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Foreword

Preface

This book grew out of lecture notes for a course on parallel algorithms that I gave
at Drexel University over a period of several years. I was frustrated by the lack of texts
that had the focus that I wanted. Although the book also addresses some architectural
issues, the main focus is on the development of parallel algorithms on “massively par-
allel” computers. This book could be used in several versions of a course on Parallel
Algorithms. We tend to focus on SIMD parallel algorithms in several general areas of
application:

• Numerical and scientific computing. We study matrix algorithms and numer-
ical solutions to partial differential equations.
• “Symbolic” areas, including graph algorithms, symbolic computation, sorting,

etc.
There is more material in this book than can be covered in any single course, but there
are many ways this book can be used. I have taught a graduate course in parallel
numerical algorithms by covering the material in:

(1) The Introduction.
(2) § 3.2 of chapter 3 (page 55).
(3) Chapter 4, and;
(4) Chapter 5.

Another possible “track” through this book, that emphasizes symbolic algorithms, in-
volves covering:

(1) The Introduction;
(2) Chapter 2;
(3) and Chapter 6.

A graduate course on parallel algorithms in general could follow the sequence:
(1) The Introduction;
(2) Chapter 2 — for a theoretical background;
(3) §§ 5.1 and 5.1.2 of chapter 5 — for a taste of some numerical algorithms;
(4) §§ 6.1, 6.2.1, 6.2.2, 6.2.3, 6.2.4.1 6.4, and if time permits, 6.4.2.1 of chapter 6.

I welcome readers’ comments, and am particularly interested in reports of errors or
suggestions for new topics or exercises. My address is:

Justin R. Smith
Department of Mathematics and Computer Science
Drexel University
Philadelphia, PA 19104
USA

vii



viii FOREWORD

and my electronic mail address is jsmith@mcs.drexel.edu. Although I will try to
respond to readers’ comments, I regret that it will probably not be possible to respond
to all of them.

I generally used the C* language as a kind of “pseudocode” for describing parallel
algorithms. Although Modula* might have been more suitable than C* as a “publica-
tion language” for parallel algorithms, I felt that C* was better known in the computing
community1. In addition, my access to a C* compiler made it possible for me to debug
the programs. I was able to address many issues that frequently do not arise until one
actually attempts to program an algorithm. All of the source code in this book can ac-
tually be run on a computer, although I make no claim that the published source code
is optimal.

The manuscript was typeset using AMS-LATEX— the extension of LATEX developed
by the American Mathematical Society. I used a variety of machines in the excellent
facilities of the Department of Mathematics and Computer Science of Drexel University
for processing the TEX source code, and used MacDraw on a Macintosh Plus computer
to draw the figures. The main font in the manuscript is Adobe Palatino — I used
the psfonts.sty package developed by David M. Jones at the MIT Laboratory for
Computer Science to incorporate this font into TEX.

Many of the symbolic computations and graphs were made using the Maple sym-
bolic computation package, running on my own Macintosh Plus computer. Although
this package is not object-oriented, it is very powerful. I am particularly impressed
with the fact that the versions of Maple on microcomputers are of “industrial strength”.

1This will probably change as Modula* becomes more widely available.
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CHAPTER 1

Basic Concepts

1.1. Introduction

Parallel processing algorithms is a very broad field — in this introduction we will
try to give some kind of overview.

Certain applications of computers require much more processing power than can
be provided by today’s machines. These applications include solving differential equa-
tions and some areas of artificial intelligence like image processing. Efforts to increase
the power of sequential computers by making circuit elements smaller and faster have
approached basic physical limits. Consequently, it appears that substantial increases
in processing power can only come about by somehow breaking up a task and having
processors work on the parts independently. The parallel approach to problem-solving
is sometimes very different from the sequential one — we will occasionally give exam-
ples of parallel algorithms that convey the flavor of this approach.

A designer of custom VLSI circuits to solve some problem has a potentially large
number of processors available that can be placed on the same chip. It is natural, in
this context, to consider parallel algorithms for solving problems. This leads to an
area of parallel processing known as the theory of VLSI algorithms. These are parallel
algorithms that use a large number of processors that each have a small amount of local
memory and that can communicate with neighboring processors only along certain
predefined communication lines. The number of these communication lines is usually
very limited.

The amount of information that can be transmitted through such a communication
scheme is limited, and this provides a limit to the speed of computation. There is an ex-
tensive theory of the speed of VLSI computation based on information-flow arguments
— see [157].

Certain tasks, like low level image processing, lend themselves to parallelization
because they require that a large number of independent computations be carried out. In
addition, certain aspects of computer design lead naturally to the question of whether
tasks can be done in parallel. For instance, in custom VLSI circuit design, one has a
large number of simple processing elements available and it is natural to try to exploit
this fact in developing a VLSI to solve a problem. We illustrate this point with an
example of one of the first parallel algorithms to be developed and applied. It was
developed to solve a problem in computer vision — the counting of distinct objects in
a field of view. Although this algorithm has some applications, we present it here only
to convey the flavor of many parallel algorithms. It is due to Levialdi (see [97]).

We are given a two-dimensional array whose entries are all 0 or 1. The array rep-
resents pixels of a black and white image and the 1’s represent the darkened pixels. In
one of the original applications, the array of pixels represented digitized images of red
blood cells. Levialdi’s algorithm solves the problem:

1



2 1. BASIC CONCEPTS

How do we efficiently count the connected sets of darkened pixels?
Note that this is a more subtle problem than simply counting the number of darkened
pixels. Levialdi developed a parallel algorithm for processing the array that shrinks
the objects in the image in each step — it performs transformations on the array in a
manner reminiscent of Conway’s well-known Game of Life:

Suppose ai,j denotes the (i, j)th pixel in the image array during some step of the
algorithm. The (i, j)th entry of the array in the next step is calculated as

(1.1.1) h[h(ai,j−1 + ai,j + ai+1,j − 1) + h(ai,j + ai+1,j−1 − 1)]

where h is a function defined by:

h(x) =

{
1, if x ≥ 1;
0 otherwise.

This algorithm has the effect of shrinking the connected groups of dark pixels until
they finally contain only a single pixel. At this point the algorithm calls for removing
the isolated pixels and incrementing a counter. We assume that each array element ai,j
(or pixel) has a processor (or CPU) named Pi,j associated with it, and that these CPU’s
can communicate with their neighbors.These can be very simple processors — they
would have only limited memory and only be able to carry out simple computations
— essentially the computations contained in the equations above, and simple logical
operations. Each processor would have to be able to communicate with its neighbors in
the array. This algorithm can be carried out in cycles, where each cycle might involve:

(1) Exchanging information with neighboring processors; or
(2) Doing simple computations on data that is stored in a processor’s local mem-

ory.
In somewhat more detail, the algorithm is:
C ← 0
for k ← 1 to n do

for all processors {Pi,j} do in parallel
Pi,j receives the values of
ai+1,j , ai−1,j , ai+1,j+1, ai+1,j−1

ai−1,j+1,ai,j−1,ai,j+1

from its neighbors (it already contains the value of ai,j
if ai,j = 1 and all neighboring elements are 0 then
C ← C + 1

Perform the computation in equation (1) above
end /* do in parallel */

end for
Here is an example — we are assuming that the i axis is horizontal (increasing from

left-to-right) and the j axis is vertical. Here is an example of the Levialdi algorithm.
Suppose the initial image is given by figure 1.1.

The result of the first iteration of the algorithm is given by figure 1.1.2.
In the next step the lone pixel in the upper right is removed and a counter incre-

mented. The result is depicted in figure 1.1.3. After a sufficient number of steps (in
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FIGURE 1.1.1. Initial image

FIGURE 1.1.2. Result of first iteration

FIGURE 1.1.3. Result of second iteration

fact, n steps, where n is the size of the largest side of the rectangle) the screen will be
blank, and all of the connected components will have been counted.

This implementation is an example of a particularly simple form of parallel algo-
rithm called a systolic algorithm1. Another example of such an algorithm is the follow-
ing:

Suppose we have a one-dimensional array (with n elements) whose entries are pro-
cessing elements. We assume that these processing elements can carry out the basic
operations of a computer — in this case it must be able to store at least two numbers
and compare two numbers. Each entry of this array is connected to its two neighboring
entries by communication lines so that they can send a number to their neighbors —
see figure 1.1.4.

1See the discussion on page 13 for a (somewhat) general definition of systolic algorithms. Also see
[93]
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FIGURE 1.1.4. A linear array of processors

7 1 6 3 4 2 5 0

1 7 3 6 2 4 0 5

1 3 7 2 6 0 4 5

1 3 2 7 0 6 4 5

1 2 3 0 7 4 6 5

1 2 0 3 4 7 5 6

1 0 2 3 4 5 7 6

0 1 2 3 4 5 6 7

FIGURE 1.1.5. The odd-even sorting algorithm

Now suppose each processor has a number stored in it and we want to sort these
numbers. There exists a parallel algorithm for doing this in n steps — note that it
is well-known that a sequential sort using comparisons (other than a radix-sort) re-
quires Ω(n lg n) steps. Here lg denote the logarithm to the base 2. In odd-numbered
steps odd-numbered processors compare their number with that of their next higher
numbered even processors and exchange numbers if they are out of sequence. In even-
numbered steps the even-numbered processors carry out a similar operation with their
odd-numbered neighbors (this is a problem that first appeared in [88]). See figure 1.1.5
for an example of this process.

Note that this algorithm for sorting corresponds to the bubble sort algorithm when
regarded as a sequential algorithm.

At first glance it might seem that the way to develop the fastest possible parallel
algorithm is to start with the fastest possible sequential algorithm. This is very definitely
not true, in general. In fact, in many cases, the best parallel algorithm for a problem
doesn’t remotely resemble the best sequential algorithm. In order to understand this
phenomena it is useful to think in terms of computation networks for computations. For
instance the expression (a+ b+ c)/(e+ f − g) can be represented by the directed graph
in figure 1.1.6.

The meaning of a computation-network is that we try to perform a computation at
each vertex of the graph and transmit the result of the computation along the single exit
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Root

+

+

a b
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+

e
–

f g

FIGURE 1.1.6. Computation network

edge. See § 2.4.1 on page 39 for a rigorous definition of a computation network. The
computation cannot be performed until data arrives at the vertex along the incoming
directed edges. It is not hard to see that the computations begin at the vertices that have
no incoming edges and ends at the vertex (labeled the root in figure 1.1.6) that has no
outgoing edges. We will briefly analyze the possibilities for parallelization presented
by this network. Suppose that each vertex of the network has a number associated
with it, called its value. The numbers attached to the leaf vertices are just the numerical
values of the variables a through g — we assume these are given. For a non-leaf vertex
the number attached to it is equal to the result of performing the indicated operation
on the values of the children of the vertex. It is not hard to see that the value of the root
of the tree will equal the value of the whole expression. It is also not hard to see that to
compute the value of a given non-leaf vertex, it is first necessary to compute the values
of its children — so that the whole computation proceeds in a bottom up fashion. We
claim that:

If a computation is to be done sequentially the execution time is very
roughly proportional to the number of vertices in the syntax tree. If the exe-
cution is to be parallel, though, computations in different branches of the
syntax tree are essentially independent so they can be done simultane-
ously. It follows that the parallel execution time is roughly proportional
to the distance from the root to the leaves of the syntax tree.

This idea is made precise by Brent’s Theorem (2.4.2 on page 39). The task of finding a
good parallel algorithm for a problem can be regarded as a problem of re-modeling the
computation network in such a way as to make the distance from the root to the leaves
a minimum. This process of remodeling may result in an increase in the total number of
vertices in the network so that the efficient parallel algorithm would be very inefficient
if executed sequentially. In other words a relatively compact computation network (i.e.
small number of vertices) might be remodeled to a network with a large total number
of vertices that is relatively balanced or flat (i.e. has a shorter distance between the root
and the leaves).

For instance, if we want to add up 8 numbers a1, . . . , a8, the basic sequential algo-
rithm for this has the computation network given in figure 1.1.7.

This represents the process of carrying out 8 additions sequentially. We can remodel
this computation network to get figure 1.1.8. In this case the total execution-time is 3
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a1
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a8
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+

+

FIGURE 1.1.7. Computation network for sequential addition

a1 a2 a3 a4 a5 a6

+

a7 a8

+ +

+ + + +

FIGURE 1.1.8. Remodeled computation network

units, since the distance from the root of the tree to the leaves is 3. When we remodel
these computation-graphs and try to implement them on parallel computers, we en-
counter issues of interconnection topology — this is a description of how the different
processors in a parallel computer communicate with each other. It is not hard to see
that the linear array of processors used in the odd-even sorting algorithm depicted in
figure 1.1.5 on page 4 would have a hard time implementing the addition-algorithm
shown in figure 1.1.8. The ideal situation would be for the communication-patterns
of the processors to be identical to the links of the computation graph. Although this
ideal configuration is not always possible, there are many interconnection topologies
that are suitable for a wide variety of problems — see chapter 2, particularly § 3 on
page 55 through § 3.6 on page 74.

Assuming an ideal interconnection topology, we get an algorithm for adding 2k

numbers in k steps, by putting the numbers at the leaves of a complete binary tree.
Figure 1.1.9 shows this algorithm adding 8 = 23 numbers in 3 steps.

As simple as this algorithm for adding 2k numbers is, it forms the basis of a whole
class of parallel algorithms — see chapter 6.
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4 2 1 3 1 –2 0 2

4 2 1 3 1 –2 0 2

6 4 –1 2

4 2 1 3 1 –2 0 2

6 4 –1 2

10 1

4 2 1 3 1 –2 0 2
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11

Initial data

Step 1

Step 2

Step 3

FIGURE 1.1.9. Sum of 8 numbers in 3 steps

Note that, since we can add n numbers in lg n steps, with sufficiently many proces-
sors, we can do matrix multiplication of n× n matrices in lg n steps. See 5.1.1 on page
99 for the details. Consequently we can also perform other operations derived from
matrix multiplication rapidly. For instance, we can find the distance between all pairs
of vertices in a graph in O(lg2 n)-steps — see 6.2.3 on page 255 for the details.

While it is clear that certain tasks, like matrix addition, can be done rapidly in par-
allel it doesn’t follow that all tasks have this property. This leads to the question of
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whether there exist inherently sequential problems — problems that can’t necessarily be
done faster in parallel.

From the discussion connected with the example given above one might get the
impression that many unbounded parallel algorithms have an execution time that is
O(lgk n) for some value of k. This turns out to be the case — for instance, many algo-
rithms are loosely based upon the example given above.

This phenomena is so widespread that Nicholas Pippenger has defined a class of
problems called NC. These are problems that can be solved on a parallel computer
(like that in the preceding example) — “Nick’s class”. This is the class of problems that
are solvable on a parallel computer in time that is O(lgk n), for a suitable value of k
(where n is proportional to the size of the input) using O(n`) processors, for a suitable
value of `.

See § 2.3.1 in chapter 2 (page 26). — the class of problems solvable in polynomial
time. See § 2.3.1 in chapter 2 (page 26). O(lgk n)-time using a polynomial number of
processors (it seems reasonable to impose this restriction on the number of processors
— in addition many problems can be rapidly solved in parallel if an unlimited num-
ber of processors are available). A rigorous definition is given in § 2.3.1 on page 31.
In general, a problem is called parallelizable if it is in NC. Since any NC problem can
be sequentially solved in polynomial time (by simulating a PRAM computer by a se-
quential one) it follows that NC ⊆ P. The natural question at this point is whether
NC = P — do there exist any inherently sequential problems? This question remains open
at present but there are a number of interesting things one can say about this problem.
The general belief is that NC 6= P but no one has come up with an example of an in-
herently sequential problem yet. A number of problems are known to be P-complete.
Roughly speaking, a polynomial-time sequential problem is called P-complete if any
other polynomial-time sequential problem can be transformed into an instance of it —
see page 35. If a fast parallel algorithm can be found for any P-complete problem, then
fast parallel versions can be found for all polynomial-time sequential algorithms. See
§ 2.3.2 in chapter 2 for examples and a discussion of the theoretical issues involved.

Chapter 2 discusses various unbounded parallel models of computation and
Batcher’s sorting algorithm. We discuss the distinction between “Procedure-level”
and “Data-level” parallelism, and the question of whether “super-linear” speedup
of a sequential algorithm is possible. We give comparisons of the so-called
Concurrent-I/O and Exclusive-I/O models (where the “I/O” in question is between
processors and the shared random access memory).

We also discuss some theoretical questions of when efficient parallel algorithms ex-
ist. These questions all involve the class NC mentioned above and its relations with the
class of polynomial-time sequential problems P. We will discuss the relations between
NC and PLogspace-sequential problems — known as the Parallel Processing Thesis,
originally due to Fortune and Wyllie. We will also discuss potential candidates for
inherently sequential problems here.

In addition, we discuss some of architectures of existing parallel computers and
how algorithms are developed for these architectures. These architectures include:

• the Butterfly Network
• the Hypercube
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• Shuffle-Exchange networks and
• Cube-Connected Cycles

We also briefly discuss dataflow computers, and issues connected with the question of
how memory is accessed in network computers and the Granularity Problem.

Chapter 4 discusses some concrete examples of parallel computers and program-
ming languages. It shows how architectural considerations influence programming
languages. It considers some of the languages for the Sequent Symmetry and the Con-
nection Machine in some detail.

The programming constructs used on the Sequent provide examples of how one
programs MIMD computers in general. The use of semaphores and synchronization
primitives like cobegin and coend are discussed in this connection. We also discuss
the LINDA system for asynchronous parallel programming. It has the advantage of
simplicity, elegance, and wide availability.

We also discuss various portable packages for performing MIMD computing using
existing languages like FORTRAN and C — see § 4.1.1 on page 91.

We conclude our material on coarse-grained MIMD algorithms with a discussion
of automatic parallelization of algorithms (“Parallelizing compilers”) and look at some
of the research being done in this area.

The C* language for the Connection Machine is a model for programming SIMD
machines in general. We use it as a kind of pseudocode for describing SIMD algorithms
in the remainder of the text.

Chapter 5 considers numeric applications of parallel computing:
• Systems of linear equations. We discuss iterative techniques for solving sys-

tems of linear equations.
• Matrix operations. We discuss the Pan-Reif matrix-inversion algorithm as an

example of an extraordinarily inefficient sequential algorithm that can be effi-
ciently parallelized.
• The Fourier Transform. We develop the FFT algorithm and give a few applica-

tions.
• Wavelet transforms. This is a new area, related to the Fourier Transform, that

involves expanding input-functions (which may represent time-series or other
phenomena) in a series whose terms are fractal functions. Wavelet transforms
lend themselves to parallel computations — in some respects to a greater ex-
tent than Fourier Transforms. We present parallels algorithms for wavelet
transforms.
• Numerical integration. We give several parallel algorithms for approximately

evaluating definite integrals.
• Numeric solutions to partial differential equations — including techniques pe-

culiar to elliptic, parabolic, and hyperbolic differential equations.
Chapter 6 considers several classes of non numeric parallel algorithms, including:

(1) A general class of algorithms that may be called doubling algorithms. All of
these roughly resemble the algorithms for adding 8 numbers given in this in-
troduction. In general, the technique used for adding these 8 numbers can be
used in performing any associative operation. A large number of operations
can be expressed in these terms:
• The solution of linear recurrences.
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• Parsing of linear languages (with applications to pattern-recognition and
the design of front-ends to compilers).

(2) searching and various sorting algorithms including that of Cole and the Ajtai,
Komlós, Szemerédi sorting algorithm.

(3) Graph-theoretic algorithms like minimal spanning tree, connected
components of a graph, cycles and transitive closure.

(4) Fast Fourier Transforms (revisited) with applications to Computer Algebra.
(5) Probabilistic algorithms including Monte Carlo Integration, and some sym-

bolic algorithms. We introduce the class RNC, of problems that have parallel
solutions that involve random choices, and whose expected execution time (this
term is defined on page 363) is in O(lgk n) for k some integer, and for n equal
to the complexity-parameter of the problem.

EXERCISES.

1. Prove the correctness of the algorithm on page 57 for forming the cumulative
sum of 2k numbers in k steps.



CHAPTER 2

Models of parallel computation

2.1. Generalities

In this section we discuss a few basic facts about parallel processing in general.
One very basic fact that applies to parallel computation, regardless of how it is imple-
mented, is the following:

CLAIM 2.1.1. Suppose the fastest sequential algorithm for doing a computation
with parameter n has execution time of T(n). Then the fastest parallel algorithm with
m processors (each comparable to that of the sequential computer) has execution time
≥ T(n)/m.

The idea here is: If you could find a faster parallel algorithm, you could execute
it sequentially by having a sequential computer simulate parallelism and get a faster
sequential algorithm. This would contradict the fact that the given sequential algo-
rithm is the fastest possible. We are making the assumption that the cost of simulating
parallel algorithms by sequential ones is negligible.

This claim is called the “Principle of Unitary Speedup”.
As usual, the parameter n represents the relative size of the instance of the problem

being considered. For instance, if the problem was that of sorting, n might be the
number of items to be sorted and T(n) would beO(n lg n) for a sorting algorithm based
upon comparisons.

As simple as this claim is, it is a bit controversial. It makes the tacit assumption that
the algorithm in question is deterministic. In other words, the algorithm is like the usual
idea of a computer program — it performs calculations and makes decisions based on
the results of these calculations.

There is an interesting area of the theory of algorithms in which statement 2.1.1 is
not necessarily true — this is the theory of randomized algorithms. Here, a solution to a
problem may involve making random “guesses” at some stage of the calculation. In
this case, the parallel algorithm usingm processors can run faster thanm× the speed of
the sequential algorithm (“Super-unitary speedup”). This phenomenon occurs in cer-
tain problems in which random search is used, and most guesses at a solution quickly
lead to a valid solution, but there are a few guesses that execute for a long time without
producing any concrete results.

We will give an example of this phenomenon. Although it is highly oversimplified,
it does illustrate how super unitary speedup can occur.

Suppose there are a 100 possible approaches to an AI-type search problem and:
(1) 99 out of the 100 possibilities arrive at a solution in 1 time unit.
(2) 1 of the possibilities runs for 1000 time units, and then fails.

The expected execution-time of a single (sequential) attempt to find a solution is the av-
erage of all of these times, or 10.99 time-units.

11
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If we attack this problem with a parallel computer that has 2 processors that try
distinct possibilities, the expected time (and even the worst-case time) is 1 unit, since at
least one of these two distinct possibilities will be a fast solution. We, consequently, see
a super-unitary speedup in the parallel algorithm. In other words the expected1 running-
time of the algorithm is divided by > 10, which is much greater than the ratio of pro-
cessors.

The opponents of the concept of super-unitary speedups (including the author)
would argue that the original sequential algorithm was not optimal — and that the
optimal sequential algorithm would have attempted two possible solutions with two
distinct processes, run concurrently). A sequential algorithm that created two processes
would have a running time of 2 units. The speedup that results by going to the sam-
ple parallel algorithm is 2, which is exactly equal to the ratio of processors. Thus, by
modifying the sequential algorithm used, the validity of 2.1.1 is restored.

In [125], Parkinson argues that super-unitary speedup is possible, and in [49] Faber
Lubeck White argue that it is not.

See [95], [98], and [111], for more information about this phenomenon.
We will will concentrate on deterministic algorithms in this text, so that we will

assume that super-unitary speedup is essentially impossible.
The next question we consider is how the instructions to the processors are handled.
In this section we will consider some simple algorithms that can be implemented

when we have a SIMD computer in which every processor can access common RAM.
In general, a computer in which many processors can access common RAM in a single
program-step is called the PRAM model of computer. This is one of the oldest mod-
els of parallel processing to be considered, although there have never been any large
parallel computers that implement it. The PRAM model is a kind of mathematical
idealization of a parallel computer that eliminates many of the low-level details and
allows a researcher to concentrate on the “purely parallel” aspects of a problem.

Traditionally, the PRAM model of computation has been regarded as more of the-
oretical than practical interest. This is due to the fact that it requires large numbers of
processors to be physically connected to the same memory location. The two examples
cited above (the Sequent and the Encore Multimax) aren’t an exception to this state-
ment: they only have small numbers of processors. Several researchers are exploring
the possibility of physically realizing of PRAM computers using optical interfaces —
see [106].

There exist several different models of program control. In [51], Flynn listed several
basic schemes:

SIMD: Single Instruction Multiple Data. In this model the processors are con-
trolled by a program whose instructions are applied to all of them simultane-
ously (with certain qualifications). We will assume that each of the processors
has a unique number that is “known” to the processor in the sense that instruc-
tions to the parallel computer can refer to processor numbers.

A seemingly more powerful model is:

1Recall that the expected running-time of an algorithm like the one in the example is the average of
actual running times, weighted by probabilities that these running times occur.
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MIMD: Multiple Instruction Multiple Data. In this model processors can each
have independent programs that are read from the common RAM. This model
is widely used in several settings:
(1) Coarse-grained parallelism — this is a form of parallel computing that

closely resembles concurrent programming in that it involves processes that
run asynchronously. Most microprocessors available today have multiple
cores and do MIMD parallel processing.
Many interesting issues arise in this case. The data-movement and com-
munications problems that occur in all parallel computation are more sig-
nificant here because the instructions to the processors as well as the data
must be passed between the common memory and the processors.
Due to these data-movement problems, commercial MIMD computers
tend to have a relatively small number of processors (≈ 20). In general,
it is easier to program a MIMD machine if one is only interested in a
very limited form of parallelism — namely the formation of processes.
Conventional operating systems like UNIX form separate processes to
carry out many functions, and these processes really execute in parallel
on commercially-available MIMD machines. It follows that, with one of
these MIMD machines, one can reap some of the benefits of parallelism
without explicitly doing any parallel programming. For this reason, most
of the computers in use today tend to be MIMD machines, run as general-
purpose computers.
On the surface, it would appear that MIMD machine are strictly more
powerful than SIMD machines with the same number of processors. In-
terestingly enough, this is not the case — it turns out that SIMD machines
are more suited to performing computations with a very regular structure.
MIMD machines are not as suited to solving such problems because their
processors must be precisely synchronized to implement certain algorithms
— and this synchronization has a cost that, in some cases, can dominate
the problem. See § 4.1.1.1, and particularly 2.4.8 for a discussion of these
issues.

Three other terms that fill out this list are:
SISD: Single Instruction, Single Data. This is nothing but conventional sequential

computing.
MISD: This case is often compared to computation that uses Systolic Arrays.

These are arrays of processors that are developed to solve specific problems —
usually on a single VLSI chip. A clock coordinates the data-movement opera-
tions of all of the processors, and output from some processors are pipelined
into other processors. The term “Systolic” comes from an analogy with an ani-
mal’s circulatory system — the data in the systolic array playing the part of the
blood in the circulatory system. In a manner of speaking, one can think of the
different processors in a systolic array as constituting “multiple processors”
that work on one set of (pipelined) data. We will not deal with the MISD case
(or systolic arrays) very much in this text. See [93] for a discussion of systolic
computers.



14 2. MODELS OF PARALLEL COMPUTATION

SIMD-MIMD Hybrids: This is a new category of parallel computer that is
becoming very significant. These machines are also called SAMD machines
(Synchronous-Asynchronous Multiple Data). The first announced commercial
SAMD computer is the new Connection Machine, the CM-5. This is
essentially a MIMD computer with hardware features to allow:
• Precise synchronization of processes to be easily achieved.
• Synchronization of processors to be maintained with little or no overhead,

once it has been achieved (assuming that the processors are all executing
the same instructions in corresponding program steps). It differs from
pure MIMD machines in that the hardware maintains a uniform “heart-
beat” throughout the machine, so that when the same program is run on
all processors, and all copies of this program are started at the same time,
it is possible to the execution of all copies to be kept in lock-step with es-
sentially no overhead. Such computers allow efficient execution of MIMD
and SIMD programs.

Here are some systems of this type:
(1) The Paragon system from Intel. (Also called the iPSC-860.)
(2) The SP-1 from IBM. This is essentially a networked set of independent pro-

cessors, each running its own copy of Unix and having its own disk space.
Logically, it looks like a set of workstations that communicate through
Ethernet connections. The thing that makes this system a “parallel com-
puter” is that the processors are networked together in a way that looks
like Ethernet to a programmer, but actually has a much higher transfer
rate.

(3) The Triton Project, at the University of Karlsruhe (Germany). The Triton
Project is currently developing a machine called the Triton/1 that can have
up to 4096 processors.

Flynn’s scheme for classifying parallel computers was somewhat refined by Händler in
1977 in [64]. Händler’s system for classifying parallel computers involves three pairs
of integers:

T (C) =< K ×K ′, D ×D′,W ×W ′ >

where:
(1) K: the number of processor control units (PCU’s). These are portions of CPU’s

that interpret instructions and can alter flow of instructions. The number K
corresponds, in some sense, to the number of instruction-streams that can ex-
ecute on a computer.

(2) K ′: The number of processor control units that can be pipelined. Here, pipelin-
ing represents the process of sending the output of one PCU to the input of
another without making a reference to main memory. A MISD computer (as
described above) would represent one in which K ′ > K.

(3) D: The number of arithmetic-logical units (ALU’s) controlled by each PCU.
An ALU is a computational-element — it can carry out arithmetic or logical
calculations. A SIMD computer would have a K-number of 1 and a D number
that is > 1.

(4) D′: The number of ALU’s that can be pipelined.
(5) W : The number of bits in an ALU word.
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(6) W ′: The number of pipeline segments in all ALU’s controlled by a PCU or in a
single processing element.

Although Händler’s scheme is much more detailed than Flynn’s, it still leaves much
to be desired — many modern parallel computers have important features that do not
enter into the Händler scheme2 at all. In most case, we will use the much simpler Flynn
scheme, and we will give additional details when necessary.

With the development of commercially-available parallel computers, some new
terms have come into common use:

Procedure-level parallelism: This represents parallel programming on a computer that
has a relatively small number of processors, and is usually a MIMD-machine. Since
the number of processors is small, each processor usually does a large chunk of the
computation. In addition, since the machine is usually MIMD each processor must be
programmed with a separate program. This is usually done in analogy with concurrent
programming practices — a kind of fork-statement is issued by the main program and a
procedure is executed on a separate processor. The different processors wind up exe-
cuting procedures in parallel, so this style of programming is called procedure-level paral-
lelism. It has the flavor of concurrent programming (where there is real concurrency)
and many standard concurrent programming constructs are used, like semaphores,
monitors, and message-passing.

Data-level parallelism: This represents the style of parallel programming that is em-
phasized in this book. It is used when there is a large number of processors on a ma-
chine that may be SIMD or MIMD. The name ‘data-level parallelism’ is derived from
the idea that the number of processors is so great that the data can be broken up and
sent to different processors for computations — originally this referred to a do-loop
in FORTRAN. With a large number of processors you could send each iteration of the
loop to a separate processor. In contrast to procedure-level parallelism, where you
broke the code up into procedures to be fed to different processors, here you break up
the data and give it to different processors.

This author feels that these terms are not particularly meaningful — they are only
valid if one does parallel programming in a certain way that is closely related to or-
dinary sequential programming (i.e. the terms arose when people tried to parallelize
sequential programs in a fairly straightforward way). The terms are widely used, how-
ever.

2.1.1. Sorting on an EREW-SIMD PRAM computer. The next issue we might con-
sider in classifying parallel processors, is how memory is accessed.

DEFINITION 2.1.2. A PRAM computer follows the EREW scheme of memory access
if, in one program step, each memory location can be written or read by at most a single
processor.

Consider the sorting algorithm discussed in the introduction. It isn’t hard to see
that it is optimal in the sense that it will always take at least n steps to sort n numbers
on that computer. For instance, some numbers might start out n − 1 positions away
from their final destination in the sorted sequence and they can only move one posi-
tion per program step. On the other hand it turns out that the PRAM-EREW computer

2 For instance, the CM-5 computer mentioned above.
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described above can sort n numbers in O(lg2 n) program steps using an old algorithm
due to Batcher. This difference in execution time throws some light on the fundamental
property of the PRAM model of computation: there is an unbounded flow of informa-
tion. In other words even if only one processor can access one memory location at a
time it is very significant that all processors can access all of the available memory in a
single program step.

Batcher’s sorting algorithm involves recursively using the Batcher Merge algo-
rithm, which merges two sequences of length n in time O(lg n).

In order to discuss this algorithm, we must first look at a general result that is
indispensable for proving the validity of sorting algorithms. This is the 0-1 Principle
— already alluded to in the exercise at the end of the introduction. See § 2 in chapter
28 of [35] for more information. This result applies to sorting and merging networks,
which we now define.

DEFINITION 2.1.3. A comparator is a type of device (a computer-circuit, for instance)
with two inputs and two outputs:

Comparator

IN1

IN2 OUT2

OUT1

such that:
• OUT1 = min(IN1, IN2)
• OUT2 = max(IN1, IN2)

The standard notation for a comparator (when it is part of a larger network) is the more
compact diagram:

IN1

IN2
OUT2

OUT1

A comparator network is a directed graph with several special properties:
(1) Data (numbers) can flow along the edges (in their natural direction). You can

think of these edges as “pipes” carrying data, or “wires”.
(2) One set of vertices constitutes the inputs for the graph, and another are called

its outputs. These are the exterior vertices of the graph.
(3) The interior vertices of the graph are comparators.

A sorting network is a comparator network that has the additional property:

The data that appears at the output vertices is the result of sorting the
data that was at the input vertices.

A merging network is defined to be a comparator network with the property that, if we
subdivide the inputs into two subsets of equal sizes, and insert sorted data into each
of these subsets, the output is the result of merging the input-sequences together.

PROPOSITION 2.1.4. If a comparator network correctly sorts all input-sequences drawn
from the set {0, 1}, then it correctly sorts any input-sequence of numbers, so that it constitutes
a sorting network.

Similarly, if a comparator-network whose inputs are subdivided into two equal sets correctly
merges all pairs of 0-1-sequences, then it correctly merges all pairs of number-sequences.
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IN1

IN2

IN3

OUT1

OUT2

OUT3

FIGURE 2.1.1. A sorting network on three inputs

The proof is given in the appendix to this section on page 21. Figure 2.1.1 shows a
sorting network that correctly sorts all possible sequences of three numbers.

Although the 0-1 Principle is stated for comparator networks it also applies to many
algorithms. If a sort or merge algorithm performs fixed sequences of comparisons
between elements, it clearly defines a network in the sense defined above.

2.1.2. Bitonic Sorting Algorithm. In this section we will discuss one of the first
parallel sorting algorithms to be developed.

DEFINITION 2.1.5. A sequence of numbers will be called bitonic if either of the fol-
lowing two conditions is satisfied:

• It starts out being monotonically increasing up to some point and then be-
comes monotonically decreasing.
• It starts out being monotonically decreasing up to some point and then be-

comes monotonically increasing.
A sequence of 0’s and 1’s will be called clean if it consists entirely of 0’s or entirely of
1’s.

For instance the sequence {4, 3, 2, 1, 3, 5, 7} is bitonic. We will present an algorithm
that correctly sorts all bitonic sequences. This will turn out to imply an efficient algo-
rithm for merging all pairs of sorted sequences, and then, an associated algorithm for
sorting all sequences.

DEFINITION 2.1.6. Given a bitonic sequence of size {a0, . . . , an−1}, where n = 2m,
a bitonic halver is a comparator network that performs the following sequence of
compare-exchange operations:
for i← 0 to m− 1 do in parallel

if(ai < ai+m) then swap(ai, ai+m)
endfor

Figure 2.1.2 shows a bitonic halver of size 8.
Note that a bitonic halver performs some limited sorting of its input (into ascending

order). The following proposition describes the precise sense in which sorting has been
performed:

PROPOSITION 2.1.7. Suppose {a0, . . . , an−1}, where n = 2m is a bitonic sequence of 0’s
and 1’s, that is input to a bitonic halving network, and suppose the output is {b0, . . . , bn−1} =
{r0, . . . , rm−1, s0, . . . , sm−1}. Then one of the two following statements applies:

• The sequence {r0, . . . , rm−1} consists entirely of 0’s and the sequence {s0, . . . , sm−1}
is bitonic, or
• The sequence {r0, . . . , rm−1} is bitonic, the sequence {s0, . . . , sm−1} consists entirely

of 1’s.
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0
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4

5

7

6
Upper

Lower

FIGURE 2.1.2. A bitonic halver of size 8

Consequently, the smallest element of the lower half of the output is≥ the largest element of the
upper half.

The two cases are distinguished by the number of 1’s that were in the original input.

PROOF. We have four cases to contend with:
(1) The input first increases and later decreases, and has a preponderance of 1’s:

{00, . . . , 0α−1, 1α, . . . , 1m−1, . . . , 1β, 0β+1 . . . , 0n−1}
where β−α ≥ m−1 or β ≥ α+m−1, or n−1−β ≤ m−1−α. This inequality
implies that when we compare 0’s in the upper half of the input with 1’s in the
lower half, each 0 will be compared with a 1 (i.e., there will be enough 1’s) and,
therefore, will be swapped with it. A straightforward computation shows that
the output will be

{00, . . . , 0α−1, 1α, . . . , 1β−m+1, 0β−m+2, . . . , 0m−1, 1m, . . . , 1n−1}
so the conclusion is true.

(2) The input first decreases and later increases, and has a preponderance of 1’s:

{10, . . . , 1α−1, 0α, . . . , 0m−1, . . . , 0β, 1β+1 . . . , 1n−1}
where β − α < m. In this case each 0 in the lower half of the input will also be
compared with a 1 in the upper half, since β ≤ α +m− 1. The output is

{00, . . . , 0β−1, 1β, . . . , 1α−m+1, 0α−m+2, . . . , 0m−1, 1m, . . . , 1n−1}
The two cases with a preponderance of 0’s follow by symmetry. �

It is not hard to see how to completely sort a bitonic sequence of 0’s and 1’s:

2.1.1. Bitonic Sorting Algorithm. Let n = 2k and let {a0, . . . , an−1} be a bitonic sequence
of 0’s and 1’s. The following algorithm sorts it completely:
for i← k downto 1 do in parallel

Subdivide the data into 2k−i disjoint sublists of size 2i

Perform a Bitonic Halving operation on each sublist
endfor
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FIGURE 2.1.3. Bitonic sorting network for 8 inputs

In the first iteration the “sublists” in question are the entire original input.
Since this correctly sorts all bitonic sequences of 0’s and 1’s, and since it is a sorting network,

the 0-1 Principle implies that it correctly sorts all bitonic sequences of numbers.

Figure 2.1.3 shows a bitonic sorting network. Since the bitonic halving operations
can be carried out in a single parallel step (on an EREW computer, for instance), the
running time of the algorithm is O(lg n), using O(n) processors.

PROOF. Each Bitonic Halving operation leaves one half of its data correctly sorted,
the two halves are in the correct relationship with each other, and the other half is
bitonic. It follows that in phase i, each sublist is either sorted, or bitonic (but in the
proper sorted relationship with the other sublists). In the end the intervals will be of
size 1, and the whole list will be properly sorted. �

Here is an example of the bitonic sorting algorithm:

EXAMPLE 2.1.8. We set n to 8. The input data is:

{1, 2, 3, 6, 7, 4, 2, 1}
and we will sort in ascending order. After the first bitonic halving operation we get

{1, 2, 2, 1, 7, 4, 3, 6}
Now we apply independent bitonic halving operations to the upper and lower halves
of this sequence to get

{1, 1, 2, 2, 3, 4, 7, 6}
In the last step we apply bitonic halving operations to the four sublists of size 2 to get
the sorted output (this step only interchanges the 6 and the 7)

{1, 1, 2, 2, 3, 4, 6, 7}

Now we have a fast algorithm for sorting bitonic sequences of numbers. Unfortu-
nately, such sequences are very rare in the applications for sorting. It turns out, how-
ever, that this bitonic sorting algorithm gives rise to a fast algorithm for merging two
arbitrary sorted sequences. Suppose we are given two sorted sequences {a0, . . . , am−1}
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and {b0, . . . , bm−1}. If we reverse the second sequence and concatenate it with the first
sequence the result is

{a0, . . . , am−1, bm−1 . . . , b0}
which is bitonic. This give rise to the following Batcher Merge algorithm:

2.1.2. Batcher Merge. Suppose {a0, . . . , am−1} and {b0, . . . , bm−1} are two sorted se-
quences, where m = 2k−1. Then the following algorithms merges them together:

(1) Preparation step. Reverse the second input-sequence and concatenate it with the first,
forming

{a0, . . . , am−1, bm−1 . . . , b0}
(2) Bitonic sort step.

for i← k downto 1 do in parallel
Subdivide the data into 2k−i disjoint sublists of size 2i

Perform a Bitonic Halving operation on each sublist
endfor

The result is a correctly-sorted sequence.

This merge algorithm executes in O(lg n) steps, using O(n) processors.
It is now straightforward to come up with an algorithm for sorting a sequence of

n numbers on an EREW-PRAM computer with n processors. We will also analyze its
running time. Suppose T (n) represents the time required to sort n = 2k data-items.

2.1.3. Batcher Sort
(1) Sort right and left halves of the sequence (recursively). This runs in T (2k−1)-time

(assuming that the right and left halves are sorted in parallel.
(2) Perform a Batcher Merge (2.1.2) of the two sorted halves.

The overall running time satisfies the relation T (2k) = T (2k−1) + c1(k − 1) + c2. Here c1 is
equal to the constant factors involved in the Merge algorithm and c2 is the total contribution of
the constant factors in the unshuffle and shuffle-steps, and the last step. We get

T (2k) =
k∑
j=1

(c1(j − 1) + c2) = c1
(k − 1)(k − 2)

2
+ c2k = O(k2)

Since n = 2k, k = lg n and we get T (n) = O(lg2 n).

EXERCISES.

1. Find examples of PRAM and networked parallel computers that are commer-
cially available. What programming languages are commonly used on these machines?

2. Is it possible for a sorting algorithm to not be equivalent to a sorting network?
What operations would the algorithm have to perform in order to destroy this equiva-
lence?

3. Prove that the odd-even sorting algorithm on page 4 works. Hint: Use the 0-1
principle.
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4. Consider the example of super-unitary speedup on page 11. Is such super-
unitary speedup always possible? If not, what conditions must be satisfied for it to
happen?

5. At about the time that he developed the Bitonic Sorting Algorithm, and the as-
sociated merging algorithm, Batcher also developed the Odd-Even Merge Algorithm .

a. Assume that we have two sorted sequences of length n: {Ai} and {Bi}. Un-
shuffle these sequences forming four sequences of length n/2: {A2j−1},{A2j},
{B2j−1}, {B2j};

b. (Recursively) merge {A2j−1} with {B2j−1} forming {Ci} and {A2j} with {B2j}
forming {Di};

c. Shuffle {Ci}with {Di} forming {C1, D1, C2, D2, . . . Cn, Dn};
d. Sorting this result requires at most 1 parallel step, interchanging Ci with Di−1

for some values of i.
The correctness of this algorithm depends upon the lemma:

LEMMA 2.1.9. Let n be a power of 2 and let A1, . . . , An and B1, . . . , Bn be two sorted
sequences such that A1 ≤ B1. Merge the sequences A1, A3, A5, . . . and B1, B3, B5, . . . to form
C1, . . . , Cn and the sequences A2, A4, A6, . . . and B2, B4, B6, . . . to form D1, . . . , Dn. Now
shuffle the C-sequence with the D- sequence to get C1, D1, C2, D2, . . . Cn, Dn. Then sorting
this last sequence requires, at most interchanging Ci with Di−1 for some values of i.

Here is an example: Suppose the original A-sequence is 1, 5, 6, 9 and the original
B-sequence is 2, 3, 8, 10. The sequence of odd A’s is 1, 6 and the sequence of even
A’s is 5, 9. The sequence of odd B’s is 2, 8 and the sequence of even B’s is 3, 10. The
result of merging the odd A’s with the odd B’s is the sequence of C’s — this is 1, 2, 6, 8.
Similarly the sequence of D’s is 3, 5, 9, 10. The result of shuffling the C’s with the D’s
is 1, 3, 2, 5, 6, 9, 8, 10. Sorting this sequence only involves interchanging C2 = 2 and
D1 = 3 and D3 = 9 and C4 = 8.

Prove this lemma, using the 0-1 Principal.

2.1.3. Appendix: Proof of the 0-1 Principal. We begin by recalling the definition
of monotonically increasing functions:

DEFINITION 2.1.10. A real-valued function f is called monotonically increasing if,
whenever x ≤ y, then f(x) ≤ f(y).

For instance f(x) = x or x2 are monotonically increasing functions. These functions
(and 0-1 comparator networks) have the following interesting property:

PROPOSITION 2.1.11. Let {a0, . . . , ak−1} be a set of numbers that are input to a network,
N , of comparators, and let {b0, . . . , bk−1} be the output. If f(x) is any monotonically increasing
function, the result of inputting {f(a0), . . . , f(ak1)} to N will be {f(b0), . . . , f(bk−1)}.

In other words, the way a comparator network permutes a set of numbers is not
affected by applying a monotonically increasing function to them. This is intuitively
clear because:
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• the decisions that a comparator network makes as to whether to permute two
data items are based solely upon the relative values of the data items;
• and monotonically increasing functions preserve these relative value relation-

ships.

