert functions

The Lambert-W function is the inverse function to

xex

— which is sometimes called the product logarithm, because the con-
ventional logarithm is the inverse function to ex. Another name for
it is the omega function. Like the logarithm, the W-function has many
branches, denoted Wn(z), and

y = xex

if and only if
x = Wn(y)

for some integer n. Unlike the logarithm, these branches are not
equally spaced.

Two of them, W0(z) and W−1(z) (often written Wm(z)) are real-
valued for real values of z and the others are complex valued. If z
is real-valued, then W0(z) is well-defined for 0 ≤ z, and W−1(z) is
defined for −1/e ≤ z ≤ 0.

The command

lambert_w ( x )

computes W0(x) and the command

plot2d ( lambert_w ( x ) , [ x , 0 , 1 0 ] ) ;

produces the plot in figure 14.6.1 on the following page.
The other branches, Wk(z), of the Lambert function are given by

the command
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FIGURE 14.6.1. The Lambert W function
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generalized_lambert_w ( k , z )

where

generalized_lambert_w ( 0 , z )= lambert_w ( z )

The command

plot2d ( generalized_lambert_w ( −1 , z ) , [ z,−1/%e , 0 ] )

produces the plot in figure 14.6.2.
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The Lambert function has many applications in physics — see the
paper [66].

Johann Heinrich Lambert (1728 – 1777) was a polymath from the Re-
public of Mulhouse (today part of the province of Alsace, in France),
who made important contributions to the subjects of mathematics,
physics (particularly optics), philosophy, astronomy, and map projec-
tions.

The Lambert functions all satisfy the differential equation

dW(z)
dz

=
W(z)

z(1 + W(z))
=

1
z + eW(z)

which implies that it has applications to Michaelis–Menten kinetics
involving the biochemistry of enzyme-catalysed reactions of one sub-
strate and one product. it also has applications to ecology and evolu-
tion — see [40].

The Lambert function also has applications to the problem of the
infinite power tower:

y = xxx . . .

One might ask what this even means. Define a sequence

{tk(x)}
by

t1(x) = x

tk+1(x) = xtk(x) for k an integer ≥ 1

and

(14.6.1) y = t∞(x) = lim
k→∞

tk(x)

if this limit exists.
Since the tower is infinite, we have

t∞+1(x) = t∞(x)

or

(14.6.2) y = xy = ey log(x)

so that
ye−y log(x) = 1

If we multiply by − log(x), we get

− log(x)ye−y log(x) = − log(x)

so
− log(x)y = W(− log(x))
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and

(14.6.3) y = −W(− log(x))
log(x)

= t∞(x)

Surprisingly, this limit exists for many values of x.
If we take the 1/y power of equation 14.6.2 on the preceding page,

we get

(14.6.4) y1/y = x

which shows that equation 14.6.3 actually solves for y satisfying equa-
tion 14.6.4, given x.

EXERCISES.

1. Compute t∞(
√

2) as in equations 14.6.1 on the previous page
and 14.6.3.

2. Estimate the largest finite value of d such that t∞(
√

2 + d) is
well-defined. Hint: start with d = .01. If the sequence {tk(x)} di-
verges, equation 14.6.3 will give complex numbers for t∞(x). What is
the limiting value (i.e., the largest finite value you can get) for t∞(x)?

3. If we define

tow ( x ) := − lambert_w ( − log ( x ) ) / log ( x ) ;

we can compute

x : tow ( 3 )

Why is this well-defined?

4. If
y = xx

with x > 1, find a formula for x as a function of y using Lambert
functions. Hint: use equation 14.6.3.



CHAPTER 15

The Zeta function

“God may not play dice with the universe, but something
strange is going on with prime numbers. “
— taken from a talk given by Carl Pomerance on the Erdős-
Kac theorem, San Diego in January 1997.

15.1. Properties of the ζ-function

In this section, we will discuss Riemann’s groundbreaking
research (see [51] and the English translation, [70]) on Euler’s Zeta
function — a function so special it rates its own chapter. This involves
the theory of functions of a complex variable, so the reader needs to
be familiar with that — see [1].

Georg Friedrich Bernhard Riemann (1826–1866) was an influential
German mathematician who made contributions to many fields in-
cluding analysis, number theory and differential geometry. Riemann’s
work in differential geometry provided the mathematical foundation
for Einstein’s Theory of General Relativity (see [47]).

It all begins with Euler’s zeta-function:

(15.1.1) ζ(s) =
∞

∑
n=1

1
ns

Maxima has a command to compute this

zeta ( x )

when x is an integer and when exact values when they are known, so

zeta ( 2 )

gives

π2

6
In general (i.e., for arbitrary complex numbers), the command

b f z e t a ( x , n )

269
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computes ζ(x) as a bigfloat with n digits.
Riemann first noted∫ ∞

0
e−nxxs−1dx =

Γ(s)
ns

which you can confirm using Maxima (and answering questions about
n and s). It follows that∫ ∞

0

(
e−x + e−2x + e−3x + · · ·

)
xs−1dx = Γ(s)

(
1
1s +

1
2s +

1
3s + · · ·

)
The infinite series

e−x + e−2x + e−3x + · · · = e−x +
(
e−x)2

+
(
e−x)3

+ · · ·
is the geometric series equal to

e−x 1
1 − e−x =

ex

ex
e−x

1 − e−x =
1

ex − 1
so we get

Γ(s)ζ(s) =
∫ ∞

0

xs−1

ex − 1
dx

It’s interesting that the mere subtraction of 1 in the denominator trans-
forms this integral from Γ(s) to Γ(s)ζ(s).

Next, Riemann extends the definition of ζ(s) to the whole complex
plane by evaluating the integral∫

C

(−z)s−1

ez − 1
dz

where C is the contour in figure 15.1.1 on the facing page, and the
branch of log(−z) used in calculating (−z)s−1 is the one where the
logarithm is real for negative values of z.

We will ultimately take the limit as ϵ → 0 and the circle around
the origin has a radius that goes to 0 as well. We split the contour, C,
into three parts. Note that −z = e±πi · z and our three parts are

(1) γ1, the path above the real axis from ∞ to ϵ. Since the argu-
ment of z goes from −π to +π, we will start with −z = e−πiz∫

γ1

(−z)s−1

ez − 1
dz =

∫ ϵ

∞
e−(s−1)πi zs−1

ez − 1
dz

= e−sπieπi
∫ ϵ

∞

zs−1

ez − 1
dz

= e−sπi
∫ ∞

ϵ

zs−1

ez − 1
dz

(2) γ2, the small circle around the origin. In this case

1
ez − 1

∼ 1
z
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FIGURE 15.1.1. The contour, C

as the circle shrinks to the origin, so

zs−1

ez − 1
∼ zs−2

which has a residue of 0 unless s = 1 — but we already know
ζ(s) has a singularity at s = 1.

(3) γ3, the path below the real axis from ϵ to ∞. Here −z =
e+πiz (since we have wrapped around the origin in a positive
direction) so∫

γ3

(−z)s−1

ez − 1
dz =

∫ ∞

ϵ
e+(s−1)πi zs−1

ez − 1
dz

= esπie−πi
∫ ∞

ϵ

zs−1

ez − 1
dz

= −esπi
∫ ∞

ϵ

zs−1

ez − 1
dz

We conclude (as Riemann did) that

(e−πis − eπis)Γ(s)ζ(s) =
∫

C

(−z)s−1

ez − 1
dz

or

(15.1.2) 2 sin(πs)Γ(s)ζ(s) = i
∫

C

(−z)s−1

ez − 1
dz

for s ̸= 1. Note that sin(πs)Γ(s) is finite for s < 0. Even though
Γ(s) has singularities at all negative integers, sin(πs) vanishes for all
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integers, so it “cancels out” these singularities. The Euler reflection
formula 14.1.3 on page 246 shows that

2 sin(πs)Γ(s) =
2π

Γ(1 − s)

which implies that it’s also nonzero for s < 0.
If we traverse the contour, C, in a negative direction, this inverts the

sign of the result. If we do this and invert the interior of this contour
(i.e., regard it as enclosing the exterior of the narrow strip around the
positive real-axis) the integral is inverted again — i.e., its original value
is restored.

We get a formula

2 sin(πs)Γ(s)ζ(s) = i
∫
−C

(−z)s−1

ez − 1
dz

where −C is the contour C traversed in the opposite direction and −C
represents the result of regarding it as enclosing the entire complex
plane outside the narrow strip around the positive real-axis.

Evaluating this integral is straightforward, using the calculus of
residues. Nonzero residues occur when s = 2nπi where n is a nonzero
integer, and they are equal to (−2nπi)s−1 · (−2πi).

We get the formula, well-defined for s < 0:

2 sin(πs)Γ(s)ζ(s) = (2π)s
∞

∑
n=1

ns−1
(

is−1 + (−i)s−1
)

which is a kind of complement to equation 15.1.1 on page 269. It
immediately implies that ζ(−2n) = 0 for n a positive integer. At
this point, Riemann observed that the Euler reflection formula for the
gamma function (equation 14.1.3 on page 246) implies one for the zeta
function:

(15.1.3) Γ
( s

2

)
π− s

2 ζ(s) = Γ
(

1 − s
2

)
π− 1−s

2 ζ(1 − s)

which we can call the Riemann reflection formula. Note that when s =
1/2, both sides of this equation become identical. This suggested to
Riemann that the line ℜ(s) = 1/2 is critical.

Starting with1∫ ∞

0
e−n2πxx

s
2−1dx =

1
ns Γ

( s
2

)
π− s

2

so that

(15.1.4) Γ
( s

2

)
π− s

2 ζ(s) =
∫ ∞

0
ψ(x)x

s
2−1dx

1You can easily check this with Maxima!
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where

ψ(x) =
∞

∑
n=1

e−n2πx

for x > 0.
Riemann then cited the remarkable result

(15.1.5) 2ψ(x) + 1 = x−1/2
(

2ψ

(
1
x

)
+ 1
)

and gave a reference to a paper of Jacobi which doesn’t contain this
formula. It appears at the bottom of page 307 in another paper of Jacobi
(see [34]) which attributes the result to unpublished work of Poisson.
See appendix C on page 293 for a detailed proof.

We rewrite the integral in equation 15.1.4 on the preceding page
as

(15.1.6) Γ
( s

2

)
π− s

2 ζ(s) =
∫ ∞

1
ψ(x)x

s
2−1dx +

∫ 1

0
ψ(x)x

s
2−1dx

and we rewrite equation 15.1.5 as

(15.1.7) ψ(x) = x−1/2
(

ψ

(
1
x

)
+

1
2

)
− 1

2

and use it to reformulate the term from 0 to 1 in equation 15.1.6 as∫ 1

0
ψ(x)x

s
2−1dx =

∫ 1

0

(
x−1/2

(
ψ

(
1
x

)
+

1
2

)
− 1

2

)
x

s
2−1dx

=
∫ 1

0
x−1/2x

s
2−1ψ

(
1
x

)
dx

+
∫ 1

0
x

s
2−1

(
x−1/2

2

)
dx −

∫ 1

0
x

s
2−1 1

2
dx

so we get

Γ
( s

2

)
π− s

2 ζ(s) =
∫ ∞

1
ψ(x)x

s
2−1dx +

∫ 1

0
ψ

(
1
x

)
x

s−3
2 dx

+
1
2

∫ 1

0

(
x

s−3
2 − x

s
2−1
)

dx

Now we do a u-substitution on the second of these three terms on the
right

u =
1
x

so

dx = − 1
u2 du
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∫ 1

0
ψ

(
1
x

)
x

s−3
2 dx = −

∫ 1

∞
ψ(u)u−( s−3

2 )u−2du

=
∫ ∞

1
ψ(u)u

3−s
2 −2du

=
∫ ∞

1
ψ(u)u− 1+s

2 du

and we finally get (replacing u in the integral above by x)

Γ
( s

2

)
π− s

2 ζ(s) =
1

s(s − 1)
+
∫ ∞

1
ψ(x)

(
x

s
2−1 + x−

1+s
2

)
dx

Now, Riemann sets s = 1
2 + ti and

(15.1.8) Γ
( s

2

)
π− s

2 ζ(s)(s − 1) = ξ(t)

so that the line ℜ(s) = 1
2 ⊂ C gets transformed to the real axis and

Maxima easily computes this last transformation.

z : x ^( s /2−1)+x^( −(1+ s ) / 2 ) ;

and

subst (1/2+ t *%i , s , z ) ;

gives

x
%i·t+ 1

2
2 −1 + x

−%i·t− 3
2

2

Now, we type

assume ( x > 0 ) ;

and

rectform ( z ) ;

gives

2 cos
(

t log (x)
2

)
x

3
4

We ultimately get

(15.1.9) ξ(t) =
1
2
−
(

t2 +
1
4

) ∫ ∞

1
ψ(x)x−

3
4 cos

(
t
2

log(x)
)

dx

Now we type

i n t e g r a t e ( ( t ^2+1/4)* x ^( −3/4)* cos ( ( t /2)* log ( x ) ) , x ) ;

to get

4
(

t2 + 1
4

)
x

1
4

(
2t sin

(
t log (x)

2

)
+ cos

(
t log (x)

2

))
4t2 + 1

and
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ratsimp (%)

gives

x
1
4

(
2t sin

(
t log (x)

2

)
+ cos

(
t log (x)

2

))
which means we can integrate the right side of equation 15.1.9 on the
facing page by parts to get

ξ(t) =
1
2
+
∫ ∞

1
ψ′(x)x

1
4

(
2t sin

(
t log (x)

2

)
+ cos

(
t log (x)

2

))
dx

+ ψ(1)

Now we write x1/4 = x3/2 · x−5/4 and integrate by parts a second
time.

i n t e g r a t e ( x ^( −5/4)* (2* t * s i n ( ( t * log ( x ) ) / 2 )
+cos ( ( t * log ( x ) ) / 2 ) ) , x ) ;

gives

4

2t sin
(

t log (x)
2

)
− cos

(
t log (x)

2

)
(4t2 + 1) x

1
4

+
2t
(
− sin

(
t log (x)

2

)
− 2t cos

(
t log (x)

2

))
(4t2 + 1) x

1
4


and

expand (%)

gives

−
16t2 cos

(
t log (x)

2

)
4t2x

1
4 + x

1
4

−
4 cos

(
t log (x)

2

)
4t2x

1
4 + x

1
4

A final

ratsimp (%)

gives

−
4 cos

(
t log (x)

2

)
x

1
4

So our second integration by parts gives

ξ(t) =
1
2
+ ψ(1) + ψ′(1) + 4

∫ ∞

1

d
dx

(
x

3
2 ψ′(x)

)
x−

1
4 cos(t log(x)/2)dx

Differentiating equation 15.1.7 on page 273 by x (and plugging in x =
1) gives

1
2
+ ψ(1) + ψ′(1) = 0

so

(15.1.10) ξ(t) = 4
∫ ∞

1

d
dx

(
x

3
2 ψ′(x)

)
x−

1
4 cos(t log(x)/2)dx
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It’s interesting that, in his paper [51], Riemann goes from
equation 15.1.9 on page 274 to equation 15.1.10 on the previous page
in a single step2.

This is an entire function of t (i.e., no singularities) and Riemann
conjectured that all of its zeroes lie on the real line. This is equivalent to
saying all of the zeroes of ζ(z) that aren’t of the form −2n for n ∈ Z+

lie on the line ℜ(z) = 1
2 — which is the famous Riemann hypothesis.

No one has found a counterexample to it or succeeded in proving it.
Experiments have verified it up to t < 12, 363, 153, 437, 138.

Since this is an entire function, Riemann conjectured that it can be
written as an “infinite polynomial”

(15.1.11) ξ(t) = ξ(0)
∞

∏
i=1

(
1 − t

ρi

)
where the ρi run over all the zeroes of ξ(t). Although this formula
wasn’t rigorous at the time, Weierstrass later proved that such infinite
polynomials could exist and equal entire functions — under the right
conditions. Later, Hadamard proved that the right conditions exist in
this case, so Riemann’s formula is correct.

Since ξ(t) is actually a function of t2, every zero, ρ, has a comple-
mentary one, −ρ, we usually write formula 15.1.11 as

(15.1.12) ξ(t) = ξ(0)
∞

∏
i=1

(
1 − t

ρi

)(
1 − t

−ρi

)
= ξ(0)

∞

∏
i=1

(
1 − t2

ρ2
i

)

15.2. A “formula” for prime numbers

Recall Euler’s original formula for the Zeta function,
equation 15.1.1 on page 269 for x > 1, which he immediately rewrote
as

(15.2.1) ζ(x) = ∏
p prime

1
1 − p−x

The way to see this is to recall the infinite series
1

1 − p−x = 1 + p−x + p−2x + · · ·

= 1 + p−x + (p2)−x · · ·
The product

∏
p prime

(
1 + p−x + (p2)−x · · ·

)
will be a sum of terms of the form

1(
pn1

1 · · · pnk
k
)x

2Isn’t it obvious?
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with all possible primes raised to all possible powers, i.e. the series in
equation 15.1.1 on page 269.

If we take the logarithm of equation 15.2.1 on the preceding page,
we get

log ζ(x) = − ∑
p prime

log(1 − p−x)

and plug in the Taylor series3 for log(1 − p−x) to get

log ζ(x) = ∑
p prime

p−x +
p−2x

2
+

p−3x

3
· · ·

Now we define a function that counts primes

π(x) =

{
number of primes < x if x is not a prime
1/2 + number of primes < x if x is a prime

(15.2.2)

This is a discontinuous function whose value at each jump-point is the
mean of the value before the jump and the one after.

Now define

(15.2.3) R(x) = π(x) +
π(x1/2)

2
+

π(x1/3)

3
+ · · ·

Note that

p−x = x
∫ ∞

p
s−x−1ds

p−2x = x
∫ ∞

p2
s−x−1ds

etc.

so we conclude that
log ζ(x)

x
=
∫ ∞

1
R(s)s−x−1ds

After several steps using Fourier transforms, Riemann got

R(x) =
1

2πi

∫ a+i∞

a−i∞

log ζ(s)
s

xsds

Now we use formulas from the preceding section to estimate
log ζ(s)/s, namely equations 15.1.8 on page 274 and 15.1.12 on the
preceding page.

(15.2.4) log ζ(s) = log ξ(s)− log Γ
( s

2

)
+

s
2

log(π)− log(s − 1)

If we try to integrate this in a straightforward fashion, several terms
in the integral diverge (particularly the term s

2 log(π)). We choose to
integrate by parts: assuming that xs was a derivative of something
with respect to s. Note that

3For instance, type taylor(log(1-s),s,0,20);
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i n t e g r a t e ( x^s , s ) ;

produces
xs

log (x)
Since

lim
T→±∞

log ζ(a + iT)
(a + iT)

xa+iT = 0

since xa+iT oscillates as T → ∞ and log ζ(a + iT) remains bounded, so
the denominator kills off the fraction.

It follows that integrating by parts gives

(15.2.5) R(x) = − 1
2πi log x

∫ a+i∞

a−i∞

d
ds

(
log ζ(s)

s

)
xsds

We will start by computing

− 1
2πi log x

∫ a+i∞

a−i∞

d
ds

(
log(s − 1)

s

)
xsds

since it is probably the largest term. We compute

G(β) = − 1
2πi log x

∫ a+i∞

a−i∞

d
ds

(
log(s/β − 1)

s

)
xsds

and consider the limit as β → 1. This integral is well-defined if a >
ℜ(β) because∣∣∣∣ d

ds

(
log(s/β − 1)

s

)∣∣∣∣ = ∣∣∣∣ 1
s (s − β)

− log (s − β)

s2

∣∣∣∣
≤ 1

|s (s − β) | +
| log (s − β)|

|s|2

which are integrable. We can differentiate G(β) with respect to β:

G′(β) =
1

2πi log x

∫ a+i∞

a−i∞

d
ds

(
1

β (s − β)

)
xsds

Now integration by parts gives

G′(β) = − 1
2πi

∫ a+i∞

a−i∞

1
β (s − β)

xsds

This resists brute-force efforts to integrate it (i.e., plug in s = a + iT,
and integrate with T running from −∞ to ∞). We use a bit of finesse:
Regard the path from a − i∞ to a + i∞ as a circle on the Riemann
sphere. It encloses the part of C to the left of it, i.e. the half plane
ℜ(z) < a. The integral is determined by its residue at the singularity
s = β (see [1] for information on the Residue Theorem). We get

G′(β) =

{
xβ

β =
∫ x

0 uβ−1du if a > ℜ(β)

0 if a < ℜ(β)
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So

G(β) =
∫ {∫ x

0
uβ−1du

}
dβ

=
∫ x

0

{∫
uβ−1dβ

}
du

=
∫ x

0

{
uβ−1

log u

}
du now set v = uβ

=
1
β

∫ xβ

0

dv
log v1/β

=
∫ xβ

0

dv
log v

We get4

F(x) = li(xβ) + constant(x)
Riemann then argues that this constant is identically 0. If β = 1 , we
get the statement of the Prime Number Theorem

π(x) ∼ li(x)

Now we can introduce the remaining terms of equation 15.2.4 on
page 277 into equation 15.2.5 to get

R(x) = li(x)− ∑
ξ(ρ)=0

(
li
(

x
1
2+iρ

)
+ li

(
x

1
2−iρ

))
+
∫ ∞

x

du
(u2 − 1)u log u

+ log ξ(0)

We can plot this function, using table on the next page of the first few
values of ρ. The following function uses this table:

zeros : matrix (
[ 1 4 . 1 3 4 7 2 5 0 , 2 1 . 0 2 2 0 3 9 , 2 5 . 0 1 0 8 5 7 , 3 0 . 4 2 4 8 7 6 ,
3 2 . 9 3 5 0 6 1 , 3 7 . 5 8 6 1 7 8 , 4 0 . 9 1 8 7 1 9 , 4 3 . 3 2 7 0 7 3 ,
4 8 . 0 0 5 1 5 0 , 4 9 . 7 7 3 8 3 2 ]
) ;

R( x ) : = block ( [ accum : e x p i n t e g r a l _ l i ( x ) ] ,
for i : 1 step 1 thru 10 do (

accum : accum−
expand ( f l o a t ( e x p i n t e g r a l _ e i (

log ( x )*(1/2+% i * zeros [ 1 , i ] ) ) )
+ f l o a t ( e x p i n t e g r a l _ e i (

log ( x)*(1/2 −% i * zeros [ 1 , i ] ) ) ) )
) ,

4If we integrate it the other way, i.e. as the integral of n^beta/beta, we get -
gamma_incomplete(0,-beta*log(x)), which equals li(xβ).
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14.134725
21.022039
25.010857
30.424876
32.935061
37.586178
40.918719
43.327073
48.005150
49.773832

TABLE 15.2.1. First few zeros of ξ(t)

r e a l p a r t ( accum )
)

The command

plot2d (R( x ) , [ x , 2 , 1 0 0 ] )

produces the plot in figure on the facing page. It is well-known that
there are 25 primes < 100, so the plot is fairly accurate5.

The reader will doubtless have several questions:
(1) why do we have expintegral_ei? This is because expinte-

gral_li produces incorrect results for complex arguments, so
we use equation 14.5.3 on page 262. It’s also more efficient to
compute

log(x) · (1/2 + i · zeros1,i)

than
log
(

x1/2+i·zeros1,i
)

(2) Why do we have expand and float? This is because Maxima
wants to do exact symbolic computations. We have to force
it to do numeric computations.

(3) R(x), as defined above counts primes and powers of primes.
How do we get a formula that only counts primes6? This is
answered below.

Recall equations 15.2.2 on page 277 and 15.2.3 on page 277. The
Möbius Inversion Theorem (see [38]) states that we can invert equa-
tion 15.2.3 on page 277 to get

(15.2.6) π(x) =
∞

∑
k=1

µ(k)
R(x1/k)

k

5It’s counting powers of primes as well as primes themselves.
6I.e., an equation for primes!
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FIGURE 15.2.1. Plot of R(x)

where µ(k) is the Möbius function, defined by

µ(k) =

{
0 if k is divisible by the square of any prime
(−1)ℓ if k = p1 · · · pℓ where they are all distinct primes

Maxima implements the Möbius function via the command

moebius ( x )

August Ferdinand Möbius (1790–1868) was a German mathematician
and astronomer popularly known for his discovery of the Möbius strip
(although he made many other contributions to mathematics, includ-
ing Möbius transformations, the Möbius function in combinatorics
and the Möbius inversion formula).

In our case we can define

pi ( x ) : =R( x) −R( x ^(1/2))/2 −R( x ^(1/3))/3
−R( x ^(1/5))/5+R( x ^(1/6))/6

and (see section F.5 on page 336) the command

draw (
gr2d ( l ine_width =2 , c o l o r =black ,

e x p l i c i t (
pi ( x ) ,
x , 2 , 2 0

) , l i n e _ t y p e =dots ,
parametr ic ( 3 , t , t , 0 , 8 ) ,
parametr ic ( 5 , t , t , 0 , 8 ) ,
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FIGURE 15.2.2. Approximate π(x)

parametr ic ( 7 , t , t , 0 , 8 ) ,
parametr ic ( 1 1 , t , t , 0 , 8 ) ,
parametr ic ( 1 3 , t , t , 0 , 8 ) ,
parametr ic ( 1 7 , t , t , 0 , 8 ) ,
parametr ic ( 1 9 , t , t , 0 , 8 )

)
) ;

produces figure 15.2.2, which jumps every time it passes a prime.
We can also plot this to 100 to get figure 15.2.3 on the next page,

which correctly estimates the number of primes < 100 as 25.

EXERCISES.

1. For a given value of x, show that equation 15.2.3 on page 277
and equation 15.2.6 on page 280 are finite sums.

2. Verify the Möbius Inversion Theorem by plugging
equation 15.2.3 on page 277 into equation 15.2.6 on page 280.
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FIGURE 15.2.3. First 100 primes (approximately)





APPENDIX A

Gröbner basis for the robotic motion problem

(1) 3*w^2−1
(2) x−y
(3) 576*b_2^4*y^4+576*b_2^4*y^2*z^2+144*b_2^4*z^4+192*

b_2^2*y^6+768*b_2^2*y^5*z+96*b_2^2*y^4*z^2−768*b_2
^2*y^4+768*b_2^2*y^3*z^3−768*b_2^2*y^3*z−48*b_2^2*y
^2*z^4−576*b_2^2*y^2*z^2+192*b_2^2*y*z^5−384*b_2^2*
y*z^3−24*b_2^2*z^6−96*b_2^2*z^4+144*y^8+288*y^6*z
^2−384*y^6−384*y^5*z+216*y^4*z^4−480*y^4*z^2+256*y
^4−384*y^3*z^3+512*y^3*z+72*y^2*z^6−192*y^2*z^4+384*
y^2*z^2−96*y*z^5+128*y*z^3+9*z^8−24*z^6+16*z^4

(4) 48*b_3*y^5+24*b_3*y^4*z+48*b_3*y^3*z^2−64*b_3*y^3+24*
b_3*y^2*z^3−96*b_3*y^2*z+12*b_3*y*z^4−48*b_3*y*z^2+6*
b_3*z^5−8*b_3*z^3+144*b_2^3*y^4*w+144*b_2^3*y^2*z^2*
w+36*b_2^3*z^4*w+120*b_2*y^6*w+192*b_2*y^5*z*w+132*
b_2*y^4*z^2*w−288*b_2*y^4*w+192*b_2*y^3*z^3*w−288*
b_2*y^3*z*w+42*b_2*y^2*z^4*w−216*b_2*y^2*z^2*w+48*
b_2*y*z^5*w−144*b_2*y*z^3*w+3*b_2*z^6*w−36*b_2*z^4*
w

(5) 16*b_3*b_2*y+8*b_3*b_2*z+24*b_2^2*y^2*w+12*b_2^2*z^2*
w−12*y^4*w−12*y^2*z^2*w+16*y^2*w+16*y*z*w−3*z^4*w
+4*z^2*w

(6) 2*b_3*b_2^2*z^2−48*b_3*y^4−48*b_3*y^2*z^2+64*b_3*y
^2+64*b_3*y*z−12*b_3*z^4+16*b_3*z^2−144*b_2^3*y^3*
w+72*b_2^3*y^2*z*w−72*b_2^3*y*z^2*w+36*b_2^3*z^3*
w−120*b_2*y^5*w−132*b_2*y^4*z*w−120*b_2*y^3*z^2*w
+288*b_2*y^3*w−132*b_2*y^2*z^3*w+144*b_2*y^2*z*w
−30*b_2*y*z^4*w+216*b_2*y*z^2*w−33*b_2*z^5*w+108*b_2

*z^3*w
(7) 4*b_3^2+4*y^4+4*y^2*z^2−8*y^2+z^4−4*z^2

285
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(8) 576*b_4*y*z^2−576*b_4*z^3+2880*b_3*b_2^3*z*w−1080*b_3
*b_2*z^3*w−1152*b_3*b_2*z*w+576*b_2^4*y^2+288*b_2^4*
z^2+192*b_2^2*y^4−432*b_2^2*y^3*z−1320*b_2^2*y^2*z
^2−768*b_2^2*y^2−216*b_2^2*y*z^3+1536*b_2^2*y*z−708*
b_2^2*z^4+672*b_2^2*z^2+144*y^6−360*y^5*z+396*y^4*z
^2−384*y^4−360*y^3*z^3+864*y^3*z+288*y^2*z^4−96*y^2*
z^2+256*y^2−90*y*z^5−504*y*z^3−512*y*z+63*z^6+444*z
^4−320*z^2

(9) 64*b_4*y^2+64*b_4*y*z−128*b_4*z^2+576*b_3*b_2^3*w
−216*b_3*b_2*z^2*w−192*b_3*b_2*w−240*b_2^2*y^3−264*
b_2^2*y^2*z−120*b_2^2*y*z^2+384*b_2^2*y−132*b_2^2*
z^3+192*b_2^2*z−72*y^5+36*y^4*z−72*y^3*z^2+224*y
^3+36*y^2*z^3−48*y^2*z−18*y*z^4−24*y*z^2−128*y+9*z
^5+100*z^3−64*z

(10) 2592*b_4*b_2^2*z^3+1944*b_4*z^5−2592*b_4*z^3−6912*
b_3*b_2^5*z*w+12096*b_3*b_2^3*z*w+972*b_3*b_2*z^5*
w−648*b_3*b_2*z^3*w−3456*b_3*b_2*z*w+1728*b_2^6*
y^2+864*b_2^6*z^2+3456*b_2^4*y^3*z+4752*b_2^4*y
^2*z^2−2304*b_2^4*y^2+1728*b_2^4*y*z^3−5760*b_2
^4*y*z+2376*b_2^4*z^4−3168*b_2^4*z^2+240*b_2^2*y
^6−480*b_2^2*y^5*z−1464*b_2^2*y^4*z^2−384*b_2^2*
y^4+4056*b_2^2*y^3*z^3−4272*b_2^2*y^3*z−24*b_2^2*y
^2*z^4−2664*b_2^2*y^2*z^2+768*b_2^2*y^2+2148*b_2^2*
y*z^5−4728*b_2^2*y*z^3+8832*b_2^2*y*z+384*b_2^2*z
^6−4476*b_2^2*z^4+4224*b_2^2*z^2−144*y^8−432*y^7*
z+252*y^6*z^2+384*y^6−324*y^5*z^3+888*y^5*z+432*y
^4*z^4+1164*y^4*z^2−256*y^4−1704*y^3*z^3+1312*y^3*z
+171*y^2*z^6+1200*y^2*z^4−2256*y^2*z^2+27*y*z^7−750*
y*z^5+1384*y*z^3−2304*y*z+18*z^8−1425*z^6+2732*z
^4−1152*z^2
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(11) 4608*b_4*b_2^2*y*z−11520*b_4*b_2^2*z^2−5184*b_4*z
^4+6912*b_4*z^2+41472*b_3*b_2^5*w−41472*b_3*b_2^3*w
−5832*b_3*b_2*z^4*w+1728*b_3*b_2*z^2*w+9216*b_3*b_2

*w−18432*b_2^4*y^3−21888*b_2^4*y^2*z−9216*b_2^4*y

*z^2+27648*b_2^4*y−10944*b_2^4*z^3+13824*b_2^4*z
−5568*b_2^2*y^5+96*b_2^2*y^4*z−15504*b_2^2*y^3*z
^2+28032*b_2^2*y^3−5304*b_2^2*y^2*z^3+11712*b_2^2*y
^2*z−6360*b_2^2*y*z^4+16320*b_2^2*y*z^2−27648*b_2^2*
y−2676*b_2^2*z^5+19104*b_2^2*z^3−13824*b_2^2*z−288*y
^7−720*y^6*z−2376*y^5*z^2+2496*y^5−108*y^4*z^3+96*
y^4*z−2160*y^3*z^4+9408*y^3*z^2−7424*y^3+432*y^2*z
^5−768*y^2*z^3+1152*y^2*z−522*y*z^6+2136*y*z^4−5952*
y*z^2+6144*y+153*z^7+3804*z^5−7648*z^3+3072*z

(12) 144*b_4*b_3*z^2+432*b_4*b_2*z^3*w−384*b_3*b_2^4*z
+192*b_3*b_2^2*z+96*b_3*y^4*z−96*b_3*y^3+96*b_3*y^2*
z^3−80*b_3*y^2*z−176*b_3*y*z^2+128*b_3*y+24*b_3*z
^5−152*b_3*z^3+64*b_3*z+288*b_2^5*y^2*w+144*b_2^5*z
^2*w+96*b_2^3*y^4*w+1152*b_2^3*y^3*z*w+384*b_2^3*y
^2*z^2*w−672*b_2^3*y^2*w+576*b_2^3*y*z^3*w−960*b_2
^3*y*z*w+168*b_2^3*z^4*w−672*b_2^3*z^2*w+72*b_2*y
^6*w+384*b_2*y^5*z*w+300*b_2*y^4*z^2*w−432*b_2*y^4*
w+384*b_2*y^3*z^3*w−1440*b_2*y^3*z*w+246*b_2*y^2*z
^4*w−504*b_2*y^2*z^2*w+704*b_2*y^2*w+96*b_2*y*z^5*w
−720*b_2*y*z^3*w+704*b_2*y*z*w+57*b_2*z^6*w−576*b_2*
z^4*w+464*b_2*z^2*w

(13) 16*b_4*b_3*y+8*b_4*b_3*z−48*b_4*b_2*y*z*w+120*b_4*b_2
*z^2*w−144*b_3*b_2^4+48*b_3*b_2^2+36*b_3*y^4+36*
b_3*y^2*z^2−40*b_3*y^2−64*b_3*y*z+9*b_3*z^4−16*b_3

*z^2+288*b_2^3*y^3*w+144*b_2^3*y^2*z*w+144*b_2^3*
y*z^2*w−288*b_2^3*y*w+72*b_2^3*z^3*w−144*b_2^3*z*
w+144*b_2*y^5*w+72*b_2*y^4*z*w+144*b_2*y^3*z^2*w
−384*b_2*y^3*w+72*b_2*y^2*z^3*w−96*b_2*y^2*z*w+36*
b_2*y*z^4*w−144*b_2*y*z^2*w+96*b_2*y*w+18*b_2*z^5*w
−168*b_2*z^3*w+48*b_2*z*w
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(14) 192*b_4*b_3*b_2+384*b_4*y*w−432*b_4*z^3*w+192*b_4*z*
w+384*b_3*b_2^3*z−144*b_3*b_2*z^3−288*b_3*b_2*z−288*
b_2^4*y^2*w−144*b_2^4*z^2*w−96*b_2^2*y^4*w−864*b_2
^2*y^3*z*w−528*b_2^2*y^2*z^2*w+96*b_2^2*y^2*w−432*
b_2^2*y*z^3*w+960*b_2^2*y*z*w−240*b_2^2*z^4*w+384*
b_2^2*z^2*w−72*y^6*w−144*y^5*z*w−36*y^4*z^2*w+48*y
^4*w−144*y^3*z^3*w+576*y^3*z*w+18*y^2*z^4*w−24*y
^2*z^2*w+256*y^2*w−36*y*z^5*w+144*y*z^3*w−704*y*z*
w+9*z^6*w+336*z^4*w−272*z^2*w

(15) 288*b_4^2*z−192*b_4*y*z−96*b_4*z^2−1728*b_3*b_2^3*w
+648*b_3*b_2*z^2*w+384*b_3*b_2*w+720*b_2^2*y^3+792*
b_2^2*y^2*z+360*b_2^2*y*z^2−1536*b_2^2*y+396*b_2^2*z
^3−672*b_2^2*z+216*y^5−108*y^4*z+216*y^3*z^2−672*y
^3−108*y^2*z^3−48*y^2*z+54*y*z^4+72*y*z^2+512*y−27*z
^5−108*z^3+160*z

(16) 288*b_4^2*y−768*b_4*y*z+480*b_4*z^2−1728*b_3*b_2^3*w
+648*b_3*b_2*z^2*w+960*b_3*b_2*w+720*b_2^2*y^3+792*
b_2^2*y^2*z+360*b_2^2*y*z^2−1248*b_2^2*y+396*b_2^2*z
^3−384*b_2^2*z+216*y^5−108*y^4*z+216*y^3*z^2−672*y
^3−108*y^2*z^3−48*y^2*z+54*y*z^4+360*y*z^2+416*y−27*
z^5−396*z^3+256*z

(17) 24*b_4^2*b_3−48*b_4*b_3*z+48*b_4*b_2*y*z*w−120*b_4*
b_2*z^2*w+144*b_3*b_2^4−72*b_3*b_2^2−36*b_3*y^4−36*
b_3*y^2*z^2+48*b_3*y^2+48*b_3*y*z−9*b_3*z^4+36*b_3*z
^2−8*b_3−288*b_2^3*y^3*w−144*b_2^3*y^2*z*w−144*b_2
^3*y*z^2*w+288*b_2^3*y*w−72*b_2^3*z^3*w+144*b_2^3*z

*w−144*b_2*y^5*w−72*b_2*y^4*z*w−144*b_2*y^3*z^2*w
+384*b_2*y^3*w−72*b_2*y^2*z^3*w+120*b_2*y^2*z*w−36*
b_2*y*z^4*w+144*b_2*y*z^2*w−96*b_2*y*w−18*b_2*z^5*w
+180*b_2*z^3*w−96*b_2*z*w

(18) 18*b_4^4−12*b_4^2*b_2^2−12*b_4^2−96*b_4*b_2^2*y+64*
b_4*y−72*b_4*z^3+32*b_4*z−72*b_3*b_2*z*w+18*b_2^4−24*
b_2^2*y^2−48*b_2^2*y*z−36*b_2^2*z^2−12*b_2^2−36*y
^4−36*y^2*z^2+80*y^2−16*y*z+45*z^4−28*z^2+2
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(19) 108*b_5*z^4−144*b_5*z^2+144*b_4*b_3*z−432*b_4*b_2*y
*z*w+1080*b_4*b_2*z^2*w−1296*b_3*b_2^4+864*b_3*b_2
^2+204*b_3*y^4−36*b_3*y^3*z+276*b_3*y^2*z^2−272*b_3*
y^2−18*b_3*y*z^3−152*b_3*y*z+87*b_3*z^4−188*b_3*z
^2+2232*b_2^3*y^3*w+1368*b_2^3*y^2*z*w+1116*b_2^3*y

*z^2*w−2592*b_2^3*y*w+684*b_2^3*z^3*w−1296*b_2^3*z*
w+996*b_2*y^5*w+228*b_2*y^4*z*w+1212*b_2*y^3*z^2*w
−3168*b_2*y^3*w+444*b_2*y^2*z^3*w−504*b_2*y^2*z*w
+357*b_2*y*z^4*w−1260*b_2*y*z^2*w+1728*b_2*y*w+165*
b_2*z^5*w−1440*b_2*z^3*w+864*b_2*z*w

(20) 96*b_5*y−72*b_5*z^3+48*b_4*b_3+120*b_3*b_2^2*z+24*
b_3*y^3−48*b_3*y^2*z+12*b_3*y*z^2−80*b_3*y−24*b_3*z
^3−64*b_3*z+72*b_2^3*y^2*w+36*b_2^3*z^2*w+60*b_2*y
^4*w−144*b_2*y^3*z*w−84*b_2*y^2*z^2*w−288*b_2*y^2*w
−72*b_2*y*z^3*w+192*b_2*y*z*w−57*b_2*z^4*w−12*b_2*z
^2*w

(21) 64*b_5*b_2*z^2+128*b_4*y*z*w−224*b_4*z^2*w+192*b_3*
b_2^3−72*b_3*b_2*z^2−128*b_3*b_2−240*b_2^2*y^3*w
−264*b_2^2*y^2*z*w−120*b_2^2*y*z^2*w+384*b_2^2*y*w
−132*b_2^2*z^3*w+192*b_2^2*z*w−72*y^5*w+36*y^4*z*
w−72*y^3*z^2*w+288*y^3*w+36*y^2*z^3*w+16*y^2*z*w
−18*y*z^4*w−56*y*z^2*w−256*y*w+9*z^5*w+196*z^3*w
−128*z*w

(22) 288*b_5*b_2^2*z+72*b_5*z^3−96*b_5*z+96*b_4*b_3+288*
b_4*b_2*y*w−288*b_4*b_2*z*w−120*b_3*b_2^2*z−24*b_3*y
^3+48*b_3*y^2*z−12*b_3*y*z^2+80*b_3*y+24*b_3*z^3−80*
b_3*z−72*b_2^3*y^2*w−36*b_2^3*z^2*w−60*b_2*y^4*w
+144*b_2*y^3*z*w+84*b_2*y^2*z^2*w+144*b_2*y^2*w+72*
b_2*y*z^3*w−480*b_2*y*z*w+57*b_2*z^4*w+228*b_2*z^2*
w

(23) 384*b_5*b_2^3−128*b_5*b_2+288*b_4^3*w−480*b_4*b_2^2*
w−576*b_4*y*z*w+576*b_4*z^2*w−96*b_4*w−1728*b_3*
b_2^3+648*b_3*b_2*z^2+384*b_3*b_2+2160*b_2^2*y^3*w
+2376*b_2^2*y^2*z*w+1080*b_2^2*y*z^2*w−4608*b_2^2*y*
w+1188*b_2^2*z^3*w−1536*b_2^2*z*w+648*y^5*w−324*y
^4*z*w+648*y^3*z^2*w−2016*y^3*w−324*y^2*z^3*w−144*
y^2*z*w+162*y*z^4*w+216*y*z^2*w+1536*y*w−81*z^5*w
−612*z^3*w+576*z*w

(24) b_5*b_3+3*b_5*b_2*z*w+b_4*y−b_4*z−y*z+z^2
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(25) 96*b_5*b_4*z−48*b_5*z^2−24*b_4*b_3*z+48*b_4*b_2*y*z*w
−120*b_4*b_2*z^2*w+144*b_3*b_2^4−144*b_3*b_2^2−36*
b_3*y^4−36*b_3*y^2*z^2+72*b_3*y^2+48*b_3*y*z−9*b_3*z
^4+48*b_3*z^2−32*b_3−288*b_2^3*y^3*w−144*b_2^3*y^2*z

*w−144*b_2^3*y*z^2*w+288*b_2^3*y*w−72*b_2^3*z^3*w
+144*b_2^3*z*w−144*b_2*y^5*w−72*b_2*y^4*z*w−144*b_2*
y^3*z^2*w+528*b_2*y^3*w−72*b_2*y^2*z^3*w+192*b_2*y
^2*z*w−36*b_2*y*z^4*w+216*b_2*y*z^2*w−384*b_2*y*w
−18*b_2*z^5*w+216*b_2*z^3*w−240*b_2*z*w

(26) 4*b_5*b_4*b_2−4*b_5*b_2*z−3*b_4^2*w+6*b_4*z*w−3*b_2
^2*w−3*z^2*w+w

(27) 48*b_5*b_4^2+48*b_5*b_2^2−16*b_5−24*b_4*b_3*z+48*b_4*
b_2*y*z*w−120*b_4*b_2*z^2*w−96*b_4*b_2*w+144*b_3*b_2
^4−144*b_3*b_2^2−36*b_3*y^4−36*b_3*y^2*z^2+72*b_3*y
^2+48*b_3*y*z−9*b_3*z^4+48*b_3*z^2−32*b_3−288*b_2^3*y
^3*w−144*b_2^3*y^2*z*w−144*b_2^3*y*z^2*w+288*b_2^3*
y*w−72*b_2^3*z^3*w+144*b_2^3*z*w−144*b_2*y^5*w−72*
b_2*y^4*z*w−144*b_2*y^3*z^2*w+528*b_2*y^3*w−72*b_2*
y^2*z^3*w+192*b_2*y^2*z*w−36*b_2*y*z^4*w+216*b_2*y*z
^2*w−384*b_2*y*w−18*b_2*z^5*w+216*b_2*z^3*w−144*b_2

*z*w
(28) 2*b_5^2−1
(29) a_2−2*b_5*b_2+3*b_4*w−3*z*w
(30) 2*a_3−2*y^2−z^2+2
(31) 48*a_4−96*b_5*b_4−72*b_5*z^3+96*b_5*z+48*b_4*b_3+120*

b_3*b_2^2*z+24*b_3*y^3−48*b_3*y^2*z+12*b_3*y*z^2−80*
b_3*y−24*b_3*z^3−64*b_3*z+72*b_2^3*y^2*w+36*b_2^3*z
^2*w+60*b_2*y^4*w−144*b_2*y^3*z*w−84*b_2*y^2*z^2*w
−288*b_2*y^2*w−72*b_2*y*z^3*w+192*b_2*y*z*w−57*b_2*z
^4*w−12*b_2*z^2*w+144*b_2*w

(32) a_5−b_5
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Predefined values.

Constant Maxima name Approximate value
Last result %

π %pi 3.14159265358979
e %e 2.71828182845905
γ %gamma 0.577215664901533
φ %phi 1.61803398874989√
−1 %i

+∞ inf
−∞ minf

F false
T true

0+ zeroa
0− zerob

__ (two underscores) Last expressions being evaluated
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APPENDIX C

Functional equation

C.1. Poisson summation

In this section, we will prove the functional equation of the ψ-
function used in section 15 on page 269.

Baron Siméon Denis Poisson FRS FRSE (1781 – 1840) was a French
mathematician and physicist who worked on statistics, complex anal-
ysis, partial differential equations, the calculus of variations, analyti-
cal mechanics, electricity and magnetism, thermodynamics, elasticity,
and fluid mechanics.

THEOREM C.1.1 (Poisson Summation formula). If f (x) is a smooth
function such that ∫ ∞

−∞
| f (x)|dx

is well-defined and finite and

f̂ (u) =
∫ ∞

−∞
f (x)e−2πixudx

is its Fourier transform, then

(C.1.1)
∞

∑
n>−∞

f (n) =
∞

∑
k>−∞

f̂ (k)

PROOF. Create a periodic function with period 1:

F(x) =
∞

∑
n>−∞

f (x + n)

and expand it into a Fourier series

(C.1.2) F(x) =
∞

∑
n>−∞

ane2πinx
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where the Fourier coefficients are given by

an =
∫ ∞

−∞
F(x)e−2πinxdx

=
∞

∑
m>−∞

∫ 1

0
f (x + m)e−2πinxdx

=
∞

∑
m>−∞

∫ m+1

m
f (y)e−2πin(y−m)dy

∞

∑
m>−∞

e2πinm
∫ m+1

m
f (y)e−2πinydy

=
∫ ∞

−∞
f (x)e−2πinydy = f̂ (−n)

since e2πinm = 1.
If we set x = 0 in equation C.1.2 on the previous page, we get

equation C.1.1 on the preceding page. □

C.2. The main result

Suppose

G(x) =
∞

∑
n>−∞

e−πn2x = 1 + 2ψ(x)

We can regard this as the sum of values of a function

f (u) = e−πu2x

and take its Fourier transform. Here, u is the independent variable, x
is a parameter, and y is the new variable (introduced by the Fourier
transform). Typing

i n t e g r a t e (%e^(−%pi *u^2*x)*%e^(2*% pi*% i *u* y ) ,
u , minf , inf )

gives

e−
π·y2

x
√

x
so

∞

∑
n>−∞

e−πn2x =
1√
x

∞

∑
n>−∞

e−πn2/x

and

(C.2.1) G(x) =
1√
x

G
(

1
x

)



APPENDIX D

Fermat factorization

D.1. The algorithm

Suppose N is an odd integer greater than 1 and N = u · v where u
and v are (odd) integers. Fermat factorization is based on the equation

N =

(
u + v

2

)2
−
(

u − v
2

)2

or (
u + v

2

)2
− N =

(
u − v

2

)2

Since u and v are both odd, their sum and differences are even, so
dividing by 2 gives us integers.

Oddly enough, this gives us a way to find u or v if the difference
between them isn’t too great.

We compute
k2 − N

for k =
⌈√

N
⌉

,
⌈√

N
⌉
+ 1,

⌈√
N
⌉
+ 2, . . . and test whether the differ-

ence is a perfect square. If it is, say m2, then u = k ± m and we have
found a factor of N.

Here ⌈x⌉ is the ceiling function, the least integer that is ≥ x. In
Maxima, it is coded via

ceiling(x)

It is a complement to the floor-command

floor(x)

which returns the greatest integer ≤ x.
In this example, we will use the isqrt-command which computes

integer square roots of very large numbers — i.e., isqrt(n) computes
the largest integer, k, such that k2 ≤ n.

EXAMPLE D.1.1. Let u = 1000003 and v be the next prime, which
is 1000033. We compute

u · v = 1000008000015

and
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c e i l i n g ( f l o a t ( sqr t ( 1 0 0 0 0 0 8 0 0 0 0 1 5 ) ) )

is

1000018

and

1000018^2 −n ;

gives
225 = 152

so we immediately get both factors of n: 1000018 − 15 = 1000003 and
1000018 + 15 = 1000033.

The “lucky accident” in this example (where the answer occurs on

the first iteration) turns out to always occur if 1
2q

(
p−q

2

)2
< 1, where

p is the larger of the two primes — see section D.2 on the next page
below.