PROOF. We use induction on the number of comparators in the comparator net-
work. If there is only one comparator in the network, then each data item must traverse
at most one comparator. In this case, the proof is clear:

min(f(x), f(y)) =f(min(x, y))

max(f(x), f(y)) =f(max(x, y))

Now suppose the conclusion is true for all comparator networks with n compara-
tors. If we are given a comparator network with n + 1 comparators, we can place one
comparator, C, adjacent to the input-lines and regard the original network as a com-
posite of this comparator, and the subnetwork, N \C, that remained after we removed
it. The notation A \B represents the set-difference of the sets A and B.

We have just shown that comparator C (i.e., the one that was closest to the input
lines in the original network) satisfies the conclusion of this result. It follows that the
input-data to N \ C will be f(output of C). The inductive hypothesis implies that the
rest of the original network (which has n comparators) will produce output whose
relative order will not be modified by applying the function f . �

COROLLARY 2.1.12. If a comparator network correctly sorts all input-sequences drawn
from the set {0, 1}, then it correctly sorts any input-sequence of numbers, so that it constitutes
a sorting network.

Similarly, if a comparator-network whose inputs are subdivided into two equal sets correctly
merges all pairs of 0-1-sequences, then it correctly merges all pairs of number-sequences.

PROOF. If we have k inputs {a0, . . . , ak−1}, define the k monotonically increasing
functions:

fi(x) =

{
0 if x < ai
1 if x ≥ ai

The conclusion follows immediately from applying 2.1.11, above, to these monotoni-
cally increasing functions. �

2.2. Relations between PRAM models

In this section we will use the sorting algorithm developed in the last section to
compare several variations on the PRAM models of computation. We begin by de-
scribing two models that appear to be substantially stronger than the EREW model:

CREW: — Concurrent Read, Exclusive Write. In this case any number of proces-
sors can read from a memory location in one program step, but at most one
processor can write to a location at a time. In some sense this model is the one
that is most commonly used in the development of algorithms.

CRCW: — Concurrent Read, Concurrent Write. In this case any number of pro-
cessors can read from or write to a common memory location in one program
step. The outcome of a concurrent write operation depends on the particular
model of computation being used (i.e. this case breaks up into a number of
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sub-cases). For instance, the result of a concurrent write might be the boolean
OR of the operands; or it might be the value stored by the lowest numbered
processor attempting the write operation, etc.

This model of computation is more powerful than the CREW model — see
§ 6.2.4 in chapter 6 (on page 258) for an example of a problem (connected com-
ponents of a graph) for which there exists an improved algorithm using the
CRCW model. The Hirschberg-Chandra-Sarawate algorithm runs on a CREW
computer inO(lg2 n) time and the Shiloach-Vishkin algorithm runs on a CRCW
computer in O(lg n) time. There is no known algorithm for this problem that
runs on a CREW computer in O(lg n) time.

It is a somewhat surprising result, due to Vishkin (see [164]) that these models can be
effectively simulated by the EREW model (defined in 2.1.2 on page 15). The original
statement is as follows:

THEOREM 2.2.1. If an algorithm on the CRCW model of memory access executes in α time
units using β processors then it can be simulated on the EREW model using O(α lg2 n) -time
and β processors. The RAM must be increased by a factor of O(β).

This theorem uses the Batcher sorting algorithm in an essential way. If we substitute
the (equally usable) EREW version of the Cole sorting algorithm, described in § 6.4.2.3
in chapter 6 (see page 319) we get the following theorem:

THEOREM 2.2.2. Improved Vishkin Simulation Theorem If an algorithm on the CRCW
model of memory access executes in α time units using β processors then it can be simulated
on the EREW model using O(α lg n) -time and β processors. The RAM must be increased by
a factor of O(β).

Incidentally, we are assuming the SIMD model of program control.
The algorithm works by simulating the read and write operations in a single pro-

gram step of the CRCW machine.

CRCW Write Operation. This involves sorting all of the requests to write to a single
memory location and picking only one of them per location. The request that is picked
per memory location is the one coming from the processor with the lowest number —
and that request is actually performed.

Suppose that processor i wants to write to address a(i)(0 ≤ i ≤ β − 1).
(1) Sort the pairs {(a(i), i), 0 ≤ i ≤ β − 1} in lexicographic order using the Batcher

Algorithm (or the Cole sorting algorithm on page 319, for the improved ver-
sion of the theorem) presented in the last section. Call the resulting list of pairs
{(a(ji), ji)}.

(2) Processor 0 writes in a(j0) the value that processor j0 originally intended to
write there. Processor k (k > 0) tests whether a(jk−1) = a(jk). If not it writes in
a(jk) the value that processor jk originally intended to write there.

Here is an example of the simulation of a CRCW-write operation:

Processor 0 1 2 3 4 5 6 7
Target 2 6 3 1 5 7 1 0
D(i) 3 4 5 6 7 8 9 0
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Here D(i) is the data that processor i wants to write to location a(i). This is
converted into a list of pairs:

(0,2), (6,1), (3,2), (1,3), (5,4), (7,5), (7,6), (0,7)

This list is sorted by the second element in each pair:
(0,7), (1,3), (2,0), (3,2), (5,4), (6,1), (7,5), (7,6)

Suppose the ith pair in the sorted list is called (a(ji), ji), and the memory
in the ith processor is called Mi. These pairs are processed via the following
sequence of operations:

Processor Action
0 M0 ← D(7) = 0
1 Test a(j1) = 1 6= a(j0) = 0 and do M1 ← D(3) = 6
2 Test a(j2) = 2 6= a(j1) = 1 and do M2 ← D(0) = 3
3 Test a(j3) = 3 6= a(j2) = 2 and do M3 ← D(2) = 5
4 Test a(j4) = 5 6= a(j3) = 3 and do M5 ← D(4) = 7
5 Test a(j5) = 6 6= a(j4) = 5 and do M6 ← D(1) = 4
6 Test a(j6) = 7 6= a(j5) = 6 and do M5 ← D(6) = 9
7 Test a(j7) = a(j6) = 7 and do nothing

CRCW Read Operation. Here a(i)(0 ≤ i ≤ β − 1) denotes the address from which
processor i wants to read in the CRCW machine.

(1) Identical to step 1 in the Write Operation. In addition introduce an auxiliary
β × 3 array denoted Z.

For i, 0 ≤ i ≤ β − 1: Z(i, 0) contains the content of memory address a(ji) at
the end of the read-operation.

Z(i, 1) contains YES if the content of a(ji) is already written in Z(i, 1), and
NO otherwise. It is set to NO before each simulated CRCW read-operation.

Z(i, 2) contains the content of address a(i) at the end of the read-operation.
(2) Processor 0 copies the content of a(j0) into Z(0, 0);Z(0, 1) ← YES. If a(ji) 6=

a(ji−1) then processor ji copies the content of a(ji) into Z(ji, 0); Z(ji, 1)← YES.
The array now has the unique values needed by the processors. The next step
consists of propagating these values throughout the portions of Z(0, ∗) that cor-
respond to processors reading from the same location. This is accomplished in
lg n iterations of the following steps (for processors 0 ≤ i ≤ β − 1):
k(i)← 0 (once, in the first iteration);
Wait until Z(i, 1) is turned to YES;

while (i+ 2k(i) ≤ β − 1 and
Z(i+ 2k(i), 1) = NO) do
Z(i+ 2k(i), 1)←YES;
Z(i+ 2k(i), 0)← Z(i, 0);
k(i+ 2k(i))← k(i) + 1;
k(i)← k(i) + 1; Z(ji, 2)← Z(i, 0);

endwhile

Note that the EREW design of the computer makes it necessary for us to have sepa-
rate counters — the k(i) — for each of the processors.
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This operation copies the values that have been read from memory as many times
as are necessary to satisfy the original read-requests. The final step consists in having
the processors read Z(∗, 2).

Here is an example of the simulation of a CRCW-read operation:

Processor 0 1 2 3 4 5 6 7
Reads from 2 6 7 1 5 7 1 0

D(i) 3 4 5 6 7 8 9 0

In this example Di is the data that processor i initially contains. The first step is
the same as in the simulation of the CRCW-write operation. The set of desired read-
operations is converted into a list of pairs:

(2,0), (6,1), (7,2), (1,3), (5,4), (7,5), (1,6), (0,7)

This list is sorted by the second element in each pair:
(0,7), (1,3), (1,6), (2,0), (5,4), (6,1), (7,2), (7,5)

Now we set up the Z array. Initially it looks like the following:

i 0 1 2 3 4 5 6 7
Z(i, 0)
Z(i, 1) NO NO NO NO NO NO NO NO
Z(i, 2)

The first processor copies D(a(j0)) into position Z(0, 0). Every other processor tests
whether a(ji) 6= a(ji−1) and, if the values are not equal, copies its value of D(a(ji)) into
Z(i, 0). Each position of the Z-array that receives one of the a(i) is marked by having
its value of Z(i, 1) set to YES. We also set up the variables k(i). We get the following
array:

i 0 1 2 3 4 5 6 7
Z(i, 0) 0 6 3 7 4 5
Z(i, 1) YES YES NO YES YES YES YES NO
Z(i, 2)
k(i) 0 0 0 0 0 0 0 0

Now we begin the iterations of the algorithm. After the first iteration we get

i 0 1 2 3 4 5 6 7
Z(i, 0) 0 6 6 3 7 4 5 5
Z(i, 1) YES YES YES YES YES YES YES YES
Z(i, 2)
k(i) 1 1 1 1 1 1 1 1

In this particular example the iterations are completed in the first step. No compu-
tations occur in the remaining (2) iterations. In the last step of the algorithm the data
is copied into Z(∗, 2).
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i 0 1 2 3 4 5 6 7
Z(i, 0) 0 6 6 3 7 4 5 5
Z(i, 1) YES YES YES YES YES YES YES YES
Z(i, 2) 3 4 5 6 7 5 6 0
k(i) 3 3 3 3 3 3 3 3

EXERCISES.

1. Modify the CRCW Write phase of the simulation algorithm described above
(page 23) so that, whenever multiple processors attempt to write numbers to the same
simulated location, their sum is actually written.

2.3. Theoretical Issues

2.3.1. Complexity Classes and the Parallel Processing Thesis. In this chapter we
will be concerned with various theoretical issues connected with parallel processing.
We will study the question of what calculations can be efficiently done in parallel and
in what sense. We present the so-called Parallel Processing Thesis of Fortune and Wyllie
— see [52]. It essentially shows that execution-time on a parallel computer corresponds
in some sense to space (i.e., memory) on a sequential computer. The arguments used by
Fortune and Wyllie also give some insight into why the execution time of many parallel
algorithms is a power of a logarithm of the complexity of the problem.

One of the most interesting theoretical questions that arise in this field is whether
there exist inherently sequential problems. These are essentially computations for which
it is impossible to find parallel algorithms that are substantially faster than the fastest
sequential algorithms. This is a subtle question, because there are many problems that
appear to be inherently sequential at first glance but have fast parallel algorithms. In
many cases the fast parallel algorithms approach the problem from a completely dif-
ferent angle than the preferred sequential algorithms. One of the most glaring examples
of this is the problem of matrix inversion, where:

(1) the fastest sequential algorithm (i.e., a form of Gaussian Elimination) only
lends itself to a limited amount of parallelization (see the discussion below,
on page 37);

(2) the (asymptotically) fastest parallel algorithm would be extremely bad from a
sequential point of view.

This should not be too surprising — in many cases the fastest sequential algorithms
are the ones that reduce the amount of parallelism in the computations to a minimum.

First it is necessary to make precise what we mean by a parallel algorithm being
substantially faster than the corresponding sequential algorithm. Here are some of the
algorithms that have been considered so far:
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(1) Forming cumulative sums of n numbers. The sequential algorithm has an ex-
ecution time of O(n). The parallel algorithm has an execution time of O(lg n)
using O(n) processors;

(2) Sorting n numbers by performing comparisons. The best sequential algo-
rithms have an asymptotic execution time of O(n lg n). The best parallel al-
gorithms have asymptotic execution times of O(lg n) using O(n) processors —
see Chapter 5, § 5.1.3 (page 126);

(3) Inversion of an n × n non-sparse matrix. The best sequential algorithms use
Gaussian Elimination and have an execution time of O(n3). The asymptoti-
cally fastest known parallel algorithms have an execution time of O(lg2 n) us-
ing n2.376 processors.

The general pattern that emerges is:

• we have a sequential algorithm that executes in an amount of time that is
bounded by a polynomial function of the input-size. The class of such problems
is denoted P;
• we have parallel algorithms that execute in an amount of time that is bounded

by a polynomial of the logarithm of the input-size, and use a number of proces-
sors bounded by a polynomial of the input size. The class of these problems is
denoted NC;

As has been remarked before, NC ⊆ P — any algorithm for a problem in NC can be
sequentially simulated in an amount of time that is bounded by a polynomial function
of the original input.

Our question of whether inherently sequential problems exist boils down to the
question of whether there exist any problems in P \NC — or the question of whether
NC = P.

As of this writing (1991) this question is still open. We will discuss some partial
results in this direction. They give a natural relationship between parallel execution
time and the amount of RAM required by sequential algorithms. From this we can
deduce some rather weak results regarding sequential execution time.

It is first necessary to define the complexity of computations in a fairly rigorous
sense. We will consider general problems equipped with

• An encoding scheme for the input-data. This is some procedure, chosen in ad-
vance, for representing the input-data as a string in some language associ-
ated with the problem. For instance, the general sorting problem might get
its input-data in a string of the form {a1, a2, . . . }, where the ai are bit-strings
representing the numbers to be sorted.
• A complexity parameter that is proportional to the size of the input-string. For

instance, depending on how one defines the sorting problem, the complexity
parameter might be equal to the number of items to be sorted, or the total
number of symbols required to represent these data-items.

These two definitions of the sorting problem differ in significant ways. For
instance if we assume that inputs are all distinct, then it requires O(n lg n) sym-
bols to represent n numbers. This is due to the fact that lg n bits are needed to
count from 0 to n − 1 so (at least) this many bits are needed to represent each
number in a set of n distinct numbers. In this case, it makes a big difference
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FIGURE 2.3.1. Tape in a Turing Machine

whether one defines the complexity-parameter to be the number of data-items
or the size (in bits) of the input. If (as is usual) we assume the all inputs to a
sorting-algorithm can be represented by a bounded number of bits, then the
number of input items is proportional to the actual size of the input.

Incidentally, in defining the complexity-parameter of a problem to be the size of the
string containing the input-data, we make no assumptions about how this input string
is processed — in particular, we do not assume that it is processed sequentially.

Having defined what we mean by the size of the input, we must give a rigorous
definition of the various parameters associated with the execution of an algorithm for
solving the problem like running time, memory, and number of processors. This is
usually done with a Turing Machine.

A Turing Machine is a kind of generalization of a finite state automaton — it is a
kind of fictitious computer for which it is easy to define the number of steps required
to perform a computation. It consists of the following elements:

(1) A Tape, shown in figure 2.3.1.
This tape is infinite in length and bounded at one end. It is divided into

cells that may have a symbol marked on them or be blank. Initially at most a
finite number of cells are nonblank.

(2) A Control Mechanism, which consists of:
• Q = a finite set of states;
• Γ= set of tape symbols, called the alphabet of the Turing machine;
• B=blank symbol;
• Σ= input symbols;
• δ=next move function:Q× Γ→ Q× Γ× {L,R};
• q0=start state;
• F ⊆ Q = final states.

In each step the machine reads a symbol from the tape, changes state, optionally writes
a symbol, and moves the tape head left (L) or right (R) one position — all of these ac-
tions are encoded into the next move function. There are a number of auxiliary defini-
tions we make at this point:

DEFINITION 2.3.1. Suppose we have a Turing machine T . Then:
(1) An input string, S, is accepted by T if T ends up in one of its stop-states after

executing with the string as its original tape symbols.
(2) The set, L(T ), of input strings accepted by T is called the language recognized

by T . The reader might wonder what all of this has to do with performing
computations.

(3) If a string, S, is recognized by T , the symbols left on the tape after T has
stopped will be called the result of T performing a computation on S. Note that
this is only well-defined if T recognizes S.
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Input Symbols
States space 0 1

1 (Start state) Move left
Go to state 4

Write 1,
move left,

go to state 2

Move right,
go to state 1

2 Move right,
go to state 3

Move left,
go to state 1

Move left,
go to state 1

3 Move right
Write 0,

move right,
go to state 1

4 Move right,
go to state 5 Move left Move left

5 Stop
TABLE 2.3.1. Actions of a Turing machine for sorting a string of 0’s and 1’s

It can be shown that any computation that can be done on a conventional sequen-
tial computer can also be done on a suitable Turing machine (although in much more
time). It is also well-known that any computation that can be done in polynomial time
on a conventional computer can be done in polynomial time on a Turing machine. Thus
a Turing machine presents a simple model of computation that can be analyzed theo-
retically.

EXAMPLE 2.3.2. Here is a Turing machine whose language consists of arbitrary fi-
nite strings on two symbols {0, 1} (in other words, it accepts all such strings). It has five
states and its actions are described by table 2.3.1.

Careful examination of the action of this Turing Machine shows that it sorts its input
string.

We will also need a variation on this form of Turing machine. An offline Turing
machine is defined to be like the one above except that there are three tapes. The first
one is a read-only tape that contains the input string. The second is like the tape in the
definition above but it is required to be initially blank. The third is a write-only tape
— it receives the output of the computation. Note that this form of Turing machine
clearly distinguishes input from output, unlike the general Turing machines. It is pos-
sible to show that offline Turing machines are essentially equivalent to general Turing
machines in the sense that any language recognized by a general Turing machine can
also be recognized by a suitable offline Turing machine. Furthermore, the computa-
tions of the two types of Turing machines agree under this equivalence. Clearly, if we
are only interested in what computations can be computed by a Turing machine, there
is no need to define offline Turing machines — we only define them so we can rigor-
ously define the memory used by an algorithm. See [70] for more information on Turing
machines.

DEFINITION 2.3.3. The space required to solve a problem on an offline Turing ma-
chine is defined to be the number of cells of the second tape that was used in the course
of computation when the problem was solved.
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DEFINITION 2.3.4. 1. A problem with complexity parameter n will be said to be in
the class T(n)-space if there exists an offline Turing machine that uses space T(n).

2. A problem will be said to be in Plogspace(k) if there exists an offline Turing
machine that solves the problem using space that is O(lgk n).

It is well-known that Plogspace(1) ⊂ P, i.e. any problem that can be solved on
an offline Turing machine in space proportional to the logarithm of the complexity-
parameter can be solved in polynomial time on a conventional Turing machine. This is
not hard to see — if the total amount of RAM used by a sequential algorithm is c lg n
then the total number of possible states (or sets of data stored in memory) is a power of
n.

The converse question is still open — and probably very difficult. In fact it is not
known whether every problem in P is in Plogspace(k) for any value of k.

One question that might arise is: “How can problems with an input-size of n use
an amount of RAM that is less than n?” The answer is that we can use an inefficient
algorithm that doesn’t store much of the input data in RAM at any one time. For
instance it turns out that sorting n quantities by comparisons is in Plogspace — we
simply use a kind of bubblesort that requires a great deal of time to execute but very little
RAM. It turns out that essentially all of the typical algorithms discussed (for instance)
in a course on algorithms are in Plogspace.

This will be our model of sequential computation. Our model for parallel computa-
tion will be somewhat different from those described in chapter 4. It is a MIMD form
of parallel computation:

We will have a large (actually infinite) number of independent processors that can
access common RAM and can execute the following instructions:

LOAD op
STORE op
ADD op
SUB op
JUMP label
JZERO label
READ reg#
FORK label
HALT

Here an operand can be either: an address; an indirect address; or a literal. Initially
input is placed in input registers that can be accessed via the READ instruction. Each
processor has one register called its accumulator. Binary arithmetic instructions use the
accumulator as the first operand and store the result in the accumulator. New processors
are introduced into a computation via the FORK instruction which, when executed by
processor i:

(1) activates the next available processor — say this is processor j;
(2) copies the accumulator of processor i to processor j;
(3) and makes processor j take its first instruction from label.

When a processor executes a HALT instruction it stops running (and re-enters the pool
of processors available for execution by FORK instructions). Execution of a program
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continues until processor 0 executes a HALT instruction, or two or more processors try
to write to the same location in the same program step.

One processor can initiate two other processors in constant time via the FORK com-
mand. It can pass (via its accumulator) the address of a block of memory containing
parameters for a subtask. It follows that a processor can initiate a tree of n other proces-
sors in O(lg n)-time.

Processors have no local memory — they use the global memory available to all
processors. It is not hard to “localize” some of this memory via a suitable allocation
scheme. For instance, suppose a given processor has every kth memory location al-
located to it (as local memory). When this processor initiates a new processor, it can
allocate local memory to the new processors from its own local memory. It can allocate
every memory location (of its local memory) to the ith processor it directly initiates,
where pi is the ith prime number.

Note that this is a very generous model of parallel computation — it is much more
powerful than the Connection Machine, for instance.

We are in a position to give a rigorous definition of the term NC:

DEFINITION 2.3.5. A problem with complexity parameter n is in the class NC if
there exists a parallel algorithm on the computer described above, that executes in
time O(lgk n) and uses O(nk

′
) processors, where k and k′ are two integers ≥ 0.

Our first result is:

THEOREM 2.3.6. For T(n) ≥ lg n:
∞⋃
k=1

T(n)k-time-P-RAM =
∞⋃
k=1

T(n)k-space

In particular,
∞⋃
k=1

lgk n-time-P-RAM =
∞⋃
k=1

lgk n-space

The proof consists in the following two lemmas:

LEMMA 2.3.7. Let L be a language accepted by a deterministic T(n)-space bounded Turing
machine M , for T(n) ≥ lg n. Then L is accepted by a deterministic cT(n)-time bounded P-
RAM P , for some constant c.

In the theory of Turing machines, acceptance of a language can be regarded as per-
formance of a computation.

PROOF. We will simulate the behavior of M by P . Initially our simulation will as-
sume that the value of T(n) is available at the beginning of the computation (possibly
an unrealistic assumption) and then we will show how to conduct the simulation in
such a way that this assumption is removed.

Given T(n), P constructs a directed graph representing all possible configurations
of M during the computation. We will regard a configuration of M as a state of M
together with the data required to compute the next state. This consists of:

(1) the data in the memory tape;
(2) a pointer to a position of the input tape;
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Statement 1 above results in 2T(n) possible configurations (since the memory tape has
T(n) slots for data) and since the parameter defining the original problem’s size is
n we assume O(n) possible positions on the input tape. The total number of possi-
ble configurations is thus wn2T(n), where w is some constant. This can be regarded as
2T(n)+lgn+lgw ≤ 2dT(n), for some constant d depending on M . Leaving each node of
the graph will be a single edge to the node of its successor configuration. Accepting
configuration-nodes of M are their own successors. Thus there exists a path from the
initial configuration node to an accepting node if and only if M accepts its input within
T(n)-space.

To build the graph, P first initiates 2dT(n) processors in O(T(n))-steps, each holding
a different integer, representing a different configuration of M . Each processor then, in
O(T(n))-time:

(1) unpacks its configuration integer (we assume this integer contains an encoded
representation of a state of the Turing machine);

(2) computes the successor configuration (simulating the behavior of the Turing
machine when it is in this state);

(3) packs this successor configuration into integer form.
The graph is stored in global memory and the parallel computer then determines
whether there exists a path connecting the initial node to some accepting node. This is
done as follows: Each processor computes the successor of its successor node and stores
this as its immediate successor. In k steps each processor will point to the 2k-th succes-
sor node and in O(T(n))-steps the question of whether the language will be accepted
will be decided because the successor nodes are all a distance of at most 2dT(n) from the
start node.

As pointed out above this algorithm has the unfortunate drawback that it requires
knowledge of T(n) before it can be carried out. This can be corrected as follows: At the
beginning of the simulation processor 0 starts other processors out that assume that the
value of T(n) is 1, 2, . . . , respectively. These processors carry out the simulation above,
using these assumptions and if any of them accepts the language, then processor 0
accepts also. We assume that memory is allocated so that the areas of memory used
by the different simulations is disjoint — this can be accomplished by adding c2dT(n) to
the addresses of nodes for the simulation of a given value of T(n). �

LEMMA 2.3.8. Let L be accepted by a deterministic T(n)-time bounded P-RAM. Then L is
accepted by a T(n)2-space bounded Turing machine.

PROOF. We will first construct a nondeterministic T(n)2-space bounded Turing Ma-
chine accepting L. We will then show how to make it deterministic. Recall that a
nondeterministic Turing machine is one that may take many different actions in a given
step — imagine that the machine “splits” into many different machines, each taking a
different action and attempting to complete the computation using that alternate. The
language is ultimately accepted if any one of these split machines accepts it.

In order to determine whether the P-RAM accepts its input, the Turing Machine
needs to:

(1) know the contents of processor 0’s accumulator when it halts; and
(2) to verify that no two writes occur simultaneously into the same global memory

location.
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The simulation is based on a recursive procedure ACC which checks the contents of a
processor’s accumulator at a particular time. By applying the procedure to processor
0 we can determine if the P-RAM accepts the language. ACC will check that at time t,
processor j executed the ith instruction of its program leaving c in its accumulator. In
order to check this, ACC needs to know

(1) the instruction executed by processor j at time t − 1 and the ensuing contents
of its accumulator, and

(2) the contents of the memory locations referenced by instruction i.

ACC can nondeterministically guess 1 and recursively verify it. To determine 2, for
each memory location, m, referenced ACC guesses that m was last written by some
processor k at time t′ < t. ACC can recursively verify that processor k did a STORE
of the proper contents into m at time t′. ACC must also check that no other processor
writes into m at any time between t′ and t. It can do this by guessing the instructions
executed by each processor at each such time, recursively verifying them, and verifying
that none of the instructions changes m. Checking that two writes do not occur into
the same memory location at the same time can be done in a similar fashion. For each
time step and each pair of processors, ACC nondeterministically guesses the instruc-
tions executed, recursively verifies them, and checks that the two instructions were not
write-operations into the same memory location. The correctness of the simulation fol-
lows from the determinism of the P-RAM. In general, each instruction executed by the
P-RAM will be guessed and verified many times by ACC. Since the P-RAM is deter-
ministic, however, there can be only one possible instruction that can be executed by a
processor in a program step — each verified guess must be the same. Now we analyze
the space requirements:

Note that there can be at most 2T(n) processors running on the P-RAM after T(n)
program steps so writing down a processor number requires T(n) space. Since addition
and subtraction are the only arithmetic operators, numbers can increase by at most
one bit each step. Thus, writing down the contents of the accumulator takes at most
T(n) + lg n = O(T(n)) space. Writing down a time step takes lg T(n) space and the
program counter requires only constant space. Hence the arguments to a recursive call
require O(T(n)) space. Cycling through time steps and processor numbers to verify
that a memory location was not overwritten also only takes T(n) space, so that the
total space requirement at each level of the recursion is O(T(n)). Since there can be
at most T(n) levels of recursion (one for each time step of the program on the parallel
machine) the total space requirement is O(T(n)2). Note that this simulation can be
performed by a deterministic Turing Machine — in each step, simply loop through all
of the possibilities when performing the recursive calls to ACC — i.e., all instructions
in the instruction set; all prior times, etc.

This requires that we modify the ACC procedure slightly so that it returns infor-
mation on whether a given guess was correct. This could be accomplished by having
it returns either the value of the accumulator, if a given processor really did execute a
given instruction at a given time or return NULL, indicating that the guess was wrong.
This increases the execution time of the algorithm tremendously but has no effect on the
space requirement. �
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EXERCISES.

1. Show that the example of a Turing machine given in 2.3.2 on page 29 is in
Plogspace. Do this by explicitly transforming it into an offline Turing machine.

2.3.2. P-Completeness and Inherently Sequential Problems. The previous sec-
tion provided some important definitions and showed that problems were solvable
in polylogarithmic time on a parallel computer if and only if they were solvable in
polylogarithmic space on an offline Turing machine. In the present section we will
apply these results to study the question of whether there exist inherently sequential
problems. Although this question is still (as of 1991) open, we can study it in a manner
reminiscent of the theory of NP-complete problems. As is done there, we restrict our
attention to a particular class of problems known as decision problems. These are com-
putations that produce a boolean 0 or 1 as their result. It will turn out that there are
reasonable candidates for inherently sequential problems even among this restricted
subset.

DEFINITION 2.3.9. A decision problem is a pair {T, L}where:
(1) T recognizes all strings made up of the basic alphabet over which it is defined.
(2) L is the set of strings over this alphabet for which the computation that T

performs results in a 1.

For instance, a decision-problem version of the problem of sorting n numbers would
be the problem of whether the kth element of the result of sorting the n numbers had
some given value.

We will be able to give likely candidates for inherently sequential problems by
showing that there exist problems in P with the property that, if there exists an NC
algorithm for solving them, then P = NC. We need the very important concept of
reducibility of decision-problems:

DEFINITION 2.3.10. Let P1 = {T1, L1} and P2 = {T2, L2} be two decision-problems
and let Σ1 and Σ2 be the respective alphabets for the Turing machines that resolve these
decision-problems. Then P1 will be said to be reducible to P2, denoted P1 ∝ P2, if there
exists a function f : Σ∗1 → Σ∗2 such that:

• a string s ∈ L1 if and only if f(s) ∈ L2;
• the function f is in NC — in other words, there exists a parallel algorithm for

computing f that requires O(lgk n) time-units and O(nk
′
) processors, where k

and k′ are some integers, and n is the complexity parameter for P1.
P1 will be said to be logspace reducible to P2, denoted P1 ∝logspace P2, if the condi-

tions above are satisfied, and in addition, the algorithm computing the function f is in
logspace. In other words, there must exist an offline Turing machine using logspace,
that computes f . The results of the previous section show that strong reducibility is
equivalent to reducibility with the exponent k equal to 1.

Note that P1 ∝ P2 implies that an NC algorithm for P2 gives rise to a similar algo-
rithm for P1: if we want to decide whether a string s ∈ Σ∗1 results in a 1 when executed



2.3. THEORETICAL ISSUES 35

on T1, we just apply the function f (which can be done via an NC algorithm) and ex-
ecute T2 on the result. If there exists an NC algorithm for P2, P1 ∝ P2 implies that, in
some sense, the decision problem P1 is solvable in polylogarithmic time with a polyno-
mial number of processors:

(1) Convert an input-string of P1 into a corresponding input-string of P2 via the
transformation-function f , in P1 ∝ P2. The computation of this function can be
done via an NC algorithm.

(2) Execute the NC algorithm for P2.
As in the theory of NP completeness, we distinguish certain problems in P that are the
“hardest”:

DEFINITION 2.3.11. A problem Z in P will be called P-complete if it has the property
that:

For every problem A ∈ P, A ∝ Z.
The problem Z will be called logspace-complete for P or strongly P-complete if:

For every problem A ∈ P, A ∝logspace Z.

The first problem proved to be P-complete was the problem of “directed forest ac-
cessibility” — see [32].

We will conclude this section with an example of a problem that is known to be
strongly P-complete — i.e., logspace complete for P, as defined above. It is fairly simple
to state:

EXAMPLE 2.3.12. Circuit Value Problem.
• Input: A list L = {L1, . . . , Ln} of n-terms (where n is some number > 0, where

each term is either:
(1) A 0 or a 1, or;
(2) A boolean expression involving strictly lower-numbered terms — for in-

stance, we might have L5 = (L2 ∨ L4) ∧ (L1 ∨ L3).
• Output: The boolean value of Ln. Note that this is a decision problem.

Note that the requirement that boolean expressions involve strictly
lower-numbered terms means that the first term must be a 0 or a 1.

This problem is trivial to solve in n steps sequentially: just scan the list from left to
right and evaluate each term as you encounter it. It is interesting that there is no known
NC algorithm for solving this problem. Ladner proved that this problem is logspace
complete for P, or strongly P-complete — see [94].

LEMMA 2.3.13. The circuit value problem, as defined above, is logspace-complete for P.

PROOF. Let CVP denote the Circuit Value Problem. We must show, that if Z is any
problem in P, then Z ∝logspace CVP. We will assume that Z is computed by a Turing
machine T that always halts in a number of steps that is bounded by a polynomial of
the complexity parameter of the input. We will construct a (fairly large) circuit whose
final value is always the same as that computed by T . We will also show that the
construction can be done in logspace. We will assume:

• The number of characters in the input-string to T is n;
• The execution-time of T is E = O(nk), where k is some integer ≥ 1.
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• During the course of the execution of T , the number of states that it ever passes
through is O(nk), since it stops after this number of steps. The binary repre-
sentation of a state-number of T clearly requires O(lg n) bits.
• The number of tape-symbols that are nonblank at any step of the algorithm is
O(nk). This is because the tape started out with n nonblank (input) symbols,
and at most O(nk) write-operations were executed while T was active.
• The transitions of T are encoded as a large set of boolean formulas, computing:

(1) the bits of the next state-number from the bits of the current state-number,
the bits of the current input-symbol.

(2) whether the tape is moved to the left or the right.
(3) whether anything is written to the tape in this step (and what is written).

Although it might seem that this assumption is an attempt to make life
easy for ourselves, it is nevertheless a reasonable one. The transition function
may well be encoded as such a sequence of boolean formulas. If it is simply
represented as a table like that on page 29, it is fairly trivial to convert this table
into a series of boolean formulas representing it.

We will build a large circuit that is the concatenation of sublists {L1, . . . , LE}, one for
each program-step of the execution of T . The list L1 consists of bits representing the
input-data of T , and a sequence of bits representing its start-state. In general Li will
consist of a concatenation of two sublists Si and Qi.

• the sublist Si consists of a sequence of boolean formulas computing the bits
of the new state-number of T in program-step i. These formulas use the bits of
Si−1 and Qi−1 as inputs.
• Qi lists the bits of the nonblank tape symbols in program-step i (of T ). For tape-

positions that are not written to in step i, the corresponding entries in Qi sim-
ply copy data from corresponding positions of Qi−1. In other words, these for-
mulas are trivial formulas that are just equal to certain previous terms in the
giant list. The entries of Qi that represent tape-symbols that are written to in
program-step i have boolean formulas that compute this data from:
(1) The bits of the current state-number, computed by the boolean formulas

in Si.
(2) Bits of Qi−1, representing the tape in the previous program-step.

Now we consider how this conversion of the input data and the transition-function of
T into the Li can be accomplished:

(1) We must be able to count the number of program-steps of T so that we will
know when to stop generating the Li. Maintaining such a counter requires
O(lg n) memory-locations in the offline Turing machine that converts T into
the circuit.

(2) We must be able to copy formulas from rows of the table representing the
transition-function of T into entries of the circuit we are generating. This re-
quires looping on the number of bits in these boolean formulas. Again, we will
need O(lg n) memory-locations.

(3) We must keep track of the current location of the read-write head of T . This
tells us how to build the formulas in Qi that represent tape-symbols that are
written to in program-step i. Since the total number of such tape-positions is
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O(nk), we will need O(lg n) bits to represent this number. We increment this
number every time the transition-function calls for movement to the right (for
instance) and decrement it every time we are to move to the left.

The offline Turing machine will contain this memory, and its input program. The to-
tal memory used will be O(lg n), so the transformation from T to the Circuit Value
Problem will be logspace. �

Many problems are known to be P-complete. We will give a list of a few of the more
interesting ones.

• The Monotone Circuit Problem This is a circuit whose only operations are ∨
and ∧. Goldschlager gave a logspace reduction of the general circuit-value
problem to this — see [59]. The Planar Circuit Value Problem is also
P-complete. A planar circuit is a circuit that can be drawn on a plane without
any “wires” crossing. It is interesting that the Monotone, Planar Circuit Value
problem is in NC — see [57].
• Linear Inequalities The input to this problem is an n×d integer-valued matrix
A, and an integer-valued n× 1 vector c. The problem is to answer the question
of whether there exists a rational-valued vector x such that

Ax ≤ c

In 1982, Cook found the following reduction of the Circuit Value Problem to
the Linear Inequality Problem:

(1) If input xi (of the Circuit Value Problem) is
{

True
False

}
, it is represented by

the equation
{
xi = 1
xi = 0

}
.

(2) A NOT gate with input u and outputw, computingw = ¬u, is represented

by the inequalities
{
w = 1− u
0 ≤ w ≤ 1

}
(3) An OR gate with inputs u and v, and output w is represented by the in-

equalities


0 ≤ w ≤ 1
u ≤ w
v ≤ w

w ≤ u+ v


(4) An AND gate with gate with inputs u and v, and output w is represented

by the inequalities


0 ≤ w ≤ 1
w ≤ u
w ≤ v

u+ v − 1 ≤ w


This is interesting because this decision problem is a crucial step in

performing Linear Programming. It follows that Linear Programming is
P-complete. It is interesting that Xiaotie Deng has found an NC algorithm
for planar Linear Programming. This is linear programming with only two
variables (but, perhaps, many inequalities) — see [46] for the algorithm.
• Gaussian elimination This is the standard sequential algorithm for solving a

system of simultaneous linear equations or inverting a matrix. Among other
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things, it involves clearing out rows of a matrix at certain pivot points, which
are computed as the algorithm executes. The paper [162], by Stephen Vavasis
proves that the problem of deciding whether a given element will be a pivot-
element in the Gaussian elimination algorithm is P-complete. This implies that
fast parallel algorithms (i.e., NC algorithms) cannot be based upon Gaussian
elimination. This conclusion is interesting because many people have worked
on the problem of parallelizing Gaussian elimination by trying to exploit cer-
tain parallelisms in the problem. This paper implies that none of this work will
ever result in an NC algorithm for solving linear equations. See § 5.1 in chapter
5 for an example of an NC algorithm for matrix inversion. This algorithm is
not based upon Gaussian elimination.
• Maximum flows This is an important problem in the theory of networks. In

order to understand it, imagine a network of pipes with the property that each
pipe in the network has a certain carrying capacity — a maximum rate at which
fluid can flow through it. Suppose that one point of the network is a source of
fluid and some other point is where fluid leaves the network. The maximum
flow problem asks the question “What is the maximum rate fluid can flow
from the source to the exit?”. This must be computed from characteristics of
the network, including the carrying capacities of the pipes and how they are
arranged. The paper [60], by L. Goldschlager, L. Shaw and J. Staples proves
that this problem is Plogspace-complete.
• Inference problem for multivalued dependencies This is a problem from the

theory of databases. Essentially, a large part of the problem of designing a
database consists in identifying dependencies in the data: aspects of the data
that determine other aspects. A multivalued dependency represents a situa-
tion where one aspect of the data influences but doesn’t completely determine
another3. These multivalued dependencies imply the existence of other multi-
valued dependencies among aspects of data. The problem of determining these
other multivalued dependencies from the given ones turns out to be P-complete
— see [45].

2.3.3. Further reading. Greenlaw, Hoover, and Ruzzo have compiled a large list of
P-complete problems — see [61]. This list will be periodically updated to incorporate
newly discovered P-complete problems.

In [168] Wilson shows that the class NC has a “fine-structure” — it can be decom-
posed into subclasses that have natural descriptions.

In [31] Cook gives a detailed description of parallel complexity classes and how
they relate to each other. Also see [30].

2.4. General Principles of Parallel Algorithm Design

In this section we discuss some general principles of algorithm-design. Later chap-
ters in this book will explore these principles in more detail. We have already seen
some of these concepts in the Introduction.

3There is more to it than this, however. See a good book on database design for more information
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2.4.1. Brent’s Theorem. Brent’s Theorem makes precise some of the heuristic argu-
ments in the introduction relating computation networks with time required to com-
pute something in parallel.

We will need a rigorous definition of a combinational network, or computational
network. As with comparator networks defined in § 2.1.1 we consider a kind of “cir-
cuit” whose “wires” can transmit numerical data and nodes that can modify the data in
prescribed ways4.

DEFINITION 2.4.1. A computational network is a directed acyclic5 We will assume
that the edges of this graph “transmit” data like sorting networks. The vertices of a
computational network are subdivided into three sets:

Input vertices: These vertices have no incoming edges.
Output vertices: These vertices have no outgoing edges.
Interior vertices: These vertices have incoming edges and one or more outgoing

edges. All of the outgoing edges of an interior vertex pass the same data.
Each interior vertex is labeled with an elementary operation (to be discussed below).
The number of incoming edges to an interior vertex is called its fan-in. The number of
outgoing edges is called the fan-out. The maxima of these two quantities over the entire
graph is called, respectively, the fan-in and the fan-out of the graph.

The length of the longest path from any input vertex to any output vertex is called
the depth of the computational network. The computation performed by a computation
network, on a given set of inputs is defined to be the data that appears on the output
vertices as a result of the following procedure:

(1) Apply the input data to the input vertices.
(2) Transmit data along directed edges. Whenever an interior vertex is encoun-

tered, wait until data arrives along all of its incoming edges, and then perform
the indicated elementary computation. Transmit the result of the computation
along all of the outgoing edges.

(3) The procedure terminates when there is no data at interior vertices.

Each edge of the computational network is assumed to be able to transmit a number
of a certain size that is fixed for the rest of this discussion (a more detailed consideration
of these networks would regard the carrying capacity of each wire to be a single bit —
in this case the magnitudes of the numbers in question would enter into complexity-
estimates). The elementary operations are operations that can be carried out on the
numbers transmitted by the edges of the network within a fixed, bounded, amount
of time on a RAM computer. As before, a more detailed discussion would define an
elementary operation to be an elementary boolean operation like AND, OR, or NOT.
In our (higher level) discussion, elementary operations include +, −, min, max, ∗, /,
and many more.

Now we are in a position to state Brent’s Theorem:

4These are, of course, precisely the properties of the electronic circuits used in a computer. We do
not want to become involved with issues like the representation of arithmetic operations in terms of
boolean logic elements.

5“Acyclic” just means that the graph has no directed loops.
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THEOREM 2.4.2. LetN be a computational network with n interior nodes and depth d, and
bounded fan-in. Then the computations performed by N can be carried out by a CREW-PRAM
computer with p processors in time O(n

p
+ d).

The total time depends upon the fan-in of N — we have absorbed this into the
constant of proportionality.

PROOF. We simulate the computations of N in a fairly straightforward way. We
assume that we have a data-structure in the memory of the PRAM for encoding a
vertex of N , and that it has a field with a pointer to the vertex that receives the output
of its computation if it is an interior vertex. This field is nil if it is an output vertex.
We define the depth of a vertex, v, in N to be the maximum length of any path from
an input vertex to v — clearly this is the greatest distance any amount of input-data
has to travel to reach v. It is also clear that the depth of N is the maximum of the
depths of any of its vertices. We perform the simulation inductively — we simulate
all of the computations that take place at vertices of depth ≤ k − 1 before simulating
computations at depth k. Suppose that there are ni interior vertices of N whose depth
is precisely i. Then

∑d
i=1 ni = n. After simulating the computations on vertices of

depth k− 1, we will be in a position to simulate the computations on nodes of depth k,
since the inputs to these nodes will now be available.

CLAIM 2.4.3. When performing the computations on nodes of depth k, the order of
the computations is irrelevant.

This is due to the definition of depth — it implies that the output of any vertex
of depth k is input to a vertex of strictly higher depth (since depth is the length of the
longest path from an input vertex to the vertex in question).

The simulation of computations at depth k proceeds as follows:
(1) Processors read the data from the output areas of the data-structures for ver-

tices at depth k − 1.
(2) Processors perform the required computations.

Since there are nk vertices of depth k, and the computations can be performed in any
order, the execution-time of this phase is⌈

nk
p

⌉
≤ nk

p
+ 1

The total execution-time is thus
d∑
i=1

⌈
nk
p

⌉
≤

d∑
i=1

nk
p

+ 1 =
n

p
+ d

�

We normally apply this to modifying parallel algorithms to use fewer processors
—see § 2.4.2.2 below (page 42). If a computational network has bounded fan-out as
well as bounded fan-in we get:

COROLLARY 2.4.4. Let N be a computational network with n interior nodes and depth d,
and bounded fan-in and fan-out. Then the computations performed by N can be carried out by
a EREW-PRAM computer with p processors in time O(n

p
+ d).
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Brent’s theorem has interesting implications for the question of work efficiency of an
algorithm.

DEFINITION 2.4.5. The amount of work performed by a parallel algorithm is defined
to be the product of the execution time by the number of processors.

This measures the number of distinct computations a parallel algorithm performs.
We can think of a computation network with n vertices as requiring n units of work

to perform its associated computation — since there are n distinct computations to be
performed. The work required by a simulation of a computation network is (by Brent’s
Theorem) O(n + dp). This is proportional to the number of vertices in the original
computation network if p is proportional to n/d.

DEFINITION 2.4.6. Let A be a parallel algorithm that performs a computation that
can be represented by a computation network. Then A will be said to be a work-efficient
parallel algorithm if it executes in time O(d) using p processors, where p = n/d, and n
is the number of vertices in a computation network for performing the computations
of algorithm A with the smallest possible number of vertices.

Work-efficient parallel algorithms are optimal, in some sense.

EXERCISES.