We can write a Maxima program implementing this algorithm.
First, we need a function to determine whether a number is a perfect
square:

square_p ( n ) : = block (
[ sqval : i s q r t ( n ) ] ,
i s ( n=sqval ^2)

) ;

Now for the main function:

one_fac tor ( n ) : = block (
[ s t a r t : i s q r t ( n ) , t e s t , val ] ,

for x : 0 step 1 thru 100 do
(

/ * Note : f o r − l o o p s canno t h a n d l e ve ry l a r g e numbers
so we on ly i t e r a t e th rough t h e i n c r e m e n t s t o
c e i l i n g ( s q r t ( n ) ) * /

val : x+ s t a r t ,
t e s t : val ^2−n ,
i f ( square_p ( t e s t ) ) then

return ( val − i s q r t ( t e s t ) )
/ * I f t e s t i s a p e r f e c t square , t h en

i s q r t i s e q u a l t o i t s s q u a r e r o o t * /
)

) ;

For instance

one_fac tor (2251644881930449333) ;
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returns
1500450271

after 3 iterations of the loop.
If

n = 8956494142912946049415883818712449246261041215620
42227318384494381723497514540860474803494041479529

p:one_factor(n) instantly comes back with

29927402397991286489627837734179186385188296382227

a prime factor of n, and n/p produces

29927402397991286489627904551843385490310576382227

the other prime factor.

D.2. Derivation of the upper bound for the number of iterations

Suppose 0 < q < p and N = pq. We have

N =

(
p + q

2

)2
−
(

p − q
2

)2

or (
p + q

2

)2
− N =

(
p − q

2

)2

(
p + q

2
−
√

N
)(

p + q
2

+
√

N
)
=

(
p − q

2

)2

Note that (
p + q

2
+
√

N
)
> 2q

so dividing by 2q will give a larger result than dividing by(
p+q

2 +
√

N
)

(to get
(

p−q
2

)2
). We get

0 <
p + q

2
−
√

N <
1
2q

(
p − q

2

)2

and the quantity on the right is an approximate upper bound to the
number of iterations required.

EXERCISES.

1. Factor 15241580725499173.





APPENDIX E

The Maxima Programming language

E.1. Introduction

Maxima implements a powerful programming language that is
used for the functions in its libraries. We have already seen how to
program a function and the block-construct. This is not an exhaus-
tive treatment of the language by any means; it should be enough to
understand the programs in the book.

E.2. Arithmetic commands

Aside from the familiar operations like ‘+’, ‘*’, ‘/’, and ‘^’, we have

� abs(x) — computes the absolute value of a real number.
� cabs(x) — computes the absolute value of a real or complex

number.
� carg(x) — computes the argument of a complex number.
� ceiling(x) — returns the smallest integer ≥ x.
� denom(x)— returns the denominator of a rational fraction or

function, x.
� float(x) — converts a number to floating point defined by the

computer hardware. This is of the form m × 10e, where m is
a number with a decimal point.

� floor(x) — the largest integer ≤ x.
� bfloat(x) — converts a number to software-implemented

floating point. Slower than float(x) but its precision is only
limited by the amount of memory. The quantity fpprec sets
the number of digits of accuracy. For instance: fpprec:100;

� factor(n) — factors an integer.
� imagpart(z) — returns the imaginary part of the complex

number, z.
� isqrt(n) — returns the “integer” square root of the absolute

value of n. Essentially, isqrt(x)=floor(sqrt(x)).
� num(x) — returns the numerator of a rational fraction or

function, x.
� sqrt(x) — returns the square root of the absolute value of x.
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� sum( f (x), x, lower, upper) — computes the sum
upper

∑
x=lower

f (x)

� polarform(z) — converts the complex number, z, into polar
form: For instance polarform(1+2*%i) produces

√
5%e%i atan(2)

� product( f (x), x, lower, upper) — computes the product
upper

∏
x=lower

f (x)

� realpart(z) — returns the real part of the complex number, z.
� rectform(z) — converts the complex number, z, into the rect-

angular form: a+%i*b.
� Following a symbolic expression with ,numer causes Max-

ima to try to convert it into a numeric form. Example

sqr t ( 2 ) , numer

returns
1.414213562373095

E.3. Commands for functions and equations

Recall that we code functions via
f(args):=code;

and a memoized function (usually, of a single argument although mul-
tiple integer arguments are possible) via

f[arg]:=code;
Non-memoized functions can be nested.

We can access the arguments of a function-call via the args com-
mand:

args(f(a,b,c))
[a,b,c]

and the function-name via the op-command:
op(f(a,b,c))

f
fundef(F) — returns the definition of the function or macro F.

funmake(F, [a1, . . . , an]) — returns F(a1, . . . , an) without calling F.
Given an equation, a = b, we can isolate the sides of the equation

via the rhs and lhs commands:
rhs(a=b)

b
lhs(a=b)
a
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We have the subst-command or. The command’s format is

subst ( new_value , o ld_var iab le , express ion )

or

subst ( o l d _ v a r i a b l e =new_value , express ion )

This command can also take a list of expressions and it performs the
substitution in each of them.

A block is the word block followed by a comma-separated se-
quence in parentheses

(1) The first element is a list of local variables or an empty list.
(2) The remaining entries (before the last one) are expressions.
(3) The last entry is a (numeric or symbolic) value.
(4) block statements can be nested to any depth.

One exits the block by either
(1) dropping through the last entry, or
(2) a return statement. Note: this only jumps out of the block

containing it, not necessarily out of the function in which it
appears1. If there are several nested blocks, this must be taken
into account.

at (expr, [eqn_1, . . . , eqn_n]) — Given the expression expr, plugs the
assignments in the list of equations eqn_1,. . . ,eqn_n
at (expr, eqn) — the at-command with only one variable.

E.4. Trigonometric functions

Maxima implements all of the common trig functions and their
inverses:

(1) sin(x), asin(x) — the sine and its inverse.
(2) cos(x), acos(x) — the cosine and its inverse.
(3) tan(x), atan(x) — the tangent and its inverse. We also have

the atan2(y,x) function, which computes the angle between
the positive x-axis and a line from the origin and the point
(x, y). Note that atan2(0,x) is 0 if x > 0 and π is x < 0.
atan2(0,0) is undefined.

E.5. Logical Operations

We have already seen the if (something) then do_something con-
struct. Variables can take on logical values: true, false. We also have
operations

� and
� or
� not

1Which is somewhat atypical in programming languages.
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� is (expression) — determines whether expression is true. Re-
turns true or false.

EXAMPLE. if((a<3) and (b>4)) then do_something

E.6. Looping constructs

Many programs have loops that perform sequences of computa-
tions over and over again. Maxima has several of these:

� for variable: initial_value step increment thru limit do (body)
Example: for t:0 step .01 thru 10 do (stuff )

� for variable: initial_value step increment while
logical_condition do (body)
for x:1 step 10 while keep_going do
(stuff,more_stuff,etc.,keep_going:(a>5))

� for variable: initial_value step increment unless
logical_condition do (body)
for x:1 step -1 unless time_to_stop do
(stuff,more_stuff,etc.,time_to_stop:true)

� while logical_condition do (stuff )
� for variable in L end_tests do body Here L can be a list or set

and end_tests is optional

E.7. Predicates

Predicate functions all end with the letter ‘p’ (except for equal) and
test properties of objects:

evenp — tests whether an integer is even.
integerp — tests whether an integer is present.
oddp — tests whether an integer is odd.
listp — tests whether an object is a list.
orderlessp — a predicate that takes two arguments and tests

whether the first is less than the second. This uses an ordering that
Maxima establishes for all identifiers and expressions (so all pairs of
objects are comparable). This is not necessarily the same as numeric
comparison (even between numbers).

ordergreatp — reverses orderlessp.
ordermagnitudep — compares numbers numerically (as <) and

everything else like orderlessp.
equal(n, m) — tests whether n and m are numerically equal.
subvarp — returns true if its parameter is subscripted.

E.8. Lists

Since Maxima is written in Lisp, it has all of the powerful list-
handling features of Lisp. A Maxima list is a comma-separated list2 of
data-items enclosed in square brackets. Examples:

2Recursive definition!
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� L1:[1,2,3]
� L2:[[1],[[2]],x^2-1]
� E:[]

Elements are accessed by indices that start with 1, in square brackets.

� L1[2]=2
� L2[3]=x^2-1
� L2[2][1]=[2]

We have many other list-operations:

� append returns the concatenation of all of the lists
that occurs as its arguments. if list_1=[x_1,. . . x_n],
list2=[y_1,. . . ,y_m],. . . ,list_t=[w_1,. . . ,w_k] then ap-
pend(list_1,. . . ,list_t)=[x_1,. . . x_n,y_1,. . . ,y_m,. . . ,w_1,. . . ,w_k]

� assoc (key, e, default) or assoc (key, e) — assoc searches for key
as the first part of an argument of e and returns the second
part of the first match, if any.
• key may be any expression. e must be a nonatomic ex-

pression, and every argument of e must have exactly two
parts. assoc returns the second part of the first match-
ing argument of e. Matches are determined by is(key =
first(a)) where a is an argument of e.

• If there are two or more matches, only the first is re-
turned. If there are no matches, default is returned, if
specified. Otherwise, false is returned.

Examples:
• assoc (f(x), foo(g(x) = y, f(x) = z + 1, h(x) = 2*u));

z + 1
• assoc (yy, [xx = 111, yy = 222, yy = 333, yy = 444]);

222
• If there are no matches, default is returned, if specified.

Otherwise, false is returned.
assoc (abc, [[x, 111], [y, 222], [z, 333]], none);
none

• assoc (abc, [[x, 111], [y, 222], [z, 333]]);
false

� atom(x) — returns true if x is an atomic expression, false
otherwise.

� cons(e,L) returns a new list with e as the first element fol-
lowed by the elements of L. Since it doesn’t modify the list,
L, one must write L:cons(e, L) to put a new element onto the
list. This function can also be used where the second argu-
ment is other than a list, which might be useful. In this case,
cons (expr_1, expr_2) returns an expression with same opera-
tor as expr_2 but with argument cons(expr_1, args(expr_2)).
Examples:
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• cons(a,[b,c,d]);
[a, b, c, d]

• cons(a,f(b,c,d));
f(a, b, c, d)

� create_list — create_list (form, x_1, list_1, . . . , x_n, list_n) Cre-
ate a list by evaluating form with x_1 bound to each element
of list_1, and for each such binding bind x_2 to each element
of list_2, . . . The number of elements in the result will be the
product of the number of elements in each list. Each variable
x_i must actually be a symbol — it will not be evaluated. The
list arguments will be evaluated once at the beginning of the
iteration.
• create_list (x^i, i, [1, 3, 7]);

[x,x,^3 , x^7 ]
• create_list ([i, j], i, [a, b], j, [e, f, h]);

[[a, e], [a, f], [a, h], [b, e], [b, f], [b, h]]
� copylist(list) Does what the name implies.
� delete(expr_1, expr_2) removes from expr_2 any arguments of

its top-level operator which are the same (as determined by
“=”) as expr_1. Note that “=” tests for formal equality, not
equivalence. Note also that arguments of subexpressions are
not affected. Examples:
• Removing elements from a list.

(%i1) delete (y, [w, x, y, z, z, y, x, w]);
(%o1) [w, x, z, z, x, w]

• Removing terms from a sum.
(%i1) delete (sin(x), x + sin(x) + y);
(%o1) y + x

• Removing factors from a product.
(%i1) delete (u - x, (u - w)*(u - x)*(u - y)*(u - z));
(%o1) (u - w) (u - y) (u - z)

• Removing arguments from an arbitrary expression.
(%i1) delete (a, foo (a, b, c, d, a));
(%o1) foo(b, c, d)

• Limiting the number of removed arguments.
(%i1) delete (a, foo (a, b, a, c, d, a), 2);
(%o1) foo(b, c, d, a)

� endcons(e,L) returns a new list with all of the elements of L
followed by e. The second argument (L) can also be an ex-
pression. Since it doesn’t modify the list, L, one must write
L:endcons(e, L) to put a new element onto the front of the
list. Examples:
• (%i1) endcons(a,[b,c,d]);

(%o1) [b, c, d, a]
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• (%i2) endcons(a,f(b,c,d));
(%o2) f(b, c, d, a)

� first(expr) — Returns the first part of expr which may result
in the first element of a list, the first row of a matrix, the first
term of a sum, etc.

� firstn (expr, count) — Returns the first count arguments of
expr, if expr has at least count arguments. Returns expr if expr
has less than count arguments.

� join (L, m) — Creates a new list containing the elements of
lists L and m, interspersed. The result has elements [L[1],
m[1], L[2], m[2], . . . ]. The lists L and m may contain any type
of elements.

� last (expr) — Returns the last part (term, row, element, etc.)
of the expr.

� lastn (expr, count) — — Returns the last count arguments of
expr, if expr has at least count arguments. Returns expr if expr
has less than count arguments.

� length (expr) — Returns (by default) the number of parts in
the external (displayed) form of expr. For lists this is the num-
ber of elements, for matrices it is the number of rows, and for
sums it is the number of terms.

� map(f,list) — returns a list with the function f applied to the
members of list.

� listp (expr) — Returns true if expr is a list else false.
� lreduce(F,s) — extends the binary function, F, to all of the list,

s, by composition from the left. Example
lreduce(F,s)=F(. . . F(s_1 ,s_2),s_3),s_4,. . . ,s_n).

� makelist — makelist (), creates the empty list, [].
• makelist (expr, n), makelist (expr), creates a list with expr

as its single element. makelist (expr, n) creates a list of n
copies of expr.

• makelist (expr(i), i, i_max) creates a list with expr evalu-
ated at i=1 to i=imax, stepped by 1 each time.

• makelist (expr(i), i, i_0, i_max) creates a list with expr
evaluated at i=i0 to i=imax, stepped by 1 each time.

• makelist (expr(i), i, i_0, i_max, step) creates a list with expr
evaluated at i=i0 to i=imax, stepped by step each time.

• makelist (expr(x), x, list) creates a list with expr(x) evalu-
ated x equal to successive elements of list.

� member (expr_1, expr_2) Tests whether expr_1 is a member of
expr_2, which may be a list or expression.

� pop (list) — removes and returns the first element of list.
Note: it modifies list in the process.

� push (item, list) — puts item as the first member of list and
returns a copy of the new list.
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� rest — rest (expr, n) rest (expr) Returns expr with its first n
elements removed if n is positive and its last - n elements
removed if n is negative. If n is 1 it may be omitted. The
first argument expr may be a list, matrix, or other expression.
Applying rest to expression such as f(a,b,c) returns f(b,c). In
general, applying rest to a non-list doesn’t make sense. For
example, because ’^’ requires two arguments, rest(a^b) re-
sults in an error message. The functions args and op may
be useful as well, since args(a^b) returns [a,b] and op(a^b)
returns ^.

� reverse (list) — Reverses the order of the members of the list
(not the members themselves). reverse also works on general
expressions, e.g. reverse(a=b); gives b=a.

� rreduce(F,s) — Like lreduce but it works from the right rather
than the left. Example:
rreduce(F,s)=F(s_1,F(s_2,. . . F(s_(n-2),F(s_(n-1),s_n). . . ).

� sort(list,predicate) — returns a list that is the result of sorting
list in ascending order, using the predicate to compare pairs of
items. If predicate is omitted, then orderlessp is used (which
can compare any two Maxima objects or expressions). To sort
in descending order, use ordergreatp as the predicate.
The predicate may be specified as the name of a function or
binary infix operator, or as a lambda expression. If specified
as the name of an operator, the name must be enclosed in
double quotes.
• sort ([1, a, b, 2, 3, c], ’orderlessp);

[1, 2, 3, a, b, c]
• sort ([1, a, b, 2, 3, c], ’ordergreatp);

[c, b, a, 3, 2, 1]
• L : [%pi, 3, 4, %e, %gamma];

[%pi, 3, 4, %e, %gamma]
sort (L, ">");
[4, %pi, 3, %e, %gamma]

• ordermagnitudep orders numbers, constants, and con-
stant expressions the same as <, and all other elements
the same as orderlessp.
L: [%i, 1+%i, 2*x, minf, inf, %e, sin(1), 0,1,2,3, 1.0, 1.0b0];
[%i, %i + 1, 2 x, minf, inf, %e, sin(1), 0, 1, 2, 3, 1.0, 1.0b0]
sort (L, ordermagnitudep);
[minf, 0, sin(1), 1, 1.0, 1.0b0, 2, %e, 3, inf, %i, %i + 1, 2 x]

� sublist (list, p) — Returns the list of elements of list for which
the predicate p returns true.
L: [1, 2, 3, 4, 5, 6];
[1, 2, 3, 4, 5, 6]
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sublist (L, evenp);
[2, 4, 6]

� sublist_indices (L, P) — Returns the indices of the elements x
of the list L for which the predicate maybe(P(x)) returns true;
this excludes unknown as well as false. P may be the name
of a function or a lambda expression. L must be a literal list.
• sublist_indices (’[a, b, b, c, 1, 2, b, 3, b], lambda ([x],

x=’b));
[2, 3, 7, 9]

� tree_reduce — tree_reduce (F, s), tree_reduce (F, s, s_0) Ex-
tends the binary function F to an n-ary function by composi-
tion, where s is a set or list.
• tree_reduce is equivalent to the following: Apply F

to successive pairs of elements to form a new list
[F(s_1, s_2), F(s_3, s_4), . . . ], carrying the final element
unchanged if there are an odd number of elements.
Then repeat until the list is reduced to a single element,
which is the return value.

• When the optional argument s_0 is present, the result is
equivalent tree_reduce(F, cons(s_0, s)).

� unique (L) — Returns the unique elements of the list L.
• When all the elements of L are unique, unique returns a

shallow copy of L, not L itself.
• If L is not a list, unique returns L.

E.9. Strings

By default, Maxima displays strings without quotes so they look
like symbols or variables (which can be confusing, since strings are not
variables). The variable stringdisp controls this. By default, it is false.
Setting it to true causes strings to be displayed with double-quotes.

Many of the commands listed here are in the ‘stringproc’ package,
which is automatically loaded whenever one calls one of these func-
tions.

� charat(s, n) — Returns the n-th character of s, numbering
them from 1 on.

� charlist(s) — returns a list of the characters in s. Characters
are regarded as strings of length 1.

� concat(a1, a2, . . . ) — Concatenates its arguments. The argu-
ments must evaluate to atoms. The return value is a symbol
if the first argument is a symbol and a string otherwise.

� eval_string(s) — Parse the string s as a Maxima expression
and evaluate it. It turns a character-string into a symbol, i.e., a
variable.
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� sconcat(a1, a2, . . . ) — Concatenates its arguments into a
string. Unlike concat, the arguments do not need to be
atoms.

� scopy(s) — returns a new string that is a copy of s.
� sdowncase(s) — converts all characters to lowercase. Vari-

ations: sdowncase(s, n) starts with character n, and sdown-
case(s, n, m) runs from character n to m.

� string(e) — converts the Maxima expression e into a string.
In a manner of speaking, it’s the opposite of eval_string.

� sequal(s1, s2) — returns true if s1 and s2 are the same length
and contain the same characters.

� sequalignore(s1, s2) — Like sequal but ignores case.
� simplode(L) — takes a list, L, of expressions and concate-

nates them into a string. Variation: simplode(L, d) — like
the previous case, but it uses the string d as a delimiter.

� sinsert(t, s, p) — returns the result of inserting string t into
string s at position p.

� sinvertcase(s) — returns the result of converting uppercase
letters of s to lowercase and vice-versa. Variations:
sinvertcase(s, n) and sinvertcase(s, n, m) — inverts case of
letters starting with position n to position m (or the end of
the string).

� slength(s) — returns the number of characters in s.
� smake(n, c) — returns a string that is n copies of the char-

acter c. One wonders what application the originator of this
command had in mind ,.

� smismatch(s1, s2) — returns the index of the first character
in string s1 that doesn’t match the corresponding character
in string s2. Variation: smismatch(s1, s2, t), where t is a test
used to compare characters. The default is sequal but you
can also specify sequalignore to ignore case.

� split(s) — Returns the list of all tokens in s. Each token is
an unparsed string. Variations: split(s, d), split(s, d, m), split
uses d as delimiter. If d is not given, the space character is
the default delimiter. m is a boolean variable which is true
by default. Multiple delimiters are read as one. This is useful
if tabs are saved as multiple space characters. If m is set to
false, each delimiter is noted.

� sposition(c, s) — Returns the position of the first character
in string, s, which matches character, c. The first character in
s is in position 1. For matching characters ignoring case see
ssearch.

� sremove(u, s) — Returns a string like s but without all
substrings matching u. Variations: sremove(u, s, t),
sremove(u, s, t, m), sremove(u, s, t, m, n) Default test
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function, t, for matching is sequal. If sremove should ignore
case while searching for u, use sequalignore as t. Use m and
n to limit searching. Note that the first character in string is
in position 1.

� sremovefirst(u, s) — Like sremove but it only removes the
first occurrence of u. Variations: sremovefirst(u, s, t), sre-
movefirst(u, s, t, m), sremovefirst(u, s, t, m, n).

� sreverse(s) — returns s reversed.
� ssearch(u, s) — returns the position of the first substring

of s that matches the string u. Variations: ssearch(u, s, t),
ssearch(u, s, t, m), ssearch(u, s, t, m, n). Default test function,
t, for matching is sequal. If ssearch should ignore case, use
sequalignore as t. Use m and n to limit searching. Note that
the first character in string is in position 1.

� ssort(s) — Variation: ssort(s, t), where t is a test. Returns a
string that contains the characters of s sorted. Possible tests:
• ’clessp The default. Sorts in ascending order.
• ’clesspignore Sorts in ascending order, ignoring case.
• ’cgreaterp Sorts in descending order..
• ’cgreaterpignore Sorts in descending order, ignoring

case.
� ssubst(u, v, s) — edits string s, replacing substrings v

by u. Variations: ssubst(u, v, s, t), ssubst(u, v, s, t, m),
ssubst(u, v, s, t, m, n). Here t is a test and m, n control the
range of characters in s where the edits take place.

� ssubstfirst(u, v, s) — like ssubst(u, v, s) but only replaces the
first occurrence of v. Variations: ssubstfirst(u, v, s, t), ssub-
stfirst(u, v, s, t, m), ssubstfirst(u, v, s, t, m, n). Here t is a test
and m, n control the range of characters in s where the edits
take place.

� strim(u, s) — returns a string like s, but with all characters
that appear in the string u removed from both ends. Varia-
tions: striml(u, s) Like strim except that only the left end of
string is trimmed. strimr(u, s) Like strim except that only the
right end of string is trimmed.

� substring(s, m), substring(s, m, n) — Returns the substring
of s beginning at position m and ending at position n. The
character at position n is not included. If n is not given, the
substring contains the rest of the string.

� supcase(s), supcase(s, m), supcase(s, m, n) — returns s
except that lowercase characters from position m to n are
replaced by the corresponding uppercase ones. If n is not
given, all lowercase characters from start to the end of string
are replaced.
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� tokens(s), tokens(s, t) — returns a list of tokens, which have
been extracted from s. The tokens are substrings whose char-
acters satisfy a certain test function, t. If t is not given, con-
stituent is used as the default test. The test functions
• constituent — the characters: ! " # % ’ ( ) * + , - . / 0 1 2 3

4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P
Q R S T U V W X Y Z [ \ ] ^ _ ‘ a b c d e f g h i j k l m n o
p q r s t u v w x y z { | } ~

• ’alphacharp — alphabetic
• ’digitcharp — digit
• ’lowercasep — self-explanatory
• ’uppercasep — self-explanatory
• ’charp — a character
• ’alphanumericp — self-explanatory

E.10. Structures

A structure is a kind of list where the entries in the list have names
and are referred to by those names. We define types of structures with
the defstruct-command:

d e f s t r u c t ( structure_name ( name_1 , . . . , name_n ) ) ;

We create structures via the new-command

z : new( structure_name ( value_1 , . . . , value_n ) ) ;

Example:

d e f s t r u c t ( dog ( legs , eyes , c o l o r ) ) ;

This defines a kind of structure called ‘dog’. We create a actual struc-
ture with

f ido : new( dog ( 4 , 2 , " brown " ) ) ;

We access these fields via the ’@’-command:

f ido@legs ;

and Maxima returns 4. If we simply type fido, Maxima prints

dog ( l e g s =4 , eyes =2 , c o l o r =" brown " ) ;

Note that one cannot create a new structure using these ‘=’ commands.
After a tragic accident

f ido@legs : 3 ;

and, if we simply type fido, we get

dog ( l e g s =3 , eyes =2 , c o l o r =" brown " ) ;

If we don’t assign a value to an entry, it simply displays as its name:
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rover : new( dog ) ;

results in

dog ( legs , eyes , c o l o r )

Having created a structure using the new command, we can destroy
it via the kill command

k i l l ( rover ) ;

and Maxima replies
done
One can also delete entry-values in a structure using the kill com-

mand:

k i l l ( f ido@legs )

results in

dog ( legs , eyes =2 , c o l o r =" brown " ) ;

E.11. Sets

E.11.1. Introduction. A set is a list in which each element is
unique — uniqueness being determined by is(x=y). Maxima provides
several commands for creating sets. The most basic is:

s e t ( a , b , c , a )

and Maxima responds with

{ a , b , c }

eliminating the duplicate ’a’. The set-command above is completely
equivalent to writing

{ a , b , c , a }

with curly brackets instead of straight ones. Of course

s e t ( )

produces the empty set

{ }

The command setify converts a list to a set

s e t i f y ( [ a , b , c , a ] )

produces

{ a , b , c }
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The listify-command does the opposite.
The map-command can be used to iterate over elements of a set

(just as it does for a list):

map( f , { a , b , c } )

gives

{ f ( a ) , f ( b ) , f ( c ) }

You also iterate via

for x in s do s t u f f

or

for x in s while keep_going do s t u f f

E.11.2. Set-operations.
� adjoin(x,a) — returns the set-union a ∪ {x}. The set a is un-

changed.
� disjoin(x,a) — the opposite of adjoin, returns the

set-difference a \ {x}. The set a is unchanged.
� belln(n) — returns the nth Bell number3 — the number of par-

titions of a set of size n. A partition of a set S is defined as
a family of nonempty, pairwise disjoint subsets of S whose
union is S. For example, B3 = 5 because the 3-element set
{a, b, c} can be partitioned in 5 distinct ways:

{{a}, {b}, {c}}
{{a}, {b, c}}
{{b}, {a, c}}
{c}, {a, b}}

{{a, b, c}
This is also the number of distinct equivalence-relations that
can exist on this set.