1. Find a computation network for evaluating the expression (x2 + 2)(x3− 3)− 2x3.

2. Show that sorting networks can be expressed in terms of computation networks.
This implies that they are a special case of computation networks.

2.4.2. SIMD Algorithms.
2.4.2.1. Doubling Algorithms. The program for adding up n numbers in O(lg n)

time is an example of a general class of parallel algorithms known by several differ-
ent names:

• Parallel-prefix Operations.
• Doubling Algorithms.

In each case a single operation is applied to a large amount of data in such a way that
the amount of relevant data is halved in each step. The term “Doubling Algorithms”
is somewhat more general than “Parallel Prefix Operations”. The latter term is most
often used to refer to generalizations of our algorithm for adding n numbers — in
which the operation of addition is replaced by an arbitrary associative operation. See
§6.1 in chapter 6 for several examples of how this can be done.

Another variation on this theme is a class of techniques used in Graph Algorithms
called “Pointer Jumping”. This involves assigning a processor to each node of a directed
graph and:

(1) Having each processor determine the successor of its successor;
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(2) Causing the processors to effectively regard the nodes computed in step 1 as
their new successors;

(3) Go to step 1.

In this way, the end of a directed path of length n can be found in O(lg n) steps. This is
a special case of parallel prefix operations, since we can regard the edges of the graph
as the objects under study, and regard the operation of combining two edges into “one
long edge” (this is basically what the pointer jumping operation amounts to) as an
associative operation. See § 6.2 for examples of algorithms of this type (and definitions
of the terminology used in graph theory).

2.4.2.2. The Brent Scheduling Principle. One other general principle in the design of
parallel algorithm is the Brent Scheduling Principle. It is a very simple and ingenious
idea first described by R. Brent in that often makes it possible to reduce the number
of processors used in parallel algorithms, without increasing the asymptotic execution
time. In general, the execution time increases somewhat when the number of pro-
cessors is reduced, but not by an amount that increases the asymptotic time. In other
words, if an algorithm has an execution time ofO(lgk n), then the execution-time might
increase by a constant factor. In order to state this result we must recall the concept of
computation network, defined in 2.4.1 on page 39.

COROLLARY 2.4.7. Suppose algorithm A has the property that its computations can be
expressed in terms of a computation network with x vertices and depth t that has bounded fan-
in. Then algorithm A can be executed on a CREW-PRAM computer with p processors in time
O(x

p
+ t).

The proof is a direct application of Brent’s Theorem (2.4.2 on page 39).
See page 236 for some applications of this principle.
This result has some interesting consequences regarding the relationship between

data-representation and execution-time of an algorithm. Consider the algorithm for
adding up numbers presented on page 6. Since the data is given in an array, we can
put it into any computation network we want — for instance, the one in figure 1.1.8
on page 6. Consequently, the Brent Scheduling Principle states that the algorithm on
page 6 can be executed with dn/ lg(n)e processors with no asymptotic degradation in
execution time (i.e., the execution time is still O(lg n)).

If the input-data was presented to us as elements of a linked list, however, it is
not clear how we could apply the Brent Scheduling Principle to this problem. The
linked list can be regarded as a computation network of depth n, so Brent’s Theorem
would imply an execution time of O(n). We can actually get an execution time of
O(lg n) by using the technique of pointer jumping in § 2.4.2.1 above, but this actually
requires n processors. The parallel algorithms for list-ranking in this case are more
complicated than straightforward pointer-jumping — see [7]. Also see chapter 7 for a
simple probabilistic algorithm for this problem.

2.4.2.3. Pipelining. This is another technique used in parallel algorithm design.
Pipelining can be used in situations where we want to perform several operations in
sequence {P1, . . . , Pn}, where these operations have the property that some steps of
Pi+1 can be carried out before operation Pi is finished. In a parallel algorithm, it is
often possible to overlap these steps and decrease total execution-time. Although this
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technique is most often used in MIMD algorithms, many SIMD algorithms are also
able to take advantage of it. Several algorithms in this book illustrate this principle:

• The Shiloach-Vishkin algorithm for connected components of a graph (see
page 264). Pipelining in this case is partly responsible for reducing the
execution-time of this algorithm from O(lg2 n) to O(lg n).
• The Cole sorting algorithm (see page 311). This is, perhaps, the most striking

example of pipelining in this book. This sorting algorithm is based upon ideas
like those in 2.1.3 on page 20, but ingeniously “choreographs” the steps in such
a way that the execution-time is reduced from O(lg2 n) to O(lg n).

2.4.2.4. Divide and Conquer. This is the technique of splitting a problem into small
independent components and solving them in parallel. There are many examples of
this technique in this text:

• The FFT algorithm (at least if we consider its recursive definition) in § 5.2.3 of
chapter 5 (page 147);
• The parallel prefix, or doubling algorithms of § 6.1 in chapter 6 (page 233);
• All of the algorithms for connected components and minimal spanning trees

in § 6.2 of chapter 6(page 247);
• The Ajtai, Komlós, Szemerédi sorting algorithm in § 6.4.3 of chapter 6 (page

325);

The reader will doubtless be able to find many other examples in this book.

2.4.3. MIMD Algorithms.
2.4.3.1. Generalities. this section is longer than the corresponding section on SIMD

algorithm design because many of the important issues in SIMD algorithm design are
dealt with throughout this book, and frequently depend upon the problem being stud-
ied. The issues discussed in this section are fairly constant throughout all MIMD algo-
rithms. As is shown in § 2.4.4 on page 51, design of a MIMD algorithm can sometimes
entail

• the design of a good SIMD algorithm,
• conversion to a MIMD algorithm

The second step requires the computations to be synchronized, and this involves using
the material in this section.

The issues that arise in the design of MIMD algorithm are essentially identical to
those that occur in concurrent programming. The problems that occur and their solutions
are basically the same in both cases. The main difference between MIMD algorithm de-
sign and concurrent algorithm design involves questions of when and why one creates
multiple processes:

(1) When designing concurrent algorithms to run on a single-processor computer,
we usually create processes in order to handle asynchronous events in situations
in which we expect little real concurrency to occur. The generic example of this
is waiting for I/O operations to complete. Here we expect one process to be
dormant most of the time, but are unable to accurately predict when it will be
dormant. We usually avoid creating processes to handle computations or other
operations that will be truly concurrent, because there is no real concurrency
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on a single-processor machine — it is only simulated, and this simulation has
an associated cost.

(2) When designing MIMD algorithms to run on a parallel computer, we try to
maximize the amount of concurrency. We look for operations that can be car-
ried out simultaneously, and try to create multiple processes to handle them.
Some of the considerations in writing concurrent programs still apply here.
Generally, it is not advisable to create many more processes than there are pro-
cessors to execute them. The overhead involved in creating processes may be
fairly large. This is the problem of grain-size. This is in contrast to SIMD algo-
rithms, in which there is little overhead in creating parallel threads of data and
computation.

We will discuss a few of the very basic issues involved in concurrent and MIMD algo-
rithm design. The most basic issue is that we should analyze the computations to be
performed and locate parallelism. This can be done with a dependency graph. Page 6
gives two examples of syntax trees. These are like dependency graphs for arithmetic
operations. The cost of creating processes on most MIMD computers almost always
makes it necessary to work on a much coarser scale.

We generally take a high-level description of the computations to be performed,
and make a directed graph whose nodes represent discrete blocks of independent op-
erations. The edges represent situations in which one block of operations depends
upon the outcome of performing other blocks. After this has been done we can design
the MIMD algorithm by:

(1) Creating one process for each node of the graph, and make the processes wait
for the completion of other processes upon which they are dependent.

(2) Creating one process for each directed path through the dependency graph,
from its starting point to its end.

2.4.3.2. Race-conditions. However we do this, we encounter a number of important
issues at this point. If two processes try to access the same shared data, they may
interfere with each other:

Suppose two processes update a shared linked list simultaneously — the
head of the list is pointed to by a pointer-variable named head, and each
entry has a next pointer to the next entry.

Process A wants to add a record to the beginning of the list by:
A.1: making the new record’s next pointer equal to the head pointer (so it points

to the same target);
A.2: making the head pointer point to the new record;

Process B wants to delete the first record by:
B.1: Making the head pointer equal to the next pointer of its target;
B.2: Deleting the record that was originally the target of the head pointer;

Through unlucky timing, these operations could be carried out in the sequence A.1, B.1,
A.2, B.2. The result would be that the head would point to the new record added by
process A, but the next pointer of that record would point to the record deleted by
process B. The rest of the list would be completely inaccessible. This is an example of a
race-condition — the two processes are in a “race” with each other and the outcome of
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the computations depend crucially on which process reaches certain points in the code
first.

Here is a program in C for the Sequent Symmetry computer that illustrates race-
conditions:

#include <stdio.h>

/* The next two include files refer to system libraries for
* sharing memory and creating processes. */

#include <parallel/microtask.h>
#include <parallel/parallel.h>
shared int data;
void dispatch ();
void child1 ();
void child2 ();
void main ()
{
m set procs (2); /* Causes future calls to ’m fork’ to
* spawn two processes */
m fork (dispatch);/* This call to ’m fork’ spawn two processes
* each of which, is a contains a copy of the
*routine ’dispatch’ */
exit (0);
}
void dispatch () /* This routine is executed in two
* concurrent copies. */
{
int i,
j;
int p = m get myid (); /* Each of these copies determines
* its identity (i.e., whether it is
* process number 0 or 1) */
if (p == 0)
child1 ();
else
child2 ();
}
void child1 () /* ’child1’ contains the actual
* code to be executed by process 0. */
{
int i,
j;
for (i = 0; i < 10; i++)
{
data = 0;
for (j = 0; j < 500; j++);
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printf ("Child 1, data=%d\n", data);
}
}
void child2 () /* ’child2’ contains the actual
* code to be executed by process 1. */
{
int i,
j;
for (i = 0; i < 10; i++)
{
data++;
for (j = 0; j < 500; j++);
printf ("Child 2, data=%d\n", data);
}
}

Here two processes are generated, called child1 and child2. Since mfork normally
generates many processes at once, we have to make it spawn both child-processes in a
single statement. This is done by making a routine named dispatch be the child-process.
Each copy of this routine calls m get myid to determine its identity and call child1 or
child2 depending on the result. Note that child1 zeroes a shared data item named data,
and child2 increments it. They both then wait a short time and print the value out. Since
data is shared though, it is possible that while one process is waiting to print out the
data, the other process can sneak in and change it’s value. This actually happens, as
you can see if you run this program:

cc name.c -lpps
a.out

The results are unpredictable (this is usually true with race-conditions) — you will
probably never get the same set of results twice. Most of the time, however, child1 will
occasionally print out values other than 0, and child2 will sometimes print 0.

This type of problem is solved in several ways:
a. One involves locking operations that prevent more than one process from access-

ing shared data (access to data that is exclusive to a single process is called atomic).
Essentially, the first process that calls the m lock system-function continues to execute
and any other process that calls this function is suspended until the first process calls
m unlock. If two processes call m lock simultaneously, the system makes a decision
as to which gets priority.

Here is how the program above looks when semaphores are used to prevent race-
condition:
#include <stdio.h>
#include <parallel/microtask.h>
#include <parallel/parallel.h>
shared int data;
void child ();
void child1 ();
void child2 ();
void main ()
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{
m set procs (2);
m fork (child);
exit (0);
}
void child ()
{
int i,
j;
int p = m get myid ();
if (p == 0)
child1 ();
else
child2 ();
}
void child1 ()
{
int i,
j;
for (i = 0; i < 10; i++)
{
m lock ();
data = 0;
for (j = 0; j < 500; j++);
printf ("Child 1, data=%d\n", data);
m unlock ();
}
}
void child2 ()
{
int i,
j;
for (i = 0; i < 10; i++)
{
m lock ();
data++;
for (j = 0; j < 500; j++);
printf ("Child 2, data=%d\n", data);
m unlock ();
}
}

The functions m lock and m unlock() are system calls available on the Sequent line
of parallel computers.
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The standard term (i.e. the term you will see most often in the literature) for a
locking operation (in the theory of concurrent programming) is a semaphore. The lock
and unlock-operations are called semaphore down and semaphore up operations.

One characteristic of processes that are under the control of a lock (or semaphore)
is that the amount of speedup that is possible due to parallel processing is limited.
This is due to the fact that the semaphore forces certain sections of code to be executed
sequentially. In fact:

LEMMA 2.4.8. Suppose the optimal sequential algorithm for performing a computation
requires time T , and accessing a semaphore requires time k. Then an optimal parallel version of
this computation using processes under the control of a single semaphore requires an execution
time of at least O(

√
T/k).

PROOF. If we use m processors the execution time must be at least T/m (see 2.1.1
in chapter 2). On the other hand, since the semaphore-operations are executed sequen-
tially, they will require an execution time of km — i.e. the time required to carry out
the semaphore-operations increases with the number of processors. The total execu-
tion time will be ≥ (T/m + km). The value of m that minimizes this occurs when the
derivative of this expression with respect to m vanishes. This means that

− T

m2
+ k = 0

This occurs when m =
√
T/k. �

It is interesting to note that this result makes essential use of the fact that there is a
single semaphore involved — and access of this semaphore by n processes requires a
time of kn. Recent unpublished results of David Saunders shows that it is possible to
set up a kind of tree of semaphores that will permit the synchronization of n processes
in time that is O(lg n).

b. Another solution to this problem involves synchronizing the parallel processes.
One common notation for this construct is:

cobegin
coend;

The idea here is that all processes execute the cobegin statement simultaneously
and remain synchronized until the coend statement is reached. This solves the prob-
lem of processes interfering with each other when they access shared data by allowing
the programmer to “choreograph” this common access. For instance, in the sorting
algorithm on the Butterfly Computer, no semaphores were used, but processes never
interfered with each other. The DYNIX operating system provides the m sync() system
call to implement cobegin. When a process calls m sync() it spins (i.e. loops) until all
processes call m sync() — then all processes execute. The operating system uses a pro-
cess scheduling algorithm that causes child processes to execute to completion without
interruption (except by higher-priority processes). Consequently, once processes have
been synchronized, they remain in sync if they execute the same instructions.

See § 4.1.1.1 (page 91) for information on another interesting paradigm for synchro-
nizing parallel processes.

2.4.3.3. Optimization of loops. The theory of semaphores give rise to a number of
issues connected with parallelizing loops in an algorithm. Suppose we have an algo-
rithm that requires a number of computations for be performed in a loop, with very
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little dependency between different iterations of the loop. We assume that the loop has
been divided up between several parallel processes — each process will execute a few
iterations of the loop. Data that the loop references may be divided up into several
categories:

1. Local data. This is data that is not shared — it is declared locally in each process.
There is no need to use a semaphore in accessing this data.

2. Read-only shared data. This is data that is only read by different processes. There
is no need to use a semaphore or lock to control access to it.

3. Reduction data. This is shared data that read and written by each process, but
in a limited way. The data is used in a single associative commutative operation by
each iteration of the loop and always, read and then written. Although it is shared,
we do not need to use a semaphore every time we access such data. Since it is used in
an associative commutative operation, the order in which the operations are applied is
not significant. We can replace this reference variable in the loop by a local variable in
each process. Only when the data from different processes is being combined need we
use a semaphore to prevent simultaneous access. This saves a little execution time if
each process is performing many iterations of the loop, because a semaphore inhibits
parallelism. Here is an example in C — again this program is for the Sequent Symmetry
computer:
for (i=0; i < 1000;i++)
for (j=0;j < 1000;j++) sum=sum+a[i][j];

Here ‘sum’ is a reduction variable. Suppose each processor performs all iterations of
the loop on ‘j’. Then we could replace this nested loop by:

for (i=0; i<1000;i++)
{
int local sum=0;
for(j=0;j<1000;j++)
{
local sum=local sum+a[i][j];
}
m lock(); /* Set semaphore. */
sum=sum+local sum; /* Now accumulate values
computed by different processors.*/
m unlock(); /* Release semaphore. */
}

4. Ordered data. This is shared data whose final numerical value depends upon
the iterations of the loop being carried out in precisely the same order as in a sequential
execution of the loop. A loop containing such data is not suitable for parallelization (at
least not in an asynchronous program). There are situations in which such a loop might
be contained in a much larger block of code that does lend itself to parallelization. In
this case we must guarantee that the loop is question is executed sequentially (even
if execution of different parts of the loop is done on different processors). There are
several ways this can be done: a. we can isolate this code in a procedure and allow
only one processor to call the procedure. b. We can share the variable that describes the
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index of the loop (i.e. iteration-count) and make each processor wait for that to reach
an appropriate value.

Alternative a is probably the more structured solution to this problem.
5. Shared variables that are read and written, but for which the order of execution

of the iterations of the loop is not significant. Such variables must be locked via a
semaphore before they can be accessed.

2.4.3.4. Deadlocks. The last general issue we will discuss is that of deadlock condi-
tions. Suppose we have two processes that each try to access two data-items. Since we
are aware of the problems that can arise involving race-conditions, we use semaphores
to control access to the data-items. Now suppose, for some reason (unlucky choices or
timing), the first process locks up the first data-item at the same time that the second
process locks up the second. Now both processes try to lock the other data-item. Since
they can’t complete their computations (and release the data they have locked) until
they get both data-items, they both wait forever. This is known as a deadlock condition.

The classic problem that illustrates the issue of deadlocks is the Dining Philoso-
pher’s Problem, described by Dijkstra in [47].

Five philosopher’s sit at a round table with a huge plate of spaghetti
in the center. There are five forks on the table — they lie between the
philosophers. Each philosopher alternates between meditating and eat-
ing, and a philosopher needs two forks in order to eat. The philosophers
are very egotistical, so no philosopher will relinquish a fork once they
have picked it up until they finish eating6.

Deadlocks can only occur if the following conditions are satisfied:
(1) Processes can request (and lock) only part of the resources they need.
(2) Processes can never relinquish resources they have requested until their com-

putations are completed.
(3) Processes cannot take resources away from other processes.
(4) A circular chain of requests for resources can exist. Each process in the chain

requests two or more resources and at least one of these is also requested by
the next process in the chain.

We prevent deadlock by eliminating at least one of these conditions. It is generally
impractical to try to eliminate conditions 2 and 3 , but the other two conditions can be
eliminated.

• We can prevent condition 1 from being satisfied by implementing semaphore
sets. These are sets of semaphores with semaphore-down operations that ap-
ply atomically to the entire set. When a process performs a semaphore-down
operation on the set, it is suspended if any of the semaphores in the set is 0.
In this case none of the semaphores is lowered. In the case where all of the
semaphores in the set are 1, they are all lowered simultaneously. In the context
of the Dining Philosopher’s Problem, this is as if the philosophers could grab
both of the forks at the same instant, so they either get both forks, or they get
nothing. The ATT System V implementation of UNIX has such semaphore set
operations.

6The reader may have noticed a few puns in this example!
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• We can prevent condition 4 in several ways:
– Careful algorithm design.
– Use of resources in a fixed order.

2.4.4. Comparison of the SIMD and MIMD models of computation. As the title
of this section suggests, we will prove that these two very general models of com-
putation are essentially equivalent. They are equivalent in the sense that, with some
restrictions, any algorithm that executes in T time units on one type of computer can
be made to execute in kT time units on the other, where k is some constant. Before
the reader concludes that this means the type of parallel computer one uses is unim-
portant, it is necessary to point out that the constant k may turn out to be very large.
Many problems will naturally lend themselves to a SIMD or MIMD implementation,
and any other implementation may turn out to be substantially slower. First we need
the following definition:

DEFINITION 2.4.9. An algorithm for a SIMD parallel computer will be called cali-
brated, if whenever processors access memory, they also compute the program-step in
which the memory was last written. This means that there is a function f :P×T×M →
T , where

(1) P is the set of processors in the SIMD computer.
(2) T is the set of possible time-steps — a range of integers.
(3) M is the set of memory-locations.

In addition, it means that the algorithm effectively computes this function f in the
course of its execution.

Many highly regular algorithms for SIMD computers have this property. For in-
stance, an algorithm that accesses all of memory in each program step can be easily
converted into a calibrated algorithm.

2.4.1. Suppose A is a calibrated algorithm that runs in T time units on a SIMD-EREW
parallel computer with n processors and usesmmemory locations. Then it is possible to execute
this algorithm on a MIMD-EREW computer with n processors in kT time units, using mT
distinct semaphores, where k is the number of instruction-steps required to:

(1) Check a semaphore;
(2) Suspend a process;
(3) Awaken a suspended process;

This result suggests that a MIMD computer is strictly better than a SIMD computer,
in the sense that

• It looks as though MIMD computers can execute any program that runs on a
SIMD computer.
• A MIMD computer can also run programs that require asynchronous pro-

cesses.
The “catch” here is that:

(1) Many SIMD algorithms are not calibrated, and there is a very significant cost
associated with converting them into calibrated algorithms.

(2) Most MIMD computers today (1992) have far fewer processors than SIMD
computers;
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(3) The constant k may turn out to be very large.

PROOF. The basic idea here is that race-conditions will not occur, due to the fact that
the SIMD algorithm was designed to execute on a EREW computer. Race conditions
only occur when multiple processors try to read and write to the same location in a
given program step. The only problem with carrying out the simulation in an entirely
straightforward way is that of synchronizing the processors. This is easily handled by
using the fact that A is calibrated. Simply associate a time− stamp with each data-item
being computed. Each processor of the MIMD computer executes instructions of the
SIMD program and maintains a program-counter. We attach a single semaphore to
each simulated SIMD-memory location, and for each simulated time-step. This gives
a total of mT semaphores, and they are all initially down except the ones for all of the
processors at time 0. When a processor is about to read the data that it needs for a
given program-step, it checks the semaphore for that data-item at the required time.
When a processor completes a computation in a given simulated time-step, it executes
an up operation on the corresponding semaphore.

We must prove that the execution-time of the simulated algorithm is as stated. We
use induction on the number of program-steps in the SIMD algorithm. Certainly the
conclusion is true in the ground-case of the induction. Suppose that it is true after t
simulated program-steps. This means that all processors of the MIMD machine have
simulated t program steps of the SIMD algorithm after kt time-units have elapsed.
All processors are ready to begin simulating at least the t + 1st program-step at this
point. If any processors require data from the tth program step, they must access a
semaphore that is attached to that data. Consequently, the elapsed time may be k
before the algorithm can simulate the next SIMD program-step. �

The results of § 2.2, particularly 2.2.1 on page 23 imply:

COROLLARY 2.4.10. Suppose A is a calibrated algorithm that runs in T time units on a
SIMD-CRCW parallel computer with n processors. Then it is possible to execute this algorithm
on a MIMD-EREW computer with n processors in kT lg2 n time units, where k is the number
of instruction-steps required to:

(1) Check a semaphore;
(2) Suspend a process;
(3) Awaken a suspended process;

In more generality, we have:

2.4.2. Suppose A is an algorithm that runs in T time units on a SIMD-EREW parallel
computer with n processors. Then it is possible to execute this algorithm on a MIMD-EREW
computer with 3n processors in kT lg n time units, where k is a constant.

This algorithm eliminates the requirement that the SIMD algorithm be calibrated. It
is based upon the tree-of-semaphores construction of David Saunders (see page 48). Es-
sentially, we insert a barrier construct after each simulated SIMD instruction. We set up
a tree of semaphores and, when processors finish a given simulated SIMD instruction-
step (say instruction j) they wait until all processors complete this instruction-step.
Then they begin their simulation of the next SIMD instruction-step.
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In like fashion, it is possible to simulate MIMD algorithms on a SIMD machine.
Suppose we have a MIMD algorithm that makes use of an instruction-set with I in-
structions {a1, . . . , aI}. Suppose that a SIMD computer can simulate aj in time tj . Then
we get:

2.4.3. Let A be an algorithm that runs in T time units on the MIMD computer described
above. Then A can be run in T

∑I
j=1 tj time units on the SIMD computer described above.

The idea of this simulation is extremely simple. Each program-step of the MIMD
computer is simulated on the SIMD computer by a loop with I iterations. In itera-
tion j all processors that should be executing instruction aj run a simulation of this
instruction — this requires time tj .

The question of how one can simulate a MIMD machine by a SIMD machine has
also been considered by M. Wloka in his Doctoral Dissertation ([170]) and by Michael
Littman and Christopher Metcalf in [99].

EXERCISES.

3. Why doesn’t the simulation algorithm 2.4.1 run up against the limitations im-
plied by 2.4.8 on page 48?

4. Is it possible for the MIMD simulation in 2.4.1 to run faster than the original SIMD
algorithm being simulated? Assume that the processors of the MIMD computer run
at the same rate as those of the SIMD computer, and that the operations of checking
semaphores take negligible time (so the constant k is 0).





CHAPTER 3

Distributed-Memory Models

3.1. Introduction.

The PRAM models of computation requires that many processors access the same
memory locations in the same program-steps. This creates engineering problems that
have only been solved in a few cases. Most practical parallel computers are built along
a Distributed Memory Model of some kind. In a distributed-memory architecture, the
processors of the computer are interconnected in a communication-network and the RAM
of the computer is local to the processors. Each processor can access its own RAM easily
and quickly. If it needs access to a larger address-space than is contained in its local
RAM, it must communicate with other processors over the network

This leads to several interesting questions:
(1) How do the various interconnection-schemes compare with each other in re-

gard to the kinds of algorithms that can be developed for them?
(2) How easy is it for processors to “share” memory over the communication net-

work? This is related to the question of how easy it might be to port PRAM-
algorithms to a network-computer.

It turns out that the answer to question 1 is that “almost any network will do”. Work
of Vishkin and others shows that algorithms that are fast most of the time (i.e. prob-
abilistic algorithms) can be developed for any network in which it is possible to reach
2k other processors from a given processor in k steps. Question 2 has a similar an-
swer — there exist efficient algorithms for simulating a PRAM-computer via a network-
computer, if the network satisfies the condition mentioned above.

3.2. Generic Parallel Algorithms.

We will consider how several different networks handle many common algorithms.
In order to do this, we follow Preparata and Vuillemin in [128] in defining a pair of
generic parallel algorithms that can be easily implemented on the common network-
computers. Many interesting parallel algorithms can be expressed in terms of these
two.

We will assume that we have n = 2k data items stored in storage locations T [0],
T [1],. . . ,T [n− 1].

The notation OPER(m, j;U, V ) will denote some operation that modifies the data
present in locations U and V , and depends upon the parameters m and j, where 0 ≤
m < n and 0 ≤ j < k. We will also define the function bitj(m) to be the jth bit in the
binary representation of the number m. Given these definitions, we will say that an
algorithm is in the DESCEND class if it is of the form:

3.2.1. DESCEND Algorithm.

55
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for j ← k − 1 downto 0 do
for each m such that 0 ≤ m < n

do in parallel
if bitj(m) = 0 then

OPER(m, j;T [m], T [m+ 2j])
endfor

endfor

and we will say that an algorithm is of ASCEND class if it is a special case of

3.2.2. ASCEND Algorithm.
for j ← 0 to k − 1 do

for each m such that 0 ≤ m < n
do in parallel

if bitj(m) = 0 then
OPER(m, j;T [m], T [m+ 2j])

endfor
endfor

In many cases, algorithms that do not entirely fall into these two categories can be
decomposed into a sequence of algorithms that do — we will call these algorithms com-
posite. We will often want to regard OPER(m, j;T [m], T [m + 2j]) as a pair of functions
(f1, f2):

T [m]← f1(m, j, T [m], T [m+ 2j])

T [m+ 2j]← f2(m, j, T [m], T [m+ 2j])

We will consider some common parallel algorithms that can be re-stated in the con-
text of ASCEND and DESCEND algorithms. Throughout the remainder of the text, we
will occasionally encounter more of these.

EXAMPLE 3.2.1. The Bitonic Sorting algorithm (2.1.1 on page 18) is a DESCEND
algorithm — here the operation OPER(m, j;U, V ) is just compare-and-swap (if the el-
ements are out of sequence).

Here is a refinement of the algorithm for forming the sum of n = 2k numbers given
on page 6 on the Introduction: We will not only want the sum of the n = 2k numbers
— we will also want all of the cumulative partial sums. Suppose we have n processors
and they are numbered from 0 to n− 1 and n numbers in an array, A. In step i (where
steps are also numbered from 0 on) let processor number u, where j2i+1 + 2i ≤ u ≤
(j + 1)2i+1− 1 (here j runs through all possible values giving a result between 1 and n)
add the value of A(j2i+1 + 2i − 1) to A(u). Figure 3.2.1 illustrates this process.

It is easy for a processor to determine if its number is of the correct form — if its
identifying number is encoded in binary it can compute its value of j by right-shifting
that number i + 1 positions, adding 1 and right-shifting 1 additional position. Then it
can compute the corresponding value of j2i+1 + 2i − 1 and carry out the addition. It
isn’t difficult to see that this procedure will terminate in lg n steps and at the end A will
contain the cumulative sums of the original numbers. A single extra step will compute
the absolute values of the differences of all of the partial sums from half of the sum of
all of the numbers and the minimum of the differences is easily determined.
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1 2 0 1 6 3 0 5

1 3 0 1 6 9 0 5

1 3 3 4 6 9 9 14

1 3 3 4 10 13 13 18

FIGURE 3.2.1. Computing the cumulative sums of 8 integers, in parallel

In step i processors numbered j compare the numbers in A(j2i−2i−1) with those in
A(j2i) and exchange them if the former is smaller than the latter. In addition subscript
numbers (which are stored in another array of n elements) are exchanged. Clearly,
this determination of the minimum requires lg n steps also. Later, we will examine an
improvement of this algorithm that only requires n/ lg n processors — see 6.1.5 on page
236.

EXAMPLE 3.2.2. The algorithm for forming the sum of n numbers is an ASCEND
algorithm where OPER(m, j;U, V ) has the following effect:

U ← U

V ← U + V

These two examples are fairly clear — the original statements of the algorithms in
question were almost exactly the same the the statements in terms of the ASCEND and
DESCEND algorithms.

Now we will consider a few less-obvious examples:

PROPOSITION 3.2.3. Suppose we have n = 2k input data items. Then the permutation
that exactly reverses the order of input data can be expressed as a DESCEND algorithm — here
OPER(m, j;U, V ) simply interchanges U and V in all cases (i.e., independently of the values
of U and V ).

PROOF. We prove this by induction. It is clear in the case where k = 1. Now
suppose the conclusion is known for all values of k ≤ t. We will prove it for k = t + 1.
The key is to assume that the original input-data was T [i] = i, 0 ≤ i ≤ n − 1. If we
prove the conclusion in this case, we will have proved it in all cases, since the numerical
values of the data-items never enter into the kinds of permutations that are performed
by OPER(m, j;U, V ). The next important step is to consider the binary representations
of all of the numbers involved. It is not hard to see that the first step of the DESCEND
algorithm will alter the high-order bit of the input-data so that the high-order bit of
T [i] is the same as that of n− 1− i. The remaining bits will not be effected since:

Bits 0 through t of the numbers {0, . . . , n/2 − 1} are the same as bits 0
through t of the numbers {n/2, . . . , n− 1}, respectively.
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The remaining iterations of the DESCEND algorithm correspond exactly to the algo-
rithm in the case where k = t, applied independently to the lower and upper halves
of the input-sequence. By the inductive hypothesis, these iterations of the algorithm
have the correct effect on bits 0 through t of the data. It follows that, after the algorithm
executes, we will have T [i] = n− 1− i. �

For instance:

EXAMPLE 3.2.4. Suppose n = 23 and our input-data is:

{3, 7, 2, 6, 1, 8, 0, 5}
After the first iteration of the DESCEND algorithm (with OPER(m, j;U, V ) defined to
always interchange U and V ), we have:

{1, 8, 0, 5, 3, 7, 2, 6}
After the second iteration, we get:

{0, 5, 1, 8, 2, 6, 3, 7}
And after the final iterations we get:

{5, 0, 8, 1, 6, 2, 7, 3}
This is the reversal of the input sequence.

The reason we took the trouble to prove this is that it immediately implies that:

PROPOSITION 3.2.5. The Batcher merge algorithm (2.1.2 on page 20) can be expressed
as a composite of two DESCEND algorithms. The first phase reverses the upper half of the
input-data via 3.2.3 above, and the second performs a Bitonic sort using 3.2.1.

This implies that the general Batcher sorting algorithm can be implemented with
O(lg n) DESCEND algorithms via the reasoning of 2.1.3 on page 20.

We will conclude this section by showing that the operation of shifting data can be
implemented as an ASCEND algorithm:

PROPOSITION 3.2.6. Suppose we have n = 2k input data-items. Then the cyclic shift
operation

T [i]← T [i− 1]

T [0]← T [n− 1]

for all i such that 0 ≤ i ≤ n − 1, occurs as the result of an ASCEND algorithm with
OPER(m, j;U, V ) defined to

• Interchange U and V , if m is a multiple of 2j+1.
• Leave U and V unchanged otherwise.

PROOF. We use induction on k. Clearly, the conclusion is true for k = 1 — the
algorithm just interchanges the two input data items. As with the previous algorithm,
we will assume the input is given by T [i] = i, and will assume that the algorithm works
for k ≤ t. Now suppose we are given a sequence of 2t+1 data items:

{0, 1, . . . , 2t+1}
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rank 0

rank 1

rank 2

rank 3

FIGURE 3.3.1. The butterfly architecture

The inductive hypothesis implies that the first t iterations of the algorithm will pro-
duce:

{T [0] = 2t − 1, T [1] = 0, . . . , T [2t − 1] = 2t − 2,

T [2t] = 2t+1 − 1, T [2t + 1] = 2t, . . . , T [2t+1 − 1] = 2t+1 − 2}
The last iteration interchanges T [0] and T [2t] so we get the sequence

{T [0] = 2t+1 − 1, T [1] = 0, . . . , T [2t+1 − 1] = 2t+1 − 2}
�

3.3. The Butterfly Network.

Naturally, some networks are better than others for developing parallel algorithms.
Essentially, they have structural properties that make it easier to describe the data-
movement operations necessary for parallel computations. We will consider several
such architectures in this chapter. In every case, physical computers have been con-
structed that implement the given architecture.

We first consider the butterfly layout — see figure 3.3 for a diagram that illustrates
the basic idea. The nodes represent processors and the lines represent communication
links between the processors.

Here the nodes of this graph represent processors (each of which has some local
memory) and the edges are communication lines. This particular layout is of rank 3.
The general rank k butterfly layout has (k + 1)2k processors arranged in 2k columns
with k + 1 processors in each column. The processors in a column are numbered from
0 to k (this number is called the rank of the processor) — these processors are denoted
dr,j , where r is the rank and j is the column number. Processor dr,j is connected to
processors dr−1,j and dr−1,j′ , where j′ is the number whose k-bit binary representation
is the same as that of j except for the r − 1st bit from the left.

In some cases the 0th and kth (last) ranks are identified so that every processor has
exactly 4 communication lines going out of it.

The fundamental properties of butterfly networks that interest us are the following:
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rank 0

rank 1

rank 2

FIGURE 3.3.2. The Even Sub-Butterfly

3.3.1. (1) If the rank-0 processors (with all of their communication arcs) of a butterfly
network of rank k are deleted we get two butterfly networks of rank k − 1.

(2) If the rank-k processors (with all of their communication arcs) of a butterfly network
of rank k are deleted we get two interwoven butterfly networks of rank k − 1.

Statement 1 is immediately clear from figure 3.3 — in this case the ranks of the
remaining processors have to be changed. Statement 2 is not hard to see from figure
3.3.

Here the even columns, lightly shaded, form one butterfly network of rank 2, the
the odd columns form another.

The organization of the diagonal connections on the butterfly networks makes it
easy to implement the generic ASCEND and DESCEND algorithms on it:

3.3.1. DESCEND Algorithm on the Butterfly computer. Suppose the input data is T [0],
. . . , T [n−1], with n = 2k and we have a rank-k butterfly network. Start with T [i] in processor
d0,i, for 0 ≤ i ≤ n−1 — the top of the butterfly diagram. In each phase of the Butterfly version
of the DESCEND algorithm (3.2.1 on page 55) perform the following operations:
for j ← k − 1 downto 0 do

Transmit data from rank k − 1− j to rank k − j
along both vertical and diagonal lines

The processors in rank k − j and columns
m and m+ 2j now contain the old values

of T [m],T [m+ 2j].
Compute OPER(m, j;T [m], T [m+ 2j])

endfor
Note: in the step that computes OPER(m, j;T [m], T [m+ 2j]), two separate computations

are involved. The processor in column m computes the new value of T [m] and the processor in
column m + 2j computes the new value of T [m + 2j]). Both of these processors have all of the
input-data they need.

The ASCEND algorithm is very similar:

3.3.2. ASCEND Algorithm on the Butterfly computer. Suppose the input data is T [0],
. . . , T [n−1], with n = 2k and we have a rank-k butterfly network. Start with T [i] in processor
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dk,i, for 0 ≤ i ≤ n−1 — the bottom of the butterfly diagram. In each phase of the Butterfly ver-
sion of the ASCEND algorithm (3.2.1 on page 55) perform the following operations:
for j ← 0 to k − 1 do

Transmit data from rank k − j to rank k − j − 1
along both vertical and diagonal lines

The processors in rank k − j − 1 and columns
m and m+ 2j now contain the old values

of T [m],T [m+ 2j].
Compute OPER(m, j;T [m], T [m+ 2j])

endfor
Note that the execution-times of the original ASCEND and DESCEND algorithms

have at mostly been multiplied by a constant factor.
The results of the previous section immediately imply that that we can efficiently1

implement many common parallel algorithms on butterfly computers:
• Bitonic sort (see 3.2.1 on page 56).
• Computation of cumulative sums of n numbers (see 3.2.2 on page 57).
• the generalized Batcher sorting algorithm (see 3.2.5 on page 58).

In the future we will need the following:

DEFINITION 3.3.1. An algorithm for the butterfly computer will be called normal if
in each step either (but not both) of the following operations is performed:

(1) data is copied from one rank to a neighboring rank;
(2) calculations are performed within processors and no data movement occurs.

Normality is a fairly restrictive condition for an algorithm to satisfy — for instance
it implies that the significant data is contained in a single rank in the computer in
each step (which may vary from one step to the next). Most of the processors are
inactive in each step. The DESCEND and ASCEND algorithms described above are
clearly normal. Normal algorithms are important because it will turn out that they
can be simulated on computers that have only O(n) processors (rather than O(n lg n)
processors, like the butterfly). In a sense normal algorithms are wasteful — they only
utilize a single row of the butterfly in each time-step2.

The fact that the Batcher sorting algorithm sort can be implemented on the butterfly
computer implies that:

LEMMA 3.3.2. An algorithm for an EREW-unbounded computer that executes in α-steps
using n processors and β memory locations can be simulated on a rank lg n butterfly com-
puter executing in O(αdβ/ne lg2 n)-time using n(1 + lg n) processors. Here each processor is
assumed to have at least β/n memory locations of its own.

Here is the algorithm:
1. At the beginning of each simulated EREW machine cycle each processor makes

up memory requests: we get an array of lists like (op(i), (a(i) mod n), |a(i)/n|,d(i), dum-
myflag), where op(i)=READ or WRITE, a(i) is the address on the EREW computer, and

1In this context “efficiently” means that the program on the butterfly-computer has the same as-
ymptotic execution-time as the PRAM implementation.

2Such algorithms, however, can be used to create online algorithms that continually input new data
and process it.
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d(i) is the data to be written, or empty, and dummyflag=FALSE. We assume that mem-
ory in the EREW computer is simulated by the memory of the processors of the but-
terfly computer: location k in the EREW computer is represented by location |k/n| in
processor k (mod n) — it follows that the two middle entries in the list above can be
interpreted as:

(processor containing simulated location a(i),
memory location within that processor of simulated location a(i));

2. We now essentially sort all of these memory requests by their second entry to
route them to the correct processors. This sorting operation is basically what was out-
lined above but we must be a little careful — more than one memory request may be
destined to go to the same processor. In fact we must carry out dβ/ne complete sorting
operations. In the first step we sort all memory requests whose third list element is 0,
next all memory requests whose third element is 1, and so on. We must modify the
sort algorithm given above slightly, to take into account incomplete lists of items to
be sorted. In the beginning of the algorithm, if a processor doesn’t have any list item
with a given value of the third element is makes up a dummy item with the dummyflag
equal to TRUE. When the a given sorting operation is complete the dummy items are
discarded.

3. When the dβ/ne sorting operations are completed all processors will contain
the (maximum of dβ/ne) memory requests for accesses to memory locations that they
contain. These requests are then processed sequentially in O(dβ/ne)-time.

4. The results of the memory accesses are then sorted again (in one sorting opera-
tion) to send them back to the processors that originated the requests.

Note that the algorithm would be poly-logarithmic if these was some small upper-
bound on dβ/ne. If β is very large (i.e. O(n2) the algorithm seriously falls short of being
poly-logarithmic. The problem here is clearly not the amount of data to be sorted —
that is always O(n) and it should be possible to sort this much data in O(lg2 n)-time.
The problem is that a large amount of data might have to go to the same processor (in
which case many other processors would receive no data). There is also a problem
with the processing of the memory requests once they have been routed to the correct
processors. In the algorithm above this is done sequentially within processors, but
this is clearly wasteful since many other processors will be idle (because there are at
most n data items to be processed overall). This situation is known as the Granularity
Problem — it has been studied in connection with the theory of distributed databases as
well as parallel processing algorithms. See §3.8 for a solution to this problem (and,
consequently, an improved algorithm for simulating an EREW computer with large
memory on a butterfly).

A similar result is possible for the CRCW computer. In order to prove this it is first
necessary to develop an algorithm for moving data through a butterfly efficiently.

We immediately conclude:

LEMMA 3.3.3. An algorithm for an CRCW-unbounded computer that executes in α-steps
using n processors and β memory locations can be simulated on a rank lg n butterfly computer
executing inO(αdβ/ne lg2 n)-time using n(1+lg n) processors. Here each processor is assumed
to have β/n+ 3 memory locations of its own.
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This algorithm is clearly normal since each of its steps are. That will turn out to
imply that a CRCW computer can be simulated via a network that hasO(n) processors,
and with no degradation in the time estimates.

PROOF. We copy the proof of 2.2.1, substituting the sorting algorithm for the but-
terfly computer for that of §2.2 and the data movement algorithm above for the simple
shift that takes place in the CRCW-read simulation of 2.2.1.

In addition, in the step of 2.2.1 in which processors compare data values with those
of their neighbors to determine whether they contain the lowest indexed reference to a
memory location, they can use the butterfly implementation of the ASCEND algorithm
and 3.2.6 to first move the data to be compared to the same processors. Note that,
due to the Granularity Problem mentioned above we will have to actually carry out
the routing operation dβ/ne times. This accounts for the factor of dβ/ne in the time
estimate. �

Here is a sample programming language (Butterfly Pascal) that might be used on a
butterfly-SIMD computer:

DEFINITION 3.3.4. The language is like Pascal except that there exist:
(1) pre-defined (and reserved) variables: ROW, COLUMN, COPY EXCHANGE,

COPY — COPY EXCHANGE and COPY are areas of memory of size 1K —
that represents the maximum amount of data that may be copied or copy-
exchanged at any given time. ROW and COLUMN are integers which may
never be the target of an assignment (and may never be used as a var-type
parameter in a procedure or function call). They are equal, respectively, to
the row- and column- numbers of a processor (so their values vary from one
processor to another).

(2) Procedures copy exch() and copy up(), copy down(). In order to
copy-exchange some data it must be plugged into COPY EXCHANGE and
the procedure copy exch() must be called. Assume that the pascal assignment
operators to and from COPY and COPY EXCHANGE are size-sensitive —
i.e. COPY:=x; copies a number of bytes equal to the size of the variable x and
the corresponding statement is true for x:=COPY.

(3) Assume an additional block structure:
if <condition> paralleldo <stmt>; This statement evaluates the condition

(which generally tests COLUMN number in some way) and executes the state-
ment if the condition is true. This differs from the usual if-statement only in
the sense that a subset of the processors may execute the statement in <stmt>
and the remainder of the processors will attempt to “mark time” — they will
not execute<stmt> but will attempt to wait the appropriate amount of time for
the active processors to finish. This is accomplished as follows: in the machine
language for the butterfly each processor has a flag that determines whether it
“really” executes the current instruction or merely waits. This flag is normally
true (for active execution) but when the pascal compiler translates the parallel-
if statement above it sets this flag in each processor according to whether the
condition is true or not (for that processor). At the end of the parallel-if block
the flag is again set to true.
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Note: this statement is not necessary in order to execute a parallel program — ex-
ecution of a program is normally done in parallel by all processors. This construct
merely facilitates the synchronization of all processors across a row of the butterfly.

Assume that a given program executes simultaneously on all processors in the com-
puter.

EXERCISES.

1. Suppose we had a computer that used the SIMD model of computation and the
Butterfly architecture. It is, consequently, necessary for each processor to have a copy
of the program to be run on it. Devise an algorithm to transmit a program from one
processor to all of the others. It should execute in O(l lg n)-time, where l is the length
of the program.

2. Is it possible for the processors to get “out of synchronization” in butterfly pascal
even though they use the parallel-if statement?

3. Why would it be difficult to synchronize processors in butterfly pascal without a
parallel-if statement? (I.e. why couldn’t we force some processors to wait via conven-
tional if statements and loops, for instance?)