� cardinality(a) — returns the number of elements in the set a.
� cartesian_product(b_1, ... , b_n) — Returns a set of lists of

the form [x1, . . . , xn], where xi ∈ bi, respectively.
cartesian_product({0,1}) produces

{[0], [1]}
cartesian_product ({0,1},{0,1}) produces

{[0, 0], [0, 1], [1, 0], [1, 1]}
3In an example of Stigler’s law of eponymy, they are named after Eric Temple

Bell, who wrote about them in the 1930s. These numbers go back much further, being
mentioned in the medieval Japanese novel, [57].
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� disjointp(a, b) — returns true if the sets a and b are disjoint.
� divisors(n) — returns the set of divisors of n, including 1

and n. divisors distributes over equations, lists, matrices,
and sets:

(% i 1 ) d i v i s o r s ( a = b ) ;
(%o1 ) d i v i s o r s ( a ) = d i v i s o r s ( b )
(% i 2 ) d i v i s o r s ( [ a , b , c ] ) ;
(%o2 ) [ d i v i s o r s ( a ) , d i v i s o r s ( b ) , d i v i s o r s ( c ) ]
(% i 3 ) d i v i s o r s ( matrix ( [ a , b ] , [ c , d ] ) ) ;

[ d i v i s o r s ( a ) d i v i s o r s ( b ) ]
(%o3 ) [ ]

[ d i v i s o r s ( c ) d i v i s o r s ( d ) ]
(% i 4 ) d i v i s o r s ( { a , b , c } ) ;
(%o4 ) { d i v i s o r s ( a ) , d i v i s o r s ( b ) , d i v i s o r s ( c ) }

� elementp(x, a) — returns true if x ∈ a.
� emptyp(a) — returns true if a = ∅, or if a is the empty list.
� equiv_classes(s, F) — if s is a set and F is a function of two

variables returning true or false (that is an equivalence rela-
tion), this computes the set of equivalence classes of elements
of s. Example:

(% i 1 ) equiv_classes ( { 1 , 2 , 3 , 4 , 5 , 6 , 7 } ,
lambda ( [ x , y ] ,

remainder ( x − y , 3 ) = 0 ) ) ;
(%o1 ) { { 1 , 4 , 7 } , { 2 , 5 } , { 3 , 6 } }

� every(F, s) (set form) — returns true if the predicate F is true
for all given arguments (elements of the set s). Example:

(% i 1 ) every ( integerp , { 1 , 2 , 3 , 4 , 5 , 6 } ) ;
(%o1 ) t rue
(% i 2 ) every ( atom , { 1 , 2 , sin ( 3 ) , 4 ,

5 + y , 6 } ) ;
(%o2 ) f a l s e

� every(F, L_1 ,..., L_k) (list form) — returns true if the predi-
cate F (taking k parameters) is true, where its ith parameter is
taken from L_i. Example:

(% i 1 ) every ( "=" , [ a , b , c ] , [ a , b , c ] ) ;
(%o1 ) t rue
(% i 2 ) every ( " # " , [ a , b , c ] , [ a , b , c ] ) ;
(%o2 ) f a l s e

� extremal_subset(s, f , max) — returns the subset of s on
which the function f takes on its maximum values.
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� extremal_subset(s, f , min) — returns the subset of s on
which the function f takes on its minimum values.

� flatten (expr) — Collects arguments of subexpressions which
have the same operator as expr and constructs an expression
from these collected arguments. Subexpressions in which
the operator is different from the main operator of expr are
copied without modification, even if they, in turn, contain
some subexpressions in which the operator is the same as for
expr. Examples:
Applied to a list, flatten gathers all list elements that are lists.

(% i 1 ) f l a t t e n ( [ a , b , [ c , [ d , e ] , f ] ,
[ [ g , h ] ] , i , j ] ) ;

(%o1 ) [ a , b , c , d , e , f , g , h , i , j ]

Applied to a set, flatten gathers all members of set elements
that are sets.

(% i 1 ) f l a t t e n ( { a , { b } , { { c } } } ) ;
(%o1 ) { a , b , c }
(% i 2 ) f l a t t e n ( { a , { [ a ] , { a } } } ) ;
(%o2 ) { a , [ a ] }

� full_listify (a) — Replaces every set operator in a by a list
operator, and returns the result. full_listify replaces set op-
erators in nested subexpressions, even if the main operator is
not set.

� fullsetify (a) — When a is a list, it replaces the list operator
with a set operator, and applies fullsetify to each member
which is a set. When a is not a list, it is returned unchanged.

� identity(a) — Returns a for any argument a.
� integer_partitions(n) — Returns a set of integer partitions

of n, that is, lists of integers which sum to n. The num-
bers in each list are sorted from highest to lowest. Alternate
form: integer_partitions(n,len) — Returns a set of partitions
of length len.

(% i 1 ) i n t e g e r _ p a r t i t i o n s ( 3 ) ;
(%o1 ) { [ 1 , 1 , 1 ] , [ 2 , 1 ] , [ 3 ] }
(% i 2 ) s : i n t e g e r _ p a r t i t i o n s ( 2 5 ) ;
(% i 3 ) c a r d i n a l i t y ( s ) ;
(%o3 ) 1958
(% i 4 ) map ( lambda ( [ x ] , apply ( "+" , x ) ) , s ) ;
(%o4 ) { 2 5 }
(% i 5 ) i n t e g e r _ p a r t i t i o n s ( 5 , 3 ) ;
(%o5 ) { [ 2 , 2 , 1 ] , [ 3 , 1 , 1 ] ,

[ 3 , 2 , 0 ] , [ 4 , 1 , 0 ] , [ 5 , 0 , 0 ] }
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(% i 6 ) i n t e g e r _ p a r t i t i o n s ( 5 , 2 ) ;
(%o6 ) { [ 3 , 2 ] , [ 4 , 1 ] , [ 5 , 0 ] }

We can also find partitions that satisfy a condition

(% i 1 ) s : i n t e g e r _ p a r t i t i o n s ( 1 0 ) ;
(% i 2 ) c a r d i n a l i t y ( s ) ;
(%o2 ) 42
(% i 3 ) xprimep ( x ) := integerp ( x )

and ( x > 1) and primep ( x ) ;
(% i 4 ) subset ( s ,

lambda ( [ x ] , every ( xprimep , x ) ) ) ;
(%o4 ) { [ 2 , 2 , 2 , 2 , 2 ] , [ 3 , 3 , 2 , 2 ] ,

[ 5 , 3 , 2 ] , [ 5 , 5 ] , [ 7 , 3 ] }

� intersection(a_1, ..., a_n) —returns the intersection of the
sets a_1 . . . a_n. Alternate form: intersect (a_1, ..., a_n)

� makeset(expr, x, s) — similar to makelist, but for sets. Re-
turns a set with members generated from the expression expr,
where x is a list of variables in expr, and s is a set or list of
lists. To generate each set member, expr is evaluated with the
variables x bound in parallel to a member of s.
Each member of s must have the same length as x. The list
of variables x must be a list of symbols, without subscripts.
Even if there is only one symbol, x must be a list of one el-
ement, and each member of s must be a list of one element.
Example:

makeset ( i / j , [ i , j ] , [ [ 1 , a ] , [ 2 , b ] , [ 3 , c ] , [ 4 , d ] ] ) ;

returns {
1
a

,
2
b

,
3
c

,
4
d

}
and

makeset ( sin ( x ) , [ x ] , { [ 1 ] , [ 2 ] , [ 3 ] } ) ;

returns
{sin (1), sin(2), sin (3)}

� multinomial_coeff(a1, . . . , an) — returns

(a1 + · · ·+ an)!
a1! · · · an!

� num_distinct_partitions(n) — returns the number of parti-
tions of n (in the sense of the integer_partitions-command)
where the numbers in the partitions are all distinct.
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num_distinct_partitions(n,list), with the keyword list in it,
returns a list:

[num_distinct_partitions (1),..., num_distinct_partitions(n)]
� num_partitions(n) — returns the number of partitions

of n (in the sense of the integer_partitions-command),
i.e. the cardinality of the set integer_partitions(n).
num_partitions(n,list ), with the keyword list in it, returns a
list:

[num_partitions (1),..., num_partitions(n)]
� partition_set(a,F) — given a set, a, it returns a list of two

sets:

[{e ∈ a with F(e) = false}, {e ∈ a with F(e) = true}]
For instance:

s : { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 } ;
p a r t i t i o n _ s e t ( s , evenp )

returns
[{1, 3, 5, 7} , {2, 4, 6, 8}]

� permutations(a); — returns a set of all permutations of the
elements of the list or set a.

� powerset(a) — returns the set of all subsets of the set, a.
powerset(a,n) returns the set of all subsets of cardinality n.

� random_permutation(a) — returns a random permutation of
the set or list, a, as constructed by the Knuth shuffle algo-
rithm: Given an array of items numbered from 0, the algo-
rithm can be defined as follows (in Python):

from random import randrange

def knuth_shuff le ( x ) :
for i in range ( len ( x ) −1 , 0 , −1) :

j = randrange ( i + 1)
x [ i ] , x [ j ] = x [ j ] , x [ i ]

x = l i s t ( range ( 1 0 ) )
knuth_shuff le ( x )
print ( " s h u f f l e d : " , x )

� setdifference(a, b) — returns the set a \ b.
� setequalp(a, b) — returns true if sets a and b have the same

number of elements and is(x = y) is true for x ∈ a and y ∈
b, considered in the order determined by listify. Otherwise,
setequalp returns false.
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� setp(a) — returns true if a is a set, false otherwise.
� set_partitions (a) — returns the set of all partitions of a, or

a subset of that set. set_partitions (a, n) returns a set of all
partitions of a into n nonempty subsets.

� some(F, a) — returns true if isF(x) is true for some x ∈ a.
some(F, L1, ..., Ln) Given one or more lists as arguments,
some(F, L1, ..., Ln) returns true if is(F(x1,j, ..., xn,j)) returns
true for some j where xi,j ∈ Li is the jth-element in the ith list
for all i.

� stirling1(n, m) — the Stirling number of the first kind. It’s the
coefficient of xm in the Pochhammer falling factorial

x(n) = x(x − 1) · · · (x − n + 1)

� stirling2(n, m) — the Stirling number of the second kind. It’s
the coefficient, S(n, m), of x(m) in the expansion

(E.11.1) xn =
n

∑
m=0

S(n, m)x(i)

� subset(a, F) — the subset of elements x ∈ a such that
F(x) = true.

� subsetp(a, b) — returns true if a ⊆ b.
� symmdifference(a1, . . . , an) — returns the set of elements in

all of the ai that are not in any of the other sets.
� union(a1, . . . , an) — returns the union of the sets.

E.12. Macros

To describe what a macro does, we must first analyze how a func-
tion is called. When a function, f (x, y, z), is called, Maxima

(1) evaluates x, y, z
(2) jumps to the function-code and plugs those values into the

body of f .
(3) then returns with the computed values

A macro f (x, y, z) superficially resembles a function but it
(1) executes the body of the macro on x, y, z and other expressions

(doing something like a text-edit), inserting it into the code
that called it — i.e., no jumping and returning,

(2) then it executes the rewritten expression.
A user-defined macro uses the ::= operation:

zz ( x ) : : = x /10;

The right side of this is edited into the expression where

zz ( x )

appears. In other words
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p : a+b+zz ( top )+d

is rewritten as

p : a+b+top/10+d

before it is executed. As such, the effect of this macro is very similar to
a function-call.

The main macro built in to Maxima is buildq.
It has the form

buildq ( [ x1 : vq , x2 : v2 , . . . , xn : vn ] ,
s t u f f involving x1 , . . . , xn

) ;

It does a kind of text-edit of stuff replacing xi by vi for i = 1, . . . , n,
and then it executes the edited code. If an xi has no corresponding vi,
whatever value it was assigned in the past is used. So

b : 2 9 ;
buildq ( [ a : x , b ] , a + b + c ) ;

results in

x + c + 29

The command

buildq ( [ e : [ a , b , c ] ] , foo ( x , e , y ) ) ;

results in

foo ( x , [ a , b , c ] , y )

which is then executed.
Note that the substitutions a buildq command are carried out in

parallel, so

buildq ( [ a : x , b : a , c , b ] , foo ( x , e , y ) ) ;

produces

foo ( x , a , b ) ;

If they had been carried out sequentially (from left to right, as subst
does), we would’ve gotten

foo ( x , x , x ) ;

Within a buildq command, the splice-command (whose argument is
a list) interpolates that list into a larger list. So, whereas,

buildq ( [ e : [ a , b , c ] ] , foo ( x , e , y ) ) ;
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produces

foo ( x , [ a , b , c ] , y )

the splice command

buildq ( [ e : [ a , b , c ] ] , foo ( x , s p l i c e ( e ) , y ) ) ;

produces

foo ( x , a , b , c , y )

Outside of a buildq command, the splice-command is merely an error.
Here’s an example that combines several language features:

show_values ( [ L ] ) : : = buildq ( [ L ] ,
map ( "=" , ’L , L ) ) ;

If we have statements

a : 3 ;
b : 2 ;
c : 1 0 0 0 ;
print ( show_values ( a , b , c ) ) ;

is interpreted in several steps. First, it rewrites the print statement as

print ( buildq ( [ a , b , c ] ,
map ( "=" , ’ [ a , b , c ] , [ a , b , c ] ) ) ) ;

Next, we get

print (map ( "=" , ’ [ a , b , c ] , [ a , b , c ] ) ) ) ;

Since the print command is a function rather than a macro, it executes
the map-command to get

print ( [ a =2 ,b=3 , c = 1 0 0 0 ] ) ;

and prints it.
Other macro-related commands, include
macroexpand — this expands a macro but doesn’t execute it. If

the macro calls other macros, they are also expanded.
macroexpand1 — this expands a macro but doesn’t execute it. If

the macro calls other macros, they are not expanded — it only expands
the topmost level of nested macro-calls.
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E.13. Input and Output

The most widely-used forms of output involve plotting and draw-
ing pictures. These operations are so important, an entire appendix is
devoted to them — see appendix F on page 323.

Simple (and useful for debugging) output-commands are:

� display (expr_1, expr_2, . . . ) — displays equations whose left
side is expr_i unevaluated, and whose right side is the value
of the expression centered on the line. This function is useful
in blocks and for statements in order to have intermediate re-
sults displayed. The arguments to display are usually atoms,
subscripted variables, or function calls.

� print (expr_1, . . . , expr_n) — Evaluates and displays expr_1,
. . . , expr_n one after another, from left to right, starting at the
left edge of the console display. The value returned by print
is the value of its last argument. print does not generate in-
termediate expression labels.
Note: __ (two underscores) represents the input expression
currently being evaluated. That is, while an input expression
expr is being evaluated, __ is expr. Example:
• print ("My name is ", __);

My name is print(My name is, __)

• zztop (__);
zztop(zztop(__))

� appendfile (filename) — Appends a console transcript to file-
name. appendfile is the same as writefile, except that the
transcript file, if it exists, is always appended.

� batchload (filename) — Reads Maxima expressions from file-
name and evaluates them, without displaying the input or
output expressions and without assigning labels to output
expressions. Printed output (such as produced by print or
describe) is displayed, however.

� closefile() closes the transcript file opened by appendfile or
writefile.

� file_search (filename) — file_search searches for the file file-
name and returns the path to the file (as a string) if it can be
found; otherwise file_search returns false. file_search (file-
name) searches in the default search directories, which are
specified by the file_search_maxima, file_search_lisp, and
file_search_demo variables.
file_search first checks if the actual name passed exists, be-
fore attempting to match it to “wildcard” file search patterns.
• file_search_maxima Option variable,
• file_search_lisp Option variable,
• file_search_demo Option variable,
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• file_search_usage Option variable,
• file_search_tests.

� load — load (filename) Evaluates expressions in filename, thus
bringing variables, functions, and other objects into Maxima.
The binding of any existing object is clobbered by the binding
recovered from filename. To find the file, load calls file_search
with file_search_maxima and file_search_lisp as the search
directories. If load succeeds, it returns the name of the file.
Otherwise load prints an error message.
• load works equally well for Lisp code and Maxima

code. Files created by save, translate_file, and
compile_file, which create Lisp code, and stringout,
which creates Maxima code, can all be processed by
load. load calls loadfile to load Lisp files and batchload
to load Maxima files.

� directory — directory (path) Returns a list of the files and di-
rectories found in path in the file system. path may contain
wildcard characters (i.e., characters which represent unspec-
ified parts of the path), which include at least the asterisk on
most systems, and possibly other characters, depending on
the system.

� printfile — printfile (path) Prints the file named by path to
the console. path may be a string or a symbol; if it is a symbol,
it is converted to a string. If path names a file which is accessi-
ble from the current working directory, that file is printed to
the console. Otherwise, printfile attempts to locate the file by
appending path to each of the elements of file_search_usage
via filename_merge. printfile returns path if it names an
existing file, or otherwise the result of a successful filename
merge.

� save —This takes several forms:
• save (filename, name_1, name_2, name_3, . . . ) Stores the

current values of name_1, name_2, name_3, . . . , in file-
name. The arguments are the names of variables, func-
tions, or other objects. If a name has no value or func-
tion associated with it, it is ignored. save returns file-
name. save stores data in the form of Lisp expressions.
If filename ends in .lisp the data stored by save may be
recovered by load (filename). See load.

• save (filename, values, functions, labels, . . . ) — stores the
items named by values, functions, labels, etc. The names
may be any specified by the variable infolists.values
comprises all user-defined variables.
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• save (filename, [m, n]) — stores the values of input and
output labels m through n. Note that m and n must be lit-
eral integers. Input and output labels may also be stored
one by one, e.g., save ("foo.1", %i42, %o42).

• save (filename, labels) stores all input and output labels.
When the stored labels are recovered, they clobber exist-
ing labels.

• save (filename, all) — stores the current state of Maxima.
• save (filename, name_1=expr_1, name_2=expr_2, . . . )

stores the values of expr_1, expr_2, . . . , with names
name_1, name_2, . . . It is useful to apply this form to
input and output labels, e.g., save ("foo.1", aa=%o88).
The right-hand side of the equality in this form may be
any expression, which is evaluated.

� stringout — Similar to save above but stores information in
Maxima form rather than Lisp form. This occurs in several
forms (see save, above):
• stringout (filename, expr_1, expr_2, expr_3, . . . )
• stringout (filename, [m, n])
• stringout (filename, input)
• stringout (filename, functions)
• stringout (filename, values)

� with_stdout — with_stdout (s, expr_1, expr_2, expr_3, . . . )
Evaluates expr_1, expr_2, expr_3, . . . and writes any output
thus generated to a file f or output stream s. The evaluated
expressions are not written to the console. with_stdout redi-
rects output commands that normally print on the console
to the file. Output may be generated by print and display
among other functions.
with_stdout ("tmp.out", for i:5 thru 10 do
print (i, "! yields", i!))$
(%i2) printfile ("tmp.out")$
5 ! yields 120
6 ! yields 720
7 ! yields 5040
8 ! yields 40320
9 ! yields 362880
10 ! yields 3628800

� writefile — writefile(filename) Begins writing a transcript of
the Maxima session to filename. All interaction between the
user and Maxima is then recorded in this file, just as it ap-
pears on the console.
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Visual outputs

F.1. Plotting

F.1.1. Basic plot-commands. Basic plotting in wxMaxima is done
by external software called ‘gnuPlot’, which provides the commands
plot2d and plot3d as well as several others. The basic command varies
depending on whether you are doing a single plot or multiple super-
imposed plots.

With a single plot, the format looks like (z=2,3)

plotzd ( f u n c t i o n _ s p e c i f i c a t i o n ,
[ x , lower_lim , upper_lim ]
{ , [ y , lower_lim , upper_lim ] }
{ , [ s tyle , p lo t_opt ions ] } { , terminal_spec }
{ , f i l e _ s p e c } )

(Items in curly brackets are optional).
With multiple superimposed plots (only with plot2d) we have

plot2d ( [ f1 , . . . , fn ] , [ x , lower_lim , upper_lim ]
{ , [ y , lower_lim , upper_lim ] } ,
{ [ s tyle , p lot_option_1 , . . . , p lot_opt ion_n ] }
{ , terminal_spec } { , f i l e _ s p e c } )

F.1.2. Function specifications. Descriptions of functions to be
plotted take many forms. The most basic function-specification is
simply to name the function. Examples:

� x^2-3*x
� sin(cos(x))

In many cases, functions are defined by Maxima code that has an if-
statement that tests the independent variable. In these cases, the func-
tion must be quoted with a single quote. Example:

� ’myfunct(x)
With functions like this, the if-statement is evaluated once by Maxima
and the outcome remains fixed throughout the plot. The solution is to
quote the function, so the function itself is sent to GnuPlot.

� With functions only defined at certain points, we can define a
function to be discrete. This consists of the keyword discrete

323
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in a list with a list of points. For example:
f:[discrete,[[1,2],[2,3],[3,5],[4,7],[5,11],[6,13],[7,17],
[8,19],[9,23],[10,29]]];
defines a function equal to the first 10 prime numbers. In
general, a discrete function can take two forms:
[discrete,[[x1,y1],. . . ,[xn,yn]]] or
[discrete,[[x1,. . . ,xn],[y1,. . . ,yn]]]

� An equation defines an implicit function, and these can be plot-
ted. One must provide ranges of values for all the variables.
Example: plot2d(x^2+y^4=1,[x,-1,1],[y,-1,1]).

F.1.3. High-level plot styles. These are specified with the word
‘style’ followed in a list that indicates the style:

� lines — this is the default. Points are plotted and connected
with lines.

� points — plots isolated points.
� linespoints — plots lines but also highlights the original

points.
� dots — plots isolated dots.

Example:
[style,lines,lines,points] if are plotting three functions and want

these three respective styles.
We also specify colors of the various plots via:
[color,name_1,. . . ,name_n]
for n plots. The acceptable colors-names are

� red
� green
� blue
� magenta
� cyan
� yellow
� orange
� violet
� brown
� gray
� black
� white
� # followed by six hexadecimal digits: two for the red com-

ponent, two for green component and two for the blue com-
ponent. This expression must be quoted with double-quotes.
Example: "#3d01f2". This produces a bluish violet color.

� If the name of a given color is unknown, black is used

If there are more curves or surfaces than colors, the colors are repeated
in sequence. For instance, if you write [color,black] all of the plots will
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be black. If no colors are specified, defaults are used (blue, red, green,
etc.).

If we have points in the styles, we can specify the point type via the
statement

[point_type,typename_1. . . ,typename_n]
The acceptable point-type-names are:
� bullet
� circle
� plus
� times
� asterisk
� box
� square
� triangle
� delta
� wedge
� nabla
� diamond
� lozenge

If there are more sets of points than objects in this list, they will be
repeated sequentially.

Here’s an example:

plot2d ( [ x ^2 , x ^3 , x ^4 , [ d i s c r e t e , [ [ . 1 , . 2 ] ,
[ . 2 , . 3 ] , [ . 3 , . 5 ] ,

[ . 4 , . 7 ] , [ . 5 , . 1 1 ] , [ . 6 , . 1 3 ] , [ . 7 , . 1 7 ] ,
[ . 8 , . 1 9 ] , [ . 9 , . 2 3 ] ,

[ 1 , . 2 9 ] ] ] ] , [ x , − 1 , 1 ] , [ s t y l e , l i n e s , l i n e s ,
l i n e s , points ] ,

[ color , blue , red , green ] , [ point_type , nabla ] )

This produces the plot in figure F.1.1 on the next page.
Another example: Here we plot two implicit functions, one explicit

one (x^2) and a discrete function that is defined at a single point. Note
that discrete functions expect a list of points even if there’s only a single
point in it:

plot2d ( [ x =1 ,y=3 , x ^2 , [ d i s c r e t e , [ [ 1 , 3 ] ] ] ] , [ x , − 1 , 3 ] ,
[ y , − 1 , 1 0 ] , [ s tyle , l ines , l ines , l ines , points ] ,
[ point_type , a s t e r i s k ] ) ;

We get the plot in figure F.1.2 on the following page.

F.1.4. Slightly lower-level plot styles. These are slightly harder
to use than the high-level options above. Their main (only?) advan-
tage is that you can specify the size of each object. In this case, the
styles are lists rather than simple names:
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FIGURE F.1.1. High-level plot example
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FIGURE F.1.2. Mixed plot-types

� [lines,line_width{,color}] — this is the default. Points are
plotted and connected with lines.

� [points,radius_of_points{,color,type_of_point}] — plots iso-
lated points. See table F.1.1 on the next page.
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FIGURE F.1.3. Plot example 1

Code Description Code Description Code Description
−1 None 4 Square 9 Filled up-triangle
0 Dot 5 Filled square 10 Down-triangle
1 Plus 6 Circle 11 Filled down-triangle
2 Multiply 7 Filled circle 12 Diamond
3 Asterisk 8 Up-triangle 13 Filled diamond

TABLE F.1.1. type_of_point codes

� [linespoints,line_width{,color}] — plots lines but also high-
lights the original points.

� [dots] — plots isolated tiny dots.
For example:

plot2d ( [ [ discre te , [ [ − 1 , . 3 ] , [ 0 , . 1 ] , [ 1 , . 5 ] ] ] , x ^2] ,
[ x , − 1 , 1 ] , [ s tyle , [ points , 4 , 7 , 1 ] , [ l ines , 2 , 1 ] ] ) ;

produces the plot in figure F.1.3.
If we leave out the style command, the style defaults to ‘lines’ and

the plot looks like figure F.1.4 on the next page.
Colors (X11 term)
1: blue, 2: red, 3: magenta, 4: orange, 5: brown, 6: lime and 7:

aqua

F.1.5. Other options. There are several other options that affect
how the plot looks. These are all optional.

� [nticks,nn] — the number of initial points used to calculate
the curve (the default is 10). GnuPlot starts evaluating the
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FIGURE F.1.4. Plot example 2

function to be plotted with this number of points and sub-
divides its intervals where the function changes rapidly, the
goal being to produce a smooth plot.

� [xlabel,"text"] — label for the x-axis.
� [ylabel,"text"] — label for the y-axis.
� [legend,"text1",. . . ,"textn"] — labels for n plots (must be in

the same order as the plotted functions!).
� [grid,nx,ny] — number of grid-lines.
� [yxratio, nn] — defines the shape of the rectangle in which

the plot is drawn.
� [title,"string"] — the title of the plot.
� logx,logy — not enclosed in square brackets. Causes loga-

rithmic scales to be used.
� same_xy — causes the aspect ratio of the plot to be 1.

NOTE. Some editors uses “styled” curly brackets for the quote
character. These are not recognized as quotes by wxMaxima (although
they display as straight quotes in wxMaxima!) and can lead to myste-
rious errors. Of course, using wxMaxima as your text-editor produces
the right kinds of quotes!

F.1.6. Parametric plots. Many geometric objects are defined para-
metrically. These can be plotted with plot2d and a list headed with the
keyword parametric. The general form is

plot2d ( [ parametric , two−funct ions_of_parameter ,
range_of_parameter ] ) ;

For instance, the command
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FIGURE F.1.5. Parametric plot 1

plot2d ( [ x^2+2 , [ parametric , cos ( t ) , s in ( t ) ,
[ t , −5 , 5 ] ] ] , [ x , −3 , 3 ] ) ;

FIGURE F.1.6. Code for mixed parametric plot

plot2d ( [ parametric , cos ( t ) , s in ( t ) , [ t ,−%pi ,% pi ] ] ,
[ x , −4/3 , 4 / 3 ] ) ;

produces the plot in figure F.1.5.
Parametric plots can be mixed with other types. For instance, the

code in figure F.1.6 produces the plot in figure F.1.7 on the following
page.

F.1.7. Contour plots. This involves plotting contour lines for a
function of two variables — these are like isobars on a weather map.
The function to be plotted appears in a list whose first element is the
keyword contour. Example:

plot2d ( [ contour , s in ( y ) * cos ( x ) ^ 2 ] ,
[ x , −4 , 4 ] , [ y , −4 , 4 ] ) ;

which produces the plot in figure F.1.8 on the next page. This
shows the level-sets for the function f (x, y) = sin(y) cos(x)2 at
f = −0.5, 0, 0.5.

F.2. plot3d

Many of the options for plot2d also apply to plot3d. Other options
include nomesh_lines.
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FIGURE F.1.7. Mixed parametric plot
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FIGURE F.1.8. Contour plot

F.2.1. Height plots. plot3d (expr, x_range, y_range, . . . , options,. . . )
Example:

plot3d ( u^2 − v^2 , [ u , −2 , 2 ] , [ v , −3 , 3 ] ,
[ grid , 100 , 1 0 0 ] ,
nomesh_lines ) ;

This produces the plot in figure F.2.1 on the facing page.
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FIGURE F.2.1. A 3d plot
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FIGURE F.2.2. A 3d plot with mesh

If we leave out the nomesh_lines, we get figure F.2.2 (so mesh
lines are the default).

Other options:
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FIGURE F.2.3. Plot with elevation 0

plot3d ( u^2 − v^2 , [ u , −2 , 2 ] , [ v , −3 , 3 ] ,
[ p a l e t t e , [ gradient , red , orange ,

yellow , green ] ] ,
[ grid , 100 , 1 0 0 ] ) ;

FIGURE F.2.4. Plot using palette

� elevation — the z-values are compressed or expanded to this
range. Setting [elevation,0] smashes the three-dimensional
plot to two dimensions. See figure F.2.3.

� palette — the set of colors to use in the plot. For instance,
the command in figure F.2.4 produces the plot in figure F.2.5
on the facing page. The gradient option causes the colors to
smoothly transition from low z-values (red) to high z-values
(green). There is also a color_bar option that draws the
palette and gives one an idea of what the colors mean.
Adding that option gives the plot in figure F.2.6 on page 333.

F.2.2. Parametric plots
. plot3d ([x(u,v),y(u,v),z(u,v)],[u,umin,umax],[v,vmin,vmax],options. . . )
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FIGURE F.2.5. Plot with a color palette
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FIGURE F.2.6. Plot with a color-bar
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FIGURE F.2.7. A Klein Bottle

Example:

a : 4 ;
x ( u , v , a ) : = ( a + cos ( v/2) * s in ( u ) −

s i n ( v/2) * s i n ( 2 * u ) ) * cos ( v ) ;
y ( u , v , a ) : = ( a + cos ( v/2) * s i n ( u ) −

s i n ( v/2) * s i n ( 2 * u ) ) * s in ( v ) ;
z ( u , v , a ) : = s in ( v/2) * s i n ( u )

+ cos ( v/2) * s i n ( 2 * u ) ;
plot3d ( [ x ( u , v , a ) , y ( u , v , a ) , z ( u , v , a ) ] ,

[ u,−%pi ,% pi ] , [ v,−%pi ,% pi ] ) ;

produces the plot in figure F.2.7

F.3. Standalone commands

We have two specialized plot commands that can to create graphic
objects.

� julia (x, y, ...options...) — creates a Julia set for the complex
number x + iy. Each pixel in the grid is given a color cor-
responding to the number of iterations it takes the sequence
that starts at that point to move out of the convergence cir-
cle of radius 2 centered at the origin. The number of pixels
in the grid is controlled by the grid plot option (default 30 by
30). The maximum number of iterations is set with the option
iterations.

� mandelbrot (options). — Draws a Mandelbrot set with the
same options as Julia.



F.4. PLOT-OUTPUTS 335

y

x

-1

-0.5

 0

 0.5

 1

-2 -1.5 -1 -0.5  0  0.5  1
 0

 5

 10

 15

 20

 25

 30

FIGURE F.3.1. The Mandelbrot set

For instance, the command

mandelbrot ( [ i t e r a t i o n s , 3 0 ] , [ x , −2 , 1 ] ,
[ y , −1 .2 , 1 . 2 ] ,
[ grid , 4 0 0 , 4 0 0 ] )

produces the plot in figure F.3.1.

F.4. Plot-outputs

Gnuplot generates plots on ‘terminals’. If no terminal is specified,
it defaults to ‘x11term’, the computer screen. Other terminals include:

� dumb — tries to do the plot in ASCII-art!
� ps — creates the plot in Postscript, suitable for printing. All

of the plots in this book were done on the ps terminal.
� svg — Scalable Vector Graphics, best for displaying on web

pages. These images can be easily resized without losing in-
formation (which is why they’re called ‘scalable’).

� png — Portable Network Graphics, a bitmapped format for
web pages.

� jpg — A lossy, compressed format, suitable for web pages
(jpg files for an image are much smaller than png ones for
the same image — sometimes by a factor of 100). This format
uses two-dimensional, discrete Fourier transforms — see sec-
tion 5.1 on page 81.

� pdf — Portable document format, also good for printing.
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with_slider_draw (
t , / * v a r i a b l e t o a t t a c h t o t h e s l i d e r * /
makelist ( j , j , 0 , 1 0 0 ) , / * l i s t o f i n t e g e r s * /
e x p l i c i t ( psi_n ( 1 0 0 , x , . 0 1 * t ) , x,−%pi ,% pi ) ,
/ * p l o t * /
yrange= [ 0 , 1 . 2 ] / * o p t i o n a l

g r a p h i c command * /
) ; / * end o f w i t h _ s l i d e r _ d r a w −command * /

FIGURE F.5.1. The with_slider_draw command

draw (
g lobal_opt ions ,
scene_1 ,
scene_2 ,
. . .
scene_n

) ;

FIGURE F.5.2. Basic draw-command

This is specified via the command:
[gnuplot_term,"terminal_name"]
One can also specify an output file in square brackets and quotes,

like the terminal. The command:
[gnuplot_out_file,"filename"]
Example:

plot2d ( x ^2 , [ x , − 5 , 5 ] , [ gnuplot_term , " svg " ] ,
[ gnuplot_out_file , " zz . svg " ] )

F.5. The draw commands

The draw-library contains commands that are much more com-
plex than those of plot2d and plot3d, but allow more complete access
to gnuPlot’s features. We have already seen one command of this li-
brary in section 4.5 on page 69, namely figure F.5.1

Although the draw-library is supposed to be loaded via the
load("draw")

command, this author has found that the draw-commands work with-
out explicitly loading this library, suggesting that it is loaded by de-
fault.

The basic command appears in figure F.5.2.
Global options apply to all of the scenes and include:
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� terminal — the type of output. The terminals in the draw-
library are:
• screen (default) — the computer screen. Can, optionally,

be coded as [screen,nn], where nn is a number. This al-
lows multiple windows with plots to be opened at the
same time.

• png — Portable Network Graphics. A bitmapped for-
mat.

• pngcairo — Portable Network Graphics using the Cairo
library (if it’s present). A bitmapped format that uses
antialiasing to produce a clearer image.

• jpg — A compressed, lossy format.
• gif — A compressed format with a limited number of

colors.
• eps — Encapsulated postscript in black and white (if

your output is meant to be printed, it will probably be
in black and white anyway). eps is like postscript except
that the file has the size of the image specified so it can
be displayed with a minimum of white space around it.
The postscript files generated by the plot commands are
actually eps.

• eps_color — Encapsulated postscript in all its colorful
glory.

• epslatex — Encapsulated postscript and LATEX code to
insert it into a LATEX document.

• epslatex_standalone — Encapsulated postscript and a
LATEX document to display it.

• svg — Scalable vector graphics. Ideal for web pages.
• canvas — Produces an html file with the graphics, using

the Canvas and gnuPlot javascript libraries. Good for
web pages, although most browsers support SVG.

• dumb — ASCII art!
• dumb_file — ASCII art in a file!
• pdf — produces a PDF document.
• pdfcairo — same as above but uses the Cairo library to

produce an antialiased image.
• wxt — an alternate drawing library. On many systems,

this is a synonym for screen.
• animated_gif — the gif format allows for animated im-

ages.
• multipage_pdfcairo — like pdfcairo but spanning mul-

tiple pages.
• multipage_pdf — like pdf but spanning multiple pages.
• multipage_eps — like eps but spanning multiple pages.
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• multipage_eps_color — like eps_color but spanning
multiple pages.

• aquaterm — aquaterm is a graphics terminal for the
Macintosh running MacOS X. Can, optionally, be coded
as [aquaterm,nn], where nn is a number. This allows
multiple windows with plots to be opened at the same
time.

� file_name — as mentioned in section F.4 on page 335, except
that the draw library adds its own extension to the name, like
‘pdf’, or ‘eps’ so you don’t have to.

� columns — each scene produces a plot, and multiple plots
are normally stacked on top of each other. columns>1 allows
multiple plots to appear side by side.

These are coded as option=value rather than in a list. Values that are
not arbitrary character strings do not need to be quoted1 unless they
are used as variables in the rest of your program2 in which case they
can be quoted with a single, single quote like ’eps. Example:

draw (
gr2d (

key=" s in ( x ) " , grid = [ 2 , 2 ] ,
e x p l i c i t (

s in ( x ) ,
x ,0 ,2*% pi

)
) ,
gr2d (

t i t l e =" zztop " ,
key=" cos ( x ) " , grid = [ 2 , 2 ] ,
e x p l i c i t (

cos ( x ) ,
x ,0 ,2*% pi

)
)

) ;

This produces two smaller plots, one on top of the other — see fig-
ure F.5.4 on the facing page. If we set the global option columns=2,
and type the command in figure F.5.3 on the next page, we get the
plots side-by-side and compressed horizontally in figure F.5.5 on the
facing page.

Scenes may take one of two forms:

1They are predefined data-items.
2Generally a bad idea!
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draw (
columns =2 ,
gr2d (

key=" s in ( x ) " , grid = [ 2 , 2 ] ,
e x p l i c i t (

s in ( x ) ,
x ,0 ,2*% pi

)
) ,
gr2d (

t i t l e =" zztop " ,
key=" cos ( x ) " , grid = [ 2 , 2 ] ,
e x p l i c i t (

cos ( x ) ,
x ,0 ,2*% pi

)
)

) ;

FIGURE F.5.3. Two-column plot
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FIGURE F.5.4. Drawing two plots in one command
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FIGURE F.5.5. Drawings with two columns
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� gr2d(options) — for a two-dimensional scene. The available
options (besides a function to be plotted) are
• bars ([x1,h1,w1], [x2,h2,w2, . . . ]) — draws bars centered

at values x1, x2,. . . with heights h1, h2,. . . and widths
w1, w2, . . . Options: color (see table F.5.1 on page 343
for color-names).

• ellipse (xc, yc, a, b, ang1, ang2) — plots an ellipse
centered at [xc, yc] with horizontal and vertical semi
axis a and b, respectively, starting at angle ang1 and
ending at angle ang2. Options: transparent (= true or
false), fill_color, border (= true or false), line_width,
key, line_type and color (see table F.5.1 on page 343 for
color-names).

• explicit
• image
• implicit
• key — the draw-version of “legend.” key = "string".
• parametric (xfun,yfun,par,parmin,parmax).
• points ([[x1,y1], [x2,y2],. . . ]) — Options: point_size,

point_type, points_joined (= true or false), line_width,
key, line_type and color (see table F.5.1 on page 343 for
color-names). Point_types: bullet, circle, plus, times,
asterisk, box, square, triangle, delta, wedge, nabla,
diamond, lozenge.

• polar (radius,ang,minang,maxang) Options color,
line_width, (see table F.5.1 on page 343 for
color-names).

• polygon ([x1, x2,. . . ], [y1, y2, . . . ]) or polygon ([[x1, y1],
[x2, y2], . . . ]) — Options color, fill_color, line_width,
border (= true or false) (see table F.5.1 on page 343 for
color-names).

• quadrilateral([x1, y1], [x2, y2], [x3, y3], [x4, y4]) —
Options: transparent (= true or false), fill_color, border
(= true or false), line_width, key, xaxis_secondary,
yaxis_secondary, line_type, transform and color (see
table F.5.1 on page 343 for color-names).

• title = "string".
• rectangle ([x1,y1], [x2,y2]) — The points are opposite

vertices. Options: transparent (= true or false),
fill_color, border (= true or false), line_width, key,
line_type and color (see table F.5.1 on page 343 for
color-names).

• triangle ([x1,y1], [x2,y2], [x3,y3]) — Options: transpar-
ent (= true or false), fill_color, border (= true or false),
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draw (
gr2d (

e x p l i c i t (
s in ( x ) ,
x ,0 ,2*% pi

)
e x p l i c i t (

cos ( x ) ,
x ,0 ,2*% pi

)
)

) ;

FIGURE F.5.6. Multiple functions in the same scene

line_width, key, line_type and color (see table F.5.1 on
page 343 for color-names).

• vector([x,y], [dx,dy]) — plots vector [dx,dy] with
origin in [x,y]. Options: head_both (= true or false),
head_length, head_angle, head_type, line_width,
line_type, key and color (see table F.5.1 on page 343 for
color-names).

The options explicit or implicit are required if functions are
plotted. plot2d automatically decided whether a plot is ex-
plicit or implicit by how one codes it. The draw-library re-
quires you to specify. Multiple functions can be plotted in the
same scene (as the code in figure F.5.6 shows), in which case
they will overlap each other (see figure 15.2.2 on page 282 for
an example of this).

� gr3d(options) — for a three-dimensional scene. The available
options are:
• cylindrical(radius, z, minz, maxz, azi, minazi, maxazi)

— plots the function radius(z, azi) defined in cylindrical
coordinates, with variable z taking values from minz
to maxz and azimuth azi taking values from minazi
to maxazi. Options: xu_grid, yv_grid, line_type, key,
wired_surface, enhanced3d and color (see table F.5.1
on page 343 for color-names).

• elevation_grid (mat,x0,y0,width,height) — draws
matrix mat in 3D space. z values are taken from mat,
the abscissas range from x0 to x0 + width and ordinates
from y0 to y0 + height. Element a(1,1) is projected on
point (x0,y0+height), a(1,n) on (x0+width,y0+height),
a(m,1) on (x0,y0), and a(m,n) on (x0+width,y0).
Options: line_type, line_width, key, wired_surface,
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enhanced3d and color (see table F.5.1 on the next page
for color-names).

• explicit
• implicit
• label
• mesh (row_1,row_2,. . . ) — Argument row_i is a

list of n 3D points of the form [[x_i1,y_i1,z_i1],
...,[x_in,y_in,z_in]], and all rows are of equal length.
All these points define an arbitrary surface in 3D. It’s a
generalization of the elevation_grid object. Options:
line_type, line_width, color, key, wired_surface,
enhanced3d and transform (see table F.5.1 on the facing
page for color-names).

• parametric
• parametric_surface
• points
• quadrilateral
• spherical
• triangle
• tube (xfun,yfun,zfun,rfun,p,pmin,pmax). Draws a tube in

3D. (xfun,yfun,zfun,rfun) is the parametric curve with pa-
rameter p taking values from pmin to pmax. Circles of
radius rfun(p) are placed with their centers on the para-
metric curve and perpendicular to it. Options: xu_grid,
yv_grid, line_type, line_width, key, wired_surface, en-
hanced3d, color and capping (see table F.5.1 on the next
page for color-names). The command

draw3d (
enhanced3d = true ,
xu_grid =100 ,
tube ( ( 3 + cos ( 3 * t ) ) * cos ( 2 * t ) ,

(3+ cos ( 3 * t ) ) * s in ( 2 * t ) ,
s i n ( 3 * t ) , . 5 , t ,−%pi ,% pi )

) ;

produces the image of an overhand knot in figure F.5.7
on the facing page.

• vector ([x,y,z], [dx,dy,dz]) — Draws the vector [dx,dy,dz]
starting from [x,y,z]. Options: head_both, head_length,
head_angle, head_type, line_width, line_type, key and
color (see table F.5.1 on the next page for color-names).

The options explicit or implicit are required if functions are
plotted. plot2d automatically decided whether a plot is ex-
plicit or implicit by how one codes it. The draw-library re-
quires you to specify.
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FIGURE F.5.7. The trefoil knot

white black gray0 grey0
gray10 grey10 gray20 grey20
gray30 grey30 gray40 grey40
gray50 grey50 gray60 grey60
gray70 grey70 gray80 grey80
gray90 grey90 gray100 grey100

gray grey light_gray light_grey
dark_gray dark_grey red light_red
dark_red yellow light_yellow dark_yellow

green light_green dark_green spring_green
forest_green sea_green blue light_blue

royalblue skyblue cyan light_cyan
dark_cyan magenta light_magenta dark_magenta
turquoise light_turquoise dark_turquoise pink
light_pink dark_pink coral light_coral
orange_red salmon light_salmon dark_salmon
aquamarine khaki dark_khaki goldenrod

light_goldenrod dark_goldenrod gold beige
brown orange dark_orange violet

dark_violet plum purple "xhhhhhh"
TABLE F.5.1. Colors in the draw-library

Within a scene, plots of functions (not all plots are of functions!) are
either

� explicit — plots of functions that you list, or
� implicit — plots defined by equations.

As the examples in figures F.5.4 and F.5.5 on page 339 show, it is usu-
ally better to draw one scene at a time. The following abbreviations
make this easier:

� draw2d(stuff )=draw(gr2d(stuff )) Its options (including
global ones) are identical to those of gr2d.
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� draw3d(stuff )=draw(gr3d(stuff )) Its options (including
global ones) are identical to those of gr2d.



APPENDIX G

Graph-theoretic commands

All of these commands are implemented in the graph-theoretic
library, loaded via

load(graphs)

G.1. Graph-creation and display

We create graphs via the commands
� create_graph(v_list , e_list ) creates a graph data-structure

with vertices equal to the list v_list and edges equal to e_list,
where each is a list [v1,v2], where v1 and v2 are the end-
vertices of the edge. A weighted edge is a list [[v1,v2],w] where
w is the weight of the edge. For example, we could have

z : create_graph ( [ 0 , 1 ] , [ [ 0 , 1 ] ] )

to create a graph with two vertices connected by one edge.
Having done so, we could print it out with the command

print_graph ( z )

which would produce

Graph on 2 v e r t i c e s with 1 edges .
Adjacencies :

0 : 1
1 : 0

or

draw_graph ( z , show_id= t rue )

which produces the image in figure G.1.1 on page 347.
‘show_id’ causes the identities of the vertices to be
displayed. This command takes other options, like
• vertex_size (in pixels)
• vertex_color
• edge_width
• edge_color
• show_edges
• show_edge_width

345
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• show_edge_color
• show_vertices=v_list: display vertices in the list v_list

using a different color
• show_vertex_type=type: defines how vertices in

show_vertices are displayed.
• show_vertex_size=size: the size of vertices in

show_vertices.
• show_vertex_color=c: color used for displaying vertices

in the show_vertices list.
• show_label=true — displays the labels attached to ver-

tices in a graph. See page 346. Note: If show_id and
show_label are both true, show_id takes precedence.

• head_angle=angle: the angle for the arrows displayed
on arcs (in directed graphs). Default value: 15.

• head_length=len: the length for the arrows displayed
on arcs (in directed graphs). Default value: 0.1.

• terminal
• file_name
• program — by default, wxMaxima uses a program

called ‘spring_embedding’ to format graphs. There’s
the option of using other programs, especially those
of the free graphviz package (which must be installed
separately). The programs in this package include ‘dot’,
‘neato’, and ‘twopi’, which are especially suited for very
large and complex graphs. The graphs in figure 9.1.2 on
page 172 and 7.4.1 on page 134 were generated using
‘dot’.

• redraw=true — normally, when a graph is redrawn, wx-
Maxima saves the locations of the vertices so additional
graphs will visually correspond to the original graph
(useful in indicating the shortest path in figure 9.2.2 on
page 181, for instance). The option, redraw=true, causes
each redraw of the graph to start from scratch.

See the section on the draw-commands — F.5 on page 336 for
the other options.

We also have a variant of create_graph:

create_graph ( n , [ edges ] )

where vertices are numbered from 0 to n − 1 . In both in-
stances of create_graph, we have the option of specifying di-
rected=true, which creates a directed graph (= a digraph), in
which each edge has a direction. You can also attach labels to
vertices of a graph:

g : create_graph ( [ [ 0 , " Zero " ] , [ 1 , "One " ] ] , [ [ 0 , 1 ] ] )
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FIGURE G.1.1. A very simple graph

FIGURE G.1.2. Complete graph on 20 vertices

� An especially powerful command is

make_graph ( n , f )

where f is a predicate function, a function that takes a pair of
vertices as parameters and returns true or false. Every pair
of vertices that causes f to return true gets an edge connecting
them, and these are the only edges. The vertices on this graph
are numbered from 1 to n. We have already seen this in ex-
ample 9.2.1 on page 179. If ‘directed=true’ in the command,
it creates a digraph.

� empty_graph(n) — creates a graph with vertices 0 through
n-1 and no edges.

� complete_graph(n) — creates a graph with vertices 0
through n-1 and edges between every pair of vertices. For
instance

z : complete_graph ( 2 0 ) ;
draw_graph ( z )

produces figure G.1.2.
� complete_bipartite_graph(m,n) — creates a complete bipar-

tite graph with m and n vertices. A bipartite graph is one
whose vertices can be divided into two sets in such a way
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FIGURE G.1.3. Complete bipartite graph (3,5)

FIGURE G.1.4. 5-dimensional cube

that all the edges connect vertices in one set to vertices in the
other (and there are no edges within either of these sets).