4. Suppose we the Butterfly Pascal language available on a Butterfly computer of
rank 5: Program (in butterfly pascal):

a. the butterfly sorting algorithm algorithm (Hints:
(a) In each case, pass a parameter to subroutines telling which column the

processor is supposed to regard itself as being in — within the appropriate
sub-butterfly;

(b) Confine activity to a single row of the butterfly at a time;
(c) use the parallel-if statement described above whenever you want to make

a subset of the processors in a row execute some statements);
b. the simulation algorithm for a CRCW computer.

3.3.1. Discussion and further reading. The BBN Butterfly computer indirectly uti-
lizes a butterfly network. It has a number of processors that communicate via a system
called an Omega switch. This is a butterfly network whose vertices are not completely-
functional processors — they are gates or data-switches. See [96] for a discussion of the
issues involved in programming this machine.

We will discuss some of the literature on algorithms for the butterfly network. In
[16], Bhatt, Chung, Hong, Leighton, and Rosenberg develop algorithms for simulations
that run on a butterfly computer.

3.4. The Hypercube Architecture

3.4.1. Description. An n-dimensional hypercube is a graph that looks, in the 3-
dimensional case, like a wire frame that models a cube. The rigorous definition of an
n-dimensional hypercube is a graph Hn, where
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(1) The vertices of Hn are in a 1-1 correspondence with the n-bit binary sequences
a0 · · · an−1 (so there are 2n such vertices). Each vertex has an identifying num-
ber.

(2) Two vertices a0 · · · an−1 and a′0 · · · a′n−1 are connected by an edge if and only if
these sequences differ in exactly one bit — i.e., ai = a′i for 0 ≤ i ≤ n − 1, i 6= k
for some value of k and ak 6= a′k.

An n-dimensional hypercube computer has a processing-element at each vertex of Hn

and connecting communication lines along the edges.
It is not hard to see that each vertex has exactly n edges incident upon it. Its connec-

tivity is, consequently, higher than that of the butterfly or perfect-shuffle architectures.
One might think that such a hypercube-computer is harder to implement than a but-
terfly or perfect-shuffle computer.

The generic ASCEND and DESCEND algorithms (3.2.1 and 3.2.2 on page 56) are
easy to implement on the hypercube architecture:

3.4.1. DESCEND Algorithm on the Hypercube computer. Suppose the input data is
T [0], . . . , T [n− 1], with n = 2k and we have an n-dimensional hypercube. Start with T [m] in
vertexm, for 0 ≤ m ≤ n−1 — where vertex-numbers are as defined above. In iteration j of the
Hypercube version of the DESCEND algorithm perform the following operations:
for j ← k − 1 downto 0 do

for each m such that 0 ≤ m < n
do in parallel

if bitj(m) = 0 then
vertices m and m+ 2j exchange copies
of their data via the unique
common communication line

Each processor computes OPER(m, j;T [m], T [m+ 2j])
(Now having the necessary input-data:
the old values of T [m] and T [m+ 2j])

endfor
endfor

3.4.2. ASCEND Algorithm on the Hypercube computer. Suppose the input data is T [0],
. . . , T [n−1], with n = 2k and we have an n-dimensional hypercube. Start with T [i] in vertex i,
for 0 ≤ i ≤ n−1 — where vertex-numbers are as defined above. In iteration j of the Hypercube
version of the ASCEND algorithm perform the following operations:
for j ← 0 to k − 1 do

for each m such that 0 ≤ m < n
do in parallel

if bitj(m) = 0 then
vertices m and m+ 2j exchange copies
of their data via the unique
common communication line

Each processor computes OPER(m, j;T [m], T [m+ 2j])
(Now having the necessary input-data:
the old values of T [m] and T [m+ 2j])

endfor
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FIGURE 3.4.1. A 5-dimensional hypercube

endfor

Note that the implementations of ASCEND and DESCEND on the hypercube are
more straightforward than on the butterfly network. These implementations imme-
diately imply that we have efficient implementations of all of the ASCEND and DE-
SCEND algorithms in § 3.2 on page 55. The hypercube architecture is interesting for
many reasons not related to having good implementations of these generic algorithms.
It turns out to be very easy to map certain other interesting architectures into the hy-
percube. We will spend the rest of this section looking at some of these.

DEFINITION 3.4.1. Let a and b be sequences of bits of the same length. The Hamming
distance between these sequences is the number of bit-positions in the two sequences,
that have different values.

It is not hard to see that the distance between two different vertices in a hypercube
is equal to the Hamming distance between the binary representations of their vertex-
numbers.

Figure 3.4.1 shows a 5 dimensional hypercube.
A six dimensional hypercube is the result of taking two copies of this graph and at-

taching each vertex of one copy to a corresponding vertex of the other — and each time
the dimension is raised by 1 the complexity of the graphs doubles again. This is meant
to convey the idea that high-dimensional hypercubes might be difficult to implement.
Nevertheless, such computers are commercially available. The Connection Machine
from Thinking Machines (CM-2 model) is a 12-dimensional hypercube computer with
64000 processors (it actually has 16 processors at each vertex of a 12-dimensional hy-
percube).

It turns out that an n-dimensional hypercube is equivalent to an order-n butterfly
network with all of the columns collapsed to single vertices, and half as many edges.
Basically, the result of collapsing the columns of a butterfly to vertices is a hypercube
with all of its edges doubled.

It is not hard to see that any normal algorithm for a degree-n butterfly network can
easily be ported to an n-dimensional hypercube computer with no time degradation.
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LEMMA 3.4.2. Every normal algorithm that runs on a degree-k butterfly network (that has
k2k processors) in t time units can run on a k-dimensional hypercube computer in O(t) time.

Hypercubes are interesting as models for parallel communication because of the
fact that many other communication-schemes can be mapped into hypercubes. In or-
der to see how this is done, we discuss the subject of Gray codes. We will be particularly
interested in how one can map lattice organizations into hypercubes.

DEFINITION 3.4.3. The k-bit reflected Gray code sequence is defined recursively
via:

• The 1-bit sequence is {0, 1};
• If {s1, . . . , sm} is the k − 1-bit reflected Gray code sequence, then the k-bit se-

quence is {0s1, . . . , 0sm, 1sm, . . . , 1s1}.
The k-bit reflected Gray code sequence has 2k elements.

Here are the first few reflected Gray code sequences:
(1) {0, 1}
(2) {00, 01, 11, 10}
(3) {000, 001, 011, 010, 110, 111, 101, 100}

The important property of Gray codes that will interest us is:

PROPOSITION 3.4.4. In a k-bit Gray code sequence, the Hamming distance between any
two successive terms, and the Hamming distance between the first term and the last term is 1.

PROOF. This follows by a simple induction. It is clearly true for the 1 bit Gray codes.
If it is true for k − 1 bit Gray codes, then the inductive definition implies that it is true
for the k bit Gray codes, because each half of this sequence is just the concatenation of
the k − 1 bit Gray codes with a fixed bit (0 of the first half, and 1 for the second). This
leaves us with the question of comparing:

• the two middle terms — but these are just 0sm, 1sm, and they differ in only 1
bit.
• the first and last elements — but these are 0s1, 1s1, and they just differ in 1

element.
�

Since vertices whose numbers differ in only one bit are adjacent in a hypercube,
the k bit Gray code sequences provides us with a way to map a loop of size 2k into a
hypercube:

PROPOSITION 3.4.5. Suppose S = {s1, . . . , sn} be the k bit Gray code sequence. In addi-
tion, suppose we have a d dimensional hypercube, where d ≥ k — its vertices are encodes by d
bit binary numbers. If z is any d − k bit binary number, then the sequences of vertices whose
encoding is {zs1, . . . , zsn} is an embedding of a loop of size n in the hypercube.

We can use multiple Gray code sequences to map a multi-dimensional lattice of
vertices into a hypercube of sufficiently high dimension. This lattice should actually
be regarded as a torus. Here is an example:

EXAMPLE 3.4.6. Suppose we have a two dimensional lattice of processors that we
want to simulate on a hypercube computer whose dimension is at least 7. Each pro-
cessor in this lattice is denoted by a pair of numbers (u, v), where (we suppose) u runs
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from 0 to 3 (so it takes on 4 values) and v runs from 0 to 15 (so it takes on 24 = 16
values). We use the 3 and 4 bit Gray codes:

• 3 bit Gray code, S1:

000,001,011,010,110,111,101,100

• 4 bit Gray code, S2:

0000,0001,0011,0010,
0110,0111,0101,0100,
1100,1101,1111,1110,
1010,1011,1001,1000

and we will assume that both of these sequences are numbered from 0 to 7 and 0 to
15, respectively. Now we map the processor numbered (u, v) into the element of the
hypercube location whose binary representation has low-order 7 bits of {S1(u), S2(v)}.
Processor (2, 3) is sent to position 0100011 = 67 in the hypercube.

Note that size of each dimension of the lattice must be an exact power of 2. The
general statement of how we can embed lattices in a hypercube is:

PROPOSITION 3.4.7. Let L be a k-dimensional lattice of vertices such that the ith sub-
script can take on 2ri possible values. Then this lattice can be embedded in an r-dimensional
hypercube, where r =

∑k
i=1 ri. An element of L can be represented by a sequence of k num-

bers {i1, . . . , ik}, and the embedding maps this element to the element of the hypercube whose
address has the binary representation {S(i1, r1), . . . , S(ik, rk)}, where S(q, r) denotes the qth

element of the r-bit reflected Gray code.

This mapping has been implemented in the hardware of the Connection Machine
(CM-2 model), so that it is easy to define and operate upon arrays of processors that
have the property that the range of each subscript is exactly a power of 2.

Many parallel computers have been built using the hypercube network architecture
including:

• the nCUBE computers, including the nCUBE/7 and nCUBE 2;
• The Cosmic Cube.
• the Connection Machines (CM-1 and CM-2) from Thinking Machines Corpo-

ration.
• the Intel iPSC series, including the iPSC/1, iPSC/2, iPSC/860, and the Touch-

stone Gamma.
• the Caltech Mark II.
• the MasPar MP-1 computer.

Most of these are MIMD computers
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FIGURE 3.5.1. The shuffle exchange network

EXERCISES.

1. Prove the statement that an n-dimensional hypercube is equivalent to an order-n
butterfly network with all of the columns collapsed to single vertices, and half as many
edges.

2. Compute an explicit embedding of a 3-dimensional lattice of size 8× 4× 2 into a
6-dimensional hypercube.

3. Suppose an n × n matrix is embedded in a hypercube (as an n × n lattice — we
assume that n is a power of 2). Find an algorithm for transposing this matrix in O(lg n)
time. Hint: Consider algorithm 3.2.3 on page 57, and the implementation of DESCEND
on the hypercube.

3.5. The Shuffle-Exchange Network

The last network-computer we will consider is the shuffle-exchange network.
Like the others it is physically realizable and has the ability to efficiently simulate
unbounded parallel computers. It has the added advantage that this simulation can
be done without any increase in the number of processors used.

Suppose n is a power of 2. Then a degree-n shuffle exchange network is constructed
as follows: Start with n processors, numbered 0 to n − 1, arranged in a linear array
except that processor i is connected to:

(1) processor i+ 1 if i is even;
(2) processor j, where j ≡ 2i (mod n− 1);
(3) itself, if i = n− 1 (rather than processor 0, as rule b would imply).

Figure 3.5 shows an 8-node shuffle-exchange network.
Here the shaded lines represent exchange lines: data can be swapped between pro-

cessors connected by such lines — this movement will be denoted EX(i). The dark
curved lines represent the shuffle lines — they connect processor i with 2i mod n− 1
(in the pascal sense). Although data can move in both directions along these lines one
direction is regarded as forward and the other is regarded as reverse.

There are two main data-movement operations that can be performed on the
shuffle-exchange network:

(1) Shuffle, PS(i) (for “perfect shuffle”). Here data from processor i is moved to
processor 2i mod n− 1. The inverse operation PS−1(i) is also defined (it moves
data from processor i to processor j, where i ≡ 2j (mod n − 1)). Most of the
time these operations will be applied in parallel to all processors — the parallel
operations will be denoted PS and PS−1, respectively.
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(2) Exchange, EX(i). Here data from processor i is moved to processor i+ 1 if i is
even and i− 1 if i is odd.

We will consider the effects of these operations. Suppose b(i) is the binary representa-
tion of the number i.

PROPOSITION 3.5.1. Suppose processor i has data in it and:
(1) PS(i) will send that data to processor j, or;
(2) EX(i) will send that data to processor j′.

Then:
(1) b(j) is the result of cyclically permuting b(i) one bit to the left;
(2) b(j′) is the same as b(i) except that the low order bit is different.

PROOF. Recall that we are considering n to be a power of 2. Statement b is clear.
Statement a follows from considering how j is computed: i is multiplied by 2 and
reduced (mod n− 1). Multiplication by 2 shifts the binary representation of a number
one bit to the left. If the high-order bit is 1 it becomes equal to n after multiplication by
2 — this result is congruent to 1 (mod n− 1). �

Our main result concerning the shuffle-exchange network is:

LEMMA 3.5.2. Every normal algorithm that runs on a degree-k butterfly network (that
has k2k processors) in t time units can run on a 2k-processor shuffle-exchange network in O(t)
time.

PROOF. We assume that the processors of the shuffle-exchange network can carry
out the same operations as the processors of the butterfly. The only thing that re-
mains to be proved is that the data-movements of the butterfly can be simulated on
the shuffle-exchange network. We will carry out this simulation (of data-movements)
in such a way that the processors of the shuffle-exchange network correspond to the
columns of the butterfly. In other words we will associate all processors of column i
of the butterfly with processor i in the shuffle-exchange network. That it is reasonable
to associate all processors in a column of the butterfly with a single processor of the
shuffle-exchange network follows from the fact that the algorithm we are simulating is
normal — only one rank of processors is active at any given time.

Recall how the processors of the butterfly were connected together. Processor dr,i
(r is the rank) was connected to processors dr−1,i and dr−1,i′ , where i and i′ differ (in
their binary representations) only in the r − 1st bit from the left. Let us simulate the
procedure of moving data from dr,i to dr−1,i′ :

Perform PSr on all processors in parallel. Proposition 3.5.1 implies that this will
cyclically left-shift the binary representation of i by r-positions. The r − 1st bit from the
left will wind up in the low-order position. EX will alter this value (whatever it is) and
PS−r will right-shift this address so that the result will be in processor i′.

We have (in some sense) simulated the copy operation from dr,i to dr−1,i′ : by
PS−r ◦EX(PSr(i)) ◦ PSr. The inverse copy operation (from dr−1,i′ to dr,i) is clearly
simulated by (PS−r ◦EX(PSr(i)) ◦ PSr)−1 = PS−r ◦EX(PSr(i)) ◦ PSr.

Incidentally — these composite operations must be read from right to left.
There are several obvious drawbacks to these procedures: we must carry out

O(lg n) steps (to do PSr and PS−r) each time; and we must compute PSr(i) inside
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FIGURE 3.5.2. Shuffle-exchange vs. butterfly

each EX. These problems are both solved as follows: Note that after doing the copy
from dr,i to dr−1,i′ : the data will be in rank r − 1 — consequently the next step will
be an operation of the form PS1−r ◦EX(PSr−1(i′)) ◦ PSr−1 — and the composite will
have steps of the form PSr−1 ◦PS−r = PS−1. Consequently the simulations aren’t so
time-consuming if we compose successive operations and cancel out terms that are
inverses of each other. In fact, with this in mind, we can define:

• Simulation of dr,i → dr−1,i′ :PS−1 ◦EX(PSr(i)).
• Simulation of dr,i → dr−1,i:PS−1 (here we have represented movement of dr,i →
dr−1,i by PS−r ◦PSr before canceling).

Here we have lost the simple correspondence between columns of the butterfly and
processors of the shuffle-exchange network. Now processor dr,i in the butterfly cor-
responds to processor PSr(i) of the shuffle-exchange network — here we are regard-
ing PS as an operation performed upon numbers (like squaring) as well as a data-
movement command on a computer. This correspondence is illustrated by figure 3.5.

Here the bottom row represents the processors of the shuffle-exchange computer
and the top rows represent the butterfly computer (with its interconnections drawn
very lightly). The correspondence between ranks 1, 2 and 3 of the butterfly and the
shuffle-exchange computer are indicated by curved lines. The top row of the butterfly
corresponds to the shuffle-exchange computer in exactly the same way as the bottom
row so no lines have been drawn in for it.

It is easy to keep track of this varying correspondence and solve the second problem
mentioned above by doing the following: in each step manipulate a list (data to be
moved, column #). The first item is the data upon which we are performing calculations.
The second is the column number of the butterfly that the data is supposed to be in. In
each step we only carry out the PS and PS−1 operations on the column numbers so that
they reflect this varying correspondence. Our final simulation program can be written
as:
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• Simulation of dr,i → dr−1,i′ :PS−1 ◦ (column # i) — the EX-operation is only
carried out on the data portion of the lists — the PS−1 is carried out on both
portions.
• Simulation of dr,i → dr−1,i:PS−1 — carried out on both portions of whole lists.
• Simulation of dr,i → dr+1,i′ :EX(column # i′) ◦ PS — the EX-operation is only

carried out on the data portion of the lists — the PS is carried out on both por-
tions. Note that we most carry out the EX-operation on the processor whose
column# field is i′ rather than i. It is easy for a processor to determine whether
it has column# i′, however. The processors with column numbers i and i′ will
be adjacent along an EX-communication line before the PS-operation is car-
ried out. So our simulation program has the processors check this; set flags;
perform PS, and then carry out EX-operations if the flags are set.
• Simulation of dr,i → dr+1,i:PS — carried out on both portions of whole lists.

�

This immediately implies that we can implement the DESCEND and ASCEND al-
gorithms on the shuffle-exchange computer — we “port” the Butterfly versions of these
algorithms (3.3.1 and 3.3.2 on page 60) to the shuffle-exchange computer.

3.5.1. DESCEND Algorithm on the Shuffle-Exchange computer. Suppose the input
data is T [0], . . . , T [n − 1], with n = 2k and we have a shuffle-exchange computer with n
processors. The first elements of these lists will be called their data portions. In each phase
of the Shuffle-Exchange version of the DESCEND algorithm (3.2.1 on page 55) perform the
following operations:
do in parallel (all processors)
L1 ← {T [i], i} in processor i

for j ← k − 1 downto 0 do
do in parallel (all processors)

Perform PS
L2 ← L1

Perform EX upon the
data-portions of L2 in each processor.

Each processor now contains two lists:
L1 = old {T [m],m},L2 = old {T [m+ 2j],m}

Compute OPER(m, j;T [m], T [m+ 2j])

Here is an example of this algorithm. Suppose n = 23, so that k = 3. We have an
array of 8 processors with a data-item ti in processor i. If we use binary notation for
the processor-numbers we start out with:

{000,t0} {001,t1} {010,t2} {011,t3} {100,t4} {101,t5} {110,t6} {111,t7}

In the first step of the DESCEND algorithm, we perform PS. The result is:
{000,t0} {100,t4} {001,t1} {101,t5} {010,t2} {110,t6} {011,t3} {111,t7}

Note that the data-elements that are now adjacent to each other are the ones whose
original index-numbers differ by 22 = 4:

• {000,t0} and {100,t4};
• {001,t1} and {101,t5};
• {010,t2} and {110,t6};
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• {011,t3} and {111,t7};
We are now in a position to perform OPER(m, j;T [m], T [m + 22]) (after exchanging
data via an EXCHANGE operation.

The next PS operation results in the array
{000,t0} {010,t2} {100,t4} {110,t6} {001,t1} {011,t3} {101,t5} {111,t7}

Now the pairs of data-items that are comparable via the EXCHANGE operation are
• {000,t0} and {010,t2};
• {100,t4} and {110,t6};
• {001,t1} and {011,t3};
• {101,t5} and {111,t7};

and we can perform the next phase of the DESCEND algorithm. The final PS oper-
ation shuffles the array elements back to their original positions, and we can use the
EXCHANGE operation to operate on even-numbered elements and their correspond-
ing next higher odd-numbered elements.

3.5.2. ASCEND Algorithm on the Shuffle-Exchange computer. Suppose the input data
is T [0], . . . , T [n − 1], with n = 2k and we have a shuffle-exchange computer with n proces-
sors. The first elements of these lists will be called their data portions. In each phase of the
Shuffle-Exchange version of the ASCEND algorithm (3.2.2 on page 56) perform the following
operations:
do in parallel (all processors)
L1 ← {T [i], i} in processor i

for j ← 0 to k − 1 do
do in parallel (all processors)
L2 ← L1

Perform EX upon the
data-portions of L2 in each processor.
Perform PS−1 in each processor, with both lists
Each processor now contains two lists:
L1 = old {T [m],m},L2 = old {T [m+ 2j],m}

Compute OPER(m, j;T [m], T [m+ 2j])

COROLLARY 3.5.3. An algorithm for an CRCW-unbounded computer that executes in
α-steps using n processors and β memory locations can be simulated on an n-processor shuffle-
exchange computer in O(αdβ/ne lg2 n)-time. Each processor of the shuffle-exchange computer
must have at least (β/n) + 3 memory locations of its own.

Here we are assuming that n is a power of 2.

3.5.1. Discussion and further reading. the shuffle-exchange network is also fre-
quently called the DeBruijn network. This network, and variations on it, are widely
used in existing parallel computers.

• The NYU Ultra Computer project is current building Ultra III which will be
based on a shuffle-exchange network. See [137] for some additional material
on this type of machine.
• Many new computer systems under development will use this design, includ-

ing:
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(1) the Triton project at the University of Karlsruhe. Here, according to Dr.
Christian Herter3:

“. . . to select a topology with very low average diameter be-
cause the average diameter is directly responsible for the
expected latency of the network. The best network class
we found are DeBruijn nets also known as perfect shuffle
(which is nearly equivalent to shuffle exchange). Those net-
works have an average diameter very close to the theoretical
limit. Each node has indegree two and outdegree two (con-
stant for all network sizes) the (max.) diameter is still log N
the average diameter is approximately log N - 1.7.”

This machine is intended to be a SIMD-MIMD hybrid with that initial
would have 256 processors. See [68] for more information on this project.

(2) the Cedar Machine, begin developed at the Center for Supercomputing
Research and Development, University of Illinois at Urbana Champaign.
See [55].

EXERCISES.

1. Devise a version of Pascal to run on the shuffle exchange computer, along the
lines of butterfly pascal (page 64).

2. Write out the Bitonic Sort algorithm (2.1.1 on page 18) for the shuffle-exchange
computer in terms of the PS and EX operations.

3.6. Cube-Connected Cycles

One of the limiting factors in designing a computer like the butterfly computer is
the number of connections between processors. Clearly, if processors are only allowed
to have two communication lines coming out of them the whole network will form
a tree or ring. Since both of these networks only allow a limited amount of data to
flow through them, it is clear that networks with high data flow must have at least
three communication lines coming out of most of the processors. The butterfly net-
work is close to this optimum since it has four lines through most processors. It is
possible to design a network that has the same asymptotic performance as the butter-
fly with precisely three communications lines coming out of each processor. This is
called the cube-connected cycles (or CCC) network. Figure 3.6 shows how the processors
are interconnected — as usual the nodes represent processors and the edges represent
communication lines. These were first described by Preparata and Vuillemin in [127]

In general a k-dimensional CCC is a k-dimensional cube with the vertices replaced
with loops of k processors. In a k-dimensional cube every vertex has k edges connected
to it but in the k-dimensional CCC only one of the processors in a loop connects to

3Private communication.
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FIGURE 3.6.1. The cube-connected cycles architecture

each of the k dimensions so that each processor has only three communication lines
connected to it — two connecting it to other processors in its loop and one connecting
it to another face of the cube.

If we identify rank 0 processors in the butterfly with rank k processors we get a
graph that turns out to contain the k-dimensional CCC network as a subgraph. In
addition, every data movement in the butterfly network can be simulated in the em-
bedded CCC, except that some movements in the butterfly require two steps in the
CCC since it lacks some of the edges of the butterfly.

Now we are ready to discussion the development of algorithms for the CCC net-
work. In order to implement an efficient scheme for addressing processors, we make
an additional assumption about the dimension of the hypercube that is the backbone
of the network. We will assume that n = 2k, and that k is of the form k = r + 2r. We
are, in effect, assuming that

The dimension of the hypercube that forms the backbone of a Cube-
Connected Cycles network must be a power of 2 (i.e., 2r)

Although Cube-Connected Cycles of other dimensions are perfectly well-defined, the
addressing scheme that we will present imposes this requirement (the 3-dimensional
example in figure 3.6 on page 75 doesn’t meet this requirement). Each vertex has a k-bit
address, which is regarded as a pair of numbers (α, `), where α is a k − r bit number
and ` is an r bit number. Each vertex has three connections to it:

• F — the forward connection. F (α, `) is connected to B(α, (`+ 1) mod 2r);
• B — the back connection. B(α, `) is connected to F (α, (`− 1) mod 2r).
• L — the lateral connection. L(α, `) is connected to L(α + ε2`, `), where

ε =

{
1 if the `th bit of α is 0

−1 if the `th bit of α is 1

The forward and back connections connect the vertices within cycles, and the lateral
connections connect different cycles, within the large-scale hypercube. If we shrink
each cycle to a single vertex, the result is a hypercube, and the lateral connections are
the only ones that remain.

In fact Zvi Galil and Wolfgang Paul show that the cube-connected cycles network
could form the basis of a general-purpose parallel computer that could efficiently sim-
ulate all other network-computers in [54].
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We will present several versions of the DESCEND and ASCEND algorithms. The
first will closely mimic the implementations of these algorithms for the butterfly com-
puter. Each loop the the CCC network will have a single data-item, and this will be
cyclically shifted through the network in the course of the algorithm. This algorithm
only processes 2k−r data-items, but does it in O(k − r) steps. We define the loop-
operations:

DEFINITION 3.6.1. Define the following data-movement operations on the CCC net-
work:

• F-LOOP is the permutation that transmits all data within the cycles of the CCC
in the forward direction, i.e., through the F (α, `) port.
• B-LOOP is the permutation that transmits all data within the cycles of the CCC

in the backward direction, i.e., through the B(α, `) port.

In the following algorithm, we assume that processor i has two memory-locations
allocated: T [i] and T ′[i]

3.6.1. Wasteful version of the DESCEND algorithm The input consists of 2k−r data
items stores, respectively, in D[0], . . . ,D[2k−r − 1].
do in parallel (for 0 ≤ i ≤ 2k−r − 1)
T [i2r + k − r − 1]← D[i]
for j ← k − r − 1 downto 0 do

do in parallel (for all processors)
Transmit T [∗] along lateral lines, and

store received data in T ′[∗]
(if the jth bit of i is 0
T ′[i2r + j] = old value of T [[i2r + 2j+r + j]
of T [i], T [i+ 2j])

(if the jth bit of i is 1
T ′[i2r + j] = old value of T [[i2r − 2j+r + j]
of T [i], T [i+ 2j])

Compute OPER(i, j;T [i], T [i+ 2j])
Perform B-LOOP

endfor

Note that processor number i2r + k− r− 1 is the processor with coordinates (i, k−
r − 1).

3.6.2. Wasteful version of the ASCEND algorithm The input consists of 2k−r data items
stores, respectively, in D[0], . . . ,D[2k−r − 1].
do in parallel (for 0 ≤ i ≤ 2k−r − 1)
T [i2r]← D[i]
for j ← 0 to k − r − 1 do

do in parallel (for all processors)
Transmit T [∗] along lateral lines, and store received data in T ′[∗]
(if the jth bit of i is 0
T ′[i2r + j] = old value of T [[i2r + 2j+r + j]
of T [i], T [i+ 2j])

(if the jth bit of i is 1
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T ′[i2r + j] = old value of T [[i2r − 2j+r + j]
of T [i], T [i+ 2j])

Compute OPER(i, j;T [i], T [i+ 2j])
Perform F-LOOP

endfor

Now we will present the implementations of DESCEND and ASCEND of Preparata
and Vuillemin in [128]. Their implementations utilize all of the processors in each time-
step. Their algorithms for the n-processor CCC operate upon n data-items and execute
in the same asymptotic time as the generic versions (O(z ·lg n), where z is the execution-
time of OPER(a, b;U, V )).

We begin with the DESCEND algorithm. To simplify the discussion slightly, we
will initially assume that we are only interested in carrying out the first k− r iterations
of the DESCEND algorithm — so the for-loop only has the subscript going from k−1 to
k − r. We can carry out the these iterations of the algorithm in a way that is somewhat
like the the “wasteful” algorithm, except that:

• Now we have more data to work with — the “wasteful” algorithm only had
data in a single processor in each loop of the CCC.
• We must process each data-item at the proper time. This means that in the

first few steps of the algorithm, we cannot do anything with most of the data-
items.For instance, in the first step, the only data item that can be processed
in each loop is the one that the “wasteful” algorithm would have handled —
namely, the one with `-coordinate equal to k − 1. In the second step this data-
item will have been shifted into the processor with `-coordinate equal to k− 2,
but another data item will have shifted into the processor with coordinate k−1.
That second data-item will now be ready to be processed in the first iteration
of the DESCEND algorithm.

In this manner, each step of the algorithm will “introduce” a new element
of the loop to the first iteration of the DESCEND algorithm. This will continue
until the k+ 1st, at which time the element that started out being in the proces-
sor with ` coordinate k− 2 will be in position to start the algorithm (i.e., it will
be in the processor with ` coordinate k − 1). Now we will need another k − r
steps to complete the computations for all of the data-items.
• We must have some procedure for “turning off” most of the processors in some

steps.

3.6.3. If we have an n-processor CCC network and n data-items T [0], . . . , T [n− 1], where
T [i] is stored in processor i (in the numbering scheme described above). Recall that k = r+ 2r.
do in parallel (for all processors)
for i← 2r − 1 downto −2r do

do in parallel (for all processors whose α coordinate
satisfies 0 ≤ α < 2k−r)

and whose `-coordinate satisfies
max(i, 0) ≤ ` < min(2r, 2r + i))

(if bit`(α) = 0 then processor (α, `) contains
T [α2r + `]

and if bit`(α) = 1 then processor (α, `) contains



78 3. DISTRIBUTED-MEMORY MODELS

T [α2r + `+ 2`+r])
All processors transmit their value of T [∗] along a lateral

communication line
Each processor (α, `) computes OPER(a, b;U, V )

where: a = α2r + ((i− `− 1) mod 2r)
b = `+ r
U = T [α2r + `]
V = T [α2r + `+ 2`+r]

B-LOOP
endfor

This handles iterations k − 1 to k − r. The remaining iterations do not involve any com-
munication between distinct cycles in the CCC network.

We will discuss how the remaining iterations of the algorithm are performed later.
We will analyze how this algorithm executes. In the first iteration, i = 2r − 1, and

the only processors, (α, `), that can be active must satisfy the conditions

0 ≤α < 2k−r

max(i, 0) = 2r − 1 ≤` < min(2r, 2r + i) = 2r

so ` = 2r − 1. Data-item T [α2r + 2r − 1] is stored in processor (α, 2r − 1), for all α
satisfying the condition above. In this step

a =α2r + (((2r − 1)− `− 1) mod 2r)

=α2r + (−1 mod 2r)

=α2r + 2r − 1

b =`+ r = k − 1 (recalling that r + 2r = k)

The lateral communication-lines in these processors connect processor (α, 2r − 1) to
(α′, 2r − 1), where |α − α′| = 22r−1 = 2k−r−1. These two processors contain data-items
T [α2r + 2r − 1] and T [α′2r + 2r − 1], where

|(α2r + 2r − 1)− (α′2r + 2r − 1)| =2r|(α− α′)|
=2r · 2k−r−1 = 2k−1

Consequently, in the first iteration, the algorithm does exactly what it should — it
performs OPER(a, b;U, V ), where

a =α2r + `

b =k − 1

U =a if bitk−1(a) = 0, in which case

V =a+ 2k−1
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In the next step, ` can only take on the values 2r − 1 and 2r − 2. Our original data
that was in processor (α, 2r − 1) has been shifted into processor (α, 2r − 2). In this case

a =α2r + (((2r − 2)− `− 1) mod 2r)

=α2r + (−1 mod 2r)

=α2r + 2r − 1

b =`+ r = k − 2

Note that the quantity a remains unchanged — as it should. This is because a repre-
sents the index of that data-item being processed, and this hasn’t changed. The original
data-item was shifted into a new processor (with a lower `-coordinate), but the formula
for a compensates for that. It is also not difficult to verify that the correct version of
OPER(a, b;U, V ) is performed in this step.

This iteration of the algorithm has two active processors in each cycle of the CCC
network. It processes all data-items of the form T [α2r + 2r − 1] and T [α2r + 2r − 2] —
a new data-item has entered into the “pipeline” in each cycle of the network. This is
what happens for the first 2r − 1 iterations of the algorithm — new elements enter into
the algorithm. At iteration 2r − 1 — when i = 0, the first data-items to enter the entire
algorithm (namely the ones of the form T [α2r + 2r − 1], for all possible values of α)
are completely processed. We must continue the algorithm for an additional 2r steps to
process the data-items that entered the algorithm late.

The if-statement that imposes the condition max(i, 0) ≤ ` < min(2r, 2r + i) controls
which processors are allowed to be active in any step.

We have described how to implement the first k− r− 1 iterations of the DESCEND
algorithm. Now we must implement the remaining r iterations. In these iterations, the
pairs of data-items to be processed in each call of OPER(a, b;U, V ) both lie in the same
loop of the CCC network, so that no lateral moves of data are involved (in the sense of
the definition on page 75). Consider the ith step of the last r iterations of the DESCEND
algorithm. It involves the computation:

if (bitr−i(j) = 0 then
OPER(j, r − i;T [j], T [j + 2r−i])

It is completely straightforward to implement this on a linear array of processors (and
we can think of the processors within the same cycle of the CCC as a linear array) —
we:

(1) Move data-item T [j + 2r−i] to processor j, for all j with the property that
bitr−i(j) = 0. This is a parallel data-movement, and moves each selected data-
item a distance of 2r−i. The execution-time is, thus, proportional to 2r−i.

(2) For every j such that bitr−i(j) = 0, processor j now contains T [j] and T [j+2r−i].
It is in a position to compute OPER(j, r − i;T [j], T [j + 2r−i]). It performs the
computation in this step.

(3) Now the new values of T [j] and T [j+2r−i] are in processor j. We send T [j+2r−i]
back to processor j + 2r−i — this is exactly the reverse of step 1 above. The
execution-time is also 2r−i.
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The total execution-time is thus

T =
r∑
i=0

2r−i = 2r+1 − 1 = 2(k − r)− 1

We can combine all of this together to get out master DESCEND algorithm for the
CCC network:

3.6.4. If we have an n-processor CCC network and n data-items T [0], . . . , T [n− 1], where
T [i] is stored in processor i (in the numbering scheme described above). Recall that k = r+ 2r.
do in parallel (for all processors)
for i← 2r − 1 downto −2r do

do in parallel (for all processors whose α coordinate
satisfies 0 ≤ α < 2k−r)

and whose `-coordinate satisfies
max(i, 0) ≤ ` < min(2r, 2r + i))

(if bit`(α) = 0 then processor (α, `) contains
T [α2r + `]

and if bit`(α) = 1 then processor (α, `) contains
T [α2r + `+ 2`+r])

All processors transmit their value of T [∗] along a lateral
communication line

Each processor (α, `) computes OPER(a, b;U, V )
where: a = α2r + ((i− `− 1) mod 2r)
b = `+ r
U = T [α2r + `]
V = T [α2r + `+ 2`+r]

B-LOOP
endfor

for i← r downto 0 do
for all processors j such that biti(j) = 1

transmit T [j] to processor j − 2i

endfor
for all processors j such that biti(j) = 0

transmit T [j + 2i] to processor j + 2i

endfor
All processors Compute OPER(i, j;U, V )
/* Processors j with biti(j) = 0 have values of T [j], T [j + 2i]
and processors j with biti(j) = 1 ave values of T [j], T [j − 2i]
so they are able to perform this computation. */

endfor
The “transmit” operations are completely straightforward — they simply involve a se-

quence of steps in which data is sent to the appropriate neighboring processor.

The corresponding ASCEND algorithm is:

3.6.5. If we have an n-processor CCC network and n data-items T [0], . . . , T [n− 1], where
T [i] is stored in processor i (in the numbering scheme described above).
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for i← r downto 0 do
for all processors j such that biti(j) = 1

transmit T [j] to processor j − 2i

endfor
for all processors j such that biti(j) = 0
Compute OPER(j, i;T [j], T [j + 2i])
(Both of these data-items are now in processor j)
for all processors j such that biti(j) = 0

transmit T [j + 2i] to processor j + 2i

endfor
endfor

do in parallel (for all processors)
for i← −2r to 2r − 1 do

do in parallel (for all processors whose α coordinate
satisfies 0 ≤ α < 2k−r)

and whose `-coordinate satisfies
max(i, 0) ≤ ` < min(2r, 2r + i))

(if bit`(α) = 0 then processor (α, `) contains
T [α2r + `]

and if bit`(α) = 1 then processor (α, `) contains
T [α2r + `+ 2`+r])

All processors transmit their value of T [∗] along a lateral
communication line

Each processor (α, `) computes OPER(a, b;U, V )
where: a = α2r + ((i− `− 1) mod 2r)
b = `+ r
U = T [α2r + `]
V = T [α2r + `+ 2`+r]

F-LOOP
endfor

Although these algorithms look considerably more complex than the correspond-
ing algorithms for the Butterfly and the shuffle-exchange network, their execution-time
is comparable.

EXERCISES.

1. find an embedding of the CCC-network in a butterfly network that has had its
highest and lowest ranks identified (we will call this the m-Butterfly network).

a. Show that the wasteful DESCEND and ASCEND algorithms (3.6.1 and 3.6.2
on page 76) of the CCC map into algorithms 3.3.1 and 3.3.2 on page 60 for the
Butterfly network, under this isomorphism.

b. Map the master DESCEND and ASCEND algorithms for the CCC into an al-
gorithm for the m-Butterfly network under this isomorphism
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c. Implement the shift-operation (3.2.6 on page 58) on the CCC network. De-
scribe all of the data-movements.

d. Implement the Bitonic sort algorithm (originally defined in § 2.1.2 on page 17)
on the CCC network.

3.7. Dataflow Computers

Recall the definition of computation network in 2.4.1 on page 39. Dataflow comput-
ers represent an interesting approach to parallel computation in which a computation
network for a problem is directly implemented by the hardware. The processors of
a dataflow computer perform the arithmetic operations of the program and directly
correspond to the vertices of the computation network. A program for a dataflow
computer consists of a kind of symbolic representation of a computation network.

As one might think, many complex and interesting issues arise in connection with
the design of dataflow computers — for instance:

• The architecture must reconfigure itself somehow during execution of a pro-
gram.
• The vertices in the hardware-implemented computation network must per-

form various auxiliary functions, such as the queuing of data that has been
received along input lines before the other data needed to perform a computa-
tion. For instance, if a processor is to add two numbers, and one of the num-
bers has arrived and the other hasn’t, the processor must hold the number that
is available and wait for the second number.

There is a great deal of research being conducted on the development of dataflow com-
puters. At M.I.T. a group is working on the Monsoon Project — see [13], by Beckerle,
Hicks, Papadopoulos, and Traub. In Japan a group is developing the Sigma-1 com-
puter — see [140] and [139], by Sekiguchi, Hoshino, Yuba, Hiraki, and Shimada.

More recently, the Multicon corporation in Russia has developed a massively par-
allel dataflow computer with 92000 processors. It fits into a package the size of an IBM
PC.

3.8. The Granularity Problem

In all of the simulation algorithms described above we assumed that the
unbounded parallel computer had an amount of memory that was proportional to
the number of processors (this factor of proportionality is the term β that appears so
prominently). Suppose we want to simulate an unbounded parallel computer with a
large amount of RAM — much larger than the number of processors. Also suppose
that the processors in the network used to carry out the simulation together have
enough memory between them to accomplish this. We then encounter the so-called
Granularity Problem — how is this distributed memory to be efficiently accessed?

This is an interesting problem that has been considered before in the context of
distributed databases — suppose a database is broken up into many pieces in distinct
computers that are networked together. Suppose people use all of the computers in the
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FIGURE 3.8.1. A complete graph on 7 vertices

network to access the database. Under some (possibly rare) circumstances it is possible
that all of the users want data that is be located on the one computer in the network
and response time will slow down tremendously because each individual computer in
the network can only handle a small number of requests for data at a time.

The question arises: Is is possible to organize the data in the database (possibly
with multiple copies of data items) so that access to data is always fast regardless of
how users request it?

The term granularity comes from the fact that the number of processors is much
lower than the amount of memory available so that each processor has a sizable chunk
of local memory that must be accessed by all of the other processors. This was an open
question until recently. Work of Upfal and Wigderson solved this problem in a very
satisfactory way. Although this entire chapter has made references to graphs to some
extent (for instance all of the networks we have considered are graphs), the present
section will use slightly more graph theory. We will make a few definitions:

DEFINITION 3.8.1. A graph (or undirected graph) is a pair (V,E), where V is a set of
objects called the vertices of the graphs and E is a set of ordered-pairs of vertices, called
the edges of the graph. In addition, we will assume the symmetry condition

If a pair (v1, v2) ∈ E, then (v2, v1) ∈ E also.
A directed graph (or digraph) is defined like an undirected graph except that the sym-

metry condition is dropped.

Throughout this section we will assume that our network computer has processors
connected in a complete graph. This is a graph in which every vertex is connected to
every other vertex. Figure 3.8.1 shows a complete graph.

If not it turns out that a complete graph network computer can be efficiently simu-
lated by the models presented above.

The main result is the following:

THEOREM 3.8.2. A program step on an EREW computer with n processors and
RAM bounded by a polynomial in n can be simulated by a complete graph computer in
O((lg n)(lg lg n)2) steps.

The idea of this result is as follows:
(1) Problems occur when many processors try to access the data in a single pro-

cessor’s local memory. Solve this by keeping many copies of each data item
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randomly distributed in other processors’ local memory. For the time being
ignore the fact that this requires the memory of the whole computer to be in-
creased considerably.

(2) When processors want to access local memory of some other processor, let
them randomly access one of the many redundant copies of this data, stored in
some other processor’s local memory. Since the multiple copies of data items
are randomly distributed in other processor’s local memory, and since the pro-
cessors that read this data access randomly chosen copies of it, chances are that
the bottleneck described above won’t occur. Most of the time the many proces-
sors that want to access the same local data items will actually access distinct
copies of it.

We have, of course, ignored several important issues:
(1) If multiple copies of data items are maintained, how do we insure that all

copies are current — i.e., some copies may get updated as a result of a cal-
culation and others might not.

(2) Won’t total memory have to be increased to an unacceptable degree?
(3) The vague probabilistic arguments presented above don’t, in themselves prove

anything. How do we really know that the possibility of many processors
trying to access the same copy of the same data item can be ignored?

The argument presented above is the basis for a randomized solution to the granular-
ity problem developed by Upfal in [158]. Originally the randomness of the algorithm
was due to the fact that the multiple copies of data items were distributed randomly
among the other processors. Randomness was needed to guarantee that other proces-
sors trying to access the same data item would usually access distinct copies of it. In
general, the reasoning went, if the pattern of distributing the copies of data items were
regular most of the time the algorithm would work, but under some circumstances the
processors might try to access the data in the same pattern in which it was distributed.

Basically, he showed that if only a limited number of copies of each data item are
maintained (≈ lg n) conflicts will still occur in accessing the data (i.e. processors will
try to access the same copy of the same data item) but will be infrequent enough that
the expected access time will not increase unacceptably. The fact that a limited number
of copies is used answers the object that the total size of the memory would have to
be unacceptably increased. Since this is a randomized algorithm, Upfal rigorously com-
puted the expected4 execution time and showed that it was O(β lg2 n) — i.e. that the
vague intuitive reasoning used in the discussion following the theorem was essentially
correct. The issue of some copies of data getting updated and others being out of date
was addressed by maintaining a time stamp on each copy of the data and broadcast-
ing update-information to all copies in a certain way that guaranteed that a certain
minimum number of these copies were current at any given time. When a processor
accessed a given data item it was required to access several copies of that data item,
and this was done in such a way that the processor was guaranteed of getting at least
one current copy. After accessing these multiple copies of the data item the processor
would then simply use the copy with the latest time stamp.

4In randomized algorithms the expected execution time is the weighted average of all possible exe-
cution times, weighted by the probabilities that they occur.
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After this Upfal and Wigderson (in [159]) were able the make the randomized algo-
rithm deterministic. They were able to show that there exist fixed patterns for distribut-
ing data among the processors that allow the algorithm to work, even in the worst case.
This is the algorithm we will consider in this section.

Let U denote the set of all simulated RAM locations in the EREW computer. The
important idea here is that of an organization scheme S. An organization scheme consists
of an assignment of sets Γ(u) to every u ∈ U — where Γ(u) is the set of processors
containing RAM location u — with a protocol for execution of read/write instructions.

We will actually prove the following result:

THEOREM 3.8.3. There exists a constant b0 > 1, such that for every b ≥ b0 and c satisfying
bc ≥ m2, there exists a consistent scheme with efficiency O(b[c(lg c)2 + lg n lg c]).

1. Note that we get the time estimates in the previous result by setting c propor-
tional to lg n. In fact, c must be ≥ logb(m

2) = 2 log(m)/ log(b).
2. Here:
m: is the number of memory locations in the RAM that is being simulated,
n: is the number of processors,
b: is a constant parameter that determines how many real memory locations are

needed to accomplish the simulation. It must be ≥ 4 but is otherwise arbitrary.
To get some idea of how this works suppose we are trying to simulate a megabyte
of RAM on a computer with 1024 processors. Each PE must contain 1024 simulated
memory locations following the straightforward algorithm in the previous chapter,
and each simulation step might require 1024 lg2 n-time. Using the present algorithm,
m = 220, n = 210, and execution time is

O

(
b

40

lg b
lg2

(
40

lg b

)
+ 10 lg

(
40

lg b

))
with 40/ lg b-megabytes of real memory needed to simulate the one megabyte of sim-
ulated memory. By varying b we determine execution time of the simulation verses
amount of real memory needed — where b must be at least 4.

In our scheme every item u ∈ U will have exactly 2c − 1 copies. It follows that
Γ(u) is actually a set of 2c − 1 values: {γ1(u), . . . , γ2c−1(u)}. These γ-functions can be
regarded as hashing functions, like those used in the sorting algorithm for the hypercube
computer. Each copy of a data item is of the form <value,time stamp>. The protocol for
accessing data item u at the tth instruction is as follows:

(1) to update u, access any c copies in Γ(u), update their values and set their time-
stamp to t;

(2) to read u access any c copies in Γ(u) and use the value of the copy with the latest
time-stamp;

The algorithm maintains the following invariant condition:

Every u ∈ U has at least c copies that agree in value and are time-
stamped with the index of the last instruction in which a processor
updated u.

This follows from the fact that every two c-subsets of Γ(u) have a non-empty intersection
(because the size of Γ(u) is 2c− 1).
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Processors will help each other to access these data items according to the protocol.
It turns out to be efficient if at most n/(2c − 1) data items are processed at a time. We
consequently shall partition the set of processors into k = n/(2c − 1) groups, each of
size 2c− 1. There will be 2c phases, and in each phase each group will work in parallel
to satisfy the request of one of its members. The current distinguished member will
broadcast its request (access ui or write vi into ui) to the other members of its
group. Each of them will repeatedly try to access a fixed distinct copy of ui. After each
step the processors in this group will check whether ui is still alive (i.e., c of its copies
haven’t yet been accessed). When c of a given data item’s copies have been accessed
the group will stop working on it — the copy with the latest time stamp is computed and
sent to Pi.

Each of the first 2c − 1 phases will have a time limit that may stop processing of
the k data items while some are still alive (i.e., haven’t been fully processed). We will
show, however, that at most k/(2c − 1) of the original k items will remain. These are
distributed, using sorting, one to a group. The last phase (which has no time limit)
processes these items.

3.8.1. Let P(m−1)(2c−1)+i, i = 1, . . . , 2c−1 denote the processors in groupm, m = 1, . . . , k,
k = n/(2c− 1). The structure of the jth copy of data item u is <valuej(u),time stampj(u)>
Phase (i, time limit):
{
m← dprocessor #/2c− 1e
f ← (m− 1)(2c− 1)
Pf+i broadcast its request

(read(uf+i)) or
update(uf+i,vf+i) to
Pf+1, . . . , Pf+2c−1;
live(uf+i)←true;
count← 0;

while live(uf+i) and count <
time limit do

count = count + 1;
Pf+j tries to access copyj(uf+i);

if permission granted
if read request

read ¡valuej(uf+i), time stampj(uf+i)>
else

/*update request */
¡valuej(uf+i), time stampj(uf+i>

=<vf+i,t>
if < c copies of uf+i are still alive

live(uf+i)← false;
endwhile

if read request then find and send
to Pf+i the value with the latest
time stamp;

}
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/* phase i;*/

Incidentally, the condition permission granted refers to the fact that more than one processor
may try to access the same copy of a data item in a single step. Only one processor is given
permission to perform the access.

3.8.1. Here is the top-level algorithm:
begin

for i = 1 to 2c− 1 do run phase(i, logη 4c);
for a fixed h to be calculated later

sort the k′2k live requests
and route them

to the first processors in the k′
first groups, one to each processor;

run phase(1, lg n);
endfor

end; end algorithm;
LEMMA 3.8.4. If the number of live items at the beginning of a phase is w ≤ k then after

the first s iterations of the while loop at most 2(1− 1/b)sw live copies remain.
The significant point here is that the number of live data-items is reduced by a

factor. This implies that at most a logarithmic number of iterations are required to
reduce the number to zero.

PROOF. At the beginning of a phase there arew live items, and all of their copies are
alive so there are a total of (2c− 1)w live copies. By the lemma above after s iterations
the number of live copies is 2 (1 − 1/b)s(2c − 1)w. Since |Γ′(u)| ≥ c for each live item,
these can be the live copies of at most (1−1/b)s(2c−1)w/c ≤ 2(1−1/b)sw live items. �

COROLLARY 3.8.5. Let η = (1− 1/b)−1:
1. After the first logη(4c − 2) iterations of the while loop, at most k/(2c − 1) live items

remain alive (so the last phase has to process at most k requests);
2. After logη 4c ≤ logη n iterations in a phase, no live items remain.

To complete the analysis note that each group needs to perform the following op-
erations during each phase: broadcast, maximum, summation (testing whether ui is still
alive). Also, before the last phase all the requests that are still alive are sorted.

It remains to give an efficient memory access protocol. In each iteration of the while
loop in the algorithm the number of requests sent to each processor is equal to the
number of live copies of live data items this processor contains. (Recall that a data
item is called live if at least c copies of it are live.) Since a processor can only process
one data item at a time the number of copies processed in an iteration of the while loop
is equal to the number of processors that contain live copies of live data items. We will,
consequently, attempt to organize memory allocation in such a way as to maximize
this number. We will use bipartite graphs to describe this memory allocation scheme.

DEFINITION 3.8.6. A bipartite graph is a graph with the property that its vertices can
be partitioned into two sets in such a way that the endpoints of each edge lie in different
sets. Such a graph is denoted G(A,B,E), where A and B are the sets of vertices and E
is the set of edges.



88 3. DISTRIBUTED-MEMORY MODELS

FIGURE 3.8.2. A bipartite graph

Figure 3.8.2 shows a bipartite graph.
In our memory allocation scheme A we will consider bipartite graphs G(U,N,E),

where U represents the set of m shared memory items and n is the set of processors. In
this scheme, if u ∈ U is a data item then Γ(u) is the set of vertices adjacent to u in the
bipartite graph being used.

LEMMA 3.8.7. For every b ≥ 4, if m ≤ (b/(2e)4)c/2 then there is a way to distribute the
2c−1 copies of them shared data items among the n processors such that before the start of each
iteration of the while loop Γ ≥ A(2c − 1)/b. Here Γ is the number of processors containing
live copies of live data items and A is the number of live data items.

We give a probabilistic proof of this result. Essentially we will compute the prob-
ability that an arbitrary bipartite graph has the required properties. If this probability
is greater than 0 there must exist at least one good graph. In fact it turns out that the
probability that a graph is good approaches 1 as n goes to∞— this means that most
arbitrary graphs will suit our purposes. Unfortunately, the proof is not constructive.
The problem of verifying that a given graph is good turns out to be of exponential
complexity.

It turns out that the bipartite graphs we want, are certain expander graphs — see
§ 6.4.3 in chapter 6 (page 325). It is intriguing to compare the operation we are per-
forming here with the sorting-operation in § 6.4.3.

PROOF. Consider the set Gm,n,c of all bipartite graphs G(U,N,E) with |U | = m,
|N | = n, and with the degree of each vertex in U equal to 2c− 1.

We will say that a graph G(U,N,E) ∈ Gm,n,c is good if for all possible choices of
sets {Γ′(u): Γ′(u) ⊆ Γ(u), |Γ′(u)| ≥ c, for all u ∈ U} and for all S ⊆ U such that |S| ≤
n/(2c − 1) the inequality |

⋃
u∈U Γ′(u)| ≥ |S|(2c − 1)/b — here S represents the set of

live data items and
⋃
u∈U Γ′(u) represents the set of processors containing live copies

of these data items. We will count the number of bipartite graphs in Gm,n,c that aren’t
good or rather compute the probability that a graph isn’t good. If a graph isn’t good
then there exists a choice {Γ′(u): Γ′(u) ⊆ Γ(u), such that |Γ′(u)| ≥ c, for all u ∈ U} and
a set S ⊆ U such that |S| ≤ n/(2c− 1) and |Γ′(u)| < |S|(2c− 1)/b.
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(3.8.1) Prob [G ∈ Gm,n,c is not good]

≤
∑

g≤ n
2c−1

(
m
g

)(
n

g
b

(2c−1)

)(
2c−1
c

)g{g(2c− 1)

bn

}gc
Here g is the size of the set S and g(2c−1)/b is the size of |

⋃
u∈U Γ′(u)|. The formula

has the following explanation:
(1) the fourth factor is the probability that an edge coming out of a fixed set S

will hit a fixed set |
⋃
u∈U Γ′(u)| — the exponent qc is the probability that all of

the edges coming out of all of the elements of S will have their other end in
|
⋃
u∈U Γ′(u)|. The idea is that we imagine the graph G as varying and this

results in variations in the ends to the edges coming out of vertices of S.
(2) the first factor is the number of ways of filling out the set S to get the m vertices

of the graph;
(3) the second factor is the number of ways of filling out the set |

⋃
u∈U Γ′(u)|,

whose size is < |S|(2c − 1)/b ≤ q(2c − 1)/b) to get the n processor-vertices
of the graph;

(4) the third factor is the number of ways of adding edges to the graph to get the
original graph in Gm,n,c — we are choosing the edges that were deleted to get
the subgraph connecting S with Γ′(u).

This can be approximately evaluated using Stirling’s Formula, which states that n! is
asymptotically proportional to nn−.5e−n. We want to get an estimate that is ≥ the orig-
inal.

We will use the estimate

(3.8.2)
(
m

q

)
≤ mqq−q+1/2eq

Claim: Formula (3.8.1) asymptotically behaves like o(1/n) as n → ∞, for b ≥ 4 and

m ≤
(

b

(2e)4

) c
2

.

Since the formula increases with increasing m we will assume m has its
maximal allowable value of (b/(2e)4)c/2. This implies that the first term is
≤ ((b/(2e)4)c/2)gq−g+1/2eg = bgc/22−2gceg−2gcg−g+1/2. Now the third term is
((2c− 1)!/c!(c− 1)!)g, which can be estimated by ((2c− 1)2c−1.5/cc−.5(c− 1)c−1.5))g, and
this is

≤ ((2c)2c−1.5/cc−.5cc−1.5)g = ((2c)2c−1.5/c2c−2)g

= (22c−1.5c2c−1.5/c2c−2)gk = (22c−1.5c.5)g ≤ c.5g22cg

The product of the first and the third terms is therefore

≤ bgc/22−2gceg−2gcg−g+1/2c.5g22cg

= bgc/2eg−2gcg−g+1/2cg/2
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Now the second term is

≤ ng(2c−1)/b(g(2c− 1)/b)−(g(2c−1)/b)+1/2e(g(2c−1)/b)

≤ ngc/2(g(2c− 1)/b)−(g(2c−1)/b)+1/2egc/2

— here we have replaced g(2c − 1)/b first by g(2c − 1)/4 (since we are only trying to
get an upper bound for the term and 4 is the smallest allowable value for b), and then by
gc/2. We can continue this process with the term raised to the 1/2 power to get

ngc/2(g(2c− 1)/b)−(g(2c−1)/b)(gc/2)1/2egc/2

= ngc/2(g(2c− 1))−(g(2c−1)/b)b(g(2c−1)/b)(gc/2)1/2egc/2

= ngc/2(g(2c− 1))−(g(2c−1)/b)bgc/2(gc/2)1/2egc/2

The product of the first three terms is

bgc/2eg−2gcg−g+1/2cg/2ngc/2(g(2c− 1))−(g(2c−1)/b)bgc/2(gc/2)1/2egc/2

= bgceg−3gc/2g−g+1cg+1/2ngc/2(g(2c− 1))−(g(2c−1)/b)

The product of all four terms is

bgceg−3gc/2g−g+1cg+1/2ngc/2(g(2c− 1))−(g(2c−1)/b)(g(2c− 1)/bn)gc

= eg−3gc/2g−g+1cg+1/2ngc/2(g(2c− 1))−(g(2c−1)/b)(g(2c− 1)/n)gc

Now note that the exponential term (on the left) dominates all of the polynomial terms
so the expression is≤ g−gcgngc/2(g(2c− 1))−(g(2c−1)/b)(g(2c− 1)/n)gc. In the sum the first
term is cn−c/2(2c − 1)c−((2c−1)/b). This dominates the series because the factors of g−g

and (g(2c− 1))k−(g(2c−1)/b) overwhelm the factors cgngc/2 — the last factor is bounded by
1. �

EXERCISES.

1. The algorithm for the Granularity Problem requires the underlying network to
be a complete graph. Can this algorithm be implemented on other types of networks?
What would have to be changed?

2. Program the algorithm for the granularity problem in Butterfly Pascal.



CHAPTER 4

Examples of Existing Parallel Computers

4.1. Asynchronous Parallel Programming

In this section we will consider software for asynchronous parallel programs. These
are usually run on MIMD computers with relatively few processors, although it is pos-
sible to develop such programs for networks of sequential computers. Many of the
important concepts were first discussed in § 2.4.3.1 in chapter 2.

We begin by discussing a number of portable programming packages.

4.1.1. Portable Programming Packages.
4.1.1.1. Linda. In this section we will discuss a general programming system that

has been implemented on many different parallel computers. Our main emphasis will
be on the LINDA package. It is widely available and striking in its simplicity and
elegance. The original system, called LINDA, was developed by Scientific Computing
Associates and they have ported it to many platforms — see [138]. Linda is particularly
interesting because it is available on parallel computers and on sets of networked uni-
processor machines. The network version of LINDA effectively converts networked
uni-processor machines into a kind of MIMD-parallel computer. It consists of:

• A set of commands that can be issued from a C or Pascal program.
• A preprocessor that scans the source program (with the embedded LINDA

commands) and replaces them by calls to LINDA functions.
In order to describe the commands, we must first mention the LINDA concept of tuple
space. Essentially, LINDA stores all data that is to be used by several processes in table
created and maintained by LINDA itself, called tuple space. User-defined processes is-
sue LINDA commands to put data into, or to take data out of tuple space. In particular,
they are completely unable to share memory explicitly. LINDA controls access to tuple
space in such a way that race-conditions are impossible — for instance the program on
page 45 can’t be written in LINDA1.

A tuple is an ordered sequence of typed values like:
(1,zz,"cat",37)

or
(1,3.5e27)

An anti tuple is similar to a tuple, except that some of its entries are written as
variable-names preceded by ?. Example:

(1,?x,?y,37)

1So LINDA is not a suitable system to use in the beginning of a course on concurrent programming!
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A tuple is said to match an anti-tuple if they both have the same number of en-
tries, and all of the quantities in the anti-tuple are exactly equal to the corresponding
quantities in the tuple. For instance:

(1,?x,?y,37)
matches

(1,17,”cat”,37)
but doesn’t match

(1,17,37)
(wrong number of entries) or

(2,17,"cat",37)
(first entries don’t agree).
The LINDA system defines the following operations upon tuples:
(1) out(tuple). This inserts the tuple that appears as a parameter into tuple space.

Example:
out(1,zz,"cat",37)

Suppose t and a are, respectively, a tuple and an anti-tuple. The operation
of unifying t with a is defined to consist of assigning to every element of the
anti-tuple that is preceded by a ?, the corresponding value in the tuple. After
these assignments are made, the anti-tuple and the tuple are identical.

(2) in(anti-tuple) This attempts to find an actual tuple in tuple-space that matches
the given anti-tuple. If no such matching tuple exists, the process that called
in is suspended until a matching tuple appears in tuple space (as a result of
another process doing an out operation). If a match is found
(a) the matching tuple is atomically removed from tuple-space
(b) the anti-tuple is unified with the matching tuple. This results in the as-

signment of values to variables in the anti-tuple that has been preceded
by a ?.

The in statement represents the primary method of receiving data from
other processes in a system that employs LINDA. Here is an example: We have
a process that has a variable defined in it named zz. The statement:

in(1,?zz)
tests whether a tuple exists of the form (1,x) in tuple-space. If none ex-

ists, then the calling process is blocked. If such a tuple is found then it is
atomically removed from tuple-space (in other words, if several processes “si-
multaneously” attempt such an operation, only one of them succeeds) and the
assignment zz←x is made.

(3) eval(special-tuple) Here special-tuple is a kind of tuple that contains one or
more function-calls. LINDA created separate processes for these function-calls.
This is the primary way to create processes in the LINDA system.
Example:

eval(compeq(pid))
(4) rd(anti-tuple) Similar to in(anti-tuple), but it doesn’t remove the matching tuple

from tuple-space.
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(5) inp(anti-tuple) Similar to in(anti-tuple), but it doesn’t suspend the calling pro-
cess if no matching tuple is found. It simply returns a boolean value (an integer
equal to 1 or 0) depending on whether a matching tuple was found.

(6) rdp(anti-tuple) Similar to inp(anti-tuple), but it doesn’t remove a matching tuple
from tuple-space.

Although LINDA is very simple and elegant, it has the unfortunate shortcoming that
is lacks anything analogous to semaphore sets as defined on page 50.

Here is a sample LINDA program that implements the generic DESCEND algo-
rithm (see 3.2.1 on page 55):

#define TRUE 1
#define K /* the power of 2 defining the size of the
* input−data. */

#define N /* 2ˆk*/
int bit test[K];
real main(argc, argv) /* The main program in LINDA must be called
* ’real main’ −−− the LINDA system has its own
* main program that calls this. */

int argc;
char **argv;
{
struct DATA ITEM {/* declaration */}

struct DATA ITEM T[N];
int i,k;
for (i=0; i<N; ++i) out(T[i],i,K); /* Place the data into
* tuple−space */
for (i=0; i<K; i++) bit test[i]=1<<i; /* Initialize bit test array. */
for (k=0; k<K, k++)
for (i=0; i<N; ++i) eval(worker(i,k)); /* Start processes */

}

void worker(x,k)
int x,k;
{
int k;
struct DATA ITEM data1,data2;
if ((bit test[k]&x) == 0) then
{
in(?data1,x,k);
in(?data2,x+bit test[k],k);
OPER(x,k,&data1,&data2);
out(data1,x,k−1);
out(data2,x+bit test[k],k−1);
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}
}

In this program, we are assuming that the procedure OPER(x,k,*data1,*data2); is
declared like:

void OPER(x,k,p1,p2); int x,k; struct DATA ITEM *p1, *p2;

and is defined to perform the computations of OPER(m, j;T [m], T [m+ 2j]).
This program is not necessarily practical:

(1) The time required to start a process or even to carry out he in and out oper-
ations may exceed the time required to simply execute the algorithm sequen-
tially.

(2) Only half of the processes that are created ever execute.

Nevertheless, this illustrates the simplicity of using the parallel programming con-
structs provided by the LINDA system. Substantial improvements in the speed of
LINDA (or even a hardware implementation) would negate these two objections. In
addition, a practical algorithm can be developed that is based upon the one presented
above — it would have each process do much more work in executing the DESCEND
algorithm so that the time required for the real computations would dominate the
overall computing time. For instance we can have each worker routine perform the
OPER(m, j;T [m], T [m+ 2j]) computation for G different values of m rather than just 1.
Suppose:

pt = Time required to create a process with eval.
it = Time required to in a tuple.
ot = Time required to out a tuple.

rt = Time required to perform OPER(m, j;T [m], T [m+ 2j]).

Then the time required to perform the whole algorithm, when each worker proce-
dure works on G distinct rows of the T-array is approximately:

nkpt/G+ k(it + ot) + kGrt

Here, we are assuming that, if each worker process handles G different sets of data,
we can get away with creating 1/G of the processes we would have had to otherwise.
We are also assuming that the times listed above dominate all of the execution-time —
i.e., the time required to increment counters, perform if-statements, etc., is negligible.
The overall execution time is a minimum when the derivative of this with respect to G
is zero or:

−nkpt/G2 + krt = 0

nkpt = G2krt

G =

√
npt
rt
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The resulting execution-time is

nkpt/G+ k(it + ot) + kGrt =
nkpt√
npt
rt

+ krt

√
npt
rt

+ k(it + ot)

=k
√
nptrt + k

√
nptrt + k(it + ot)

=k (2
√
nptrt + it + ot)

One good feature of the LINDA system is that it facilitates the implementation of
calibrated-algorithms, as described in 2.4.1 on page 51.

4.1.1. Suppose we have a calibrated algorithm for performing computation on an EREW-
SIMD computer. Then we can implement this algorithm on a MIMD computer in LINDA as
follows:

(1) Create a LINDA process for each processor in the SIMD algorithm (using eval).
(2) Add all input-data for the SIMD algorithm to the tuple-space via out-statements of

the form
out(addr,0,data);

where addr is the address of the data (in the SIMD-computer), 0 represents the
0th time step, and the data is the data to be stored in this memory location (in the
SIMD-computer). In general, the middle entry in the out-statement is a time-stamp.

(3) In program step i, in LINDA process p (which is simulating a processor in the SIMD
computer) we want to read a data-item from address a. The fact that the algorithm
was calibrated implies that we know that this data-item was written in program-step
i′ = f(i, a, p), where i′ < i, and we We perform

rd(a,i′,data);
(4) In program step i, in LINDA process p, we want to store a data-item. We per-

form
out(a,i,data);

4.1.1.2. MPI. The acronym “MPI” stands for “Message Passing Interface” and rep-
resents a standard for message passing. It was developed by a consortium of hardware
manufacturers — who have agreed to develop optimized versions of MPI on their re-
spective platforms. Consequently, a software developer can assume that an efficient
version of MPI exists (or will eventually exist) on a given platform and develop soft-
ware accordingly.

It consists of a library of routines, callable from Fortran or C programs that imple-
ment asynchronous message passing. Its functionality is a subset of that of Linda or
P4, and its user-interface is rather ugly2, but it is the only standard3.

There is a portable (and free) implementation of MPI developed jointly by people
at

• Argonne National Labs — Rusty Lusk, Bill Gropp;
• Mississippi State University — Tony Skjellum and Nathan Doss;
• IBM Corporation — Hubertus Franke.

2This is a highly subjective term, but represents the author’s reaction to a library of routines with
large numbers of parameters, most of which aren’t used in any but marginal situations.

3As of this writing — May 21, 1994
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This implementation interfaces to the FORTRAN and C languages and runs on the
following platforms:

• Networked Sun workstations and servers;
• RS6000’s;
• the IBM SP-1 — see page 14;
• Intel iPSC — see page 68;
• the Intel Paragon — see page 14;

The sample implementation isn’t as efficient as it might be — it gains its portability by
using an Abstract Device Interface to related it to pecularities of the hardware. It can
use any one of three such systems: Chameleon, p4, Chimp, or PVM. It is availiable via
anonymous ftp from info.mcs.anl.gov in directory pub/mpi.

4.1.2. Automatically Parallelizing Compilers. This has always been an important
topic because:

• Some people find parallel programming hard and want a way to automate
the process. Furthermore, expertise in parallel programming isn’t as widely
available as expertise in sequential programming.
• The fastest numerical compute-engines these days are parallel, but there are

millions of lines of old sequential code lying around, and people don’t want to
expend the effort to re-write this stuff from scratch.

Theroetically speaking automatic parallelization is essentially impossible. This is to say
that getting an optimal parallel algorithm from a given sequential algorithm is prob-
ably recursively uncomputable. There are sub-problems of this general problem that
are known to be NP-complete. For instance, an optimal parallel algorithm would re-
quire optimal assignment of processors to perform portions of a sequential algorithm.
This is essentially equivalent to the optimal register assignment problem, which is NP-
complete (see [57]).

One of the problems is that optimal parallel algorithms are frequently very different
from optimal sequential algorithms — the problem of matrix inversion is a striking
example of this. The optimal sequential algorithm is Gaussian elimination, which is
known to be P-complete (see page 37, and [162]). The optimal (as of May 21, 1994)
parallel algorithm for this problem involves plugging the matrix into a power series —
a technique that would lead to an extraordinarily inefficient sequential algorithm (see
page 126).

Having said all of this there is still some motivation for attempting to develop auto-
matically parallelizing compilers.

4.2. GPU Programming: CUDA

One type of parallel processing is available to anyone with a good graphics card in
their computer. The Nvidia corporation has take the forefront of this effort with their
development of CUDA — which stands for Compute Unified Device Architecture.

4.3. Discussion and further reading

p4 is a successor to the set of parallel programming macros described in the book
[20].
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Linda was developed by David Gelernter, who works as a consultant to S. C. A. For
an interesting discussion of the history of Linda see [108] — this article also explains
the name “Linda”.





CHAPTER 5

Numerical Algorithms

In this chapter we will develop SIMD algorithms for solving several types of nu-
merical problems.

5.1. Linear algebra

5.1.1. Matrix-multiplication. In this section we will discuss algorithms for per-
forming various matrix operations. We will assume that all matrices are n × n, un-
less otherwise stated. It will be straightforward to generalize these algorithms to non-
square matrices where applicable. We will also assume that we have a CREW parallel
computer at our disposal, unless otherwise stated. We also get:

PROPOSITION 5.1.1. Two n×nmatricesA andB can be multiplied inO(lg n)-time using
O(n3) processors.

PROOF. The idea here is that we form the n3 products AijBjk and takeO(lg n) steps
to sum over j. �

Since there exist algorithms for matrix multiplication that require fewer than n3

multiplications (the best current asymptotic estimate, as of 1991, is n2.376 multiplica-
tions — see [34]) we can generalize the above to:

COROLLARY 5.1.2. If multiplication of n × n matrices can be accomplished with M(n)
multiplications then it can be done in O(lg n)time using M(n) processors.

We present an algorithm for that due to Reif and Pan which inverts an n×n-matrix
in O(lg2 n)-time using M(n) processors — see [124]. Recall that M(n) is the number of
multiplications needed to multiply two n× n matrices.

5.1.2. Systems of linear equations. In this section we will study parallel algo-
rithms for solving systems of linear equations

Ax = b

where A is an n× n matrix, and b is an n-dimensional vector.
We will concentrate upon iterative methods for solving such equations. There are a

number of such iterative methods available:
• The Jacobi Method.
• The JOR method — a variation on the Jacobi method.
• The Gauss-Seidel Method.
• The SOR method.

These general procedures build upon each other. The last method is the one we will
explore in some detail, since a variant of it is suitable for implementation on a parallel
computer. All of these methods make the basic assumption that the largest elements of

99



100 5. NUMERICAL ALGORITHMS

the matrix A are located on the main diagonal. Although this assumption may seem
rather restrictive

• This turns out to be a natural assumption for many of the applications of sys-
tems of linear equations. One important application involves numerical solu-
tions of partial differential equations, and the matrices that arise in this way are
mostly zero. See § 5.5 for more information on this application.
• Matrices not dominated by their diagonal entries can sometimes be

transformed into this format by permuting rows and columns.
In 1976, Csanky found NC-parallel algorithms for computing determinants and inverses
of matrices — see [39], and § 5.1.5 on page 136. Determinants of matrices are defined
in 5.1.8 on page 101. Csanky’s algorithm for the inverse of a matrix wasn’t numerically
stable and in 1985, Pan and Reif found an improved algorithm for this — see [124]
and § 5.1.3 on page 126. This algorithm is an important illustration of the fact that the
best parallel algorithm for a problem is often entirely different from the best sequential
algorithms. The standard sequential algorithm for inverting a matrix, Gaussian elim-
ination, does not lend itself to parallelization because the process of choosing pivot
point is P-complete — see [162]. It is very likely that there doesn’t exist a fast parallel
algorithm for inverting a matrix based upon the more traditional approach of Gaussian
elimination. See the discussion on page 37 for more information.
§ 5.1.3 discusses methods that work for arbitrary invertible matrices. These meth-

ods require more processors than the iterative methods discussed in the other sections,
but are of some theoretical interest.

5.1.2.1. Generalities on vectors and matrices. Recall that a matrix is a linear transfor-
mation on a vector-space.

DEFINITION 5.1.3. Let A be an n× n matrix. A will be called
(1) lower triangular if Ai,j = 0 whenever i ≥ j.
(2) full lower triangular if Ai,j = 0 whenever i > j.
(3) upper triangular if Ai,j = 0 whenever i ≤ j.
(4) full upper triangular if Ai,j = 0 whenever i < j.

Note that this definition implies that upper and lower triangular matrices have
zeroes on the main diagonal. Many authors define these terms in such a way that the
matrix is permitted to have nonzero entries on the main diagonal.

DEFINITION 5.1.4. Given a matrix A, the Hermitian transpose of A, denoted AH, is
defined by (AH)ij = A∗ji, where ∗ denotes the complex conjugate;

DEFINITION 5.1.5. Let u and v be two vectors of an n-dimensional vector-space V .
The inner product of u and v, denoted (u, v), is defined by

(u, v) =
n∑
i=1

ūi · vi

where ūi denotes the complex conjugate of vi.

Inner products have the following properties:
(1) ‖v‖2

2 = (v, v)
(2) (v, w) = ¯(w, v)
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(3) (v,Aw) = (AHv, w)

DEFINITION 5.1.6. A set of vectors {v1, . . . , vk} is called orthonormal if

(vi, vj) =

{
1 if i = j

0 otherwise

DEFINITION 5.1.7. LetL = {n1, . . . , nk} be the result of permuting the list of integers
{1, . . . , k}. The parity of the permutation, ℘(n1, . . . , nk) is ±1, and is computed via:

(1) For each ni in L, count the number of values nj appearing to the right of ni in
L (i.e. j > i) such that ni > nj . Let this count be ci.

(2) Form the total c =
∑k

i=1 ci, and define ℘(n1, . . . , nk) = (−1)c

The number c roughly measures the extent to which the permutation alters the
normal sequence of the integers {1, . . . , k}. Here are a few examples:

Suppose the permutation is {3, 1, 2, 4, 5}. Then c1 = 4 because the first element in
this sequence is 3 and there are 4 smaller elements to the right of it in the sequence.
It follows that the parity of this permutation is +1. Permutations with a parity of +1
are commonly called even permutations and ones with a parity of −1 are called odd
permutations.

DEFINITION 5.1.8. If A is an n× n matrix,the determinant of A is defined to be the

det(A) =
∑
i1,...,in

all distinct

℘(i1, . . . , in)A1,i1 · · ·An,in

where ℘(i1, . . . , in) is the parity of the permutation
(

1 . . . n
i1 . . . in

)
.

There is a geometric definition of determinant that is interesting:
Let C be the n dimensional unit cube at the origin of the coordinate sys-
tem. If is defined by letting each of the n coordinates go from 0 to 1.
Now consider A(C), where A is an n × n matrix. This an n-dimensional
polyhedron. Then the absolute value of det(A) is equal to the volumn of
A(C).

Determining the sign of det(A) is not quite so simple — it depends upon something
called the orientation of A(C).

Here are some basic properties of determinants of matrices:

PROPOSITION 5.1.9. If A and B are n× n matrices then:
(1) det(A ·B) = det(A) · det(B);
(2) The linear transformation represented by A is invertible if and only if det(A) 6= 0.
(3) If A is a lower or upper triangular matrix and D is a diagonal matrix, then det(D +

A) = det(D).

Vector-spaces can be equipped with measures of the size of vectors: these are called
norms of vectors. Our measure of the size of a matrix will be called the norm of a matrix
– it will be closely associated with a norm of a vector1. Essentially, the norm of a matrix

1Although there exist norms of matrices that are not induced by norms of vectors, we will not use
them in the present discussion
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will measure the extent to which that matrix “stretches” vectors in the vector-space —
where stretching is measured with respect to a norm of vectors.

DEFINITION 5.1.10. Let V be a vector space. A norm on V is a function ‖ ∗ ‖:V → R,
with the following properties:

(1) ‖v‖ = 0, if and only if the vector v is 0;
(2) for all v, w ∈ V , ‖v + w‖ ≤ ‖v‖+ ‖w‖;
(3) for all v ∈ V, c ∈ C, ‖c · v‖ = |c| · ‖v‖;

A function ‖ ∗ ‖: Matrices over V → R is called a matrix norm if it satisfies
conditions like 1, 2, and 3 above and, in addition:

(4) for all matrices X and Y over V , ‖XY ‖ ≤ ‖X‖ · ‖Y ‖.

DEFINITION 5.1.11. Given a vector norm ‖ ∗ ‖ on a vector space we can define the
associated matrix norm as follows: ‖M‖ = maxv 6=0 ‖Mv‖/‖v‖.

1. The matrix norm inherits properties 1, 2, and 3 from the vector norm. Property
4 results from the fact that the vector v that gives rise to the maximum value for ‖Xv‖
or ‖Y v‖might not also give the maximum value of ‖XY v‖.

2. Property 3 of the vector norm implies that we can define the matrix norm via:
‖X‖ = maxv,‖v‖=1 ‖Xv‖;

Here are three fairly standard vector norms:

DEFINITION 5.1.12. (1) ‖v‖1 =
∑

i |vi|;
(2) ‖v‖∞ = maxi |vi|;
(3) ‖v‖2 =

√∑
i |vi|2;

The three vector norms give rise to corresponding matrix norms.

DEFINITION 5.1.13. (1) A square matrix will be called a diagonal matrix if all
entries not on the main diagonal are 0;

(2) det(λ · I − A) = 0 is a polynomial in λ called the characteristic polynomial of A.
(3) A number λ ∈ C; is called an eigenvalue of A if there exists a vector v 6= 0

such that Av = λv. This vector is called the eigenvector corresponding to λ; An
alternate definition of eigenvalues of A is: λ is an eigenvalue of A if and only if
the matrix λ · I − A is not invertible. This leads to an equation for computing
eigenvalues (at least, for finite-dimensional matrices): eigenvalues are roots of
the characteristic polynomial.

(4) If λ is an eigenvalue of a matrix A, then the eigenspace associated with λ is the
space of vectors, v, satisfying (λ · I − A)v = 0. If A has only one eigenvalue
equal to λ the eigenspace associated to λ is 1 dimensional — it consists of all
scalar multiples of the eigenvector associated with λ.

(5) The minimal polynomial µ(λ) of a square matrix A is the polynomial, µ(x), of
lowest degree such that µ(A) = 0.

(6) The nullspace of a matrix A is the space of all vectors v such that Av = 0. It is
the same as the eigenspace of 0 (regarded as an eigenvalue of A).

(7) ρ(A), the spectral radius of A is defined to be the maximum magnitude of the
eigenvalues of A.

(8) A matrixA is called Hermitian ifA = AH. Recall the definition of the Hermitian
transpose in 5.1.4 on page 100.
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(9) A matrix U is called unitary if U−1 = UH.
(10) The condition number of a matrix is defined by condA = ‖A‖2 ·‖A−1‖2 ≥ ‖I‖ = 1

if A is nonsingular,∞ otherwise.

It is not difficult to see that the eigenvalues of AH are the complex conjugates of those
of A — consequently, if A is Hermitian its eigenvalues are real.

Note that eigenvectors are not nearly as uniquely determined as eigenvalues — for
instance any scalar multiple of an eigenvector associated with a given eigenvalue is
also an eigenvector associated with that eigenvalue.

Although computation of eigenvalues and eigenvectors of matrices is somewhat
difficult in general, some special classes of matrices have symmetries that simplify the
problem. For instance, the eigenvalues of a diagonal matrix are just the values that occur
in the main diagonal. For a more interesting example of computation of eigenvalues
and eigenvectors of a matrix see § 5.2.4 on page 157 and § 5.5.1.3 on page 205.

PROPOSITION 5.1.14. If ‖ ∗ ‖ is any norm and A is any matrix, then:
(1) ρ(A) ≤ ‖A‖.
(2) ‖Ak‖ → 0 as k →∞ if and only if ρ(A) < 1.
(3) det(A) =

∏n
i=1 λi, where the λi are the eigenvalues of A. Here, given values of eigen-

values may occur more than once (as roots of the characteristic polynomial).

PROOF. First statement: Let λ be the largest eigenvalue of A. Then ρ(A) = |λ|, and
Av = λv, where v is the eigenvector corresponding to λ. But ‖Av‖ ≤ ‖A‖ · ‖v‖ by
5.1.11, and Av = λv and ‖Av‖ = |λ| · ‖v‖ = ρ(A)‖v‖. We get ρ(A)‖v‖ ≤ ‖A‖ · ‖v‖ and
the conclusion follows upon dividing by ‖v‖.

Second statement: Suppose ρ(A) ≥ 1. Then ρ(A)k ≤ ρ(Ak) ≥ 1 for all k and this
means that ‖Ak‖ ≥ 1 for all k. On the other hand, if ‖Ak‖ → 0 as k →∞, then ρ(Ak)→ 0
as k →∞. The fact that ρ(A)k ≤ ρ(Ak) and the fact that powers of numbers ≥ 1 are all
≥ 1 imply the conclusion.

Third statement: This follows from the general fact that the constant-term of a poly-
nomial is equal to its value at zero and the product of the roots. We apply this general
fact to the characteristic polynomial det(A− λ · I) = 0. �

DEFINITION 5.1.15. Two n × n matrices A and B will be said to be similar if there
exists a third invertible n× n C such that A = CBC−1.

Two matrices that are similar are equivalent in some sense. Suppose:
• A is a transformation of a vector-space with basis vectors {bi}, i = 1, . . . , n.
• B is a transformation of the same vector-space with basis vectors {b′i}.
• C is the matrix whose columns are the result of expressing the {b′i} in terms of

the {bi}.
Then the result of writing theB-transformation in terms of the basis {bi} is theAmatrix
(if A = CBC−1). In other words, similar matrices represent the same transformation —
in different coordinate-systems. It makes sense that:

LEMMA 5.1.16. Let A and B be similar n×n matrices with A = CBC−1 for some invert-
ible matrix C. Then A and B have the same eigenvalues and spectral radii.

PROOF. The statement about the eigenvalues implies the one about spectral radius.
Let λ be an eigenvalue of A with corresponding eigenvector V (see 5.1.13 on page 102).
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Then
Av = λv

Now replace A by CBC−1 in this formula to get

CBC−1v = λv

and multiply (on the left) by C−1 to get

BC−1v = λC−1v

This implies that λ is an eigenvalue of B with corresponding eigenvector C−1v. A
similar argument implies that every eigenvalue of B also occurs as an eigenvalue of
A. �

In fact

LEMMA 5.1.17. Let A be an n × n square matrix. Then A is similar to a full upper
triangular matrix, T , with the eigenvalues of A on the main diagonal.

PROOF. Suppose the eigenvalues ofA are λ1, . . . , λk with corresponding linearly in-
dependent eigenvectors v = {v1, . . . , vk}. Now we form a basis of the vector space com-
posed of eigenvectors and completed (i.e. the eigenvectors might not form a complete
basis for the vector-space) by some other vectors linearly independent of the eigenvec-
tors — say u = {u1, . . . , un−k}. In this basis, A has the form(

D1 M1

0 A2

)
where M1 is some (k × k) matrix, A2 is an n− k × n− k matrix and D1 is the diagonal
matrix:  λ1 · · · 0

... . . . ...
0 · · · λk


Note that we have to include the submatrix M1 because, although A maps the {vi} into
themselves, it may map the {uj} into the subspace spanned by the {vi}. Now we find
the eigenvalues and corresponding eigenvectors of A1 and modify the set of vectors u
so that it contains as many of these new eigenvectors as possible. In this new basis, A1

will have the form (
D2 M2

0 A3

)
and the original matrix A will have the form D1 M1

0
D2 M2

0 A3


The argument follows by induction: we carry out a similar operation on A3 and so
forth to get a sequence of matrices {A4, . . . , A`} of monotonically decreasing size. The
process terminates when we reach a matrixA` that is 1×1 and, at that point, the original
matrix A is full upper-triangular. �

If A is Hermitian, we can say more:
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LEMMA 5.1.18. Let A be a Hermitian matrix. Then A is similar to a diagonal matrix with
the eigenvalues of A on the main diagonal. The similarity transformation is unitary — in other
words

A = UDU−1

where U is a unitary matrix and A is a diagonal matrix.

Recall the definition of a unitary matrix in 5.1.13 on page 103. This lemma is proved
in Appendix 5.1.2.2 on page 109.

LEMMA 5.1.19. Let λ be an eigenvalue of a nonsingular matrix W . Then 1/λ is an eigen-
value of W−1.

PROOF. Note that λ 6= 0 because the matrix is nonsingular. Let v be an associated
eigenvector so Wv = λv. Then Wv ≤ 0 and W−1(Wv) = v = (1/λ)λv = (1/λ)Wv. �

LEMMA 5.1.20. ‖W‖2 = ‖WH‖2; ‖W‖2 = ρ(W ) if W = WH.

PROOF. Recall the definition of the inner product in 5.1.5 on page 100.
The three basic properties of inner product listed after 5.1.5 imply the first state-

ment, since

‖W‖2 =
√

max
v 6=0

(Wv,Wv)/(v, v)

=
√

max
v 6=0

(Wv,Wv)/(v, v)

=
√

max
v 6=0
|(v,WHWv)|/(v, v)

=
√

max
v 6=0
|(WHWv, v)|/(v, v)

Suppose V is the vector-space upon which W acts: W :V → V . The second statement
follows from the fact that we can find a basis for V composed of eigenvectors of W
(here, we use the term eigenvector in the loosest sense: the nullspace of W is gener-
ated by the eigenvectors of 0. This is a well-known result that is based upon the fact
that eigenvectors of distinct eigenvalues are linearly independent, and a count of the
dimensions of the nullspaces of W −λ · I shows that the vector-space generated by the
eigenspaces of all of the eigenvectors is all of V . Suppose that v =

∑n
i=1 ciei, where the

ei are eigenvectors of W . Then

(Wv,Wv) =
n∑
i=1

(Wciei,Wciei)

=
n∑
i=1

(λiciei, λiciei)

=
n∑
i=1

|λi|2|ci|2

so (Wv,Wv) is a weighted average of the eigenvalues of W . It follows that the maximum
value of (Wv,Wv)/(v, v) occurs when v is an eigenvector, and that value is the square
of an eigenvalue. �

DEFINITION 5.1.21. A Hermitian matrix will be called:
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(1) Positive semidefinite if (Av, v) ≥ 0 for any nonzero vector v.
(2) Positive definite if (Av, v) > 0 for any nonzero vector v.

A will be called Hermitian positive semidefinite. A

LEMMA 5.1.22. A Hermitian matrix is positive semidefinite if and only if its eigenvalues
are nonnegative. It is positive definite if and only if its eigenvalues are positive.

This follows immediately from 5.1.18 on page 105.

COROLLARY 5.1.23. Let A be a positive semidefinite matrix. Then there exists a positive
semidefinite matrix W such that

A = W 2

PROOF. This follows immediately from 5.1.18 on page 105, which implies that

A = UDU−1

where D is a diagonal matrix with nonnegative entries on the diagonal. We define

W = UD1/2U−1

where the entries of D1/2 are just the (nonnegative) square roots of corresponding en-
tries of D. Now

W 2 = UD1/2U−1UD1/2U−1 = UD1/2D1/2U−1 = UDU−1 = A

�

It turns out that the 1-norm and the∞-norm of matrices are very easy to compute:

PROPOSITION 5.1.24. The matrix norm associated with the vector norm ‖ ∗ ‖∞ is given
by ‖M‖∞ = maxi

∑n
j=1 |Mij|.

PROOF. We must maximize maxi
∑

jMij · vj , subject to the requirement that all of
the vj are between −1 and 1. If is clear that we can maximize one of these quantities,
say the ith, by setting:

vj =

{
+1, if Mijis positive;
−1, if Mijis negative.

and this will result in a total value of
∑

j |Mij| for the ith row. The norm of the matrix
is just the maximum of these row-sums. �

PROPOSITION 5.1.25. The 1-norm, ‖M‖1, of a matrix M is given by

max
j

n∑
i=1

|Mij|

PROOF. This is somewhat more difficult to show than the case of the∞-norm. We
must compute the maximum of

∑
i |Mij ·vj| subject to the requirement that

∑
j |vj| = 1.

The crucial step involves showing:
Claim: The maximum occurs when all but one of the vj is zero. The remaining

nonzero vj must be +1 or −1.
We will give a heuristic proof of this claim. With a little work the argument can be

made completely rigorous. Essentially, we must consider the geometric significance of



5.1. LINEAR ALGEBRA 107

x-axis

y-axis
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1

FIGURE 5.1.1. A 2-dimensional diamond
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1

1

M(unit diamond)

1-norm of M

FIGURE 5.1.2. 1-norm

the 1-norm of vectors, and the shape of “spheres” with respect to this norm. The set of
all vectors v with the property that ‖v‖1 = 1 forms a polyhedron centered at the origin.
We will call this a diamond. Figure 5.1.1 shows a 2-dimensional diamond.