For instance, the commands

z : complete_bipartite_graph ( 3 , 5 ) ;
draw_graph ( z )

produce the graph in figure G.1.3.
� cube_graph(n) — produces a graph representing an

n-dimensional cube.
The commands

z : cube_graph ( 5 ) ;
draw_graph ( z )

produce the graph in figure G.1.4.
� circulant_graph(n, [a1, . . . , ak]) — generates a graph with

vertices 0, . . . , n − 1 where vertex i is connected to the 2k
vertices.

i ± a1 mod n, . . . , i ± ak mod n

for all 0 ≤ i < n.
The commands

z : circulant_graph ( 7 , [ 2 , 3 ] ) ;
draw_graph ( z )

produce the graph in figure G.1.5 on the facing page.

� cycle_graph(n) — returns the cycle on n vertices.
� cycle_digraph(n) — returns the directed cycle on n vertices.
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FIGURE G.1.5. Circulant graph

� empty_graph(n) —returns the graph with n vertices and no
edges.

� grid_graph(n, m) — returns an n × m grid.
� path_graph(n) — returns a graph that consists of a single

path on n vertices.
� path_digraph(n) — returns a graph that consists of a single

directed path on n vertices.
� random_graph(n, p) — returns a random graph on n vertices

where each edge appears with probability p.
� random_digraph(n, p) — returns a random directed graph

on n vertices where each edge appears with probability p.
� random_bipartite_graph(a, b, p) — returns a random bipar-

tite graph on a vertices and b vertices where each edge ap-
pears with probability p.

� random_regular_graph(n, d) — a random graph on n ver-
tices where each vertex has degree d. If d is omitted, it is
assumed to be 3.

� random_graph1(n, m) — create a graph on n vertices and m
random edges.

� random_network(n, p, w) — returns a random network on
n + 2 vertices where edges appear with probability p and are
weighted with random weights between 0 and w. Think of
a network as one of water pipes where the capacity of each
pipe is given by its weight. One vertex is designated as the
source, where the water enters the network, and another is
the sink, where water exits it. The command

[ net , source , s ink ] : random_network ( n , p ,w)

returns a list, where net is the weighted digraph defining the
network, and source and sink are the corresponding vertex-
numbers. Example:

[ net , source , s ink ] : random_network ( 1 0 , . 2 , 5 )

produces
[DIGRAPH(12 vertices, 32 arcs),10,11]
and
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FIGURE G.1.6. Random network

draw_graph ( net , show_id=true ,
show_weight=true ,
show_vert ices = [ 1 0 , 1 1 ] ,
show_vertex_size =7 ,
head_size = .005 ,
head_angle =7 ,
show_vertex_type= c i r c l e ,
ver tex_type= c i r c l e , v e r t e x _ s i z e = 4 ) ;

produces figure G.1.6.
� random_tournament(n) — returns a random tournament on

n vertices. A tournament is a complete graph with directed
edges. Think of it as representing a round-robin tournament
where each vertex is a participant, and a directed edge points
from the winner to the loser of the competition.

� random_tree(n) — a tree is a graph with no cycles. For in-
stance:

t : random_tree ( 1 0 ) ;

generates a random tree, and the command

draw_graph ( t , show_id=true ,
ver tex_type= c i r c l e , v e r t e x _ s i z e = 4 ) ;

produces figure G.1.7 on the facing page.
� underlying_graph(g) — if g is a digraph, it returns the cor-

responding undirected graph.
� wheel_graph(n) — returns the “wagon wheel” shaped

graph with n vertices on the outer rim and one extra vertex
for the wheel’s hub.
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FIGURE G.1.7. Random tree

G.2. Operations with graphs

� add_edge(e, gr) — Adds the edge e to the graph gr. Re-
lated command: add_edges(e_list, gr) does the correspond-
ing thing with a list of edges.

� add_vertex(v, gr) — does what the name implies: it adds ver-
tex v to graph gr. Related command: add_vertices(list,gr)
does the corresponding thing with a list of vertices.

� clear_edge_weight(e, g) — removes the weight from edge e
in graph g. Returns the edge-weight that was cleared.

� clear_vertex_label(v, g) — removes the label from vertex v
in graph.

� degree_sequence(g) — r returns a list of the degrees of the
vertices of g.

� edge_coloring(g) — returns an optimal edge-coloring of the
graph g in the format

[number_colors,[[edge1,color1],[edge2,color2],...]]
� get_edge_weight(e, g) — returns the weight of the edge e in

the graph g. The edge is represented by a list of two vertices.
� get_vertex_label(v, g) — does what its name implies.
� copy_graph(g) — does what its name implies.
� complement_graph(g) — returns the complement of g. Ev-

ery graph is a subgraph of the complete graph on its set of
vertices. The complement is what is left after g becomes de-
ducted from the complete graph.

� contract_edge(e, g) — collapses edge e in graph g, identify-
ing its endpoints.

� remove_edge(e, g) — removes edge e from graph g.
� remove_vertex(v, g) — removes vertex v from gr and all in-

cident edges.
� graph_product(g1, g2) — forms the product of the two

graphs.
� set_edge_weight(e, w, g) — sets the weight of edge e in

graph g to w.
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� set_vertex_label(v, l, g) — sets the label of vertex v in graph
g to l.

G.3. Graph properties

� adjacency_matrix(g) — returns the adjacency matrix of g. If
g has n vertices, this is an n × n matrix, A, where Ai,j = 1 if
an edge connects vertex i with vertex j and 0 otherwise.

� average_degree (g) — does what its name implies.
� edges(g) — returns a list of the edges of g.
� girth(g) — the length of the shortest cycle in g.
� biconnected_components(g) — returns lists of vertices that

span the maximal biconnected subgraphs of g. An undirected
graph is biconnecte if it remains connected after any one ver-
tex is deleted. A directed graph is biconnected if any two ver-
tices can be connected by two paths that do not share any
vertices except the endpoints.

� bipartition(g) — attempts to partition the vertices of g into
two groups so that all edges connect vertices in one group to
vertices in the other. If this is impossible (so the graph is not
naturally bipartite), it returns an error.

� chromatic_number(g) — the minimum number of colors
needed to color the vertices of g so that no two adjacent
vertices are the same color. There’s the famous Four Color
Problem1 that says

“The chromatic number of a planar loopless
graph is 4”

or, phrased differently,
“A map with finite-length boundaries can be
colored with only four colors”

see [71] for the fascinating history behind this problem.
� chromatic_index(g) — the minimum number of colors

needed to color the edges of g so that no two edges incident
on the same vertex are the same color. This is the chromatic
number of the line-graph of g.

� connected_components(g) — a graph is connected if there ex-
ists paths connecting every vertex to every other vertex. This
command returns the maximal connected subgraphs of g.

� graph_charpoly(g, x) — returns the characteristic
polynomial — see definition 7.4.1 on page 124 — of the
adjacency matrix of the graph g in the variable x.

� graph_eigenvalues(g) — returns the eigenvalues2 — see sec-
tion 7.4 on page 124 — of the adjacency matrix of the graph g.

1That took more than 100 years to solve!
2Since the adjacency matrix is real-symmetric, the eigenvalues will all be real —

see corollary 6.2.91 of [58].



G.3. GRAPH PROPERTIES 353

� induced_subgraph(V, g) — is g is a graph and V is a subset
of its vertices, this produces the graph whose vertices are V
and whose edges are those of g connecting vertices in V.

� is_biconnected(g) — An undirected graph is biconnected if it
remains connected after any one vertex is deleted. A directed
graph is biconnected if any two vertices can be connected by
two paths that do not share any vertices except the endpoints.

� is_bipartite(g) — a bipartite graph is one whose vertices can
be divided into two groups such that every edge in g con-
nects a vertex in one group to one in the other. In other
words, this is a graph whose chromatic number is 2.

� is_digraph(g) — self-explanatory.
� is_connected(g) — a graph is connected if there exists paths

connecting every vertex to every other vertex.
� is_edge_in_graph(e, g) — self-explanatory.
� is_graph(g) — self-explanatory.
� is_graph_or_digraph(g) — self-explanatory.
� is_isomorphic(g1, g2) —
� line_graph(g) — returns the line-graph of the graph, g. This

is a graph whose vertices correspond to the edges of g and
two vertices are incident if the corresponding edges in g have
a common vertex.

� max_independent_set(g) — It’s the maximum set of vertices
such that no vertex in the set is adjacent to any other.

� max_matching(g) — returns a maximum matching of the
graph g. A matching of a graph is a selection of edges, no
two of which are incident on the same vertex. It’s called a
matching because each edge pairs up (i.e. “matches”) its end-
points. This is a maximum independent set of the line-graph
of g. Example:

z : circulant_graph ( 7 , [ 2 , 3 ] ) ;
m: max_matching ( z ) ;

produces
[[2, 6], [1, 5], [0, 4]]

and

draw_graph ( z , show_id=true ,
show_edges=m,
show_edge_width =7 ,
ver tex_type= c i r c l e , v e r t e x _ s i z e = 4 ) ;

produces figure G.3.1 on the next page.

� hamilton_cycle(g) — returns a Hamiltonian cycle of g if one
exists and the empty list otherwise. A Hamilton cycle is one
that includes each vertex exactly once.
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FIGURE G.3.2. A Hamilton cycle

f : cube_graph ( 4 ) ;
h : hamil ton_cycle ( f ) ;

returns

[15, 11, 3, 7, 6, 2, 10, 14, 12, 8, 0, 4, 5, 1, 9, 13, 15]

and

draw_graph ( f , show_id=true ,
show_edges=v e r t i c e s _ t o _ p a t h ( h ) ,
show_edge_width =7 ,
ver tex_type= c i r c l e , v e r t e x _ s i z e = 4 ) ;

produces figure G.3.2.

� is_planar(g) — a graph is planar if it can be embedded in a
plane without edges crossing each other.

� is_vertex_in_graph(v, g) — self-explanatory.
� is_tree(g) — a tree is a graph without cycles.
� laplacian_matrix(g) — If graph g has n vertices, then the

Laplacian, L, is given by L = D − A, where D is an n × n
diagonal matrix whose diagonal entries are the degrees of the
vertices of g and A is the adjacency matrix of g.

� max_clique(g) — a clique in a graph is a subgraph with the
property that every vertex in it is connected to every other
vertex in it. In other words the clique is a complete graph on
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FIGURE G.3.3. Network

its vertices. The maximum clique is the one with the largest
number of vertices.

� max_degree(g) — the maximum number of edges incident
on any vertex.

� max_flow(n, s, t) — if n is a network (weighted, directed
graph) and s is a source vertex and t is a sink vertex, this
gives the maximum flow possible from s to t through the
network, where the flow through each edge is given by its
weight. Given the network in figure G.3.3, the command

max_flow ( net , 1 0 , 1 1 )

produces the output [flow,list_of_edges] where each edge is
listed with the flow through it. In this case, the flow is 17.

� min_degree(g) — the minimum number of edges incident
on any vertex.

� min_edge_cut(g) — the minimum number of edges whose
removal will disconnect the graph g.

� min_vertex_cut(g) — the minimum number of vertices
whose removal will disconnect the graph g.

� min_vertex_cover(g) — a vertex cover of a graph is a set of
vertices that includes at least one endpoint of every edge of
the graph. A minimum vertex cover is the smallest such set.

� minimum_spanning_tree(g) — returns a minimum
spanning tree of g — see definition 9.3.1 on page 185.
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FIGURE G.3.4. Minimal spanning tree

For instance, the command

roads : create_graph ( [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ,
9 , 1 0 , 1 1 , 1 2 , 1 3 ] ,

[ [ [ 1 , 2 ] , 5 ] , [ [ 1 , 3 ] , 2 ] , [ [ 3 , 9 ] , 1 0 ] , [ [ 2 , 1 0 ] , 3 ] ,
[ [ 3 , 5 ] , 1 ] , [ [ 2 , 1 3 ] , 5 ] , [ [ 2 , 7 ] , 3 ] , [ [ 4 , 8 ] , 7 ] ,
[ [ 5 , 7 ] , 1 ] , [ [ 4 , 1 0 ] , 1 ] , [ [ 7 , 8 ] , 4 ] , [ [ 6 , 8 ] , 5 ] ,
[ [ 2 , 6 ] , 1 0 ] , [ [ 4 , 5 ] , 1 ] , [ [ 7 , 9 ] , 2 ] ,
[ [ 4 , 1 1 ] , 6 ] , [ [ 1 1 , 1 2 ] , 3 ] , [ [ 4 , 1 3 ] , 5 ] ,

[ [ 1 2 , 1 3 ] , 1 ] ]
) ;

creates a weighted graph, and

t : minimum_spanning_tree ( roads ) ;

Then

draw_graph ( roads , show_id=true ,
show_weight=true ,
show_edges=edges ( t ) ,
show_edge_width =7 ,
ver tex_type= c i r c l e , v e r t e x _ s i z e = 4 ) ;

produces figure G.3.4.
� neighbors(v, g) — the neighbors of vertex v in graph g.
� odd_girth(g) — returns the length of the shortest cycle of odd

length.
� out_neighbors(v, g) — returns a list of the vertices of a di-

graph, g, that lie at the ends of edges pointing away from ver-
tex v.

� radius(g) — returns the minimum eccentricity of any vertex
in graph g. See the vertex_eccentricity-command.

� planar_embedding(g) — when a graph is embedded in the
plane (with no edges crossing each other), it has cycles that
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subdivide the plane into disjoint regions. This command re-
turns a list of these cycles. Note: The graph g must be bicon-
nected. It g is not planar, this command returns false.

� shortest_path(u, v, g) — the shortest (by number of edges)
path from vertex u to vertex v in graph g.

� shortest_weighted_path(u, v, g) — the shortest (by total
weight of its edges) path from vertex u to vertex v in the
weighted graph g. If no path exists (i.e., in a directed graph)
the total weight is listed as ∞.

� topological_sort(g) — gives a topological sort of the directed
acyclic graph, g. Suppose the vertices of g represent tasks,
and whenever we have

A

B

Task A must be completed before Task B can begin. A topo-
logical sort of g lists the tasks in the order they must be per-
formed (from left to right), “linearizing” the graph of depen-
dencies. For instance:

g : create_graph (
[ 1 , 2 , 3 , 4 , 5 ] ,
[

[ 1 , 2 ] , [ 2 , 5 ] , [ 5 , 3 ] ,
[ 5 , 4 ] , [ 3 , 4 ] , [ 1 , 3 ]

] ,
d i r e c t e d =true )

creates the directed graph in figure G.3.5 on the following
page, and the command

t o p o l o g i c a l _ s o r t ( g ) ;

results in
[1, 2, 5, 3, 4]

If g is not acyclic3, this command returns an empty list.
� vertex_coloring(g) — returns an optimal coloring of the ver-

tices of g in the form
[number_of_colors,[[v1,c1],[v2,c2],...]]

� vertex_eccentricity(v, g) — returns the maximum distance of
vertex v from any other vertex in graph g. Distance is defined
to be the length of the shortest path.

� vertex_in_degree(v, g) — number of edges pointing toward
vertex v in digraph g.

3So some tasks could not be begun until after they were completed!



358 G. GRAPH-THEORETIC COMMANDS

1

2

3

5

4

FIGURE G.3.5. A directed acyclic graph

� vertex_out_degree(v, g) — number of edges pointing away
from vertex v in digraph g.

� vertices(g) — returns a list of the vertices of g.
� wiener_index(g) — returns the Wiener Index of the graph g.

This is the sum of distances between all (not just adjacent)
pairs of vertices in g. This is used in chemical graph theory
to distinguish isomers of molecules.

G.4. Special graphs

These are graphs with special theoretic properties.
� clebsch_graph() — In the mathematical field of graph theory,

the Clebsch graph is either of two complementary graphs on
16 vertices, a 5-regular graph with 40 edges and a 10-regular
graph with 80 edges. The 80-edge graph is the dimension-5
halved cube graph; it was called the Clebsch graph by Sei-
del (1968) because of its relation to the configuration of 16
lines on the quartic surface discovered in 1868 by the Ger-
man mathematician Alfred Clebsch.

� dodecahedron_graph() — the Platonic graph corresponding
to the connectivity of the vertices of a dodecahedron.

� flower_snark(n) — returns the flower snark on 4n vertices
and 6n edges.

� frucht_graph() — the Frucht graph is a cubic graph with 12
vertices, 18 edges, and no nontrivial symmetries (that is,
every vertex can be distinguished topologically from every
other vertex). It was first described by Robert Frucht in 1939.

� grotzch_graph() — the Grötzsch graph is a triangle-free
graph with 11 vertices, 20 edges, chromatic number 4, and



G.5. INPUT/OUTPUT OF GRAPHS 359

crossing number 5. It is named after German mathematician
Herbert Grötzsch, who used it as an example in connection
with his 1959 theorem that planar triangle-free graphs are
3-colorable.

� heawood_graph() — This graph is cubic, and all cycles in the
graph have six or more edges. Every smaller cubic graph has
shorter cycles, so this graph is the smallest cubic graph of
girth 6.

� icosahedron_graph() — the Platonic graph corresponding to
the connectivity of the vertices of a icosahedron.

� mycielski_graph(g) — given an undirected graph, g,
this returns the Mycielskian, µ(g), of g. The construction
preserves the property of being triangle-free but increases
the chromatic number. By applying the construction
repeatedly to a triangle-free starting graph, Mycielski
showed that there exist triangle-free graphs with arbitrarily
large chromatic number.

� petersen_graph(n, d) — Returns the Petersen graph, Pn,d,
formed by connecting the vertices of a regular n-gon to
the corresponding vertices of a star polygon with Schläfli
symbol {n/d}. petersen_graph() uses the default values
n = 5, d = 2.

� tutte_graph() — the Tutte graph is a 3-regular graph
with 46 vertices and 69 edges named after W. T. Tutte. It
has chromatic number 3, chromatic index 3, girth 4 and
diameter 8. The Tutte graph is a cubic polyhedral graph,
but is non-hamiltonian. Therefore, it is a counterexample
to Tait’s conjecture that every 3-regular polyhedron has a
Hamiltonian cycle.

G.5. Input/Output of graphs

The dimacs export and import algorithms handle the widest va-
riety of graphs and digraphs, but the graph6 and sparse6 algorithms
produce much more compact results.

� dimacs_export(g, f ) — writes the graph, digraph, or
weighted digraph g to the file, f , in the dimacs format. The
result is a text file. The filename f can be optionally followed
by a sequence of comma-separated comment-strings that
will be recorded in the file.

� dimacs_import( f ) — returns the graph, digraph, or network
in file f .

� graph6_decode(s) — decodes the string s and returns the
undirected graph.

� graph6_encode(g) — returns a string that encodes the undi-
rected graph g.
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� graph6_export(L, f ) — converts the graphs in the list L into
the graph6 format and writes them to file f .

� graph6_import( f ) — returns a list of graphs imported from
the file f .

� sparse6_decode(s) — decodes the string s and returns the
undirected graph.

� sparse6_encode(g) — returns a string that encodes the undi-
rected graph g.

� sparse6_export(L, f ) — converts the graphs in the list L into
the graph6 format and writes them to file f .

� sparse6_import( f ) — returns a list of graphs imported from
the file f .



Solutions to Selected Exercises

Chapter 1, 1.1 Exercise 1 (p. 7) The number of 5-card sets one can form from a
52-card deck is binomial(52,5), which is 2598960.

Chapter 1, 1.1 Exercise 2 (p. 7) The command rectform(2/(3+%i)); gives

3
5
− i

5
Chapter 1, 1.1 Exercise 3 (p. 7) The command rectform(3*%i+1/(1−%i)); gives

1
2
+

7i
2

Chapter 1, 1.1 Exercise 4 (p. 7) According to the Binomial Theorem

cos nθ + i sin nθ = (cos θ + i sin θ)n

= cosn θ + n cosn−1 θ · i sin θ +
n(n − 1)

2!
cosn−2 θ · i2 sin2 θ + · · ·

+ n cos θ · in−1 sinn−1 θ + in sinn θ

so the real part of this equation gives

cos nθ = cosn θ − n(n − 1)
2!

cosn−2 θ sin2 θ +
n(n − 1)(n − 2)(n − 3)

4!
cosn−4 θ sin4 θ + · · ·

and the imaginary part gives

sin nθ = n cosn−1 θ sin θ − n(n − 1)(n − 2)
3!

cosn−3 θ sin3 θ + · · ·

Chapter 2, 2.1 Exercise 1 (p. 15) Proposition 2.1.6 on page 12 shows that
gcd(n, m) = 1 if and only if n and m have no primes in common in their
prime-power factorizations.

Chapter 2, 2.1 Exercise 2 (p. 15) Define a function f : Z×
n·m → Z×

n × Z×
m by

mapping x ∈ Z×
n·m to (x mod n, x mod m) ∈ Z×

n × Z×
m . The Chinese

Remainder Theorem implies that this is 1-1.
Chapter 2, 2.2 Exercise 1 (p. 16) Because ϕ(100) = 40 (use the
totient-command), and 40|1000, so 71000 ≡ 1 (mod 100).

Chapter 2, 2.3 Exercise 1 (p. 17) We write

s : i n t e g e r _ p a r t i t i o n s ( 1 0 0 , 2 ) ;
xprimep ( x ) := integerp ( x )

and ( x > 1) and primep ( x ) ;
subset ( s ,

lambda ( [ x ] , every ( xprimep , x ) ) ) ;

361
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and we get

{[53, 47] , [59, 41] , [71, 29] , [83, 17] , [89, 11] , [97, 3]}
so there are 6 ways to write 100 as a sum of two primes.

Chapter 3, 3.1 Exercise 1 (p. 31) If we set r:allroots(x^5+2*x-5); we get equa-
tions 3.1.2 on page 30. Now do

map(rhs,r) or (’rhs,r) and you will get
[1.208917813386895,
0.9409544200647337*%i-1.167042002184508,
-0.9409544200647337*%i-1.167042002184508,
1.234436184384533*%i+0.5625830954910601,
0.5625830954910601-1.234436184384533*%i]
with no x=.

Chapter 3, 3.2 Exercise 1 (p. 40) This is easily coded:

c ( n ) : = block (
[ ] ,
i f equal ( n , 1 ) then return ( 1 ) ,
i f evenp ( n ) then return ( n /2) ,
3*n+1

) ;

Chapter 3, 3.4 Exercise 1 (p. 43) The implicit equation is

x2 + 2 yx2 + 2 y2x2 + yx − y2x − y = 0

Chapter 3, 3.4 Exercise 2 (p. 43) The resultant is

r = 4 y2x2 − x2 + y2

so the implicit equation is r = 0.
Chapter 3, 3.4 Exercise 3 (p. 43) The implicit equation is

−2 y + 1 − 2 x − 2 yx2 + x2 = 0

Chapter 3, 3.4 Exercise 4 (p. 43) The resultant in question is

x4 + 2 x3 + x2 − 4 x = x(x − 1)(x2 + 3x + 4)

It follows that x can have one of the 4 values{
0, 1,

−3 ± i
√

7
2

}
Each of these x-values turns out to correspond to a unique y-value. Our four
solutions are

(x, y) =

{
(0, 1) , (1, 0) ,

(
−3 − i

√
7

2
,

3 − i
√

7
2

)
,

(
−3 + i

√
7

2
,

3 + i
√

7
2

)}
The solve-command will also reach this solution.

Chapter 3, 3.4 Exercise 5 (p. 43) We get

Res(s + t − x, s2 − t2 − y, s) = −2xt + x2 − y

Res(s2 − t2 − y, 2s − 3t2 − z, s) = 9 t4 + 6 t2z − 4 t2 − 4 y + z2

Res(s + t − x, 2s − 3t2 − z, s) = −3 t2 − 2 t + 2 x − z
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and

R = Res(−2xt + x2 − y,−3 t2 − 2 t + 2 x − z, t) =

− 3 x4 + 4 x3 + 6 x2y − 4 x2z + 4 yx − 3 y2

so the implicit equation is

3 x4 − 4 x3 − 6 x2y + 4 x2z − 4 yx + 3 y2 = 0

If we compute the resultant of 9 t4 + 6 t2z − 4 t2 − 4 y + z2 and −2xt +
x2 − y we get

9 x8 − 36 x6y + 24 x6z − 16 x6 + 54 x4y2

− 48 x4yz − 32 x4y + 16 x4z2

− 36 x2y3 + 24 x2y2z − 16 x2y2 + 9 y4

which turns out to be a multiple of R.
Chapter 4, 4.1 Exercise 1 (p. 54) Use the command

desolve ( [ ’ d i f f ( x ( t ) , t )=3* x ( t ) −4*y ( t ) ,
’ d i f f ( y ( t ) , t )=2* x ( t )+3* y ( t ) ] , [ x ( t ) , y ( t ) ] ) ;

to get

x(t) = −
2 y(0)%e3t sin

(
2

3
2 t
)
−
√

2 x(0)%e3t cos
(

2
3
2 t
)

√
2

y(t) =
x(0)%e3t sin

(
2

3
2 t
)
+
√

2 y(0)%e3t cos
(

2
3
2 t
)

√
2

Chapter 4, 4.1 Exercise 2 (p. 55) Write

dy
dx

= yprime

d yprime
dx

= 3 ∗ yprime3 −2 ∗ y

Chapter 4, 4.1 Exercise 3 (p. 55) First, notice that the ode2-command gives
False, admitting defeat in solving this differential equation exactly. We solve
the exercise by typing:

plotdf ( x−y ^2 , [ xfun , " s q r t ( x ) ; − s q r t ( x ) " ] ,
[ t r a j e c t o r y _ a t , − 1 , 3 ] ,
[ direct ion , forward ] ,
[ y , − 5 , 5 ] , [ x , − 4 , 1 6 ] ) ;

It’s interesting to note that the solution-curve approaches
√

x in the limit as
x → ∞. Clicking on other points on the plot shows that this is almost always
the case.