The 1-norm of a vector can be regarded as the radius (in the sense of 1-norms) of the
smallest diamond centered at the origin, that encloses the vector. With this in mind,
we can define the 1-norm of a matrix M as the radius of the smallest diamond that
encloses M(unit diamond), as in figure 5.1.2.

Note that the radius of a diamond centered at the origin is easy to measure — it is
just the x-intercept or the y-intercept. The heuristic part of the argument is to note that the
smallest enclosing diamond always intersectsM(unit diamond) at a vertex. This implies
the claim, however, because vertices of the unit diamond are precisely the points with
one coordinate equal to +1 or −1 and all other coordinates 0.

Given this claim, the proposition follows quickly. If the jth component of v is 1 and
all other components are 0, then ‖Mv‖1 =

∑
i |Mij|. The 1-norm of M is computed

with the value of j that maximizes this. �

Unfortunately, there is no simple formula for the 2-norm of a matrix in terms of the
entries of the matrix. The 2-norm of a Hermitian positive semidefinite matrix (defined in
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5.1.21 on page 105) turns out to be equal to the largest eigenvalue of the matrix2. We do
have the following result that relates these quantities, and the spectral radius:

LEMMA 5.1.26. Let W = (wij). Then ‖WHW‖2 = ρ(WHW ) = ‖W‖2
2 ≤ ‖WHW‖1 ≤

maxi
∑

j |wij|maxj
∑

i |wij| ≤ n‖WHW‖2.

PROOF. It is not hard to see that ‖WHW‖1 ≤ maxi
∑

j |wij|maxj
∑

i |wij since
‖WHW‖1 ≤ ‖WH‖1 · ‖W‖1 and ‖WH‖1 = ‖W‖∞, by the explicit formulas given for
these norms. The remaining statements follow from 5.1.52 on page 131. �

EXERCISES.

1. Let A be a square matrix. Show that if λ1 and λ2 are two eigenvalues of A with
associated eigenvectors v1 and v2 and λ1 = λ2, then any linear combination of v1 and
v2 is a valid eigenvector of λ1 and λ2.

2. Let A be a square matrix and let λ1, . . . , λk be eigenvalues with associated eigen-
vectors v1, . . . , vk. In addition, suppose that λi 6= λj for all i, j such that i 6= j, and that
all of the vi are nonzero. Show that the set of vectors {v1, . . . , vk} are linearly indepen-
dent — i.e. the only way a linear combination

k∑
i=1

αivi

(where the αi are scalars) can equal zero is for all of the coefficients, αi, to be zero.
The two exercises above show that the numerical values of eigenvalues determine

many of the properties of the associated eigenvectors: if the eigenvalues are equal, the
eigenvectors are strongly related to each other, and if the eigenvalues are distinct, the
eigenvectors are independent.

3. Show that the two exercises above imply that an n× n matrix cannot have more
than n distinct eigenvalues.

4. Compute the 1-norm and the∞-norm of the matrix1 2 3
0 −1 0
2 −4 8


5. Compute the 1-norm and the∞-norm of the matrix

0 1/4 1/4 1/4 1/4
1/4 0 −1/4 −1/4 1/4
−1/4 −1/4 0 1/4 1/4
−1/4 −1/4 −1/4 0 1/4
−1/4 −1/4 −1/4 1/4 0


2This follows from 5.1.20 on page 105 and 5.1.23 on page 106.
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6. compute the eigenvalues and eigenvectors of the matrix

A =

1 2 3
2 −1 1
3 0 0


Use this computation to compute its spectral radius.

7. Let A be the matrix (
1 2
3 −1

)
Compute the 2-norm of A directly.

8. Suppose that A is an n × n matrix with eigenvectors {vi} and corresponding
eigenvalues {λi}. If I is a n×n identity matrix and α and β are constants show that the
eigenvectors of αA+ βI are also {vi} and the corresponding eigenvalues are αλi + β.

9. Suppose thatW is some square matrix. Show thatWWH is positive semidefinite.
Show that, if W is nonsingular, that WWH is positive definite

10. Suppose that W is some nonsingular matrix and A is a positive definite matrix.
Show that WAWH is positive definite.

11. Lemma 5.1.14 on page 103 implies that, for any square matrix A, ρ(A) ≤ ‖A‖,
where ‖A‖ is any norm. In addition, we know that, if A is Hermitian, ρ(A) = ‖A‖2.
Give an example of a matrix A such that ρ(A) < ‖A‖2 (i.e., they are not equal).

5.1.2.2. Appendix: Diagonalization of Hermitian Matrices. In this appendix we will
prove 5.1.18 on page 105. This will be somewhat like the proof of 5.1.17 on page 104,
except that the full upper-triangular matrix, T , will turn out to be Hermitian — which
will imply that it is a diagonal matrix.

Throughout this section A will denote an n× n Hermitian matrix with eigenvalues
{λ1, . . . , λk} and corresponding eigenspaces {V1, . . . , Vk}.

We begin with:

DEFINITION 5.1.27. A set of vectors {v1, . . . , vk}will be called orthogonal if, for every
i, j such that i 6= j we have

(vi, vj) = 0

The set of vectors will be called orthonormal if, in addition, we have

(vi, vi) = 1

for all 1 ≤ i ≤ k.

We need to develop a basic property of orthonormal bases of vector spaces:

LEMMA 5.1.28. Let {v1, . . . , vk} be an orthonormal basis of a vector-space V and let u be
an arbitrary vector in V . Then

u =
k∑
i=1

(vi, u)vi
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PROOF. Since {v1, . . . , vk} is a basis for V it is possible to find an expression

u =
k∑
i=1

aivi

where the {ai} are suitable constants. Now we form the inner product of this expres-
sion with an arbitrary basis vector vj :

(vj, u) =(vj,
k∑
i=1

aivi)

(vj, u) =
k∑
i=1

ai(vj, vi)

(vj, u) =aj

�

COROLLARY 5.1.29. Let u = {u1, . . . , uk} and v = {v1, . . . , vk} be two orthonormal bases
of the same vector space. Then the matrix U that transforms u into v is given by

Ui,j = (vj, ui)

and is a unitary matrix.

PROOF. The ith column of U is the set of coefficients that expresses ui in terms of the
{v1, . . . , vk}, so 5.1.28 above implies this statement. The remaining statement follows
from the fact that

(U−1)i,j =(uj, vi)

= ¯(vi, uj)

=Ūj,i

�

Our proof of 5.1.18 on page 105 will be like that of 5.1.17 on page 104 except that we
will use an orthonormal basis of eigenvectors for Rn. The first result we need to show
this is:

LEMMA 5.1.30. Let λi 6= λj be eigenvalues of A with corresponding eigenvectors vi, vj .
Then

(vi, vj) = 0

PROOF. We compute

(Avi, vj) = λi(vi, vj)

= (vi, A
Hvj)

= (vi, Avj) (because Ais Hermitian)
= λj(vi, vj)

So λi(vi, vj) = λj(vi, vj), which implies the conclusion since λi 6= λj . �

COROLLARY 5.1.31. The eigenspaces {V1, . . . , Vk} of A are orthogonal to each other.
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In fact, we will be able to get a basis for Rn of orthonormal eigenvectors. This
turns out to be the crucial fact that leads to the conclusion. If each of the eigenspaces
{V1, . . . , Vk} is one-dimensional, we have already proved that: simply normalize each
eigenvector by dividing it by its 2-norm. A slight problem arises if an eigenspace has a
dimension higher than 1. We must show that we can find an orthonormal basis within
each of these eigenspaces.

LEMMA 5.1.32. Let V be a vector space with an inner product (∗, ∗) and a basis
{v1, . . . , vk}. Then there exists an orthonormal basis {v̄1, . . . , v̄k}. This is computed by an
inductive procedure — we compute the following two equations with i = 1..k:

ui =vi −
i−1∑
j=1

(vi, v̄j)v̄j(5.1.1)

v̄i =ui/
√

(ui, ui)(5.1.2)

Here u1 = v1.

This is called the Gram-Schmidt orthogonalization algorithm.

PROOF. Equation (5.1.2) implies that each of the {v̄i} has the property that (v̄i, v̄i) =
1. We will show that the vectors are orthogonal by induction. Suppose that (v̄j, v̄j′) = 0
for all j, j′ < i. We will show that (ui, v̄i′) = 0 for all i′ < i:

(ui, v̄i′) =(vi −
i−1∑
j=1

(vi, v̄j)v̄j, v̄i′)

=(vi, v̄i′)−
i−1∑
j=1

(vi, v̄j)(v̄j, v̄i′)

=(vi, v̄i′)− (vi, v̄i′)

=0

�

Suppose we apply this algorithm to each eigenspace {Vi} whose dimension is > 1.
The new basis-vectors will be orthogonal to each other, and the new basis vectors in
each of the {Vi} will remain orthogonal to the new basis vectors of all {Vi′} with i′ 6= i.
We will, consequently, get an orthonormal basis for Rn. Suppose that this new basis is

{u1, . . . , un}

We claim that the matrix, U , that transforms this basis to the standard basis of Rn is a
unitary matrix (see the definition of a unitary matrix in 5.1.13 on page 103). This follows
from 5.1.29 on page 110 and the fact that U transforms the standard basis of Rn (which
is orthonormal) into {u1, . . . , un}.

Now we return to the fact that we are proving a variation of 5.1.17 on page 104 and
we have an expression:

A = UTU−1
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where T is full upper-triangular and U is unitary. We claim that this implies that T is
Hermitian since

AH =
(
UTU−1

)H

=(U−1)HTHUH

=UTHU−1

(sinceU isunitary)

=UTU−1 (since Ais Hermitian)

This implies that T = TH. Since all of the elements of T below the main diagonal
are 0, this implies that all of the elements above the main diagonal are also 0, and T is
a diagonal matrix.

5.1.2.3. The Jacobi Method. The most basic problem that we will want to solve is a
system of linear equations:

(5.1.3) Ax = b

where A is a given n × n matrix, x = (x0, . . . , xn−1) is the set of unknowns and b =
(b0, . . . , bn−1) is a given vector of dimension n. Our method for solving such problems
will make use of the matrix D(A) composed of the diagonal elements of A (which we
now assume are nonvanishing):

(5.1.4) D(A) =


A0,0 0 0 . . . 0

0 A2,2 0 . . . 0
...

...
... . . . ...

0 0 0 . . . An−1,n−1


As remarked above, the traditional methods (i.e., Gaussian elimination) for solving this
do not lend themselves to easy parallelization. We will, consequently, explore iterative
methods for solving this problem. The iterative methods we discuss requires that the
D-matrix is invertible. This is equivalent to the requirement that all of the diagonal el-
ements are nonzero. Assuming that this condition is satisfied, we can rewrite equation
(5.1.3) in the form

D(A)−1Ax = D(A)−1b

x+ (D(A)−1A− I)x = D(A)−1b

x = (I −D(A)−1A)x+D(A)−1b(5.1.5)

where I is an n×n identity matrix. We will be interested in the properties of the matrix
Z(A) = I −D(A)−1A. The basic iterative method for solving equation (5.1.3) is to

(1) Guess at a solution u(0) = (r0, . . . , rn−1);
(2) Forming a sequence of vectors {u(0), u(1), . . . }, where

u(i+1) = Z(A)u(i) +D(A)−1b.
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Now suppose that the sequence {u(0), u(1), . . . } converges to some vector ū. The fact
that ū is the limit of this sequence implies that ū = Z(A)ū + D(A)−1b — or that ū is
a solution of the original system of equations (5.1.3). This general method of solving
systems of linear equations is called the Jacobi method or the Relaxation Method. The
term “relaxation method” came about as a result of an application of linear algebra to
numerical solutions of partial differential equations – see the discussion on page 198.

We must, consequently, be able to say whether, and when the sequence
{u(0), u(1), . . . } converges. We will use the material in the preceding section on norms
of vectors and matrices for this purpose.

PROPOSITION 5.1.33. Suppose A is an n × n matrix with the property that all of its
diagonal elements are nonvanishing. The Jacobi algorithm for solving the linear system

Ax = b

converges to the same value regardless of starting point (u(0)) if and only if ρ(Z(A)) = µ < 1,
where ρ(Z(A)) is the spectral radius defined in 5.1.13 on page 102.

Note that this result also gives us some idea of how fast the algorithm converges.

PROOF. Suppose ū is an exact solution to the original linear system. Then equation
(5.1.5) on page 112 implies that:

(5.1.6) ū = (I −D(A)−1A)ū+D(A)−1b

Since ρ(Z(A)) = µ < 1 it follows that ‖Z(A)k‖ → 0 as k →∞ for any matrix-norm ‖ ∗ ‖
— see 5.1.14 on page 103. We will compute the amount of error that exists at any given
stage of the iteration. The equation of the iteration is

u(i+1) = (I −D(A)−1A)u(i) +D(A)−1b

and if we subtract this from equation (5.1.6) above we get

ū− u(i+1) =(I −D(A)−1A)ū+D(A)−1b

− (I −D(A)−1A)u(i) +D(A)−1b

=(I −D(A)−1A)(ū− u(i))

=Z(A)(ū− u(i))(5.1.7)

The upshot of this is that each iteration of the algorithm has the effect of multiplying the
error by Z(A). A simple inductive argument shows that at the end of the ith iteration

(5.1.8) ū− u(i+1) = Z(A)i(ū− u(0))

The conclusion follows from 5.1.14 on page 103, which implies thatZ(A)i → 0 as i→∞
if and only if ρ(Z(A)) < 1. Clearly, if Z(A)i → 0 the error will be killed off as i → ∞
regardless of how large it was initially. �

The following corollary give us an estimate of the rate of convergence.

COROLLARY 5.1.34. The conditions in the proposition above are satisfied if ‖Z(A)‖ =
τ < 1 for any matrix-norm ‖ ∗ ‖. If this condition is satisfied then

‖ū− u(i)‖ ≤ τ i−1‖ū− u(0)‖
where ū is an exact solution of the original linear system.
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PROOF. This is a direct application of equation (5.1.8) above:

ū− u(i+1) = Z(A)i(ū− u(0))

‖ū− u(i+1)‖ = ‖Z(A)i(ū− u(0))‖
≤ ‖Z(A)i‖ · ‖(ū− u(0))‖
≤ ‖Z(A)‖i · ‖(ū− u(0))‖
= τ i‖(ū− u(0))‖

�

We conclude this section with an example. Let

A =

4 1 1
1 4 −1
1 1 4


and

b =

1
2
3


Then

D(A) =

4 0 0
0 4 0
0 0 4


and

Z(A) =

 0 −1/4 −1/4
−1/4 0 1/4
−1/4 −1/4 0


so our iteration-step is:

u(i+1) =

 0 −1/4 −1/4
−1/4 0 1/4
1/4 −1/4 0

u(i) +

1/4
1/2
3/4


It is not hard to see that ‖Z(A)‖1 = 1/2 so the Jacobi method converges for any initial
starting point. Set u(0) = 0. We get:

u(1) =


1

4
1

2
3

4
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and

u(2) =


− 1

16
5

8
9

16



u(3) =


− 3

64
21

32
39

64


Further computations show that the iteration converges to the solution

x =


− 1

15
2

3
3

5



EXERCISES.

12. Apply the Jacobi method to the system

Ax = b

where

A =

4 0 1
1 4 −1
1 1 4


and

b =

1
2
3


13. Compute D(A) and Z(A) when

A =

4 1 1
2 5 1
0 −3 10


Can the Jacobi method be used to solve linear systems of the form

Ax = b?
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5.1.2.4. The JOR method. Now we will consider a variation on the Jacobi method.
JOR, in this context stands for Jacobi Over-Relaxation. Essentially the JOR method
attempts to speed up the convergence of the Jacobi method by modifying it slightly.
Given the linear system:

Ax = b

where A is a given n × n matrix whose diagonal elements are nonvanishing and b is a
given n-dimensional vector. The Jacobi method solves it by computing the sequence

u(i+1) = Z(A)u(i) +D(A)−1b

where D(A) is the matrix of diagonal elements of A and Z(A) = I −D(A)−1A. In other
words, we solve the system of equations by “moving from u(i) toward u(i+1). the basic
idea of the JOR method is that:

If motion in this direction leads to a solution, maybe moving further in
this direction at each step leads to the solution faster.

We, consequently, replace u(i) not by u(i+1) as defined above, but by (1−ω)u(i) +ωu(i+1).
when ω = 1 we get the Jacobi method exactly. The number ω is called the relaxation
coefficient. Actual overrelaxation occurs when ω > 1. Our basic iteration-step is:

u(i+1) =(ωZ(A))u(i) + ωD(A)−1b+ (1− ω)u(i)(5.1.9)

=(ωZ(A) + I(1− ω))u(i) + ωD(A)−1b

=(ω(I −D(A)−1A+ I(1− ω))u(i) + ωD(A)−1b

=(I − ωD(A)−1A)u(i) + ωD(A)−1b

Note that, if this iteration converges, then the limit is still a solution of the original
system of linear equations. In other words a solution of

x = (I − ωD(A)−1A)x+ ωD(A)−1b

is a solution of x = x − ωD(A)−1Ax + ωD(A)−1b and 0 = −ωD(A)−1Ax + ωD(A)−1b.
Dividing by ω and multiplying by D(A) gives Ax = b.

The rate of convergence of this method is can be determined in the same way as in
the Jacobi method:

COROLLARY 5.1.35. The conditions in the proposition above are satisfied if
‖I − ωD(A)−1A‖ = τ < 1 for any matrix-norm ‖ ∗ ‖. In this case

‖ū− u(i)‖ ≤ τ i−1‖ū− u(0)‖

where ū is an exact solution of the original linear system.

PROOF. The proof of this is almost identical to that of 5.1.34 on page 113. �

We must, consequently, adjust ω in order to make ‖I − ωD(A)−1A‖ < 1 and to
minimize ωτ i−1‖D(A)−1Au(0) +D(A)−1b‖.

PROPOSITION 5.1.36. If the Jacobi method converges, then the JOR method converges for
0 < ω ≤ 1.
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PROOF. This is a result of the fact that the eigenvalues of (I−ωD(A)−1A) are closely
related to those of Z(A) because (I − ωD(A)−1A) = ωZ(A) + (1− ω)I If θj is an eigen-
value of (I − ωD(A)−1A) then θj = ωλj + 1 − ω, where λj is an eigenvalue of Z(A). If
λj = reit, then

|θj|2 = ω2r2 + 2ωr cos t(1− ω) + (1− ω)2

≤ (ωr + 1− ω)2 < 1

�

The main significance of the JOR method is that, with a suitable choice of ω, the
JOR method will converge under circumstances where the Jacobi method does not (the
preceding result implies that it converges at least as often).

THEOREM 5.1.37. LetA be a positive definite matrix with nonvanishing diagonal elements
such that the associated matrix Z(A) has spectral radius > 1. Then there exists a number
α such that 0 < α < 1 such that the JOR method converges for all values of ω such that
0 < ω < α.

Let λmin be the smallest eigenvalue of Z(A) (I.e., the one with the largest magnitude). Then

α =
2

1− λmin
=

2

1 + ρ(Z(A))

PROOF. This proof will be in several steps. We first note that all of the diagonal
elements of A must be positive.

1. If 0 < ω < α = 2/(1 − λmin) then the matrix V = 2ω−1D(A) − A is positive
definite.

Proof of claim: Since the diagonal elements of A are positive, there exists a matrix
D1/2 such that

(
D1/2

)2
= D(A). V is positive definite if and only if D−1/2V D−1/2 is

positive definite. We have D−1/2V D−1/2 = 2ω−1I −D−1/2AD−1/2. Now we express this
in terms of Z(A):

D1/2Z(A)D−1/2 = D1/2ID−1/2 −D1/2D(A)AD−1/2

= I −D−1/2AD−1/2

so
D−1/2V D−1/2 = (2ω−1 − 1)I +D1/2Z(A)D−1/2

and this matrix will also be positive definite if and only if V = 2ω−1D(A)−A is positive
definite. But the eigenvalues of this matrix are

2ω−1 − 1 + µi

(see exercise 8 on page 109 and its solution on page 390) and these are the same as the
eigenvalues of Z(A) — see 5.1.16 on page 103. The matrix V is positive definite if and
only if these eigenvalues are all positive (see 5.1.22 on page 106, and 5.1.18 on page
105). This is true if and only if 2ω−1 − 1 > |µi| for all i, or ω < 2/(1− λmin).

2. If V = 2ω−1D(A)− A is positive definite, then ρ(I − ωD(A)−1A) < 1, so that the
JOR method converges (by 5.1.35 on page 116).

Since A is positive definite, it has a square root (by 5.1.23 on page 106) — we call
this square root A1/2. We will prove that ρ(A1/2(I − ωD(A)−1A)A−1/2) < 1, which will
imply the claim since spectral radii of similar matrices are equal (5.1.16 on page 103).



118 5. NUMERICAL ALGORITHMS

Now R = A1/2(I − ωD(A)−1A)A−1/2 = I − ωA1/2D(A)−1A1/2. Now we form RRH:

RRH = (I − ωA1/2D(A)−1A1/2)(I − ωA1/2D(A)−1A1/2)H

= I − 2ωA1/2D(A)−1A1/2 + ω2A1/2D(A)−1AD(A)−1A1/2

= I − ω2A1/2D(A)−1 (V )D(A)−1A1/2

= I −M

where V = 2ω−1D(A) − A. This matrix is positive definite (product of an invertible
matrix by its Hermitian transpose — see exercise 9 on page 109 and its solution on
page 390). It follows that the eigenvalues of M = ω2A1/2D(A)−1 (V )D(A)−1A1/2 must
be < 1 (since the result of subtracting them from 1 is still positive). But M is also
positive definite, since it is of the form FV FH and V is positive definite (see exercise
10 on page 109 and its solution on page 390. This means that the eigenvalues of M =
ω2A1/2D(A)−1 (V )D(A)−1A1/2 lie between 0 and 1. We conclude that the eigenvalues
of RRH = I − M also lie between 0 and 1. This means that the eigenvalues of R =
A1/2(I − ωD(A)−1A)A−1/2 lie between 0 and 1 and the conclusion follows. �

5.1.2.5. The SOR and Consistently Ordered Methods. We can combine the iterative
methods described above with the Gauss-Seidel method. The Gauss-Seidel method
performs iteration as described above with one important difference:

In the computation of u(i+1) from u(i) in equation (5.1.9), computed values
for u(i+1) are substituted for values in u(i) as soon as they are available during
the course of the computation.

In other words, assume we are computing u(i+1) sequentially by computing u(i+1)
1 , u(i+1)

2 ,
and so forth. The regular Jacobi method or the JOR method involves performing these
computations in a straightforward way. The Gauss-Seidel method involves comput-
ing u(i+1)

1 , and immediately setting u(i)
1 ← u

(i+1)
1 before doing any other computations.

When we reach the point of computing u
(i+1)
2 , it will already contain the computed

value of u(i+1)
1 . This technique is easily implemented on a sequential computer, but it is

not clear how to implement it in parallel.
The combination of the Gauss-Seidel method and overrelaxation is called the SOR

method. The term SOR means successive overrelaxation. Experience and theoretical re-
sults show that it almost always converges faster than the JOR method. The result
showing that the JOR method converges forA a positive definite matrix (theorem 5.1.37
on page 117) also applies for the SOR method.

In order to write down an equation for this iteration-scheme, we have to consider
what it means to use u(i+1)

j for 0 ≤ j < k when we are computing the kth entry of
u

(i+1)
k . We are essentially multiplying u(i) by a matrix (Z(A)) in order to get u(i+1).

When computing the kth entry of u(i+1), the entries of the matrix Z(A) that enter into
this entry are the entries whose column-number is strictly less than their row-number.
In other words, they are the lower triangular entries of the matrix. It amounts to using
the following iteration-scheme:

(5.1.10) u(i+1) = ω(L(A)u(i+1) + U(A)u(i) +D(A)−1b) + (1− ω)u(i)
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Here L(A) is the lower-triangular portion of Z(A) and U(A) is the upper-triangular
portion.

(5.1.11) u(i+1) = Lωu
(i) + (1− ωL(A))−1ωD(A)−1b

where Lω = (I − ωL)−1(ωU + (1− ω)I). As before, we have the following criterion for
the convergence of the SOR method:

THEOREM 5.1.38. The SOR iteration-scheme for solving the linear system

Au = b

(where A has nonvanishing diagonal elements) converges if ‖Lω‖ = τ < 1 for any matrix-
norm ‖ ∗ ‖. In this case

‖ū− u(i)‖ ≤ τ i−1‖ū− u(0)‖
where ū is an exact solution of the original linear system.

PROOF. As before, the proof of this is almost identical to that of 5.1.34 on page
113. �

THEOREM 5.1.39. (See [77]) The spectral radius of Lω satisfies

ρ(Lω) ≥ |ω − 1|

In addition, if the SOR method converges, then

0 < ω < 2

PROOF. This follows from the fact that the determinant of a matrix is equal to the
product of the eigenvalues — see 5.1.14 on page 103.

detLω = det((I − ωL)−1(ωU + (1− ω)I))

= (det(I − ωL))−1 det(ωU + (1− ω)I)

= det(ωU + (1− ω)I)

= (1− ω)n

since the determinant of a matrix that is the sum of a lower or upper triangular matrix
and the identity matrix is 1. It follows that:

ρ(Lω) ≥ (|ω − 1|n)1/n = |1− ω|

�

Experiment and theory show that this method tends to converge twice as rapidly
as the basic Jacobi method — 5.1.42 on page 122 computes the spectral radius ρ(Lω) if
the matrix A satisfies a condition to be described below.

Unfortunately, the SOR method as presented above doesn’t lend itself to paral-
lelization. Fortunately, it is possible to modify the SOR method in a way that does
lend itself to parallelization.

DEFINITION 5.1.40. Let A be an n× n matrix. Then:
(1) two integers 0 ≤ i, j ≤ n are associated if Ai,j 6= 0 or Aj,i 6= 0;
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(2) Let Σ = {1, . . . , n}, the set of numbers from 1 to n and let S1, S2, . . . , Sk be
disjoint subsets of Σ such that

k⋃
i=1

Si = Σ

Then the partition S1, S2, . . . , Sk of Σ is
(a) an ordering of A if

(i) 1 ∈ S1 and for any i, j contained in the same set St, i and j are not
associated — i.e., Ai,j = Aj,i = 0.

(ii) If j is the lowest number in

Σ \
i⋃
t=1

St

then j ∈ Si+1 for all 1 ≤ i < k.
(b) a consistent ordering of A if for any pair of associated integers 0 ≤ i, j ≤ n,

such that i ∈ St,
• j ∈ St+1 if j > i;
• j ∈ St−1 if j < i;

(3) A vector

γ =

γ1
...
γn


will be called a consistent ordering vector of a matrix A if
(a) γi − γj = 1 if i and j are associated and i > j;
(b) γi − γj = −1 if i and j are associated and i < j;

Note that every matrix has an ordering: we can just set Si = {i}. It is not true that
every matrix has a consistent ordering.

Consistent orderings, and consistent ordering vectors are closely related: the set Si
in a consistent ordering is the set of j such that γj = i, for a consistent ordering vector.

An ordering for a matrix is important because it allows us to parallelize the SOR
method:

PROPOSITION 5.1.41. Suppose A is an n × n matrix equipped with an ordering
{S1, . . . , St}, and consider the following iteration procedure:

for j = 1 to t do
for all k such that k ∈ Sj

Compute entries of u(i+1)
k

Set u(i)
k ← u

(i+1)
k

endfor
endfor

This procedure is equivalent to the SOR method applied to a version of the linear system

Au = b
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in which the coordinates have been re-numbered in some way. If the ordering of A was consis-
tent, then the iteration procedure above is exactly equivalent to the SOR algorithm3.

In other words, instead of using computed values of u(i+1) as soon as they are available,
we may compute all components for u(i+1) whose subscripts are in S1, then use these
values in computing other components whose subscripts are in S2, etc. Each individual
“phase” of the computation can be done in parallel. In many applications, it is possible
to use only two phases (i.e., the ordering only has sets S1 and S2).

Re-numbering the coordinates of the linear system

Au = b

does not change the solution. It is as if we solve the system

BAu = Bb

where B is some permutation-matrix4. The solution is

u = A−1B−1Bb = A−1b

— the same solution as before. Since the computations are being carried out in a dif-
ferent order than in equation (5.1.10) on page 118, the rate of convergence might be
different.

PROOF. We will only give an intuitive argument. The definition of an ordering in
5.1.40 on page 119 implies that distinct elements r, r in the same set Si are independent.
This means that, in the formula (equation (5.1.10) on page 118) for u(i+1) in terms of
u(i),

(1) the equation for u(i+1)
r does not contain u(i+1)

s on the right.
(2) the equation for u(i+1)

s does not contain u(i+1)
r on the right.

It follows that we can compute u(i+1)
r and u

(i+1)
s simultaneously. The re-numbering of

the coordinates comes about because we might do some computations in a different
order than equation (5.1.10) would have done them. For instance, suppose we have
an ordering with S1 = {1, 2, 4}, and S2 = {3, 5}, and suppose that component 4 is
dependent upon component 3 — this does not violate our definition of an ordering.
The original SOR algorithm would have computed component 3 before component 4
and may have gotten a different result than the algorithm based upon our ordering.

It is possible to show (see [171]) that if the ordering is consistent, the permutation
B that occurs in the re-numbering of the coordinates has the property that it doesn’t
map any element of the lower triangular half of A into the upper triangular half, and
vice-versa. Consequently, the phenomena described in the example above will not
occur. �

The importance of a consistent ordering of a matrix5 is that it is possible to give a
explicit formula for the optimal relaxation-coefficient for such a matrix:

3I.e., without re-numbering the coordinates.
4A matrix with exactly one 1 in each row and column, and all other entries equal to 0.
5Besides the fact that it produces computations identical to the SOR algorithm.
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FIGURE 5.1.3. Color-graph of a linear coloring

THEOREM 5.1.42. If the matrix A is consistently-ordered, in the sense defined in 5.1.40 on
page 119, then the SOR or the consistently-ordered iteration procedures for solving the system

Ax = b

both converge if ρ(Z(A)) < 1. In both cases the optimum relaxation coefficient to use is

ω =
2

1 +
√

1− ρ(Z(A))2

where (as usual) Z(A) = I − D(A)−1A, and D(A) is the matrix of diagonal elements of
A. If the relaxation coefficient has this value, then the spectral radius of the effective linear
transformation used in the SOR (or consistently-ordered) iteration scheme is ρ(Lω) = ω − 1.

The last statement gives us a good measure of the rate of convergence of the SOR
method (via 5.1.38 on page 119 and the fact that the 2-norm of a symmetric matrix is
equal to the spectral radius).

We can expand ω into a Taylor series to get some idea of its size:

ω = 1 +
µ2

4
+
µ4

8
+O(µ6)

and this results in a value of the effective spectral radius of the matrix of

µ2

4
+
µ4

8
+O(µ6)

The proof of 5.1.42 is beyond the scope of this book — see chapter 6 of [171] for
proofs. It is interesting that this formula does not hold for matrices that are not consis-
tently ordered — [171] describes an extensive theory of what happens in such cases.

We will give a criterion for when a consistent ordering scheme exists for a given
matrix. We have to make a definition first:

DEFINITION 5.1.43. Let G be an undirected graph with n vertices. A coloring of G is
an assignment of colors to the vertices of G in such a way that no two adjacent vertices
have the same color.

Given a coloring of G with colors {c1, . . . , ck}, we can define the associated coloring
graph to be a graph with vertices in a 1-1 correspondence with the colors {c1, . . . , ck}
and an edge between two vertices c1 and c2 if any vertex (of G) colored with color c1 is
adjacent to any vertex that is colored with color c2.

A linear coloring of G is a coloring whose associated coloring graph is a linear array
of vertices (i.e., it consists of a single path, as in figure 5.1.3).

PROPOSITION 5.1.44. The operation of finding a consistent-ordering of a matrix can be
regarded as equivalent to solving a kind of graph-coloring problem:

Given a square matrix, A, construct a graph, G, with one vertex for each row
(or column) of the matrix, and an edge connecting a vertex representing row i to
the vertex representing row j if j 6= i and Aij 6= 0.
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Then:
(1) the ordering schemes of A are in a 1− 1 correspondence with the colorings of G.
(2) the consistent ordering schemes of A are in a 1 − 1 correspondence with the linear

colorings of the graph G.

PROOF. Statement 1: Define the sets {Sj} to be the sets of vertices of G with the
same color (i.e., set S1 might be the set of “green” vertices, etc.). Now arrange these
sets so as to satisfy the second condition of 5.1.40 on page 119. This essentially amounts
to picking the smallest element of each set and arranging the sets so that these smallest
elements are in ascending order as we go from 1 to the largest number.

Statement 2: Suppose {S1, . . . , Sk} is a consistent ordering of the matrix. We will
color vertex i of G with color Sj where Sj is the set containing i. The condition:

. . . for any pair of associated integers 0 ≤ i, j ≤ n, such that i ∈ St,
• j ∈ St+1 if j > i;
• j ∈ St−1 if j < i;

implies that the associated coloring graph is linear. It implies that vertex i in the color-
ing graph is only adjacent to vertices i− 1 and i+ 1 (if they exist).

Conversely, given a linear coloring, we number the vertices of the coloring graph
by assigning to a vertex (and its associated color) its distance from one end.

(1) For each color ci arbitrarily order the rows with that color.
(2) Associate with a row i the pair (cji , oi), where cji is the color of row i, and oi is

the ordinal position of this row in the set of all rows with the same color.
(3) Order the rows lexicographically by the pairs (cji , oi).
(4) Define the permutation π to map row i to its ordinal position in the ordering

of all of the rows defined in the previous line.
It is not hard to verify that, after the permutation of the rows and columns of the
matrix (or re-numbering of the coordinates in the original problem) that the matrix
will be consistently-ordered with ordering vector whose value on a given coordinate
is the number of the color of that coordinate. �

Here is an example of a consistently ordered matrix: Let

A =


4 0 0 −1
−1 4 −1 0
0 −1 4 0
−1 0 0 4


If we let S1 = {1}, S2 = {2, 4}, and S3 = {3}, we have a consistent ordering of A. The
vector

γ =


1
2
3
2


is a consistent ordering vector for this matrix. The graph for this matrix is in figure
5.1.4.

We conclude this section with an algorithm for determining whether a matrix has a
consistent ordering (so that we can use the formula in 5.1.42 on page 122 to compute the
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FIGURE 5.1.4. Graph of the matrix A, and the associated color-graph

optimum relaxation-factor). The algorithm is constructive in the sense that it actually
finds an ordering if it exists. It is due to Young (see [171]):

5.1.1. Let A be an n × n matrix. It is possible to determine whether A has a consistent
ordering via the following sequence of steps:
Data:vectors {γi} and {γ̄i}

sets D initially {1}, T = {1}
Boolean variable Cons = TRUE

γ1 ← 1, γ̄1 ← 1
for j ← 2 to n do

if A1,j 6= 0 or Aj,1 6= 0 then
γj ← 2, γ̄j ← 2
D ← D ∪ {j}
T ← T ∪ {j}

endfor
D ← D \ {1}

while T 6= {1, . . . , n}
if D 6= ∅ then
i←Minimal element ofD

else
i←Minimal element of{1, . . . , n} \ T

endif
if j 6∈ T then
D ← D ∪ {j}
γ̄j ← 1− γ̄i
if j > i then
γj ← γi + 1

else
γj ← γi − 1

endif
else { j ∈ T}

if γ̄j 6= 1− γ̄i then
Cons← FALSE
Exit
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endif
if j > i then

if γj 6= γi + 1 then
Cons← FALSE
Exit

endif
else

if γj 6= γi − 1 then
Cons← FALSE
Exit

endif
endif

endwhile

The variable Cons determines whether the matrixA has a consistent ordering. If it is TRUE
at the end of the algorithm, the vector γ is a consistent ordering vector. This determines a
consistent ordering, via the comment following 5.1.40, on page 120.

5.1.2.6. Discussion. We have only scratched the surface in our treatment of the the-
ory of iterative algorithms for solving systems of linear equations. There are a number
of important issues in finding parallel versions of these algorithms. For instance, the
execution-time of such an algorithm depends upon:

(1) The number of complete iterations required to achieve a desired degree of ac-
curacy. This usually depends upon the norm or spectral radius of some matrix.

(2) The number of parallel steps required to implement one complete iteration of
an iteration-scheme. This depends upon the number of sets in an ordering (or
consistent ordering) of a matrix.

In many cases the fastest parallel algorithm is the one that uses an ordering with the
smallest number of sets in an ordering — even though that may lead to an iteration-
matrix with a larger norm (than some alternative).

The reader may have noticed that we have required that the diagonal elements of
the matrix A be nonvanishing throughout this chapter. This is a very rigid condition,
and we can eliminate it to some extent. The result is known at the Richardson Iteration
scheme. It requires that we have some matrix B that satisfies the conditions:

(1) B−1 is easy to compute exactly;
(2) The spectral radius of I −B−1A is small (or at least < 1);

We develop this iteration-scheme via the following sequence of steps

Av = b

(A−B)v +Bv = b

B−1(A−B)v + v = B−1b

v = B−1(B − A)v +B−1b

v = (I −B−1A)v +B−1b
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Soouriteration-schemeis:

v(i+1) = (I −B−1A)v(i) +B−1b

Note that we really only need to know B−1 in order to carry this out. The main result
of the Pan-Reif matrix inversion algorithm (in the next section) gives an estimate for
B−1:

B−1 = AH/(‖A‖1 · ‖A‖∞)

(this is a slight re-phrasing of 5.1.1 on page 130). The results of that section show that
O(lg n) parallel iterations of this algorithm are required to give a desired degree of
accuracy (if A is an invertible matrix). In general SOR algorithm is much faster than
this scheme if it can be used.

Even the theory of consistent ordering schemes is well-developed. There are group-
iteration schemes, and generalized consistent ordering schemes. In these cases it is also
possible to compute the optimal relaxation coefficient. See [171] for more details.

EXERCISES.

14. Let

A =

4 2 3
2 4 1
3 0 4


Compute the spectral radius of this matrix. Will the SOR method converge in the
problem

Ax =


2
3
−5
1

 ?

If so compute the optimum relaxation coefficient in the SOR method.

15. Show that a matrix that is consistently ordered has an ordering (non-consistent)
that has only two sets. This means that the parallel version of the SOR algorithm (5.1.41
on page 120) has only two phases. (Hint: use 5.1.44 on page 122).

5.1.3. Power-series methods: the Pan-Reif Algorithm.
5.1.3.1. Introduction. The reader might have wondered what we do in the case

where the diagonal elements of a matrix vanish, or the conditions on spectral radius
are not satisfied.

In this section we present a variation on the iterative methods described above. The
results in this section are of more theoretical than practical value since they require a
larger number of processors than the iterative methods, and inversion of a matrix is
generally not the most numerically stable method for solving a linear system.
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In order to understand the algorithm for matrix inversion, temporarily forget that
we are trying to invert a matrix — just assume we are inverting a number. Suppose we
want to invert a number u using a power series. Recall the well-known power-series for
the inverse of 1− x:

1 + x+ x2 + x3 · · ·
We can use this power series to compute u−1 if we start with an estimate a for u−1

since u−1 = u−1a−1a = (au)−1a = (1 − (1 − au))−1a, where we use the power-series to
calculate (1 − (1 − au))−1. If a is a good estimate for the inverse of u, then au will be
close to 1 and 1− au will be close to 0 so that the power-series for (1− (1− au))−1 will
converge.

It turns out that all of this can be made to work for matrices. In order to reformulate
it for matrices, we must first consider what it means for a power-series of matrices to
converge. The simplest way for a power-series of matrices to converge is for all but a
finite number of terms to vanish. For instance:

PROPOSITION 5.1.45. Let M = (Mij) be an n × n lower triangular matrix. This is a
matrix for which Mik = 0 whenever i ≥ j. Then Mn = 0, and

(I −M)−1 = I +M +M2 + · · ·+Mn−1

PROOF. We prove that Mn = 0 by induction on n. It is easy to verify the result in
the case where n = 2. Suppose the result is true for all k× k, lower triangular matrices.
Given a k + 1× k + 1 lower triangular matrix, M , we note that:

• Its first k rows and columns form a k × k lower triangular matrix, M ′.
• If we multiply M by any other k + 1× k + 1 lower triangular matrix,L with its
k × k lower-triangular submatrix, L′, we note that the product is of the form:(

M ′L′ 0
E 0

)
where the 0 in the upper right position represents a column of k zeros, and E
represents a last row of k elements.

It is not hard to see that Mk will be of the form(
0 0
E 0

)
i.e., it will only have a single row with nonzero elements — the last. One further
multiplication of this by M will kill off all of the elements.

The remaining statement follows by direct computation:

(I −M)(I +M +M2 + · · ·+Mn−1) = I −Mn = I

�

In somewhat greater generality:

COROLLARY 5.1.46. Let A be an n× n matrix of the form

A = D − L
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where D is a diagonal matrix with all diagonal entries nonzero, and L is a lower-triangular
matrix. Then

D−1 =


a−1

11 0 . . . 0
0 a−1

22 . . . 0
...

... . . . ...
0 0 . . . a−1

nn


and

A−1 = D−1(I + (D−1L) +
. . . + (D−1L)n−1)

Now we give a fast algorithm for adding up these power series:

PROPOSITION 5.1.47. Let Zk =
∏k−1

h=0 (I +R2h). Then Zk =
∑2k−1

i=0 Ri.

PROOF. This follows by induction on k — the result is clearly true in the case where
k = 1. Now suppose the result is true for a given value of k — we will prove it for the
next higher value. Note that Zk+1 = Zk(I +R2k). But this is equal to

(I +R2k)
2k−1∑
i=0

Ri =
2k−1∑
i=0

Ri +R2k
2k−1∑
i=0

Ri

=
2k−1∑
i=0

Ri +
2k−1∑
i=0

Ri+2k

=
2k+1−1∑
i=0

Ri

�

COROLLARY 5.1.48. Let M be an n × n matrix, all of whose entries vanish above the
main diagonal, and such that M has an inverse. Then there is a SIMD-parallel algorithm for
computing M−1 in O(lg2 n) time using n2.376 processors.

This algorithm first appeared in [123] and [66]. See [67] for related algorithms.

PROOF. We use 5.1.45, 5.1.46 and 5.1.47 in a straightforward way. The first two
results imply that M−1 is equal to a suitable power-series of matrices, with only n
nonzero terms, and the last result gives us a way to sum this power-series in lg n steps.
The sum is a product of terms that each equal the identity matrix plus an iterated
square of an n × n matrix. Computing this square requires O(lg n) time, using n2.376

processors, by 5.1.2 on page 99. �

Now we will consider the question of how one finds an inverse of an arbitrary
invertible matrix. In general, we cannot assume that some finite power of part of a
matrix will vanish. We must be able to handle power series of matrices that converge
more slowly. We need to define a measure of the size of a matrix (so we can easily
quantify the statement that the terms of a power-series of matrices approach 0, for
instance).
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5.1.3.2. The main algorithm. Now we are in a position to discuss the Pan-Reif algo-
rithm. Throughout this section, we will have a fixed n × n matrix, A. We will assume
that A is invertible.

DEFINITION 5.1.49. The following notation will be used throughout this section:
(1) If B is a matrix R(B) is defined to be I −BA;
(2) A matrix B will be called a sufficiently good estimate for the inverse of A if
‖R(B)‖ = u(B) < 1.

Now suppose A is a nonsingular matrix, and B is a sufficiently good estimate for
the inverse (with respect to some matrix-norm) of A (we will show how to get such an
estimate later). Write A−1 = A−1B−1B = (BA)−1B = (I − R(B))−1B. We will use
a power series expansion for (I − R(B))−1 — the fact that B was a sufficiently good
estimate for the inverse of A will imply that the series converges (with respect to the
same matrix-norm).

The following results apply to any matrix-norms:

PROPOSITION 5.1.50. Suppose that B is a sufficiently close estimate for the inverse of A.
Then the power series (I +R(B) +R(B)2 + · · · )B converges to the inverse of A. In fact, if Sk
is the kth partial sum of the series (i.e. (I +R(B) + · · ·+R(B)k)B) then

‖A−1 − Sk‖ ≤
‖B‖u(B)k

(1− u(B))

which tends to 0 as k goes to∞.

PROOF. The inequalities in the remark above imply that ‖R(B)i‖ ≤ ‖R(B)‖i and
‖Sk−Sk′‖ (where k > k′) is≤ ‖B‖(u(B)k

′
+ · · ·+u(B)k) ≤ ‖B‖u(B)k

′
(1+u(B)+u(B)2 +

· · · ) = ‖B‖u(B)k
′
/(1 − u(B)) (we are making use of the fact that u(B) < 1 here). This

tends to 0 as k′ and k tend to 0 so the series converges (it isn’t hard to see that the series
will converge if the norms of the partial sums converge — this implies that the result
of applying the matrix to any vector converges). Now A−1 − Sk = (R(B)k + · · · )B =
R(B)k(I +R(B) +R(B)2 + · · · )B. The second statement is clear. �

We can use 5.1.47 on page 128 to add up this power series. We apply this result by
setting B∗k = Zk and R(B) = R.

It follows that

‖A−1 −B∗k‖ ≤
‖B‖u(B)2k

(1− u(B))

We will show that the series converges to an accurate estimate of A−1 in O(lg n) steps.
We need to know something about the value of u(B). It turns out that this value will
depend upon n — in fact it will increase towards 1 as n goes to 0 — we consequently
need to know that it doesn’t increase towards 1 too rapidly. It will be proved later in
this section that:

Fact: u(B) = 1− 1/nO(1) as n→∞, | lg ‖B‖| ≤ anβ .

PROPOSITION 5.1.51. Let α be such that u(B) ≤ 1 − 1/nα and assume the two facts
listed above and that r bits of precision are desired in the computation of A−1. Then B ·B∗k is a
sufficiently close estimate of A−1, where αnα lg(n) + r + anα+β ≤ 2k. It follows that O(lg n)

terms in the computation of
∏k−1

h=0 (I +R(B)2h) suffice to compute A−1 to the desired degree of
accuracy.
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PROOF. We want

‖A−1 −B∗k‖ ≤
‖B‖u(B)2k

(1− u(B))
≤ 2−r

Taking the logarithm gives

| lg ‖B‖|+ 2k lg(u(B))− lg(1− u(B)) ≤ −r

The second fact implies that this will be satisfied if 2k lg(u(B))− lg(1− u(B)) ≤ −(r +
anβ). The first fact implies that this inequality will be satisfied if we have

2k lg

(
1− 1

nα

)
− lg

(
1

nα

)
= 2k lg

(
1− 1

nα

)
+ α lg(n) ≤ −(r + anβ)

Now substituting the well-known power series lg(1− g) = −g − g2/2− g3/3 · · · gives
2k(−1/nα − 1/2n2α − 1/3n3α · · · ) + α lg(n) ≤ −(r + anβ). This inequality will be

satisfied if the following one is satisfied (where we have replaced the power series by
a strictly greater one): 2k(−1/nα) + α lg(n) ≤ −(r + anβ).

Rearranging terms gives α lg(n) + r + anβ ≤ 2k/nα or αnα lg(n) + r + anα+β ≤ 2k,
which proves the result. �

Now that we have some idea of how the power series converges, we can state the
most remarkable part of the work of Pan and Reif — their estimate for the inverse of
A. This estimate is given by:

5.1.1. Estimate for A−1:
B = AH/(‖A‖1 · ‖A‖∞)

It is remarkable that this fairly simple formula gives an estimate for the inverse of
an arbitrary nonsingular matrix. Basically, the matrix R(B) will play the part of the
matrix Z(A) in the iteration-methods of the previous sections. One difference between
the present results and the iteration methods, is that the present scheme converges
much more slowly than the iteration-schemes discussed above. We must consequently,
use many more processors in the computations — enough processors to be able to
perform multiple iterations in parallel, as in 5.1.47.

Now we will work out an example to give some idea of how this algorithm works:
Suppose our initial matrix is

A =


1 2 3 5
3 0 1 5
0 1 3 1
5 0 0 3


Then our estimate for the inverse of A is:

B =
AH

‖A‖1 · ‖A‖∞
=


0.0065 0.0195 0 0.0325
0.0130 0 0.0065 0
0.0195 0.0065 0.0195 0
0.0325 0.0325 0.0065 0.0195
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and

R(B) = I −BA =


0.7727 −0.0130 −0.0390 −0.2273
−0.0130 0.9675 −0.0584 −0.0714
−0.0390 −0.0584 0.8766 −0.1494
−0.2273 −0.0714 −0.1494 0.6104


The 2-norm of R(B) turns out to be 0.9965 (this quantity is not easily computed,

incidentally), so the power-series will converge. The easily computed norms are given
by ‖R(B)‖1 = 1.1234 and ‖R(B)‖∞ = 1.1234, so they give no indication of whether the
series will converge.

Now we compute theB∗k — essentially we use 5.1.1 and squareR(B) until we arrive
at a power ofR(B) whose 1-norm is< 0.00001. This turns out to require 13 steps (which
represents adding up 213 − 1 terms of the power series). We get:

B∗13 =


19.2500 24.3833 2.5667 −16.6833
24.3833 239.9833 −94.9667 −21.8167
2.5667 −94.9667 61.6000 −7.7000
−16.6833 −21.8167 −7.7000 19.2500


and

B∗13B =


−0.0500 −0.1500 0.1000 0.3000
0.7167 −0.8500 −0.4333 0.3667
−0.2667 −0.2667 0.5333 −0.0667
0.0833 0.2500 −0.1667 −0.1667


which agrees with A−1 to the number of decimal places used here.

5.1.3.3. Proof of the main result. Recall that § 5.1.2.1 describes several different con-
cepts of the size of a matrix: the 1-norm, the∞-norm, and the 2-norm. The proof that
the Pan-Reif algorithm works requires all three of these. We will also need several
inequalities that these norms satisfy.

LEMMA 5.1.52. The vector norms, the 1-norm, the ∞-norm, and the 2-norm defined in
5.1.12 on page 102 satisfy:

(1) ‖v‖∞ ≤ ‖v‖2 ≤ ‖v‖1;
(2) ‖v‖1 ≤ n‖v‖∞;
(3) ‖v‖2 ≤ (n1/2)‖v‖∞;
(4) (n−1/2)‖v‖1 ≤ ‖v‖2;
(5) ‖v‖2

2 ≤ ‖v‖1 · ‖v‖∞;

PROOF. ‖v‖∞ ≤ ‖v‖2 follows by squaring both terms; ‖v‖2 ≤ ‖v‖1 follows by squar-
ing both terms and realizing that ‖v‖2

1 has cross-terms as well as the squares of single
terms. ‖v‖1 ≤ n‖v‖∞ follows from the fact that each of the n terms in ‖v‖1 is≤ the max-
imum such term. ‖v‖2 ≤ (n1/2)‖v‖∞ follows by a similar argument after first squaring
both sides.

(n−1/2)‖v‖1 ≤ ‖v‖2 follows from Lagrange undetermined multipliers. They are used to
minimize

√∑
i |vi|2 subject to the constraint that

∑
i |vi| = 1 (this is the same as mini-

mizing
∑

i |vi|2) — it is not hard to see that the minimum occurs when all coordinates
(i.e., all of the |vi|) are equal and the value taken on by

√∑
i |vi|2 is (n1/2)|v0| in this case.

The last inequality follows by an argument like that used for ii — each term |vi|2 is
≤ |vi|× the maximum such term. �
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These relations imply the following relations among the corresponding matrix
norms:

COROLLARY 5.1.53. (1) ‖M‖2 ≤ (n1/2)‖M‖∞;
(2) (n−1/2)‖M‖1 ≤ ‖M‖2;
(3) ‖M‖2

2 ≤ ‖M‖1 · ‖M‖∞
Recall the formulas for the 1-norm and the∞-norm in 5.1.24 on page 106 and 5.1.25

on page 106.
The rest of this section will be spent examining the theoretical basis for this al-

gorithm. In particular, we will be interested in seeing why B, as given above, is a
sufficiently good estimate for A−1. The important property of B is:

(1) ‖B‖2 ≤ 1/‖A‖2 ≤ 1/maxi,j |aij|;
(a) ‖R(B)‖2 ≤ 1− 1/((condA)2n).

THEOREM 5.1.54.

(1) This result applies to the 2-norms of the matrices in question.
(2) The remainder of this section will be spent proving these statements. It isn’t

hard to see how these statements imply the main results (i.e. the facts cited
above) — ‖B‖2 ≤ 1/maxi,j |aij| ≤ M and ‖R(B)‖2 ≤ 1 − 1/n7M2, by the
remark above.

(3) The proof of this theorem will make heavy use of the eigenvalues of matrices
— 5.1.13 on page 102 for a definition of eigenvalues. The idea, in a nutshell, is
that:
(a) the eigenvalues of B and R(B), as defined in 5.1.1, are closely related to

those of A;
(b) the eigenvalues of any matrix are closely related to the 2-norm of the matrix;

We can, consequently, prove an inequality for the 2-norm of R(B) and use certain rela-
tions between norms (described in 5.1.52 on page 131) to draw conclusions about the
values of the other norms of R(B) and the convergence of the power-series.

Another way to think of this, is to suppose that the matrix A is diagonalizable in a
suitable way, i.e. there exists a nonsingular matrix Z that preserves the 2-norm6, and
such that D = Z−1AZ is a diagonal matrix — its only nonzero entries lie on the main
diagonal. For the time being forget about how to compute Z — it turns out to be
unnecessary to do so — we only need know that such a Z exists. It turns out that it will
be relatively easy to prove the main result in this case.

We make essential use of the fact that the 2-norm ofD is the same as that ofA (since
Z preserves 2-norms) — in other words, it is not affected by diagonalization. Suppose
that D is 

λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn


Then:

(1) ‖D‖2 = ‖A‖2 = maxi |λi|;
6Such a matrix is called unitary – it is characterized by the fact that ZH = Z−1
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(2) A is nonsingular if and only if none of the λi is 0.
Now, let t = 1/(‖A‖1 · ‖A‖∞). Then ‖A‖2

2 ≤ 1/t, by 5.1.26 on page 108, and the 2-norm
of B is equal to t ·maxi |λi|. The matrix R(D) is equal to:

1− tλ2
1 0 . . . 0

0 1− tλ2
2 . . . 0

...
... . . . ...

0 0 . . . 1− tλ2
n


and its 2-norm is equal to maxi (1− tλ2

i ). If A was nonsingular, then the λi are all
nonzero. The fact that ‖A‖2

2 ≤ 1/t and the fact that ‖A‖2 = maxi |λi| imply that tλ2
i ≤ 1

for all i and ‖D‖2 = maxi 1− tλ2
i < 1. But this is a 2-norm, so it is not sensitive to

diagonalization. It is not hard to see that R(D) is the diagonalization of R(B) so we
conclude that ‖R(B)‖2 < 1, if A was nonsingular.

All of this depended on the assumption that A could be diagonalized in this way.
This is not true for all matrices — and the bulk of the remainder of this section involves
some tricks that Reif and Pan use to reduce the general case to the case where A can be
diagonalized.

Recall the definition of spectral radius in 5.1.13 on page 102.
Applying 5.1.26 on page 108 to W = AH we get ‖AH‖2

2 ≤ 1/t where t = 1/(‖A‖1 ·
‖A‖∞) is defined in 5.1.51 on page 129. It follows, by 5.1.54 that ‖AH‖2 ≤ 1/(t‖A‖2).

The remainder of this section will be spent proving the inequality in line 1a of 5.1.54
on page 132.

COROLLARY 5.1.55. Let λ be an eigenvalue of AHA and let A be nonsingular. Then
1/‖A−1‖2

2 ≤ λ ≤ ‖A‖2
2.

PROOF. λ ≤ ρ(AHA) = ‖A‖2
2 by definition and 5.1.20 on page 105. On the other

hand (AHA)−1 = A−1(A−1)H, so (AHA)−1 is a Hermitian positive definite matrix.
Lemma 5.1.19 on page 105 implies that 1/λ is an eigenvalue of (AHA)−1. Consequently
1/λ ≤ ρ((AHA)−1) = ρ(A−1(A−1)H) = ‖A−1‖2

2. �

LEMMA 5.1.56. LetB and t = 1/(‖A‖1 ·‖A‖∞) Let µ be an eigenvalue ofR(B) = I−BA.
Then 0 ≤ µ ≤ 1− 1/(condA)2n.

PROOF. Let R(B)v = µv for v 6= 0. Then (I − tAH)v = v = tAHv = µv. Therefore
AHAv = λv for λ = (1 − µ)/t so λ is an eigenvalue of AHA. Corollary 5.1.55 implies
that 1/‖A−1‖2

2 ≤ λ = (1 − µ)/t ≤ ‖A‖2
2. It immediately follows that 1 − t‖A‖2

2 ≤ µ ≤
1 − t/‖A−1‖2

2. It remains to use the definition of t = 1/(‖A‖1 · ‖A‖∞) and to apply
statement 3 of 5.1.53 on page 132. �

We are almost finished. We have bounded the eigenvalues of R(B) and this implies
a bound on the spectral radius. The bound on the spectral radius implies a bound
on the 2-norm since R(B) is Hermitian. Since µ is an arbitrary eigenvalue of R(B),
ρ(R(B)) ≤ 1 − 1/((condA)2). On the other hand, ‖R(B)‖2 = ρ(R(B)) since R(B) =
I − tAHA is Hermitian. This completes the proof of the second line of 5.1.54 on page
132.
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EXERCISES.

16. Apply the algorithm given here to the development of an algorithm for deter-
mining whether a matrix is nonsingular. Is it possible for a matrix A to be singular with
‖R(B)‖ < 1 (any norm)? If this happens, how can one decide whether A was singular
or not?

17. Write a C* program to implement this algorithm. Design the algorithm to run
until a desired degree of accuracy is achieved — in other words do not make the pro-
gram use the error-estimates given in this section.

18. From the sample computation done in the text, estimate the size of the constant
of proportionality that appears in the ‘O(lg2 n)’.

19. Compute the inverse of the matrix
2 0 0 0
1 −1 0 0
3 0 3 0
1 2 3 4


using the algorithm of 5.1.46 on page 127.

20. If A is a symmetric positive definite matrix (i.e., all of its eigenvalues are posi-
tive) show that

B =
I

‖A‖∞
can be used as an approximate inverse of A (in place of the estimate in 5.1.1 on page
130).

5.1.4. Nonlinear Problems. In this section we will give a very brief discussion of
how the iterative methods developed in this chapter can be generalized to nonlinear
problems. See [73] for a general survey of this type of problem and [100] and [15] for a
survey of parallel algorithms.

DEFINITION 5.1.57. Let f :Rn → Rn be a function that maps some region M ⊆ Rn

to itself. This function will be called:
(1) a contracting map on M with respect to a (vector) norm ‖ ∗ ‖ if there exists a

number 0 ≤ α < 1 such that, for all pairs of points x and y, in M

‖f(x)− f(y)‖ ≤ α‖x− y‖

(2) a pseudo-contracting map on M (with respect to a vector norm) if there exists a
point x0 ∈M such that:
(a) f(x0) = x0 and there exists a number α between 0 and 1 such that for all

x ∈M
‖f(x)− x0‖ ≤ α‖x− x0‖
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Although these definition might seem a little abstract at first glance, it turns out
that the property of being a contracting map is precisely a nonlinear version of the
statement that the norm of a matrix must be < 1. The material in this section will be a
direct generalization of the material in earlier section on the Jacobi method — see page
112.

Suppose f is a pseudo-contracting map. Then, it is not hard to see that the iterat-
ing the application of f to any point in space will result in a sequence of points that
converge to x0:

f(x), f(f(x)), f(f(f(x))), · · · → x0

This is a direct consequence of the fact that the distance between any point and x0

is reduced by a constant factor each time f is applied to the parameter. This means that
if we want to solve an equation like:

f(x) = x

we can easily get an iterative procedure for finding x0. In fact the Jacobi (JOR, SOR)
methods are just special cases of this procedure in which f is a linear function.

As remarked above, the possibilities for exploiting parallelism in the nonlinear case
are generally far less than in the linear case. In the linear case, if we have enough
processors, we can parallelize multiple iterations of the iterative solution of a linear
system — i.e. if we must compute

Mnx

where M is some matrix, and n is a large number, we can compute Mn by repeated
squaring — this technique is used in the Pan-Reif algorithm in § 5.1.3. In nonlinear
problems, we generally do not have a compact and uniform way of representing fn

(the n-fold composite of a function f ), so we must perform the iterations one at a time.
We can still exploit parallelism in computing f — when there are a large number of
variables in the problem under investigation.

We conclude this section with an example:

EXAMPLE 5.1.58. Let M be an k × k matrix. If v is an eigenvector of M with a
nonzero eigenvalue, λ, then

Mv = λv

by definition. If ‖ ∗ ‖ is any norm, we get:

‖Mv‖ = |λ|‖v‖
so we get

Mv

‖Mv‖
=

v

‖v‖
Consequently, we get the following nonlinear equation

f(w) = w

where f(w) = Mw/‖Mw‖. Its solutions are eigenvectors of M of unit norm (all eigen-
vectors of M are scalar multiples of these). This is certainly nonlinear since it involves
dividing a linear function by ‖Mw‖ which, depending upon the norm used may have
square roots or the maximum function. This turns out to be a pseudo-contracting map
to where x0 (in the notation of definition 5.1.57) is the eigenvector of the eigenvalue of
largest absolute value.
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5.1.5. A Parallel Algorithm for Computing Determinants. In this section we will
discuss an algorithm for computing determinants of matrices. The first is due to
Csanky and appeared in [39]. In is of more theoretical than practical interest, since
it uses O(n4) processors and is numerically unstable. The problem of computing the
determinant of a matrix is an interesting one because there factors that make it seem as
though there might not exist an NC algorithm.

• the definition of a determinant (5.1.8 on page 101) has an exponential number
of terms in it.
• the only well-known methods for computing determinants involve variations

on using the definition, or Gaussian Elimination. But this is known to be P-
complete — see page 37.

Before Csanky published his paper [39], in 1976, the general belief was that no NC
algorithm existed for computing determinants.

Throughout this section A will denote an n× n matrix.

DEFINITION 5.1.59. If A is an n× n matrix, the trace of A is defined to be

tr(A) =
n∑
i=1

Aii

Recall the characteristic polynomial, defined in 5.1.13 on page 102. If the matrix is
nonsingular

f(λ) = det(λ · I − A) =
n∏
i−1

(λ− λi)(5.1.12)

=λn + c1λ
n−1 + · · ·+ cn−1λ+ cn(5.1.13)

where the {λi} are the eigenvalues of the matrix. Direct computation shows that

(5.1.14) tr(A) =
n∑
i=1

λi = −c1

It follows that the trace is an invariant quantity — in other words, transforming the
matrix in a way that corresponds to a change in coordinate system in the vector-space
upon which it acts, doesn’t change the trace.

Settingλ = 0 into equation (5.1.13) implies that the determinant of A is equal to
(−1)ncn.

The first step in Csanky’s algorithm for the determinant is to compute the powers
of A: A2, A3, . . . ,An−1, and the trace of each. Set sk = tr(Ak).

PROPOSITION 5.1.60. If A is a nonsingular matrix and k ≥ 1 is an integer then

sk = tr(Ak) =
n∑
i=1

λki

PROOF. Equation (5.1.14) shows that tr(Ak) =
∑n

i=1 µ(k)i, where the {µ(k)i} are the
eigenvalues of Ak, counted with their multiplicities. The result follows from the fact
that the eigenvalues of Ak are just kth powers of corresponding eigenvalues of A. This
follows from definition of eigenvalue in 5.1.13 on page 102: it is a number with the
property that there exists a vector v such that Av = λv. Clearly, if multiplying v by
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A has the effect of multiplying it by the scalar λ, then multiplying the same vector by
Ak will have the effect of multiplying it by the scalar λk. So µ(k)i = λki and the result
follows. �

At this point we have the quantities
∑n

i=1 λi,
∑n

i=1 λ
2
i , . . . ,

∑n
i=1 λ

n−1
i . It turns out

that we can compute
∏n

i=1 λi from this information. It is easy to see how to do this in
simple cases. For instance, suppose n = 2. Then

(1) s1 = λ1 + λ2

(2) s2 = λ2
1 + λ2

2

and, if we compute s2
1 we get λ2

1 + 2λ1λ2 + λ2
2, so

λ1λ2 =
s2

1 − s2

2

There is a general method for computing the coefficients of a polynomial in terms
sums of powers of its roots. This was developed by Le Verrier in 1840 (see [163] and
[50]) to compute certain elements of orbits of the first seven planets (that is all that were
known at the time).

PROPOSITION 5.1.61. Let

p(x) = xn + c1x
n−1 + · · ·+ cn−1x+ cn

and let the roots of p(x) be x1, . . . , xn. Then

1 0 . . . . . . . . . . . . . 0
s1 2 0 . . . . . . . 0
... . . . . . . . . . ...

sk−1 . . . s1 k 0
...

... . . . . . . . . . . . . 0
sn−1 . . . sk−1 . . . s1 n


c1

...
cn

 = −

s1
...
sn



where sk =
∑n

i=1 x
k
i .

PROOF. We will give an analytic proof of this result. If we take the derivative of
p(x), we get:

dp(x)

dx
= nxn−1 + c1(n− 1)xn−2 + · · ·+ cn−1

We can also set

p(x) =
n∏
i=1

(x− xi)

and differentiate this formula (using the product rule) to get:

dp(x)

dx
=

n∑
i=1

∏
j=1
j 6=i

(x− xj) =
n∑
i=1

p(x)

x− xi

so we get

(5.1.15) nxn−1 + c1(n− 1)xn−2 + · · ·+ cn−1 =
n∑
i=1

p(x)

x− xi
= p(x)

n∑
i=1

1

x− xi
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Now we expand each of the terms 1/(x− xi) into a power-series over xi/x to get

1

x− xi
=

1

x(1− xi/x)
=

1

x

(
1 +

xi
x

+
x2
i

x2
+ · · ·

)
Now we plug this into equation (5.1.15) to get

nxn−1 + c1(n− 1)xn−2 + · · ·+ cn−1 = p(x)
n∑
i=1

1

x− xi

=
p(x)

x

n∑
i=1

(
1 +

xi
x

+
x2
i

x2
+ · · ·

)
= p(x)

(n
x

+
s1

x2
+
s2

x3
+ · · ·

)
Since the power-series converge for all sufficiently large values of x, the coefficients

of x must be the same in both sides of the equations. If we equate the coefficients of
xn−k−1 in both sides of this equation, we get the matrix equation in the statement. �

Csanky’s algorithm for the determinant is thus:

5.1.2. Given an n×n matrix A we can compute the determinant by the following sequence
of steps:

(1) Compute Ak in parallel for k = 2, . . . , n− 1. This can be done in O(lg2 n) time using
O(nn2.376) processors;

(2) Compute sk = tr(Ak) for k = 1, . . . , n − 1. This requires O(lg n) time using O(n2)
processors;

(3) Solve the matrix-equation in 5.1.61 forc1
...
cn


these are the coefficients of the characteristic polynomial of A. This equation can be
solved in O(lg2 n) time using n2.376 processors. The only thing that has to be done
is to invert the square matrix in the equation, and this can be done via the algorithm
5.1.48 on page 128.

Return (−1)ncn as the determinant of A.

Note that we also get the values of c1, c2, etc., as an added bonus. There is no simple
way to compute cn without also computing these other coefficients. The original paper
of Csanky used these coefficients to compute A−1 via the formula:

A−1 = − 1

cn
(An−1 + c1A

n−2 + · · ·+ cn−1I)

Although this was the first published NC-algorithm for the inverse of an arbitrary
invertible matrix, it is not currently used, since there are much better ones available7.

7Better in the sense of using fewer processors, and being more numerically stable.
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5.1.6. Further reading. Many matrix algorithms make use of the so-called LU de-
composition of a matrix (also called the Cholesky decomposition). Given a square
matrix M , the Cholesky decomposition of M is a formula

M = LU

where L is a lower triangular matrix and U is an upper triangular matrix. In [41], Datta
gives an NC algorithm for finding the Cholesky decomposition of a matrix. It isn’t
entirely practical since it requires a parallel algorithm for the determinant (like that in
§ 5.1.5 above).

One topic we haven’t touched upon here is that of normal forms of matrices. A normal
form is a matrix-valued function of a matrix that determines (among other things)
whether two matrices are similar (see the definition of similarity of matrices in 5.1.15 on
page 103). If a given normal form of a matrix M is denoted F (M) (some other matrix),
then two matrices M1 and M2 are similar if and only if F (M1) = F (M2), exactly. There
are a number of different normal forms of matrices including: Smith normal form and
Jordan form.

Suppose M is an n × n matrix with eigenvalues (in increasing order) λ1, . . . , λk.
Then the Jordan normal form of M is the matrix

J(M) =


Q1 0

Q2

·
·

·
0 Qk


where Qi is an mi ×mi matrix of the form

Qi =


λi 0
1 λi

· ·
· ·
· ·

0 1 λi


and the {mi} are a sequence of positive integers that depend upon the matrix.

In [78], Kaltofen, Krishnamoorthy, and Saunders present parallel randomized algo-
rithms for computing these normal forms. Note that their algorithms must, among
other things, compute the eigenvalues of a matrix.

If we only want to know the largest eigenvalue of a matrix, we can use the power
method, very briefly described in example 5.1.58 on page 135. If we only want
the eigenvalues of a matrix, we can use the parallel algorithm developed by Kim
and Chronopoulos in [85]. This algorithm is particularly adapted to finding the
eigenvalues of sparse matrices. In [141], Sekiguchi, Sugihara, Hiraki, and Shimada
give an implementation of an algorithm for eigenvalues of a matrix on a particular
parallel computer (the Sigma-1).
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5.2. The Discrete Fourier Transform

5.2.1. Background. Fourier Transforms are variations on the well-known Fourier
Series. A Fourier Series was traditionally defined as an expansion of some function in
a series of sines and cosines like:

f(x) =
∞∑
k=0

ak sin(kx) + bk cos(kx)

Since sines and cosines are periodic functions8 with period 2π, the expansion also
will have this property. So, any expansion of this type will only be valid if f(x) is a
periodic function with the same period. It is easy to transform this series (by a simple
scale-factor) to make the period equal to any desired value—we will stick to the basic
case shown above. If they exist, such expansions have many applications

• If f(x) is equal to the sum given above, it will periodic—a wave of some sort—
and we can regard the terms {ak sin(kx), bk cos(kx)} as the components of f(x) of
various frequencies9. We can regard the expansion of f(x) into a Fourier series
as a decomposition of it into its components of various frequencies. This has
many applications to signal-processing, time-series analysis, etc.
• Fourier series are very useful in finding solutions of certain types of partial

differential equations.
Suppose f(x) is the function equal to x when −π < x ≤ π and periodic with period 2π
(these two statements define f(x) completely). Then its Fourier series is:

(5.2.1) f(x) = 2
∞∑
k=1

(−1)k+1 sin(kx)

k

Figures 5.2.1 through 5.2.4 illustrate the convergence of this series when −π/2 <
x ≤ π/2. In each case a partial sum of the series is plotted alongside f(x) to show how
the partial sums get successively closer.

• Figure 5.2.1 compares f(x) to 2 sin(x),
• figure 5.2.2 plots it against 2 sin(x)− sin(2x),
• figure 5.2.3 plots it against 2 sin(x)− sin(2x) + 2 ∗ sin(3x)/3, and
• figure 5.2.4 plots it against 2 sin(x)− sin(2x) + 2 ∗ sin(3x)/3− sin(4x)/2.

This series is only valid over a small range of values of x—the interval [−π, π]. This
series is often re-written in terms of exponentials, via the formula:

eix = cos(x) + i sin(x)

where i =
√
−1. We get a series like:

f(x) =
∞∑

k>∞

Ake
ikx

We can compute the coefficients Ak using the orthogonality property of the function eikx:

8In other words sin(x+ 2π) = sin(x) and cos(x+ 2π) = cos(x) for all values of x
9The frequency of ak sin(kx) is k/2π.
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FIGURE 5.2.1. First term

(5.2.2)
ˆ π

−π
eikxei`x dx =

ˆ π

−π
eix(k−`) dx =


2π if k = `(because eix(k−`) = e0 = 1)
0 otherwise, because e2πi(k−`)/2πi(k − `)

is periodic, with period 2π

so

Ak =
1

2π

ˆ π

−π
f(x)e−ikx dx

We would like to discretize this construction — to define it so x only takes on a finite
number of values. The crucial observation is that if x is of the form 2πj/n for some
integers j and n, then

eikx = e2πijk/n = e2πikj/n+2πi = e2πi(k+n)j/n

(because eit is periodic with period 2π. It follows that the exponential that occurs in the
kth term is the same as the exponential that occurs in the k + nth term. Our series only
really has n terms in it:

(5.2.3) f(2πj/n) =
n−1∑
k=0

Ske
2πijk/n

where

(5.2.4) Sk =
∞∑

m>−∞

Ak+mn

where k runs from 0 to n− 1.
This serves to motivate the material on the Discrete Fourier Transform in the rest of

this section.

5.2.2. Definition and basic properties. There are many variations on the Discrete
Fourier Transform, but the basic algorithm is the same in all cases.

Suppose we are given a sequence of numbers {a0, . . . , an−1}— these represent the
values of f(x) at n points — and a principal nth root of 1. This principal nth root of 1
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FIGURE 5.2.2. First two terms
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FIGURE 5.2.3. First three terms
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FIGURE 5.2.4. First four terms

plays the part of the functions sin(x) and cos(x) (both). The powers of ω will play the
part of sin(kx) and cos(kx). This is a complex number ω with the property that ωn = 1
and ωk 6= 1 for all 1 ≤ k < n or ωk = 1 only if k is an exact multiple of n. For instance,
e2πi/n is a principal nth root of 1.

Let A = {a0, . . . , an−1} be a sequence of (real or complex) numbers. The Fourier
Transform, Fω(A), of this sequence with respect to ω is defined to be the sequence
{b0, . . . , bn−1} given by

(5.2.5) bi =
n−1∑
j=0

ajω
ij

Discrete Fourier Transforms have many applications:

(1) Equations (5.2.3) and (5.2.4) relate the discrete Fourier Transform with Fourier
series. It follows that all the applications of Fourier series discussed on page
140 also apply here.
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(2) They give rise to many fast algorithms for taking convolutions of sequences.
Given two sequences {a0, . . . , an−1} and {b0, . . . , bn−1}, their (length-n) convolu-
tion is a sequence {c0, . . . , cn−1} given by:

(5.2.6) ck =
n−1∑
i=0

aibk−i mod n

It turns out that the Fourier Transform of the convolution of two sequences is
just the termwise product of the Fourier Transforms of the sequences. The way
to see this is as follows:
(a) Pretend that the sequences {a0, . . . , an−1} and {b0, . . . , bn−1} are sequences

of coefficients of two polynomials:

A(x) =
n−1∑
i=0

aix
i

B(x) =
n−1∑
j=0

bjx
j

(b) Note that the coefficients of the product of the polynomials are the convo-
lution of the a- and the b-sequences:

(A ·B)(x) =
n−1∑
k=0

(∑
i+j=k

aibj

)
xk

and

(A ·B)(ω) =
n−1∑
k=0

( ∑
i+j=k mod n

aibj

)
ωk

where ω is an nth root of 1. The mod n appears here because the product-
polynomial above will be of degree 2n − 2, but the powers of an nth root
of 1 will “wrap around” back10 to 0.

(c) Also note that the formulas for the Fourier Transform simply correspond
to plugging the powers of the principal root of 1 into the polynomialsA(x)
and B(x):

If {Fω(a)(0), . . . ,Fω(a)(n− 1)} and {Fω(b)(0), . . . ,Fω(b)(n− 1)}
are the Fourier Transforms of the two sequences, then equation
5.2.5 shows that Fω(a)(i) = A(ωi) and Fω(b)(i) = B(ωi), so the
Fourier Transformed sequences are just values taken on by the
polynomials when evaluated at certain points. The conclusion
follows from the fact that, when you multiply two polynomi-
als, their values at corresponding points get multiplied. The
alert reader might think that this implies that Discrete Fourier
Transforms have applications to computer algebra. This is very
much the case — see §6.5.1 of chapter 6 for more details. Page

10Notice that this “wrapping around” will not occur if the sum of the degrees of the two polynomials
being multiplied is < n.
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347 has a sample program that does symbolic computation by
using a form of the Fast Fourier Transform.

It follows that, if we could compute inverse Fourier transforms, we could
compute the convolution of the sequences by:
• taking the Fourier Transforms of the sequences;
• multiplying the Fourier Transforms together, term by term.
• Taking the Inverse Fourier Transform of this termwise product.
Convolutions have a number of important applications:

(a) the applications to symbolic computation mentioned above (and
discussed in more detail in a later chapter.

(b) if {a0, . . . , an−1} and {b0, . . . , bn−1} are bits of two n-bit binary numbers
then the product of the two numbers is the sum

n∑
i=0

ci2
i

where {c0, . . . , cn−1} is the convolution of the a, and b-sequences. It is, of
course, very easy to multiply these terms by powers of 2. It follows that
convolutions have applications to binary multiplication. These algorithms
can be incorporated into VLSI designs.

(3) A two-dimensional version of the Fourier Transform is used in
image-processing. In the two-dimensional case the summation over j in
formula 5.2.5 is replaced by a double sum over two subscripts, and the
sequences are all double-indexed. The Fourier Transform of a bitmap can be
used to extract graphic features from the original image.

The idea here is that Fourier Transforms express image-functions11 in terms
of periodic functions. They, consequently, extract periodic information from the
image or recognize repeating patterns.

We will, consequently be very interested in finding fast algorithms for computing
Fourier Transforms and their inverses. It turns out that the inverse of a Fourier Trans-
form is nothing but another type of Fourier Transform. In order to prove this, we need

PROPOSITION 5.2.1. Suppose ω is a principal nth root of 1, and j is an integer 0 ≤ j ≤
n− 1. Then:

(5.2.7)
n−1∑
i=0

ωij =

{
n if j = 0

0 if 1 ≤ j ≤ n− 1

PROOF. In order to see this suppose

S =
n−1∑
i=0

ωij

11I. e., the functions whose value is the intensity of light at a point of the image
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Now, if we multiply S by ωj , the sum isn’t changed — in other words

ωjS =
n−1∑
i=0

ω(i+1)j(5.2.8)

because ωn = 1

=
n−1∑
i=0

ωij

=S

This implies that (ωj − 1)S = 0. Since ω is a principal nth root of 1, ωj 6= 1. This implies
that S = 0, since the only number that isn’t changed by being multiplied by a nonzero
number is zero. �

The upshot of all of this is that the Inverse Fourier Transform is essentially the same
as another Fourier Transform:

THEOREM 5.2.2. Suppose A = {a0, . . . , an−1} is a sequence of n numbers, ω is a principal
nth root of 1 and the sequence B = {b0, . . . , bn−1} is the Fourier Transform of A with respect
to ω. Let the sequence C = {c0, . . . , cn−1} be the Fourier Transform of B with respect to ω−1

(which is also a principal nth root of 1. Then ci = nai for all 0 ≤ i < n.
It follows that we can invert the Fourier Transform with respect to ω by taking the Fourier

Transform with respect to ω−1 and dividing by n.

We can prove this statement by straight computation — the Fourier transform of
B = {b0, . . . , bn−1}with respect to ω−1 is

n−1∑
i=0

biω
−1ij =

n−1∑
i=0

biω
−ij

=
n−1∑
i=0

(
n−1∑
k=0

akω
ik

)
ω−ij

=
n−1∑
i=0

n−1∑
k=0

akω
i(k−j)

=
n−1∑
k=0

ak

n−1∑
i=0

ωi(k−j)

and now we use formula 5.2.7 to conclude that
n−1∑
i=0

ωi(k−j) =

{
n if k = j

0 if k 6= j

and the last sum must be naj .
We conclude this section by analyzing the time and space complexity of implement-

ing equation (5.2.5).
(1) On a sequential computer we clearly need O(n2)-time and space.
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(2) On a PRAM we can compute the Fourier Transform inO(lg n)time usingO(n2)
processors. This algorithm stores aiωij in processor Pi,j , and uses the sum-
algorithm described on page 56 to compute the summations.

5.2.3. The Fast Fourier Transform Algorithm. In 1942 Danielson and Lanczos de-
veloped an algorithm for computing the Fourier Transform that executed in O(n lg n)
time — see [40]. The title of this paper was “Some improvements in practical Fourier
analysis and their application to X-ray scattering from liquids” — it gives some idea of
how one can apply Fourier Transforms. They attribute their method to ideas of König
and Runge that were published in 1924 in [89].

In spite of these results, the Fast Fourier Transform is generally attributed to Coo-
ley and Tuckey12 who published [33] in 1965. It is an algorithm for computing Fourier
Transforms that, in the sequential case, is considerably faster than the straightforward
algorithm suggested in equation (5.2.5). In the sequential case, the Fast Fourier Trans-
form algorithm executes in O(n lg n)-time. On a PRAM computer it executes in O(lg n)
time like the straightforward implementation of formula (5.2.5), but only requiresO(n)
processors. This algorithm has a simple and ingenious idea behind it.

Suppose n = 2k and we have a sequence of n numbers {a0, . . . , an−1}, and we want
to take its Fourier Transform. As mentioned above, this is exactly the same as evaluat-
ing the polynomial a0 + a1x+ · · ·+ anx

n−1 at the points {ω, ω2, . . . , ωn−1}, where ω is a
principal nth root of 1. The secret behind the Fast Fourier Transform is to notice a few
facts:

• ω2 is a principal n/2th root of 1.
• We can write the polynomial p(x) = a0 + a1x+ · · ·+ anx

n−1 as

(5.2.9) p(x) = r(x) + xs(x)

where

r(x) =a0 + a2x
2 + a4x

4 + · · ·+ an−2x
n−2

s(x) =a1 + a3x
2 + a5x

4 + · · ·+ an−1x
n−2

This means that we can evaluate p(x) at the powers of ω by
(1) Splitting the sequence of coefficients into the even and the odd subsequences

— forming the polynomials r(x) and s(x).
(2) Let

r̄(x) =a0 + a2x+ a4x
2 + · · ·+ an−2x

(n−2)/2

s̄(x) =a1 + a3x+ a5x
2 + · · ·+ an−1x

(n−2)/2

Evaluating r̄(x) and s̄(x) at the powers of ω2.
(3) Plugging the results into equation (5.2.9).

This observations gives rise to the following algorithm for the Discrete Fourier Trans-
form:

12This is a curious example of the “failure to communicate” that sometimes manifests itself in
academia — publication of results doesn’t necessary cause them to become “well-known.”
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5.2.1. Let n a positive even integer. We can compute the Fourier Transform of the sequence
A0, . . . , An−1, with respect to a primitive nth root of 1, ω, by the following sequence of opera-
tions:

(1) “unshuffle” the sequence into odd and even subsequences: Aodd and Aeven.
(2) Compute Fω2(Aodd) and Fω2(Aeven).
(3) Combine the results together using (5.2.9). We get:

Fω(A)(i) =Fω2(Aeven)(i) + ωiFω2(Aodd)(i)(5.2.10)

=Fω2(Aeven)(i mod n/2) + ωiFω2(Aodd)(i mod n/2)(5.2.11)

Now we analyze the time-complexity of this algorithm. Suppose that T (n) is the
time required to compute the Fourier Transform for a sequence of size n (using this
algorithm). The algorithm above shows that:

(1) In parallel: T (n) = T (n/2) + 1, whenever n is an even number. It is not hard
to see that this implies that T (2k) = k, so the parallel execution-time of the
algorithm is O(lg n).

(2) Sequentially T (n) = 2T (n/2) + n/2, whenever n is an even number. Here, the
additional term of n/2 represents the step in which the Fourier Transforms of
the odd and even sub-sequences are combined together. If we write T (2k) =
ak2

k we get the following formula for the ak:

ak2
k = 2 · ak−12k−1 + 2k−1

and, when we divide by 2k, we get:

ak = ak−1 + 1/2

which means that ak is proportional to k, and the sequential execution-time of
this algorithm is O(n lg n). This is still faster than the original version of the
Fourier Transform algorithm in equation (5.2.5) on page 143.

Although it is possible to program this algorithm directly, most practical programs for
the FFT use an iterative version of this algorithm. It turns out that the simplest way
to describe the iterative form of the FFT algorithm involves representing it graphically.
Suppose the circuit depicted in figure 5.2.5 represents the process of forming linear
combinations:

OUTPUT1 ←a · INPUT1 + c · INPUT2

OUTPUT2 ←b · INPUT1 + d · INPUT2

We will refer to figure 5.2.5 as the butterfly diagram of the equations above.
Then we can represent equation (5.2.11) by the diagram in figure 5.2.6.
In this figure, the shaded patches of the graphs represent “black boxes” that com-

pute the Fourier transforms of the odd and even subsequences, with respect to ω2. All
lines without any values indicated for them are assumed to have values of 1. Diagonal
lines with values not equal to 1 have their values enclosed in a bubble.

In order to understand the recursive behavior of this algorithm, we will need the
following definition:



5.2. THE DISCRETE FOURIER TRANSFORM 149

a

b

c

d

INPUT1

INPUT2 OUTPUT2

OUTPUT1

FIGURE 5.2.5.

ω4

ω5

ω6

ω7Computes Fω
2(Aodd)

Computes Fω
2(Aeven)

A0

A1

A2

A3

A4

A5

A6

A7

Fω(A)0

Fω(A)1

Fω(A)2

Fω(A)3

Fω(A)4

Fω(A)5

Fω(A)6

Fω(A)7

ω3

ω2

ω

1

FIGURE 5.2.6. Graphic representation of the FFT algorithm

DEFINITION 5.2.3. Define the unshuffle operation of size 2m to be the permutation:

Um =

(
0 2 4 6 . . . 2m− 2 1 . . . 2m− 1
0 1 2 3 . . . m− 1 m . . . 2m− 1

)
Here, we use the usual notation for a permutation — we map elements of the upper
row into corresponding elements of the lower row.

Let n = 2k and define the complete unshuffle operation on a sequence, V of n items
to consist of the result of:

• Performing Un on V ;
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• Subdividing V into its first and last n/2 elements, and performing Un/2 inde-
pendently on these subsequences.
• Subdividing V into 4 disjoint intervals of size n/4 and performing Un/4 on each

of these.
• This procedure is continued until the intervals are of size 2.

We use the notation Cn to denote the complete unshuffle.

For instance, a complete unshuffle of size 8 is:

C8 =

(
0 1 2 3 4 5 6 7
0 4 2 6 1 5 3 7

)
PROPOSITION 5.2.4. Let n = 2k, where k is a positive integer. Then the complete unshuf-

fle, Cn, is given by the permutation:

Cn =

(
0 1 2 . . . n− 1

e(0, k) e(1, k) e(2, k) . . . e(n− 1, k)

)
where the function e(∗, k) is defined by:

If the k-bit binary representation of j is bk−1 . . . b0, define e(k, j) to be the binary
number given by b0 . . . bk−1.

So, we just reverse the k-bit binary representation of a number in order to calculate
the e-function. Note that this permutation is idempotent, i.e., C2

n = 1, since the oper-
ation of reversing the order of the bits in a binary representation of a number is also
idempotent. This means that C−1

n = Cn.

PROOF. We prove this by induction on k (where n = 2k). If k = 1 then the result is
trivial. We assume the result is true for some value of k, and we prove this for k + 1.
When n = 2k+1, the first unshuffle operation moves all even-indexed elements to the
lower half of the interval and all odd-indexed elements to the upper half, and then
performs the unshuffle-operations for n = 2k on each of the sub-intervals. Suppose we
have a number, m with the binary representation bk+1bk . . . b1b0.

Claim: The process of unshuffling the numbers at the top level has the effect of
performing a cyclic right shift of the binary-representations.

This is because even numbers get moved to a position equal to half their original
value — this is a right-shift of 1 bit. Odd numbers, s, get sent to 2k + bs/2c — so the
1-bit in the 0th position gets shifted out of the number, but is added in to the left end of
the number.

It follows that our number m gets shifted into position b0bk+1bk . . . b1. Now we per-
form the complete shuffle permutations on the upper and lower halves of the whole
interval. This reverses the remaining bits of the binary-representation of numbers, by
the inductive hypothesis. Our number m gets shifted to position b0b1 . . . bkbk+1. �

We can plug diagrams for the Fourier transforms of the odd and even subsequences
into this diagram, and for the odd and even subsequences of these sequences. We ulti-
mately get the diagram in figure 5.2.7.

5.2.1. Close examination of figure 5.2.7 reveals several features:
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FIGURE 5.2.7. Complete butterfly diagram for the FFT algorithm on
8 inputs

(1) If a diagonal line from level i connects rows j and k′, then the binary representations
of j and j′ are identical, except for the ith bit. (Here we are counting the bits from right
to left — the number of a bit corresponds to the power of 2 that the bit represents.)

(2) The Fourier Transforms from level i to level i + 1 are performed with respect to a
primitive 2ith root of 1, ηi = ω2k−i−1 . This is because, as we move to the left in the
diagram, the root of 1 being used is squared.

(3) A line from level i to level i + 1 has a coefficient attached to it that is 6= 1 if and
only if the left end of this line is on a row r whose binary-representation has a 1 in
position i. This is because in level i, the whole set of rows is subdivided into subranges
of size 2i. Rows whose number has a 1 in bit-position i represent the top-halves of
these subranges. The top half of each subrange gets the Fourier Transform of the odd-
subsequence, and this is multiplied by a suitable power of ηi, defined above.