Chapter 4, 4.1 Exercise 4 (p. 55) The code

plotdf ( [ v , −k * z/m] , [ z , v ] ,
[ parameters , "m=2 ,k = 2 " ] ,
[ s l i d e r s , "m= 1 : 5 " ] ,
[ t r a j e c t o r y _ a t , 6 , 0 ] )
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FIGURE G.5.1. Output of exercise plot

produces figure G.5.1.
If we run this with [versus_t,1], we also get plots of z and v.

Chapter 4, 4.1 Exercise 5 (p. 55) Try expand(%) and ratsimp a second time.
Chapter 4, 4.2 Exercise 1 (p. 58) If v is the velocity-vector, we have

v =

[
vh
vv

]
its vertical and horizontal components. We have equations

m
dvv

dt
= −9.8m

m
dvh
dt

= 0(G.5.1)

where m is the mass of the cannonball. At time zero vv = 1000 sin 30◦ =
500m/sec, and vh = 1000 cos 30◦ = 866.025. We get

vv = 500 − 9.8t

y = 500t − 4.9t2

The apogee occurs when vv = 0 or at time 500/9.8. This gives a value of y
equal to 12755.10204081632.

Chapter 4, 4.2 Exercise 2 (p. 58) If r is the vector representing the
air-resistance, we must have r = −αv, where v is the velocity vector of the
cannonball and α > 0 is a scalar. The constant in equation 4.2.1 on page 58 is
1
2 CDρA = .057575 and we have |r| = .057575|v|2 so

r = −.057575|v|v
Our equations of motion (equation G.5.1) become

m
dvv

dt
= −9.8m − .057575vv

√
v2

h + v2
v

m
dvh
dt

= −.057575vh

√
v2

h + v2
v(G.5.2)
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where the mass is very significant now4. Dividing by the mass of 4kg gives

dvv

dt
= −9.8 − 0.01439375vv

√
v2

h + v2
v

dvh
dt

= −0.01439375vh

√
v2

h + v2
v(G.5.3)

dx
dt

= vh(G.5.4)

dy
dt

= vv(G.5.5)

The first two equations are highly nonlinear, so we must use rk to solve them.

cannon : rk ( [ −9 .8 −0 .01439375* vv * s q r t ( vv^2+vh ^2) ,
−0.01439375*vh* s q r t ( vv^2+vh ^2) , vv , vh ] , [ vv , vh , y , x ] ,
[ 5 0 0 , 8 6 6 . 0 2 5 , 0 , 0 ] , [ t , 0 , 1 0 , . 0 1 ] ) ;

Examining the output show that the apogee occurs at time 2.64 seconds and
that y (the altitude) is 110.389 meters. We can reformat the output-list to graph
the cannonball’s progress:

height : makel i s t ( [ e l t [ 1 ] , e l t [ 4 ] ] , e l t , cannon )
plot2d ( [ d i s c r e t e , height ] , [ y , 0 , 2 0 0 ] )

We get

y

x

 0

 50

 100

 150

 200

 0  2  4  6  8  10

Chapter 4, 4.6 Exercise 2 (p. 80) Since x and y are independent variables∫ π

−π

∫ π

π
sin (nx) sin (my) · sin (n̄x) sin (m̄y) dxdy

=

(∫ π

−π
sin (nx) sin (n̄x) dx

)(∫ π

−π
sin (my) sin (m̄y) dy

)
so the conclusion follows from equation 4.3.5 on page 60. This is why two-
dimensional Fourier series work; indeed it is why n-dimensional Fourier se-
ries work.

Chapter 5, 5.2 Exercise 1 (p. 86) We could just use definition 5.2.1 on page 84
and straight computation (ugh!). Or we could use equation 5.2.4 on page 85
and the fact that multiplication is commutative and associative.

Chapter 5, 5.2 Exercise 2 (p. 86) Because the Fast Fourier Transform algorithm
requires the length of the sequences to be a power of 2.

4This is why a feather falls more slowly than a cannonball in the Earth’s
atmosphere.
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Chapter 5, 5.2 Exercise 4 (p. 86) Since the result will be of degree 9, the se-
quence of coefficients will be of length 10. The next higher power of 2 is
24 = 16. Let

load ( " f f t " ) ;
fpprintprec : 4 ; /* number of d i g i t s to p r i n t */
A : [ 2 , − 4 , 1 , − 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ;
i a : i n v e r s e _ f f t (A) ;
i a 3 : i a ^3; /* element by element operat ion */
A3 : r e a l p a r t ( f f t ( i a 3 ) ) ;
[ 8 . 0 , − 4 8 . 0 , 1 0 8 . 0 , − 1 2 4 . 0 , 1 0 2 . 0 , − 7 2 . 0 , 3 1 . 0 , − 1 5 . 0 , 3 . 0 , − 1 . 0 ,
−2.132*10^ −14 ,2.842*10^ −14 , −2.132*10^ −14 ,
1 .421*10^ −14 ,0 , −3.553*10^ −15]

The terms after the 10th are due to round-off errors. The result is

8 − 48x + 108x2 − 124x3 + 102x4 − 72x5 + 31x6 − 15x7 + 3x8 − x9

which you can verify by (tedious!) direct computation.
Chapter 7, 7.1 Exercise 2 (p. 113) In Manifold Theory and Differential Geome-
try (see [5]), volumes have an orientation. In Rn the standard orientation is

{x1, . . . , xn}
and if you swap any pair of axes, the result has a negative orientation.

Chapter 7, 7.2 Exercise 3 (p. 116) Just form the matrix

P =

 8 −1 2
4 0 1
3 −1 1


and compute

(P−1).A.P =

 −27 5 −8
53 −10 15

137 −25 40


Chapter 7, 7.4 Exercise 1 (p. 128)

(G.5.6) An =

 −2n+2 − 3n+1 + 8 3n − 1 −3n − 2n + 2
2n+3 − 8 1 2n+1 − 2

5 · 2n+2 + 4 · 3n+1 − 32 4 − 4 · 3n 4 · 3n + 5 · 2n − 8


Chapter 7, 7.4 Exercise 2 (p. 128) Just plug n = 1/2 into equation G.5.6 to get

√
A =

 −4
√

2 − 3
√

3 + 8
√

3 − 1 −
√

3 −
√

2 + 2
8
√

2 − 8 1 2
√

2 − 2
20
√

2 + 12
√

3 − 32 4 − 4
√

3 4 ·
√

3 + 5
√

2 − 8


Chapter 7, 7.5 Exercise 2 (p. 139) We know

x

[
1 2
3 4

]
= e

(
log(x)·

[
1 2
3 4

])

= e

[
log(x) 2 log(x)

3 log(x) 4 log(x)

]

We type
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z : matrix ( [ log ( x ) , 2 * log ( x ) ] , [ 3 * log ( x ) , 4 * log ( x ) ] ) ;
a : matrixexp ( z ) ;

and get a very messy and convoluted expression that none of our normal sim-
plification commands improve until we type

radcan ( a ) ;

which gives

−
(
√

3
√

11−11)x
√

3
√

11+2+(−
√

3
√

11−11)x2

22x
√

3
√

11−1
2

2
√

3
√

11x
√

3
√

11+2−2
√

3
√

11x2

33x
√

3
√

11−1
2√

3
√

11x
√

3
√

11+2−
√

3
√

11x2

11x
√

3
√

11−1
2

(
√

3
√

11+11)x
√

3
√

11+2+(11−
√

3
√

11)x2

22x
√

3
√

11−1
2


We can further simplify this by hand.

Chapter 7, 7.6 Exercise 1 (p. 145) We begin with j=number of jackets and
p=number of pants. The objective function is

3p + 2j

Our constraints are
8p + 4j ≤ 60

and
4p + 8j ≤ 48

So we formulate this as

maximize_lp ( 3 * p+2* j , [ 8 * p+4* j <=60 ,4*p+8* j <=48])

and Maxima comes back with

[24, [p = 6, j = 3]]

Chapter 7, 7.6 Exercise 2 (p. 145) It’s a good idea to restart Maxima (using that
command on the Maxima menu) and reload the simplex library. We set

p=potatoes,c=corn. The profit (objective function) is

150p + 50c

and the constraints are

20p + 60c ≤ 3000
p + c ≤ 70

As before, we write

maximize_lp ( 1 5 0 * p+50* c , [ 2 0 * p+60* c <=3000 ,p+c <=70])

and get
Problem not bounded!
Potatoes are so profitable, it’s worthwhile to grow “negative” corn to in-

crease the production of potatoes. We must insist that negative potatoes and
corn do not exist!

maximize_lp ( 1 5 0 * p+50* c , [ 2 0 * p+60* c <=3000 ,p+c <=70 ,p>=0 ,c >=0])
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and get
[10500, [p = 70, c = 0]]

so there’s no point in planting any corn!
Chapter 8, 8.1 Exercise 1 (p. 159) Here is a program for computing these func-
tions:

c0 : (1+ sqr t ( 3 ) ) / 4 ;
c1 : (3+ sqr t ( 3 ) ) / 4 ;
c2 : (3 − sqr t ( 3 ) ) / 4 ;
c3 : (1 − sqr t ( 3 ) ) / 4 ;
p1 : (1+ sqr t ( 3 ) ) / 2 ;
p2 : (1 − sqr t ( 3 ) ) / 2 ;
d4 [ x ] := block (

[ ] ,
i f x <= 0 then return ( 0 ) ,
i f 3 <= x then return ( 0 ) ,
i f x = 1 then return ( p1 ) ,
i f x = 2 then return ( p2 ) ,

ratsimp ( expand ( c0 * d4 [ 2 * x ]+ c1 * d4 [ 2 * x −1]+
c2 * d4 [ 2 * x −2]+ c3 * d4 [ 2 * x − 3 ] ) )

) ;
w4( x ) := ratsimp ( expand ( c3 * d4 [ 2 * x+2]− c2 * d4 [ 2 * x+1]+

c1 * d4 [ 2 * x] − c0 * d4 [ 2 * x − 1 ] ) )

Note: memoizing d4 (see page 71) speeds this up immensely! Although Maxima
is rather slow, it has the advantage that it performs exact calculations, so there
is no roundoff error.

Chapter 8, 8.1 Exercise 2 (p. 159) First, we generate a list of all the x-values of
the plot with

xpoints : makelist ( j /2^10 , j , 0 , 3 * 2 ^ 1 0 , 1 )

and then generate the points to be plotted via

ppoints : makelist ( [ x , d4 [ x ] ] , x , xpoints ) ;

Then, we plot it via

plot2d ( [ discre te , ppoints ] ) ;

which will give us a plot that looks like figure 8.1.3 on page 157.
Chapter 8, 8.3 Exercise 4 (p. 170) The values of ϕ at integer values must satisfy

(G.5.7) ϕ(i/2k+1) = ∑
−∞<m<∞

ξmϕ(
i

2k − m)

or

ϕ(1) = c0ϕ(2) + c1ϕ(1)

ϕ(2) = c0ϕ(4) + c1ϕ(3) + c2ϕ(2) + c3ϕ(1)

ϕ(3) = c2ϕ(4) + c3ϕ(3) + c4ϕ(2) + c5ϕ(1)

ϕ(4) = c4ϕ(4) + c5ϕ(3)
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FIGURE G.5.2. Plot of D6

and the eigenvector corresponding to eigenvalue 1 can be converted to float
numbers. We get

par : sqr t (5+2* sqr t ( 1 0 ) ) ;
c0 : (1+ par+sqr t ( 1 0 ) ) / 1 6 ;
c1 : (5+ sqr t ( 1 0 ) + 3 * par ) / 1 6 ;
c2 : (5 − sqr t (10 )+ par ) / 8 ;
c3 : (5 − sqr t (10) − par ) / 8 ;
c4 : (5 −3* par+sqr t ( 1 0 ) ) / 1 6 ;
c5 : (1 − par+sqr t ( 1 0 ) ) / 1 6 ;
p1 : 1 .286335069425677 ;
p2 : −0.3858376494301308;
p3 : 0 .09526780086916785 ;
p4 : 0 .004234433942314734 ;
d6 [ x ] := block (

[ ] ,
i f x <= 0 then return ( 0 ) ,
i f 5 <= x then return ( 0 ) ,
i f x = 1 then return ( p1 ) ,
i f x = 2 then return ( p2 ) ,
i f x = 3 then return ( p3 ) ,
i f x = 4 then return ( p4 ) ,

ratsimp ( expand ( c0 * d6 [ 2 * x ]+ c1 * d6 [ 2 * x −1]+
c2 * d6 [ 2 * x −2]+ c3 * d6 [ 2 * x −3]+ c4 * d6 [ 2 * x −4]

+c5 * d6 [ 2 * x − 5 ] ) ) ;

Note: memoizing d6 (see page 71) speeds this up immensely! Although Maxima
is rather slow, it has the advantage that it performs exact calculations, so there
is no roundoff error.

We get the plot in figure G.5.2.

Chapter 9, 9.2 Exercise 1 (p. 181) Because the make_graph command requires
a function of two variables.
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Chapter 9, 9.3 Exercise 3 (p. 188) A graph with the fewest edges such that ev-
ery vertex can reach every other is a tree, so5: Create a weighted graph where
each house becomes a vertex and each path becomes a edge weighted by the
cost of paving that path. The solution is a minimal spanning tree of that graph.

Chapter 10, 10.1 Exercise 1 (p. 196) Equation 10.1.1 on page 192 implies that

Σx(−i) = E
x(1−i)

1 − i
In the case where i = 1, we get

Σn
0 x(−1) = 1 +

1
2
+ · · ·+ 1

n + 1
= Hn+1

the n + 1st Harmonic number. This shows that the harmonic numbers play
a part in finite-difference calculus similar to that of the logarithm in regular
calculus.

Chapter 10, 10.1 Exercise 2 (p. 196) There’s nothing to prove if n = 0, 1. As-
sume it has been proved for all values of n < k, and we want to proved it for
xk. The lowest-degree falling factorial that contains a term of xk is x(k), and it
contains a single term of xk. It follows that

xk − x(k)

consists of a linear combination of powers xi with i < k. By the induction
hypothesis

xk − x(k) =
k−1

∑
i=0

aix(i)

with ai ∈ Z, and

xk = x(k) +
k−1

∑
i=0

aix(i)

See equation E.11.1 on page 317.
Chapter 10, 10.1 Exercise 3 (p. 196) Straight (somewhat tedious) computation.
Chapter 10, 10.1 Exercise 5 (p. 196) Since the equation is linear, proving it for
some class of functions proves it for all possible linear combinations of these
functions. It’s sufficient to prove for f (x) = xn for all integers n ≥ 0. Since
these functions are linear combinations of falling factorials (exercise 2 on
page 196), it suffices to prove it for all falling factorials x(n) with n an integer
≥ 0. If we set a = 0 in equation 10.1.4 on page 193, we get

S = 0 + ∆[x(n)](0)(x)(1) +
∆2[x(n)](0)(x)(2)

2!
+

∆3[x(n)](0)(x)(3)
3!

+ · · ·

Now

∆i[x(n)](0)(x)(i) = n(n − 1) · · · (n − i + 1)x(n−i)(0) =


0 if i < n
n! if i = n
0 if i > n

so S = x(n).

5If it has a loop, delete one edge, and every vertex will still be able to reach every
other — maybe going the long way around.
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Chapter 10, 10.1 Exercise 6 (p. 196) Just write ∆ = E − 1 and plug it in:

(E − 1)( f g) = E( f )E(g)− f g

= (E( f )− f ) E(g) + f E(g)− f g

= (E( f )− f ) E(g) + f · (Eg − g)

= ∆ f E(g) + f ∆g

Chapter 10, 10.1 Exercise 7 (p. 196) Just plug equation 10.1.8 on page 196 into
Σb

a and rearrange terms.
Chapter 10, 10.1 Exercise 8 (p. 196) Yes. Consider the vector-space spanned
by {xn} for n an integer ≥ 0. In this vector-space, the operators E, ∆, and
D are (infinite) matrices and equation 10.1.6 on page 194 is literally true.

Chapter 10, 10.1 Exercise 9 (p. 196) Set f (x) = x and g(x) = 2x. Then ∆g = g,
∆ f = 1, and we get

Σn
0 f ∆g = E( f g)(n)− ( f g)(0)− Σn

0 E(g)∆ f

= (n + 1)2n+1 −
n

∑
k=0

2k+1‘

= (n + 1)2n+1 − 2
n

∑
k=0

2k

= (n + 1)2n+1 − 2(2n+1 − 1)

= (n + 1)2n+1 − 2n+2 + 2

Chapter 10, 10.1 Exercise 10 (p. 196) This is easier than it looks. Code

z ( n ) : = ratsimp (1 − t ^n)/(1 − t ) )

Then

z ( 3 )

produces
t2 + t + 1

It’s not hard to see that for n > 0 an integer,

1 − tn

1 − t
= 1 + t + · · ·+ tn−1

Integrating this gives the conclusion.
Chapter 10, 10.2 Exercise 4 (p. 201) You can just write

Bdeltan ( f , x ,m) := buildq ( [ y : x , g : f , n :m] ,
lambda ( [ y ] ,
sum( ( − 1 ) ^ ( k +1)* binomial ( n , k ) * g ( y+k ) ,

k , 0 , n ) )
) ;

or (more efficiently)

Bdeltan ( f , x ,m) := buildq ( [ y : x , g : f , n :m] ,
lambda ( [ y ] ,
−sum( ( −1)^ k * binomial ( n , k ) * g ( y+k ) ,

k , 0 , n ) )
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) ;

Chapter 11, 11.5 Exercise 1 (p. 214) Typing

poly_reduced_grobner ( [ x^2+y^2 , x^3−y ^ 4 ] , [ x , y ] )

returns [
y2 + x2, y4 + xy2, y6 + y4

]
so the original equations are equivalent to

y2 + x2 = 0

y4 + xy2 = 0

y6 + y4 = 0

The last equation implies that y = 0,±i. The first equation implies that, if
y = 0, then x = 0. The second equation implies that, if y = ±i, then x = 1. So
the solutions to the original equations are

x = y = 0,

x = 1,y = ±i

So there are a total of three solutions.

Chapter 11, 11.5 Exercise 2 (p. 214) Define an ideal and type

poly_reduced_grobner ( [ a1 * a2−b1 * b2+a1 −1 ,
a2 * b1+a1 * b2+b1 −1/2 , a1^2+b1^2 −1 , a2^2+b2 ^2 −1] , [ a1 , b1 , a2 , b2 ] )

to get [
64b22 − 55,−4b2 + 10a1 − 5,−16b2 − 20b1 + 5, 8a2 + 3

]
from which we deduce that a2 = −3/8 and b2 can be either +

√
55/8 in which

case

a1 = 1/2 +
√

55/20

b1 = 1/4 −
√

55/10

or −
√

55/8 in which case

a1 = 1/2 −
√

55/20

b1 = 1/4 +
√

55/10

The solve-command also works in this case.

Chapter 11, 11.5 Exercise 3 (p. 214) Make this into an ideal problem:
Create an ideal(

(a2 + 1)(b2 + 1) + 25 − 10(a + b), ab − 1, a3 + b3 − z
)

and find a Gröbner basis with a ≻ b ≻ z:
Typing

poly_reduced_grobner ( [ ( a ^2+1)* ( b^2+1)+25 −10*( a+b ) ,
a^3+b^3−z , a *b − 1 ] , [ a , b , z ] ) ;
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gives[
−bz + 72b2 − 250b + 72,−z2 + 220z − 12100,−z + 72b + 72a − 250

]
and

solve ( −z^2+220*z −12100=0 , z ) ;

gives z = 110.
Chapter 11, 11.5 Exercise 4 (p. 214) Type

poly_reduced_grobner ( [ x^2+x * y+y^2 −39 ,
y^2+y * z+z^2 −49 ,z^2+z * x+x ^2 −19] , [ x , y , z ] ) ;

to get [
−7z3 + 58z + 3y,−7z4 + 64z2 − 9, 7z3 − 67z + 6x

]
and type

solve ( −7* z^4+64*z^2 −9 ,z ) ;

to get [
z = − 1√

7
, z =

1√
7

, z = −3, z = 3
]

Now you can solve for the x and y values that go with these z-values:

� If z = −1/
√

7, then y = 19/
√

7, x = −11/
√

7.
� If z = 1/

√
7,then y = −19/

√
7, x = 11/

√
7 .

� If z = 3, then y = 5, x = 2.
� If z = −3, then y = −5, x = −2.

Chapter 11, 11.5 Exercise 5 (p. 214) Type

poly_reduced_grobner ( [ a1 * x1^5 + a2 * x2^5 + a3 * x3^5 − 1/6 ,
a1 * x1^4 + a2 * x2^4 + a3 * x3^4 − 1/5 ,
a1 * x1^3 + a2 * x2^3 + a3 * x3^3 − 1/4 ,
a1 * x1^2 + a2 * x2^2 + a3 * x3^2 − 1/3 ,
a1 * x1 + a2 * x2 + a3 * x3 − 1/2 ,
a1 + a2 + a3 − 1 ] ,
[ x1 , x2 , x3 , a1 , a2 , a3 ] ) ;

to get a basis that contains the term

162 · a22 − 117 · a2 + 20

The command

solve ( 1 6 2 * a2 ^2 −117* a2 +20=0 , a2 ) ;

produces [
a2 =

5
18

, a2 =
4
9

]
Adding a2-4/9 to the original list produces a Gröbner basis of[
9 · a2 − 4, 5 − 18 · a3, 1 − 2 · x2, 5 − 18 · a1,−x3 − x1 + 1,−10 · x32 + 10 · x3 − 1

]
From which it is straightforward to get all the other values.

Chapter 12, 12.2 Exercise 1 (p. 225) Run the Maxima command
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poly_reduced_grobner ( [ a5 * a4 * a3−a5 * b4 * b3+a5 * a4−x ,
b5 * a4 * a3−b5 * b4 * b3+b5 * a4−y ,
b4 * a3+a4 * b3+b4−z ,
x^2+y^2+z^2−r ^2 ,
a2^2+b2^2 −1 ,
a3^2+b3^2 −1 ,
a4^2+b4^2 −1 ,
a5^2+b5 ^2 −1] ,
[ a5 , a4 , a3 , a2 , b5 , b4 , b3 , b2 , x , y , z , r ] ) ;

and, in the long list of expressions in the Gröbner basis there is

−r4 + 4 ∗ r2 − 4 ∗ b32

Since b32 ≥ 0, we must have −r4 + 4r2 ≥ 0 or r ≤ 2. We could have come to
the same conclusion by the fact that the robot-arm has two links of length 1!

Chapter 14, 14.1 Exercise 1 (p. 248) We get

(x)m =
Γ(x + 1)

Γ(x − m + 1)

If x and m are integers and m > x, then the denominator is Γ evaluated at 0 or
a negative integer, which is infinite, so the quotient will be 0.

Chapter 14, 14.1 Exercise 2 (p. 248) Unfortunately, the gamma command just
crashes if it’s fed an argument that is a nonpositive integer (i.e., it doesn’t
return inf). We must first check that case and return 0. We get

f f ( x ,m) := block (
[ a : imagpart ( x−m+1) , b : r e a l p a r t ( x−m+ 1 ) ] ,
i f ( a = 0) and ( b <=0 ) and /* Test f o r

a negat ive
r e a l i n t e g e r */

abs (mod( b , 1 ) ) < . 0 0 0 0 0 1
then return ( 0 ) ,

gamma( x+1)/gamma( x−m+1)
) ;

If x and m are integers and m > x, then the denominator is Γ evaluated at 0 or
a negative integer, which is infinite, so the quotient will be 0.

Chapter 14, 14.1 Exercise 3 (p. 248) Use the Γ-function! Our formula in the ex-
ercise becomes

dkxn

dxk =
Γ(n + 1)

Γ(n − k + 1)
xn−k

and

d1/2x
dx1/2 =

x1/2
√

π/2
=

2x1/2
√

π
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FIGURE G.5.3. Plot of ellipse,same_xy

Chapter 14, 14.1 Exercise 4 (p. 248) Define L(x) = d
dx (log Γ(x + 1)). Then

L(x + 1) =
d

dx
(log Γ(x + 2) =

d
dx

(log ((x + 1)Γ(x + 1))

=
d

dx
(log(x + 1) +

d
dx

(log (Γ(x + 1))

=
1

x + 1
+ L(x)

So this function satisfies the same functional equation as H(x). It follows that
H(x)− L(x) is a constant when x is a positive integer. Since

psi [0](1)= −%gamma

it follows that this constant difference is γ.
Chapter 14, 14.1 Exercise 6 (p. 249) Use the Γ-function! Our formula in the ex-
ercise becomes

d1/2xn

dx1/2 =
n!

Γ(n + 1/2)
xn−1/2

so
d1/2ex

dx1/2 =
∞

∑
n=1

xn−1/2

Γ(n + 1/2)

We assume that
d1/21
dx1/2 = 0

Chapter 14, 14.2 Exercise 1 (p. 255) Use the command

plot2d ( [ parametric , j a c o b i _ c d ( x , . 9 ) , j a c o b i _ s d ( x , . 9 ) ,
[ x , 0 , 1 0 ] ] , same_xy , [ s t y l e , [ l i n e s , 2 , 5 ] ] ) ;

to get the plot in figure G.5.3. If we leave out the ‘same_xy’ we get the well-
proportioned but distorted plot in figure G.5.4 on the next page.
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Chapter 14, 14.2 Exercise 3 (p. 255) If the starting angle is 180◦, the pendulum
is vertical. This is an unstable equilibrium (very!), and the pendulum can the-
oretically remain in this position forever.

Chapter 14, 14.5 Exercise 2 (p. 265) Using Euler’s formula

eix = cos x + i sin x

we get

E1(ix) = i
(
−π

2
+ Si(x)

)
− Ci(x)

Chapter 14, 14.6 Exercise 2 (p. 268) First, code a function

tow ( x ) := − lambert_w ( − log ( x ) ) / log ( x ) ;

Basic experimentation shows that

f l o a t ( sqr t ( 2 ) + . 0 3 0 4 5 4 2 9 8 6 3 6 6 7 1 ) )

is still real, and that its value is

2.718281776395266

which leads one to suspect that the maximum finite value of t∞(x) is e. Note,
this is not a local maximum, so taking the derivative of t∞(x) and setting it to
0 will not work.

The value where this occurs is

v =
√

2 + .030454298636671 = 1.444667861009766

If we randomly play around with this value, we eventually find

1
log(v)

= 2.718281828459046

so
v = e

1
e

And, if we type
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tow(%e^(1/%e ) )

we get

%e

as implied by equation 14.6.4 on page 268.

Chapter 14, 14.6 Exercise 3 (p. 268) Typing

x : tow ( 3 )

gives

− lambert_w (− log (3))
log (3)

and

f l o a t (%)

gives

−0.9102392266268373 · (1.391335054072608 · %i − 0.2524062904251475)

The command

rect form (%)

gives
y = 0.2297501065923352 − 1.26644774359786 · %i

What has happened here? Clearly the infinite power tower

333. . .

→ ∞

isn’t well-defined. The point is that we have solved the equation

y = 3y

which is still well-defined even when the power-tower is not. The solution, y,
is a value with the property that

y1/y = 3

If you type

y^(1/y )

you get

(0.2297501065923352 − 1.26644774359786 · %i)
1

0.2297501065923352−1.26644774359786·%i

and

rect form (%)

gives
6.661338147750939 · 10−16 · %i + 3.0

where the imaginary part is round-off error.
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Chapter 14, 14.6 Exercise 4 (p. 268) If

v = u1/u

then equation 14.6.3 on page 268 implies that

u = −W(− log(v))
log(v)

Now set u = 1/x so that we get

v =

(
1
x

)x
=

1
xx

and set
y = 1/v

We get

x =
log(y)

W(log(y))
Chapter 15, 15.2 Exercise 2 (p. 282) Since

p(x) = π(x) + π(x1/2)/2 + π(x1/3)/3 + · · ·
we get

p(x)− p(x1/2)/2 = π(x) + π(x1/3)/3 + π(x1/5)/5 · · ·
and

p(x)− p(x1/2)/2 − p(x1/3)/3 − p(x1/5)/5 + p(x1/6)/6

= π(x) + π(x1/7)/7 + · · ·
where, at each step the sum on the left consists of terms with the primes al-
ready covered and the sum on the right consists of none of those primes.
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adjacency_matrix-command, 354
adjoin-command, 314
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affine group, 140
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Fourier transform of Ai(x), 262
Airy’s differential equation, 261
airy_ai(x), 261
airy_bi(x), 261
airy_dai(x), 262
airy_dbi(x), 262
allroots-command, 30
anonymous functions, 31
append-command, 305
appendfile-command, 322
args-command, 302
argument of the polar form, 6
asin(x)-function, 303
assoc-command, 305
assume-command, 35
asymptotic expansion, 204
at-command, 33, 303
atan(x)-function, 303
atan2(y,x)-function, 303
atom-command, 305
atto-fox problem, 57
average_degree-command, 354

basic wavelet, 155
basis

ideal, 209
vector-space, 114

batchload-command, 322

Bell number, 314
belln-command, 314
bern(n), 203
DANIEL BERNOULLI, 247
Bernoulli numbers, 203
Bernoulli polynomials, 203
bernpoly(x, n), 203
FRIEDRICH WILHELM BESSEL, 258
Bessel’s differential equation, 257
bessel_j-function, 259
bessel_y-function, 259
beta-command, 249
ÉTIENNE BÉZOUT, 11
Bézout’s Identity, 11
bffac-command, 249
bfloat-command, 4, 301
bfpsi-command, 250
bfpsi0-command, 250
biconnected graph, 355
biconnected_components-command,

354
binomial-command, 4
bipartite graph, 349, 355
bipartition-command, 354
block-statement, 36
Bonnet’s Recursion Formula, 97
GEORGE BOOLE, 196
BRUNO BUCHBERGER, 211
Buchberger’s algorithm, 213
buildq-command, 320

cabs-command, 301
cabs-function, 6
cardinality-command, 314
carg-command, 6, 301
Carmichael function, 19
Carmichael λ-function, 19
Cauchy principal value, 262
Cayley-Hamilton Theorem, 127
ceiling-command, 297, 301
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cf-command, 24
cfdisrep-command, 24
cflength-parameter, 25
cgreaterp, 311
cgreaterpignore, 311
characteristic polynomial of a graph,

354
characteristic polynomial of a matrix,

124
charat-command, 309
charlist-command, 178, 309
charpoly-command, 124
PAFNUTY LVOVICH CHEBYSHEV, 98
Chebyshev Polynomials, 98
chinese-command, 15
chromatic_index-command, 354
chromatic_number-command, 354
circuit, 180
clear_edge_weight-command, 353
clear_vertex_label-command, 353
clebsch_graph-command, 360
clessp, 311
clesspignore, 311
clique, 356
closefile-command, 322
Collatz Conjecture, 40
column-stochastic matrix, 135
columnspace-command, 111
comments in Maxima, 31
commutative ring, 207
complement_graph-command, 353
concat-command, 309
congruence modulo a number, 12
cons-command, 305
continued fraction, 23
continued fractions

standard form, 23
contract_edge-command, 353
convergence of a wavelet-series, 169
convolution, 84
JAMES WILLIAM COOLEY, 84
copy_graph-command, 353
copylist-command, 306
copymatrix-command, 109
cos(x)-function, 303
cosine-integral, 265
create_list-command, 306
cycle, 181
cycle_digraph-command, 350
cycle_graph-command, 350

JEAN-BAPTISTE LE ROND

D’ALEMBERT, 72
GEORGE BERNARD DANTZIG, 144
BARONESS INGRID DAUBECHIES, 154

Daubechies W2 wavelet, 159
Daubechies W4 wavelet, 161
declare-command, 59
defstruct-command, 175, 312
degree of smoothness (of a wavelet),

157
degree_sequence-command, 353
delete-command, 306
demoivre-command, 139
denom-command, 301
derivative-command, 32
desolve-command, 51
determinant, 112
determinant-command, 113
dgeev-command, 130
dgemm-command, 131
dgeqrf-command, 131
dgesv-command, 131
diff-command, 32
BAILEY WHITFIELD ’WHIT’ DIFFIE, 17
digital signatures, 21
digraph, 348
dilogarithms, 263
dimacs_export-command, 361
dimacs_import-command, 361
directed graph, 348
directory-command, 323
discrete Fourier transforms, 83
discrete logarithm problem, 22
disjoin-command, 314
disjointp-command, 315
display-command, 322
division ring, 208
divisors-command, 315
dodecahedron_graph-command, 360
dot product for vectors, 108
draw-library, 338
draw-terminals, 339
draw2d-command, 345
draw3d

vector, 344
draw3d-command, 346

echelon-command, 110
edge_coloring-command, 353
edges-command, 354
eigen library, 118
eigenvalue, 124
eigenvalues of a graph, 354
eigenvalues-command, 124
eigenvector, 124
eigenvectors-command, 125
eivals-command, 124
elementp-command, 315
elliptic function
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jacobi_cs, 256
jacobi_dc, 256
jacobi_dn, 256
jacobi_ds, 256
jacobi_nd, 256
jacobi_ns, 256
jacobi_sc, 256
sn(x, k), 254

elliptic integral
general, 251
incomplete, first kind, 252
incomplete, second kind, 257
incomplete, third kind, 257
modulus, 252

elseif-command, 35
empty_graph-command, 351
emptyp-command, 315
endcons-command, 306
equal-function, 304
equiv_classes-command, 315
Euclid Algorithm, 10
Euler

ϕ-function, 15
LEONHARD EULER, 7
Euler path, 174
Euler Reflection equation, 248
Euler reflection formula, 248
Euler’s Formula for harmonic

numbers, 198
Euler’s zeta-function, 271
Euler-Maclaurin summation formula,

204
Eulerian circuit, 181
Eulerian circuit or cycle, 174
Eulerian path, 174
Eulerian trail, 180
eval_string-command, 178
eval_string-command, 309
evenp-function, 304
every-command, 315
example-command, 3
expand-command, 7
expintegral_ci-command, 265
expintegral_e1-command, 264
expintegral_ei-command, 264
expintegral_li-command, 262
expintegral_si-command, 264
explicit plots, 70
exponential integrals, 263
exponentialize-command, 139
exponentials of matrices, 138
extremal_subset-commands, 315

factor-command, 3, 301
!-command, 4

factorial-command, 4
falling factorial, 194, 250
Fast Fourier Transform, 83
feasible region, 142
feasible solutions, 142
PIERRE DE FERMAT, 9
Fermat factorization, 297
Fermat’s Little Theorem, 16
field, 208
file_search-command, 322
first-command, 307
firstn-command, 307
flatten-command, 316
float-command, 4, 301
floor-command, 297, 301
flower_snark-command, 360
for-commands, 304
Four Color Problem, 354
JEAN-BAPTISTE JOSEPH FOURIER, 58
Fourier Series, 62
Fourier Transform, 82
fpprec-parameter, 301
fpprintprec-command, 84
frucht_graph-command, 360
full_listify-command, 316
fullsetify-command, 316
:=-command, 302
functional programming languages,

199
Fundamental Theorems of

finite-difference calculus, 194
fundef-command, 302
funmake-command, 302

Γ-function, 247
gamma-command, 247
gamma_incomplete-command, 249
gamma_incomplete_lower-

command, 249
gamma_incomplete_regularized-

command, 249
CARL FRIEDRICH GAUSS, 110
Gauss-Laguerre quadrature formula,

102
Gaussian Elimination, 110
gcd, 10
general elliptic integral, 251
genmatrix(ident,nrows,ncols)-

command, 107
get_edge_weight-command, 353
get_vertex_label-command, 353
Gibbs Phenomena, 63, 265
Gimbel Problem, 235
girth-command, 354
CHRISTIAN GOLDBACH, 16
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Goldbach Conjecture, 16
Google’s page rank algorithm, 133
gr2d

bars, 342
ellipse, 342
parametric, 342
points, 342
polar, 342
polygon, 342
quadrilateral, 342
rectangle, 342
triangle, 343
vector, 343

gr2d-command, 342
gr3d

cylindrical, 343
elevation_grid, 343
mesh, 344
tube, 344

gr3d-command, 343
graded reverse lexicographic

ordering, 212
Gram-Schmidt Algorithm, 119
gramschmidt-command, 119
graph

biconnected, 355
bipartite, 349, 355
characteristic polynomial, 354
circuit, 180
clique, 356
cycle, 181
directed, 348
eigenvalues, 354
Hamilton cycle, 355
Laplacian, 356
matching, 181, 355
minimum spanning tree, 187
multigraph, 174
network, 351
planar, 356
simple, 174
tournament, 352
trail, 180
tree, 352, 356
walk, 180
weighted, 182
Wiener Index, 360

Graph theory, 173
graph6_decode-command, 361
graph6_encode-command, 361
graph6_export-command, 362
graph6_import-command, 362
graph_charpoly-command, 354
graph_eigenvalues-command, 354

graph_product-command, 353
graphs

circulant_graph-command, 350
complete_bipartite_graph-

command, 349
complete_graph-command, 349
create_graph-command, 347
cube_graph-command, 350
draw_graph-command, 347
empty_graph-command, 349
make_graph-command, 349
print_graph-command, 347

greatest common divisor, 10
JAMES GREGORY, 195
Gregory–Newton interpolation

formula, 195
grid_graph-command, 351
Gröbner basis, 211

leading term, 212
grotzch_graph-command, 360
group

affine, 140

Haar function, 159
WILLIAM ROWAN HAMILTON, 128
Hamilton cycle, 355
hamilton_cycle-command, 355
Hamiltonian circuit, 181
Hamming weight, 20
harmonic analysis, 62
Harmonic numbers, 196
Heavyside functions, 90
heawood_graph-command, 361
MARTIN EDWARD HELLMAN, 17
CHARLES HERMITE, 103
Hermite polynomials, 103
DAVID HILBERT, 215
hyperbolic cosine integral, 266
hyperbolic sine integral, 266

ic1-command, 48
ic2-command, 48
icosahedron_graph-command, 361
ideal, 209

maximal, 209
prime, 209
principal, 209
product, 209

ideal basis, 209
ident(n)-command, 107
identfor-command, 107
identifiers, 5
identity-command, 316
if-command, 303
if-statement, 35
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ifactors-command, 12
igcdex-command, 11
imagpart-command, 301
imagpart-function, 6
implicit plots, 70
independent set, 181
induced_subgraph-command, 355
infinite power tower, 269
integer_partitions-command, 316
integerp-function, 304
integers, 208

unique factorization, 11
integral

Cauchy principal value, 262
intersect-command, 317
intersection-command, 317
inv_mod-command, 14
is-command, 304
is_biconnected-command, 355
is_bipartite-command, 355
is_connected-command, 355
is_digraph-command, 355
is_edge_in_graph-command, 355
is_graph-command, 355
is_graph_or_digraph-command, 355
is_isomorphic-command, 355
is_planar-command, 356
is_tree-command, 356
is_vertex_in_graph-command, 356
isqrt-command, 297, 301

CARL GUSTAV JACOB JACOBI, 252
Jacobi’s elliptic functions, 252
join-command, 307
jpeg, 65
JPEG2000, 171
julia-command, 336

key-distribution, 19
kill-command, 71, 313
MARTIN WILHELM KUTTA, 52
Königsberg bridge problem, 173

L2-convergence, 64
EDMOND NICOLAS LAGUERRE, 101
Laguerre polynomials, 100
lambda-command, 31
JOHANN HEINRICH LAMBERT, 269
Wm(z), 267
Lambert-W function, 267
lapack-library, 130
PIERRE-SIMON, MARQUIS DE

LAPLACE, 87
Laplace Transform, 86
Laplacian of a graph, 356

laplacian_matrix-command, 356
last-command, 307
lastn-command, 307
lcm, 10
least common multiple, 10
Lebesgue measure

outer, 112
ADRIEN-MARIE LEGENDRE, 94
Legendre Polynomials, 94
Legendre polynomials

Bonnet’s Recursion Formula, 97
length-command (for a list), 307
length-command (for a matrix), 106
Leslie Matrix, 129
lexicographic ordering, 212
lhs-command, 302
li[*]-command, 263
library

eigen, 118
fft

fft-command, 84
inverse_fft-command, 84

grobner, 214
poly_grobner-command, 214
poly_reduced_grobner-

command, 214
lapack, 130

dgeev-command, 130
dgemm-command, 131
dgeqrf-command, 131
dgesv-command, 131
zgeev-command, 132
zheev-command, 132

orthopoly, 95
simplex, 144

linear_program, 144
maximize_lp, 144
minimize_lp, 144

limit-command, 41
line_graph-command, 355
linear programming

feasible region, 142
feasible solutions, 142
linear_program-command, 144
maximize_lp-command, 144
minimize_lp-command, 144
objective function, 142
simplex algorithm, 143

linear regression, 120
linear_program-command, 144
link matrix, 134
list data structure, 29
listify-command, 314
listp-command, 307
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listp-function, 304
load(bffac), 249
load-command, 323
log_gamma-command, 249
logarithmic integral, 262
logcontract-command, 50
Logistic Curve, 50
Logistics Equation, 49
ALFRED JAMES LOTKA, 56
lower-triangular matrix, 109
lreduce-command, 307

::=-command, 319
macroexpand-command, 321
macroexpand1-command, 321
makelist-command, 307
makelist-command, 70
makeset-command, 317
mandelbrot-command, 336
map-command, 307
matching of a graph, 181, 355
matrix

accessing elements, 106
characteristic polynomial, 124
column space, 111
determinant, 112, 113
exponentiation, 109
lower-triangular, 109
multiplication, 106
upper-triangular, 109

matrix-command, 106
matrixexp-command, 138
max_clique-command, 356
max_degree-command, 357
max_flow-command, 357
max_independent_set-command, 355
max_matching-command, 355
Maxima

defstruct, 174
maximal ideal, 209
maximize_lp-command, 144
maximum independent set, 355
member-command, 307
memoization, 71
memoizing, 71
RALPH C. MERKLE, 21
CLAUDE GASPARD BACHET DE

MÉZIRIAC, 11
Michaelis–Menten kinetics, 269
min_degree-command, 357
min_edge_cut-command, 357
min_vertex_cover-command, 357
min_vertex_cut-command, 357
minimize_lp-command, 144
minimum spanning tree, 187

minimum_spanning_tree-command,
357

mod-command, 10
real numbers, 10

modulus of an elliptic integral, 252
AUGUST FERDINAND MÖBIUS, 283
moebius-command, 283
monomial

graded reverse lexicographic
ordering, 212

lexicographic ordering, 212
multigraph, 174
multinomial_coeff-command, 317
.-operator for matrices, 106
mycielski_graph-command, 361
Möbius function, 283
Möbius Inversion Theorem, 282

neighbors-command, 358
network graph, 351
new-command, 312
newdet-command, 113
ISAAC NEWTON, 193
next_prime (n), 11
norm of a vector, 116
nullspace-command, 112
num-command, 301
num_distinct_partitions-command,

318
num_partitions-command, 318
numer, 302
numeric integration, 387
numeric solutions to differential

equations, 52

objective function, 142
odd_girth-command, 358
oddp-function, 304
ode2-command, 47
omega function, 267
op-command, 302
order of a Bessel function, 258
ordergreatp-function, 304
ordering of monomials, 211
orderlessp-function, 304
ordermagnitudep-function, 304
orthogonal group, 141
orthogonal matrix, 141
orthonormal set of vectors, 117
orthopoly

chebyshev_t, 99
hermite, 103
laguerre, 100
legendre_p, 95

out_neighbors-command, 358
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outer Lebesgue measure, 112

page rank algorithm
Google, 133

partition_set-command, 318
path_digraph-command, 351
path_graph-command, 351
perm_next-command, 187
permutations-command, 318
petersen_graph-command, 361
ϕ-function, 15
physicist’s Hermite polynomials, 103
planar graph, 356
planar_embedding-command, 358
plot-terminals, 337
plot2d-command

’discrete’ option, 53
plot2d-command, 31
plotdf-command, 45
LEO AUGUST POCHHAMMER, 194
Pochhammer falling factorial, 319
Pochhammer symbols, 194, 250
pointwise convergence, 64
BARON SIMÉON DENIS POISSON, 295
Poisson Summation formula, 295
polarform-command, 6, 302
polylogarithms, 263
polynomial ring, 208
polynomials

Bernoulli, 203
resultant, 41

pop-command, 307
^^-command, 109
power method, 136
power_mod-command, 14
powerseries-command, 34
powerset-command, 318
Predicate functions, 304
prev_prime (n), 11
prime ideal, 209
prime number, 11
primep(n)-command, 11
primep_number_of_tests-parameter,

11
primes(n,m), 11
primitive root, 21
principal ideal, 209
print-command, 322
printfile-command, 323
private key, 20
Product Formula, finite differences,

198
product logarithm, 267
product of ideals, 209
product-command, 302

psi-command, 249
public key, 20
Puma 560 robot arm, 220
push-command, 307

quad_qag-command, 38
quote-command, 37

radius-command, 358
random_bipartite_graph-command,

351
random_digraph-command, 351
random_graph-command, 351
random_graph1-command, 351
random_network-command, 351
random_permutation-command, 318
random_regular_graph-command,

351
random_tournament-command, 352
random_tree-command, 352
ratsimp-command, 49
realpart-command, 302
realpart-function, 6
reconstruction algorithm for wavelets,

170
rectform-command, 6, 302
relatively prime, 14
remove_edge-command, 353
remove_vertex-command, 353
rest-command, 308
resultant of polynomials, 41
resultant-command, 41
return-command, 36
reverse-command, 308
rhs-command, 302
GEORG FRIEDRICH BERNHARD

RIEMANN, 271
Riemann hypothesis, 278
Riemann reflection formula, 274
ring, 207

commutative, 207
polynomial, 208
subring, 208
trivial, 208

RONALD LINN RIVEST, 18
rk-command, 52
rowop-command, 109
rowswap-command, 109
rreduce-command, 308
RSA-encryption algorithm, 19
CARL DAVID TOLMÉ RUNGE, 52
Runge-Kutta algorithm, 52

save-command, 323
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scaling function associated with a
wavelet, 155, 156

scientific notation, 4
sconcat-command, 310
scopy-command, 310
sdowncase-command, 310
seismic analysis, 153
sequal-command, 310
sequalignore-command, 310
set-command, 313
set_edge_weight-command, 353
set_partitions-command, 319
set_vertex_label-command, 354
setdifference-command, 318
setequalp-command, 318
setify-command, 313
setp-command, 319
ADI SHAMIR, 18
shortest_path-command, 359
shortest_weighted_path-command,

183, 359
Sigmoid Curve, 50
simple graph, 174
simplex algorithm, 143
simplification

exponentialize, 139
fullratsimp, 49
logcontract, 50
radcan, 49
ratsimp, 49
trigrat, 139
trigreduce, 73, 139
trigsimp, 139

simplode-command, 310
sin(x)-function, 303
sine integral, 264
sinsert-command, 310
sinvertcase-command, 310
slength-command, 310
smake-command, 310
smismatch-command, 310
solve-command, 27
some-command, 319
sort-command, 308
span of a set of vectors, 111
sparse6_decode-command, 362
sparse6_encode-command, 362
sparse6_export-command, 362
sparse6_import-command, 362
special orthogonal matrices, 141
splice-command, 320
split-command, 310
sposition-command, 310
sqrt-command, 301

sremove-command, 310
sremovefirst-command, 311
sreverse-command, 311
ssearch-command, 311
ssort-command, 311
ssubst-command, 311
ssubstfirst-command, 311
Stigler’s law of eponymy, 110
Stirling number

first kind, 319
second kind, 319

strim-command, 311
striml-command, 311
strimr-command, 311
string-command, 310
stringdisp-flag, 178, 309
stringout-command, 324
sublist-command, 308
sublist_indices-command, 309
subring, 208
subset-command, 319
subsetp-command, 319
subst-command, 29, 303
substring-command, 311
subvarp-function, 304
sum-command, 65, 302
Summation by Parts, 198
supcase-command, 311
JAMES JOSEPH SYLVESTER, 41
symmdifference-command, 319

tan(x)-function, 303
NICCOLò FONTANA TARTAGLIA, 28
taylor-command, 33
tokens-command, 312
topological sort, 359
topological_sort-command, 359
totient, 15
totient(n)-command, 15
tournament graph, 352
trail, 180
transpose-command, 107
traveling salesperson problem, 184
tree graph, 352, 356
tree_reduce-command, 309
triangularize-command, 110
trigrat-command, 139
trigreduce-command, 73, 139
trigsimp-command, 139
trivial ring, 208
JOHN WILDER TUKEY, 84
tutte_graph-command, 361

__-command, 322
underlying_graph-command, 352
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union-command, 319
unique factorization of integers, 11
unique-command, 309
unit vector, 116
unitvector-command, 118
upper-triangular matrix, 109

vector
norm, 116
unit, 116

vectors
orthonormal, 117

PIERRE-FRANÇOIS VERHULST, 51
vertex

degree, 180
vertex_coloring-command, 359
vertex_eccentricity-command, 359
vertex_in_degree-command, 359
vertex_out_degree-command, 360
vertices-command, 360
VITO VOLTERRA, 56

W-function, 267
walk, 180
wavelets

convergence of a series, 169
degree of smoothness, 157
example wavelet-series, 165
reconstruction, 170
scaling functions, 156

153
weighted graph, 182
wheel_graph-command, 352
while-command, 304
Wiener Index, 360
wiener_index-command, 360
Wilbraham-Gibbs constant, 265
with_slider_draw-command, 69
with_stdout-command, 324
writefile-command, 324

zeromatrix(m,n)-command, 107
ζ-function, 271
zeta-function, 271
zgeev-command, 132
zheev-command, 132
zn_add_table(n)-command, 13
zn_carmichael_lambda-command, 19
zn_log-command, 23
zn_mult_table(n)-command, 14
zn_order-command, 20
zn_primroot-command, 22
zn_primroot_limit-parameter, 22
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