(4) A line from level i to level i + 1 whose left end is in row r, and with the property that
the binary representation of r has a 1 in bit-position i (so it has a nonzero power of ηi)
has a coefficient of ηr′i , where r′ is the row number of the right end of the line. This is
a direct consequence of equation (5.2.11) on page 148, where the power of ω was equal
to the number of the subscript on the output. We also get:
• r′ may be taken modulo 2i, because we use it as the exponent of a 2ith root of 1.
• If the line in question is horizontal, r′ ≡ r mod 2i.
• If the line was diagonal, r′ ≡ r̂ mod 2i, where r̂ has a binary-representation that

is the same as that of r, except that the ithbit position has a 0 — see line 1, above.
• This power of ηi is equal to ω2k−i−1r′ , by line 2.

The remarks above imply that none of the observations are accidents of the fact that
we chose a Fourier Transform of 8 data-items. It is normal practice to “unscramble”
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FIGURE 5.2.8. “Unscrambled” FFT circuit.

this diagram so the input-data is in ascending order and the output is permuted. We
get the diagram in figure 5.2.8.

To analyze the effect of this “unscrambling” operation we use the description of the
complete unshuffle operation in 5.2.4 on page 150.

Now we can describe the Fast Fourier Transform algorithm. We simply modify the
general rule computing the power of ω in 5.2.1 on page 150. Suppose n = 2k is the
size of the sequences in question. We define functions e(r, j), c0(r, j) and c1(r, j) for all
integers 0 ≤ r ≤ k − 1 and 0 ≤ j < n,

(1) If the k-bit binary representation of j is bk−1 · · · b0, then e(r, j) is the number
whose binary representation is bk−r−1bk−r · · · bk−10 · · · 0;
(a) c0(r, j) is a number whose k-bit binary representation is the same as that

of j, except that the k − r + 1th bit is 0. In the scrambled diagram, we
used the rth bit, but now the bits in the binary representation have been
reversed.

(b) c1(r, j) is a number whose binary representation is the same as that of j,
except that the k − r + 1th bit is 1. See the remark in the previous line.

Note that, for every value of r, every number, i, between 0 and n− 1 is equal to either
c0(r, i) or c1(r, i).

Given this definition, the Fast Fourier Transform Algorithm is:

5.2.2. Under the assumptions above, let A = {a0, . . . , an−1} be a sequence of numbers.
Define sequences {Fi,j}, 0 ≤ r ≤ k − 1, 0 ≤ j ≤ n− 1 via:

(1) F0,∗ = A;
(2) For all 0 ≤ j ≤ n− 1,

Ft+1,c0(t,j) =Ft,c0(t,j) + ωe(t,c0(t,j))Ft,c1(t,j)

Ft+1,c1(t,j) =Ft,c0(t,j) + ωe(t,c1(t,j))Ft,c1(t,j)

Then the sequence Fk,∗ is equal to the shuffled Fourier Transform of A:
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j 0 1 2 3 4 5 6 7
r = 3 0 4 2 6 1 5 3 7
r = 2 0 0 4 4 2 2 6 6
r = 1 0 0 0 0 4 4 4 4

TABLE 5.2.1. Sample computations of e(r, j)

(5.2.12) Fω(A)(e(k, i)) = Fk,i

If we unshuffle this sequence, we get the Fourier Transform, Fω(A) of A.

We need to find an efficient way to compute the e(r, j)-functions. First, note that
e(k, j) is just the result of reversing the binary representation of j. Now consider e(k −
1, j): this is the result of taking the binary representation of j, reversing it, deleting the
first bit (the leftmost bit, in our numbering scheme) and adding a 0 on the right. But this
is the result of doing a left-shift of e(k, j) and truncating the result to k bits by deleting
the high-order bit. It is not hard to see that for all i, e(i, j) is the result of a similar
operation on e(i + 1, j). In the C language, we could write this as (e(i+1,j)<<1)%n,
where % is the mod-operation.

Since we actually only need ωe(r,j), for various values of r and j, we usually can
avoid calculating the e(r, j) entirely. We will only calculate the e(k, ∗) and ωe(k,∗). We
will then calculate the remaining ωe(r,j) by setting ωe(r,j) = (ωe(r−1,j))

2. Taking these
squares is the same as multiplying the exponents by 2 and reducing the result modulo
n.

The remaining functions that appear in this algorithm (namely c0(∗, ∗) and c1(∗, ∗))
are trivial to compute.

Table 5.2.1 gives some sample computations in the case where k = 3 and n = 8.
Here is a sample program for implementing the Fast Fourier Transform. In spite of

the comment above about not needing to calculate the e(r, j) for all values of r, we do
so in this program. The reason is that it is easier to compute the powers of ω directly
(using sines and cosines) than to carry out the squaring-operation described above. See
page 347 for an example of an FFT program that doesn’t compute all of the e(r, j).
#include <stdio.h>
#include <math.h>
shape [8192]linear;
/* Basic structure to hold the data−items. */
struct compl
{
double re;
double im;
};
typedef struct compl complex;

/* Basic structure to hold the data−items. */

complex:linear in seq; /* Input data. */
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complex:linear work seq; /* Temporary variables, and
* output data */

int:linear e vals[13]; /* Parallel array to hold
* the values of the e(k,j) */

complex:linear omega powers[13]; /* Parallel array to
* hold the values of
* omegaˆe(r,j). */

void main()
{
int i, j;
int k = 13; /* log of number of
* data−points. */
int n = 8192; /* Number of data−points. */

/*
* This block of code sets up the e vals and the
* omega powers arrays.
*/

with (linear)
{
int i;
int:linear p = pcoord(0);
int:linear temp;
e vals[k−1]= 0;
for (i = 0; i < n; i++)
{
[i]in seq.re = (double) i) / ((double) n;
[i]in seq.im = 0.;
}
for (i = 0; i < k; i++)
{
e vals[k−1]<<= 1;
e vals[k−1]+= p % 2;
p >>= 1;
}
omega powers[k − 1].re
= cos(2.0 * M PI * (double:linear) e vals[k−1]/ (double) n);

omega powers[k − 1].im
= sin(2.0 * M PI * (double:linear) e vals[k−1]/ (double) n);
for (i = 1; i < k; i++)
{
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e vals[k − 1 − i]= (e vals[k − i]<< 1) % n;
omega powers[k − 1 − i].re
=
cos(2.0 * M PI * ((double:linear) e vals[k − 1 − i]/ (double) n));
omega powers[k − 1 − i].im
=
sin(2.0 * M PI * ((double:linear) e vals[k − 1 − i]/ (double) n));
}
work seq.re = in seq.re;
work seq.im = in seq.im;
p = pcoord(0);
for (i = 0; i < k; i++)
{
complex:linear save;

save.re = work seq.re;
save.im = work seq.im;
temp = p & (˜(1 << (k−i−1))); /* Compute c0(r,i). The
‘(k−i−1’ is due to the fact
that the number of the bits
in the definition of c0(r,i)
is from 1 to k, rather than
k−1 to 0. */
where (p == temp)
{
int:linear t = temp | (1 << (k−i−1));
/* Compute c1(r,i). The
‘(k−i−1’ is due to the fact
that the number of the bits
in the definition of c0(r,i)
is from 1 to k, rather than
k−1 to 0. */
[temp]work seq.re = [temp]save.re
+ [temp]omega powers[i].re *[t]save.re
− [temp]omega powers[i].im *[t]save.im;
[temp]work seq.im = [temp]work seq.im
+ [temp]omega powers[i].re *[t]save.im
+ [temp]omega powers[i].im *[t]save.re;
[t]work seq.re = [temp]save.re +
[t]omega powers[i].re *[t]save.re
− [t]omega powers[i].im *[t]save.im;
[t]work seq.im = [temp]save.im +
[t]omega powers[i].re *[t]save.im
+ [t]omega powers[i].im *[t]save.re;
}
}
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with(linear)
where(pcoord(0)<n)
{
save seq.re=work seq.re;
save seq.im=work seq.im;
[e vals[k−1]]work seq.re=save seq.re;
[e vals[k−1]]work seq.im=save seq.im;
}
}
for (i = 0; i < n; i++)
{
printf("Value %d, real part=%g\n", i,[i]work seq.re);
printf("Value %d, imaginary part=%g\n", i,[i]work seq.im);
}
}

Now we will analyze the cost of doing these computations. The original Discrete
Fourier Transform executes sequentially in O(n2) time, and on a SIMD, PRAM it clearly
executes inO(lg n)-time, using O(n2) processors. The main advantage in using the Fast
Fourier Transform algorithm is that it reduces the number of processors required. On
a SIMD, PRAM machine it clearly executes in O(lg n)-time using n processors.

EXERCISES.

1. Express the Cn permutation defined in 5.2.4 on page 150 in terms of the generic
ASCEND or DESCEND algorithms on page 55.

2. The alert reader may have noticed that the FFT algorithm naturally fits into the
framework of the generic DESCEND algorithm on page 55. This implies that we can
find very efficient implementations of the FFT algorithm on the network architectures
of chapter 3 on page 55. Find efficient implementations of the FFT on the hypercube
and the cube-connected cycles architectures.

3. Equation (5.2.4) on page 141 implies a relationship between the Discrete Fourier
Transform and the coefficients in a Fourier Series. Suppose that it is known (for some
reason) that Ak = 0 for |k| > n. Also assume that f(x) is an even function: f(x) =
f(−x)13. Show how to compute the nonzero coefficients of the Fourier series for f(x)
from the Discrete Fourier Transform, performed upon some finite set of values of f(x).

4. Consider the number n that has been used throughout this section as the size
of the sequence being transformed (or the order of the polynomial being evaluated at
principal roots of unity, or the order of the principal root of unity being used). The Fast
Fourier Transform algorithm gives a fast procedure for computing Fourier Transforms
when n = 2k. Suppose, instead, that n = 3k. Is there a fast algorithm for computing the

13This implies that Ak = A−k.
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discrete Fourier Transform in this case? Hint: Given a polynomial

p(x) =
3k−1∑
i=0

aix
i

we can re-write it in the form

p(x) = u(x) + xv(x) + x2w(x)

where

u(x) =
3k−1−1∑
i=0

a3ix
3i

v(x) =
3k−1−1∑
i=0

a3i+1x
3i

w(x) =
3k−1−1∑
i=0

a3i+2x
3i

If such a modified Fast Fourier Transform algorithm exists, how does its execution time
compare with that of the standard Fast Fourier Transform?

5. Given a set of n = 2k numbers A0,. . . ,An−1, we can define the Discrete Cosine
Transform (DCT) as follows:

(5.2.13) C(A)m = Zm

n−1∑
j=0

Aj cos
(2j + 1)mπ

2n

where

Zm =

{
1/
√

2n if m = 0,
1 otherwise

It turns out that there is an inverse Discrete Cosine Transform, defined as follows:

Aj =
n−1∑
m=0

ZmC(A)m cos
(2j + 1)mπ

2n

Now for the question: Is there a fast Discrete Cosine Transform? We are particularly
interested in one with a good parallel implementation.

5.2.4. Eigenvalues of cyclic matrices. In this section we will give a simple appli-
cation of Discrete Fourier Transforms. It will be used in later sections of the book. In
certain cases we can use Discrete Fourier Transforms to easily compute the eigenvalues
of matrices.
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DEFINITION 5.2.5. An n × n matrix A is called a cyclic matrix or circulant if there
exists a function f such that

Ai,j = f(i− j mod n)

Here, we assume the indices of A run from 0 to n− 114.

Note that cyclic matrices have a great deal of symmetry. Here is an example:1 2 3
3 1 2
2 3 1


It is not hard to see that the function f has the values: f(0) = 1, f(1) = 3, f(2) = 2.
In order to see the relationship between cyclic matrices and the Fourier Transform, we
multiply a vector, v by the matrix A in the definition above:

(Av)i =
n−1∑
j=0

Ai,jvj =
n−1∑
j=0

f(i− j mod n)vj

so the act of taking the product of the vector by the matrix is the same a taking the
convolution of the vector by the function f (see the definition of convolution on page
144).

It follows that we can compute the product of the vector by A via the following
sequence of operations:

(1) Select some primitive nth root of 1, ω
(2) Form the FFT of f with respect to ω:

{Fω(f)(0), . . . ,Fω(f)(n− 1)}
(3) Form the FFT of v with respect to ω:

{Fω(v)(0), . . . ,Fω(v)(n− 1)}
(4) Form the elementwise product of these two sequences:

{Fω(f)(0) · Fω(v)(0), . . . ,Fω(f)(n− 1) · Fω(v)(n− 1)}
(5) This resulting sequence is the Fourier Transform of Av:

{Fω(Av)(0), . . . ,Fω(Av)(n− 1)}
While this may seem to be a convoluted way to multiply a vector by a matrix, it is
interesting to see what effect this has on the basic equation for the eigenvalues and
eigenvectors of A —

Av = λv

becomes
Fω(f)(i) · Fω(v)(i) = λFω(v)(i)

for all i = 0, . . . , n − 1 (since λ is a scalar). Now we will try to solve these equations
for values of λ and nonzero vectors Fω(v)(∗). It is easy to see what the solution is if we
re-write the equation in the form:

(Fω(f)(i)− λ) · Fω(v)(i) = 0

14It is not hard to modify this definition to accommodate the case where they run from 1 to n.
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for all i. Since there is no summation here, there can be no cancellation of terms, and
the only way these equations can be satisfied is for

(1) λ = Fω(f)(i) for some value of i;
(2) Fω(v)(i) = 1 and Fω(v)(j) = 0 for i 6= j.

This determines the possible values of λ, and we can also solve for the eigenvectors
associated with these values of λ by taking an inverse Fourier Transform of the Fω(v)(∗)
computed above.

THEOREM 5.2.6. Let A be an n × n cyclic matrix with Ai,j = f(i − j mod n). Then the
eigenvalues of A are given by

λi = Fω(f)(i)

and the eigenvector corresponding to the eigenvalue λi is

Fω−1(δi,∗)/n

where δi,∗ is the sequence {δi,0, . . . , δi,n−1} and

δi,j =

{
1 if i = j

0 otherwise

Recall that Fω−1(∗)/n is just the inverse Fourier Transform — see 5.2.2 on page 146.
We will conclude this section with an example that will be used in succeeding ma-

terial.

DEFINITION 5.2.7. For all n > 1 define the n× n matrix Z(n) via:

Z(n)i,j =

{
1 if i− j = ±1 mod n

0 otherwise

This is clearly a cyclic matrix with f given by

f(i) =

{
1 if i = 1or i = n− 1

0 otherwise

We will compute the eigenvalues and eigenvectors of this Z(n). Let ω = e2πi/n and
compute the Fourier Transform of f with respect to ω:

λi = Fω(f)(j) =e2πij/n + e2πij(n−1)/n

=e2πij/n + e−2πij/n

Since n− 1 ≡ −1 mod n

=2 cos(2πj/n)

since cos(x) = eix + e−ix/2. Note that these eigenvalues are not all distinct — the
symmetry of the cosine function implies that

(5.2.14) λi = λn−i = 2 cos(2πi/n)

so there are really only
⌈
n
2

⌉
distinct eigenvalues. Now we compute the eigenvectors

associated with these eigenvalues. The eigenvector associated with the eigenvalue λj
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is the inverse Fourier Transform of δj,∗. This is

v(j) ={e−2πij·0/n/n, . . . , e−2πij·(n−1)/n/n}
={1, . . . , e−2πij·(n−1)/n/n}

Since λj = λn−j , so these are not really different eigenvalues, any linear combination of
v(j) and v(n − j) will also be a valid eigenvector15 associated with λj — the resulting
eigenspace is 2-dimensional. If we don’t like to deal with complex-valued eigenvectors
we can form linear combinations that cancel out the imaginary parts:

n(v(j)/2 + v(n− j)/2)k =
(
e−2πij·k/n + e−2πij·(n−k)/n

)
/2

= cos(2πjk/n)

and

n(−v(j)/2 + v(n− j)/2i)k =
(
−e−2πij·k/n + e−2πij·(n−k)/n

)
/2

= sin(2πjk/n)

so we may use the two vectors

w(j) ={1, cos(2πj/n), cos(4πj/n), . . . , cos(2πj(n− 1)/n)}(5.2.15)

w′(j) ={0, sin(2πj/n), sin(4πj/n), . . . , sin(2πj(n− 1)/n)}(5.2.16)

as the basic eigenvectors associated with the eigenvalue λj .
Notice that the formula for the eigenvectors of A in 5.2.6 contains no explicit refer-

ences to the function f . This means that all cyclic matrices have the same eigenvectors16,
namely

v(j) = {1, . . . , e−2πij·(n−1)/n/n}
(our conversion of this expression into that in (5.2.16) made explicit use of the fact that
many of the eigenvalues of Z(n) were equal to each other).

EXERCISES.

6. Compute the eigenvalues and eigenvectors of the matrix1 2 3
3 1 2
2 3 1


7. Compute the eigenvalues and eigenvectors of the matrix

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


15See exercise 1 on page 108 and its solution in the back of the book.
16They don’t, however, have the same eigenvalues.
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8. Recall that the Discrete Fourier Transform can be computed with respect to an
arbitrary primitive nth root of 1. What effect does varying this primitive nth root of 1
have on the computation of the eigenvalues and eigenvectors of an n×n cyclic matrix?

9. Give a formula for the determinant of a cyclic matrix.

10. Give a formula for the spectral radius of the matrices Z(n).

5.2.5. The JPEG Algorithm. In this section we will discuss an important appli-
cation of Discrete Fourier Transforms to image compression. In computer graphics,
bitmapped color images tend to be very large. In fact they are usually so large that
transmitting the original bitmapped image over a network (like Ethernet) is usually
prohibitive. Consequently, it is essential to have good algorithms for compressing and
decompressing these images. In this context, an algorithm is ‘good’ if it:

• Has a minimal loss of information.
• Is very fast.

In the late 1980’s a joint ISO/CCITT committee, called the Joint Photographic Experts
Group (JPEG), devised a widely used algorithm for image compression — see [166] as
a general reference. It is highly efficient — users can easily achieve compression ratios
of 10 to 1 (in some cases it is possible to achieve ratios of 50 to 1). Nevertheless, there
are very fast implementations of the algorithm in existence. In fact many developers
hope to develop a form of the JPEG algorithm for animated images, that will run in
real-time. Such an algorithm would require parallel computing.

The JPEG standard for image compression actually contains four algorithms. We
will only consider the sequential encoding algorithm — the only JPEG algorithm widely
implemented as of 1994. One interesting feature of this algorithm is that it is lossy —
that is the procedure of compressing an image and then decompressing it will lose
some graphic information. The JPEG algorithm is designed in such a way that

• The user can control the amount of information lost (when no information is
lost, the amount of compression achieved is minimal, however).
• The kind of information lost tends to be visually negligible. In other words the

algorithm loses information in such a way that the human eye usually doesn’t
miss it.

The JPEG compression algorithm involves the following steps:
(1) Subdivide the picture into 8× 8 arrays of pixels.
(2) Perform a two-dimensional Discrete Fourier Transform on each of these ar-

rays. This is related to the discrete Fourier Transform — its formula appears in
equation (5.2.13) on page 157. There is a fast parallel algorithm for this — see
algorithm 8.0.1 on page 393.

(3) ‘Quantize’ the resulting coefficients. In practice, this involves simply dividing
the coefficients by a quantization value and rounding the result to an integer.
This step is lossy, and the size of the quantization coefficient determines how
much information is lost.
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(4) After the previous step, most of the coefficients in the 8× 8 array will turn out
to be zero. Now, compress the array by Huffman encoding. This step results
in a great deal of further compression.

An examination of the steps listed above quickly shows several possible avenues for
parallelizing the JPEG algorithm:

(1) We might be able to parallelize step 2, using the FFT algorithm or some vari-
ation of it. It isn’t immediately clear how much of an improvement this will
bring since we are only working with an 8 × 8 array. Nevertheless, this bears
looking into.

(2) We can perform step 2 on each of the 8 × 8 blocks in parallel. This is simple
obvious parallelism — yet it can speed up the compression algorithm by a
factor of many thousands.

5.3. Wavelets

5.3.1. Background. In this section, we will discuss a variation on Fourier Expan-
sions that has gained a great deal of attention in recent years. It has many applica-
tions to image analysis and data-compression. We will only give a very abbreviated
overview of this subject — see [107] and [149] for a more complete description.

Recall the Fourier Expansions

f(x) =
∞∑
k=0

ak sin(kx) + bk cos(kx)

The development of wavelets was originally motivated by efforts to find a kind
of Fourier Series expansion of transient phenomena17. If the function f(x) has large
spikes in its graph, the Fourier series expansion converges very slowly. This makes
some intuitive sense — it is not surprising that it is difficult to express a function with
sharp transitions or discontinuities in terms of smooth functions like sines and cosines.
Furthermore, if f(x) is localized in space (i.e., vanishes outside an interval) it may be
hard to expand f(x) in terms of sines and cosines, since these functions take on nonzero
values over the entire x-axis.

We solve this problem by trying to expand f(x) in series involving functions that
themselves may have such spikes and vanish outside of a small interval. These functions
are called wavelets. The term “wavelet” comes from the fact that these functions are
vanish outside an interval. If a periodic function like sin(x) has a sequence of peaks
and valleys over the entire x-axis, we think of this as a “wave”, we think of a function
with, say only small number of peaks or valleys, as a wavelet — see figure 5.3.1.

Incidentally, the depiction of a wavelet in figure 5.3.1 is accurate in that the wavelet
is “rough” — in many cases, wavelets are fractal functions, for reasons we will discuss
a little later.

If we want to expand arbitrary functions like f(x) in terms of wavelets, w(x), like
the one in figure 5.3.1, several problems are immediately apparent:

(1) How do we handle functions with spikes “sharper” than that of the main
wavelet? This problem is solved in conventional Fourier series by multiply-
ing the variable x by integers in the expansion. For instance, sin(nx) has peaks

17Wavelet expansions grew out of problems related to seismic analysis — see [62].
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A “wave”

A wavelet

FIGURE 5.3.1. An example of a wavelet

that are 1/nth as wide as the peaks of sin(x). For various reasons, the solution
that is used in wavelet-expansions, is to multiply x by a power of 2 — i.e., we
expand in terms ofw(2jx), for different values of j. This procedure of changing
the scale of the x-axis is called dilation.

(2) Since w(x) is only nonzero over a small finite interval, how do we handle func-
tions that are nonzero over a much larger range of x-values? This is a problem
that doesn’t arise in conventional Fourier series because they involve expan-
sions in functions that are nonzero over the whole x-axis. The solution use in
wavelet-expansions is to shift the function w(2jx) by an integral distance, and
to form linear combinations of these functions:

∑
k w(2jx − k). This is some-

what akin to taking the individual wavelets w(2jx− k) and assemble them to-
gether to form a wave. The reader may wonder what has been gained by all of
this — we “chopped up” a wave to form a wavelet, and we are re-assembling
these wavelets back into a wave. The difference is that we have direct control
over how far this wave extends — we may, for instance, only use a finite number
of displaced wavelets like w(2jx− k).

The upshot of this discussion is that a general wavelet expansion of of a function is
doubly indexed series like:

(5.3.1) f(x) =
∑

−1≤j<∞
−∞<k<∞

Ajkwjk(x)

where

wjk(x) =

{
w(2jx− k) if j ≥ 0

φ(x− k) if j = −1

The function w(x) is called the basic wavelet of the expansion and φ(x) is called the
scaling function associated with w(x).

We will begin by describing methods for computing suitable functions w(x) and
φ(x). We will usually want conditions like the following to be satisfied:
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(5.3.2)
ˆ ∞
−∞

wj1k1(x)wj2k2(x) dx =

{
2−j1 if j1 = j2and k1 = k2

0 otherwise

—these are called orthogonality conditions. Compare these to equation (5.2.1) on page
141.

The reason for these conditions is that they make it very easy (at least in principle) to
compute the coefficients in the basic wavelet expansion in equation (5.3.1): we simply
multiply the entire series by w(2jx − k) or φ(x − i) and integrate. All but one of the
terms of the result vanish due to the orthogonality conditions (equation (5.3.2)) and we
get:

(5.3.3) Ajk =

´∞
−∞ f(x)wjk(x) dx´∞
−∞w

2
jk(x) dx

= 2j
ˆ ∞
−∞

f(x)wjk(x) dx

In order to construct functions that are only nonzero over a finite interval of the
x-axis, and satisfy the basic orthogonality condition, we carry out a sequence of steps.
We begin by computing the scaling function associated with the wavelet w(x).

A scaling function for a wavelet must satisfy the conditions18:
(1) Its support (i.e., the region of the x-axis over which it takes on nonzero val-

ues) is some finite interval. This is the same kind of condition that wavelets
themselves must satisfy. This condition is simply a consequence of the basic
concept of a wavelet-series.

(2) It satisfies the basic dilation equation:

(5.3.4) φ(x) =
∞∑

i>−∞

ξiφ(2x− i)

Note that this sum is not as imposing as it appears at first glance — the previ-
ous condition implies that only a finite number of the {ξi} can be nonzero. We
write the sum in this form because we don’t want to specify any fixed ranges
of subscripts over which the {ξi}may be nonzero.

This condition is due to Daubechies — see [42]. It is the heart of her the-
ory of wavelet-series. It turns out to imply that the wavelet-expansions are
orthogonal and easy to compute.

(3) Note that any multiple of a solution of equation (5.3.4) is also a solution. We
select a preferred solution by imposing the condition

(5.3.5)
ˆ ∞
−∞

φ(x) dx = 1

One points come to mind when we consider these conditions from a computer science
point of view:

Equation (5.3.4), the finite set of nonzero values of φ(x) at integral points,
and the finite number of nonzero {ξi} completely determine φ(x). They
determine it at all dyadic points (i.e., values of x of the form p/q, where q

18Incidentally, the term scaling function, like the term wavelet refers to a whole class of functions
that have certain properties.
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is a power of 2). For virtually all modern computers, such points are the
only ones that exist, so φ(x) is completely determined.

Of course, from a function theoretic point of view φ(x) is far from being determined
by its dyadic values. What is generally done is to perform a iterative procedure: we
begin by setting φ0(x) equal to some simple function like the box function equal to 1
for 0 ≤ x < 1 and 0 otherwise. We then define

(5.3.6) φi+1(x) =
∞∑

k>−∞

ξkφi(2x− k)

It turns out that this procedure converges to a limit φ(x) = φ∞(x), that satisfied equa-
tion (5.3.4) exactly. Given a suitable scaling-function φ(x), we define the associated
wavelet w(x) by the formula

(5.3.7) w(x) =
∞∑

i>−∞

(−1)iξ1−iφ(2x− i)

We will want to impose some conditions upon the coefficients {ξi}.

DEFINITION 5.3.1. The defining coefficients of a system of wavelets will be assumed
to satisfy the following two conditions:

(1) Condition O: This condition implies the orthogonality condition of the
wavelet function (equation (5.3.2) on page 164):

(5.3.8)
∞∑

k>−∞

ξkξk−2m =

{
2 if m = 0

0 otherwise

The orthogonality relations mean that if a function can be expressed in
terms of the wavelets, we can easily calculate the coefficients involved, via
equation (5.3.3) on page 164.

(2) Condition A: There exists a number p > 1, called the degree of smoothness of
φ(x) and the associated wavelet w(x), such that

∞∑
k>−∞

(−1)kkmξk = 0, for all 0 ≤ m ≤ p− 1

It turns out that wavelets are generally fractal functions — they are not differ-
entiable unless their degree of smoothness is > 2.

This condition guarantees that the functions that interest us19 can be ex-
panded in terms of wavelets. If φ(x) is a scaling function with a degree of
smoothness equal to p, it is possible to expand the functions 1, x,. . . ,xp−1 in
terms of series like

∞∑
j>−∞

Anφ(x− n)

In order for wavelets to be significant to us, they (and their scaling functions)
must be derived from a sequence of coefficients {ξi} with a degree of smooth-
ness > 0.

19This term is deliberately vague.
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FIGURE 5.3.2. The Haar Wavelet

Daubechies discovered a family of wavelets W2, W4, W6,· · · whose defining coeffi-
cients (the {ξi}) satisfy these conditions in [42]. All of these wavelets are based upon
scaling functions that result from iterating the box function

φ0(x) =

{
1 if 0 ≤ x < 1

0 otherwise

in the dilation-equation (5.3.6) on page 165. The different elements of this sequence of
wavelets are only distinguished by the sets of coefficients used in the iterative proce-
dure for computing φ(x) and the corresponding wavelets.

(Note: this function, must vanish at one of the endpoints of the interval [0, 1].) This
procedure for computing wavelets (i.e., plugging the box function into equation (5.3.4)
and repeating this with the result, etc.) is not very practical. It is computationally
expensive, and only computes approximations to the desired result20.

Fortunately, there is a simple, fast, and exact algorithm for computing wavelets at
all dyadic points using equation (5.3.4) and the values of φ(x) at integral points. Further-
more, from the perspective of computers, the dyadic points are the only ones that exist.
We just perform a recursive computation of φ(x) at points of the form i/2k+1 using the
values at points of the form i/2k and the formula

φ(i/2k+1) =
∑

−∞<m<∞

ξmφ(
i

2k
−m)

It is often possible for the dilation-equation to imply relations between the values of a
scaling function at distinct integral points. We must choose the value at these points in
such a way as to satisfy the dilation-equation.

EXAMPLE 5.3.2. Daubechies’ W2 Wavelet. This is the simplest element of
the Daubechies sequence of wavelets. This family is defined by the fact that the
coefficients of the dilation-equation are ξ0 = ξ1 = 1, and all other ξi = 0.

In this case φ(x) = φ0(x), the box function. The corresponding wavelet, W2(x) has
been described long before the development of wavelets — it is called the Haar function.
It is depicted in figure 5.3.1.

20This slow procedure has theoretical applications — the proof that the wavelets are orthogonal (i.e.,
satisfy equation (5.3.2) on page 164) is based on this construction.
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FIGURE 5.3.3. Daubechies degree-4 scaling function

EXAMPLE 5.3.3. Daubechies’ W4 Wavelet. Here we use the coefficients ξ0 = (1 +√
3)/4, ξ1 = (3 +

√
3)/4, ξ2 = (3−

√
3)/4, and ξ3 = (1−

√
3)/4 in the dilation-equation.

This wavelet has smoothness equal to 2, and its scaling function φ(x) is called D4(x).
We can compute the scaling function, D4(x) at the dyadic points by the recursive pro-
cedure described above. We cannot pick the values of φ(1) and φ(2) arbitrarily because
they are not independent of each other in the equation for φ(x) = D4(x).

They satisfy the equations

φ(1) =
3 +
√

3

4
φ(1) +

1 +
√

3

4
φ(2)

φ(2) =
1−
√

3

4
φ(1) +

3−
√

3

4
φ(2)

This is an eigenvalue problem21 like

Ξx = λx

where x is the vector composed of φ(1) and φ(2), and Ξ is the matrix(
3+
√

3
4

1+
√

3
4

1−
√

3
4

3−
√

3
4

)
The problem only has a solution if λ = 1 is a valid eigenvalue of Ξ — in this case

the correct values of φ(1) and φ(2) are given by some scalar multiple of the eigenvector
associated with the eigenvalue 1.

21See 5.1.13 on page 102 for the definition of an eigenvalue.
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FIGURE 5.3.4. Daubechies degree-4 wavelet

This matrix (Ξ) does have an eigenvalue of 1, and its associated eigenvector is(
1+
√

3
2

1−
√

3
2

)
and these become, from top to bottom, our values of φ(1) and φ(2), respectively. The
scaling function, φ(x), is called D4(x) in this case22 and is plotted in figure 5.3.1.

Notice the fractal nature of the function. It is actually much more irregular than it
appears in this graph. The associated wavelet is called W4 and is depicted in figure
5.3.3.

EXERCISES.

1. Write a program to compute D4(x) and W4(x) at dyadic points, using the recur-
sive algorithm described above. What is the running-time of the algorithm? Generally
we measure the extent to which D4(x) has been computed by measuring the “fineness
of the mesh” upon which we know the values of this function — in other words, 1/2n.

2. What is the execution-time of a parallel algorithm for computing φ(x) in general?

22In honor of Daubechies.
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5.3.2. Discrete Wavelet Transforms. Now we are in a position to discuss how one
does a discrete version of the wavelet transform. We will give an algorithm for com-
puting the wavelet-series in equation (5.3.1) on page 163 up to some finite value of j —
we will compute the Aj,k for j ≤ p. We will call the parameter p the fineness of mesh
of the expansion, and 2−p the mesh-size. the algorithm that we will discuss, are closely
related to the Mallat pyramid algorithm, but not entirely identical to it.

DEFINITION 5.3.4. Define Br,j by

Br,j = 2r
ˆ ∞
−∞

φ(2rx− j)f(x) dx

where 0 ≤ r ≤ p and −∞ < j <∞.

These quantities are important because they allow us to compute the coefficients of
the wavelet-series.

In general, the Br,j are nonzero for at most a finite number of values of j:

PROPOSITION 5.3.5. In the notation of 5.3.4, above, suppose that f(x) is only nonzero on
the interval a ≤ x ≤ b and φ(x) is only nonzero on the interval 0 ≤ x ≤ R. Then Br,j = 0
unless L(r) ≤ j ≤ U(r), where L(r) = b2ra−Rc and U(r) = d2rbe.

We will follow the convention that L(−1) = ba−Rc, and U(−1) = dbe

PROOF. In order for the integral 5.3.4 to be nonzero, it is at least necessary for the
domains in which f(x) and φ(2rx− j) are nonzero to intersect. This means that

0 ≤ 2rx− j ≤ R

a ≤x ≤ b

If we add j to the first inequality, we get:

j ≤ 2rx ≤ j +R

or

2rx−R ≤ j ≤ 2rx

The second inequality implies the result. �

The first thing to note is that the quantities Bp,j determine the Br,j for all values of
r such that 0 ≤ r < p:

PROPOSITION 5.3.6. For all values of r ≤ p

Br,j =
∞∑

m>−∞

ξm−2jBr+1,m

2
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PROOF. This is a direct consequence of the basic dilation equation (5.3.4) on page
164:

Br,j =2r
ˆ ∞
−∞

φ(2rx− j)f(x) dx

=2r
ˆ ∞
−∞

∞∑
s>−∞

ξsφ(2(2rx− j)− s)f(x) dx

=2r
ˆ ∞
−∞

∞∑
s>−∞

ξsφ(2r+1x− 2j − s)f(x) dx

setting m = 2j + s

=2r
ˆ ∞
−∞

∞∑
m>−∞

ξm−2jφ(2r+1x−m)f(x) dx

=2r
∞∑

m>−∞

ξm−2j

ˆ ∞
−∞

φ(2r+1x−m)f(x) dx

�

The definition of w(x) in terms of φ(x) implies that

PROPOSITION 5.3.7. Let Ar,k denote the coefficients of the wavelet-series, as defined in
equation (5.3.3) on page 164. Then

Ar,k =


∞∑

m>−∞

(−1)m
ξ1−m+2kBr+1,m

2
if r ≥ 0

B−1,k if r = −1

PROOF. This is a direct consequence of equation (5.3.7) on page 165. We take the
definition of the Ar,k and plug in equation (5.3.7):

Ar,k =2r
ˆ ∞
−∞

f(x)w(2rx− k) dx

=2r
ˆ ∞
−∞

f(x)
∞∑

s>−∞

(−1)sξ1−sφ(2(2rx− k)− s) dx

=2r
ˆ ∞
−∞

f(x)
∞∑

s>−∞

(−1)sξ1−sφ(2r+1x− 2k − s) dx

now we set m = 2k + s

=2r
ˆ ∞
−∞

f(x)
∞∑

m>−∞

(−1)mξ1−m+2kφ(2r+1x−m) dx

=2r
∞∑

m>−∞

(−1)mξ1−m+2k

ˆ ∞
−∞

f(x)φ(2r+1x−m) dx

�

These results motivate the following definitions:
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DEFINITION 5.3.8. Define the following two matrices:
(1) L(r)i,j = ξj−2i/2.
(2) H(r)i,j = (−1)jξ1−j+2i/2.

Here i runs from L(r − 1) to U(r − 1) and j runs from L(r) to U(r), in the
notation of 5.3.5.

For instance, if we are working with the Daubechies wavelet, W4(x), and p = 3,
a = 0, b = 1, R = 2, then L(3) = −2, U(3) = 8 and

L(3) =



3−
√

3
2

1−
√

3
2

0 0 0 0 0 0 0 0
1+
√

3
2

3+
√

3
2

3−
√

3
2

1−
√

3
2

0 0 0 0 0 0

0 0 1+
√

3
2

3+
√

3
2

3−
√

3
2

1−
√

3
2

0 0 0 0

0 0 0 0 1+
√

3
2

3+
√

3
2

3−
√

3
2

1−
√

3
2

0 0

0 0 0 0 0 0 1+
√

3
2

3+
√

3
2

3−
√

3
2

1−
√

3
2

0 0 0 0 0 0 0 0 1+
√

3
2

3+
√

3
2


and

H(3) =

0 0 0 0 0 0 0 0 0 0
3+
√

3
2

−1+
√

3
2

0 0 0 0 0 0 0 0
1−
√

3
2

−3−
√

3
2

3+
√

3
2

−1+
√

3
2

0 0 0 0 0 0

0 0 1−
√

3
2

−3−
√

3
2

3+
√

3
2

−1+
√

3
2

0 0 0 0

0 0 0 0 1−
√

3
2

−3−
√

3
2

3+
√

3
2

−1+
√

3
2

0 0

0 0 0 0 0 0 1−
√

3
2

−3−
√

3
2

3+
√

3
2

−1+
√

3
2


Our algorithm computes all of the Ar,k, given the values of Bp+1,k:

5.3.1. This algorithm computes a wavelet-expansion of the function f(x) with mesh-size
2−p.

• Input: The quantities {Bp+1,j}, where j runs from L(p + 1) to U(p + 1). There are
n = d2p+1(b− a) +Re such inputs (in the notation of 5.3.5 on page 169);
• Output: The values of the Ak,j for −1 ≤ k ≤ p, and, for each value of k, j runs from
L(k) to U(k). There are approximately d2p+1(b− a) +Re such outputs.

for k ← p down to 1 do
Compute Bk,∗ ← L(k + 1)Bk+1,∗
Compute Ak,∗ ← H(k + 1)Bk+1,∗

endfor
Here, the arrays L and H are defined in 5.3.8 above. The array Bk,∗ has half as many nonzero
entries as Bk+1,∗.

Since the number of nonzero entries in each row of the L(∗) and H(∗) arrays is so small,
we generally incorporate this number in the constant of proportionality in estimating the
execution-time of the algorithm.

With this in mind, the sequential execution-time of an iteration of this algorithm is O(2k).
If we have 2p+1 processors available, the parallel execution-time (on a CREW-SIMD computer)
is constant.
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The total sequential execution-time of this algorithm is O(n) and the total parallel
execution-time (on a CREW-SIMD computer with n processors) is O(lg n).

TheAk,∗ are, of course, the coefficients of the wavelet-expansion. The only elements
of this algorithm that look a little mysterious are the quantities

Bp+1,j = 2p+1

ˆ ∞
−∞

φ(2p+1x− j)f(x) dx

First we note that
´∞
−∞ φ(u) du = 1 (by equation (5.3.5) on page 164), so´∞

−∞ φ(2p+1x− j) dx = 2−(p+1) (set u = 2p+1 − j, and dx = 2−(p+1)du) and

Bp+1,j =

´∞
−∞ φ(2p+1x− j)f(x) dx´∞
−∞ φ(2p+1x− j) dx

so that Bp+1,j is nothing but a weighted average of f(x) weighted by the function
φ(2p+1x − j). Now note that this weighted average is really being taken over a small
interval 0 ≤ 2p+1x − j ≤ R, where [0, R] is the range of values over which φ(x) 6= 0.
This is always some finite interval — for instance if φ(x) = D4(x) (see figure 5.3.1 on
page 167), this interval is [0, 3]. This means that x runs from j2−(p+1) to (j +R)2−(p+1).

At this point we make the assumption:

The width of the interval [j2−(p+1), (j + R)2−(p+1)], is small enough that
f(x) doesn’t vary in any appreciable way over this interval. Conse-
quently, the weighted average is equal to f(j2−(p+1)).

So we begin the inductive computation of theAk,j in 5.3.1 by settingBp+1,j = f(j/2p+1).
We regard the set of values {f(j/2p+1)} with 0 ≤ j < 2p+1 as the inputs to the discrete
wavelet transform algorithm.

The output of the algorithm is the set of wavelet-coefficients {Ak,j}, with −1 ≤ k ≤
p, −∞ < j < ∞. Note that j actually only takes on a finite set of values — this set is
usually small and depends upon the type of wavelet under consideration. In the case
of the Haar wavelet, for instance 0 ≤ j ≤ 2k − 1, if k ≤ 0, and j = 0 if k = −1. In the
case of the Daubechies W4 wavelet this set is a little larger, due to the fact that there are
more nonzero defining coefficients {ξi}.

Now we will give a fairly detailed example of this algorithm. Let f(x) be the function defined by:

f(x) =

0 if x ≤ 0
x if 0 < x ≤ 1
0 if x > 1

We will expand this into a wavelet-series using the degree-4 Daubechies wavelet defined in 5.3.3 on
page 167. We start with mesh-size equal to 2−5, so p = 4, and we define B5,∗ by

B5,i =

0 if i ≤ 0
i/32 if 1 ≤ i ≤ 32
0 if i > 32

In the present case, the looping phase of algorithm 5.3.1 involves the computation:

Bk,i =
1 +
√

3

8
Bk+1,2i +

3 +
√

3

8
Bk+1,2i+1 +

3−
√

3

8
Bk+1,2i+2 +

1−
√

3

8
Bk+1,2i+3

Ak,i =
1−
√

3

8
Bk+1,2i−2 −

3−
√

3

8
Bk+1,2i−1 +

3 +
√

3

8
Bk+1,2i −

1 +
√

3

8
Bk+1,2i+1
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This can be done in constant parallel time (i.e., the parallel execution-time is independent of the number
of data-points).

• Iteration 1: The B4,∗ and the wavelet-coefficients, A4,∗ are all zero except for the following
cases:



B4,−1 =
1

256
−
√

3

256

B4,j =
4j + 3−

√
3

64
for 0 ≤ j ≤ 14

B4,15 =
219

256
+

29
√

3

256

B4,16 =1/8 +

√
3

8





A4,0 =− 1

256
−
√

3

256

A4,16 =
33

256
+

33
√

3

256

A4,17 =1/8−
√

3

8



Now we can calculate B3,∗ and A3,∗:
• Iteration 2:



B3,−2 =
1

512
−
√

3

1024

B3,−1 =
11

256
− 29

√
3

1024

B3,j =
8j + 9− 3

√
3

64
for 0 ≤ j ≤ 5

B3,6 =
423

512
− 15

√
3

1024

B3,7 =
121

256
+

301
√

3

1024

B3,8 =1/16 +

√
3

32





A3,−1 =
1

1024

A3,0 =
1

1024
− 5
√

3

512

A3,7 =− 33

1024

A3,8 =
5
√

3

512
− 65

1024
A3,9 =− 1/32



• Iteration 3:



B2,−2 =
35

2048
− 39

√
3

4096

B2,−1 =
259

2048
− 325

√
3

4096

B2,0 =
21

64
− 7
√

3

64

B2,1 =
37

64
− 7
√

3

64

B2,2 =
1221

2048
+

87
√

3

4096

B2,3 =
813

2048
+

1125
√

3

4096

B2,4 =
5

256
+

3
√

3

256





A2,−1 =
23

4096
−
√

3

512

A2,0 =− 27

4096
− 3
√

3

256

A2,3 =
15
√

3

512
− 295

4096

A2,4 =
315

4096
− 35

√
3

256

A2,5 =− 1

256
−
√

3

256
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FIGURE 5.3.5.

• Iteration 4:



B1,−2 =
455

8192
− 515

√
3

16384

B1,−1 =
2405

8192
− 2965

√
3

16384

B1,0 =
2769

8192
− 381

√
3

16384

B1,1 =
2763

8192
+

3797
√

3

16384

B1,2 =
7

1024
+

√
3

256





A1,−1 =
275

16384
− 15

√
3

2048

A1,0 =− 339

16384
− 67

√
3

4096

A1,2 =
531

16384
− 485

√
3

4096

A1,3 =− 1

512
−
√

3

1024



• Iteration 5: In this phase we complete the computation of the wavelet-coefficients: these are
the A0,∗ and the B0,∗ = A−1,∗.



B0,−2 =
4495

32768
− 5115

√
3

65536

B0,−1 =
2099

16384
− 3025

√
3

32768

B0,1 =
19

8192
+

11
√

3

8192





A0,−1 =
2635

65536
− 155

√
3

8192

A0,0 =
919
√

3

16384
− 5579

32768

A0,2 =− 5

8192
− 3
√

3

8192
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FIGURE 5.3.6.

We will examine the convergence of this wavelet-series. The A−1,∗ terms are:

S−1 =

(
4495

32768
− 5115

√
3

65536

)
D4(x+ 2) +

(
2099

16384
− 3025

√
3

32768

)
D4(x+ 1)

+

(
19

8192
+

11
√

3

8192

)
D4(x)

This expression is analogous to the constant term in a Fourier series.
It is plotted against f(x) in figure 5.3.2 — compare this (and the following plots with the partial-

sums of the Fourier series in figures 5.2.1 to 5.2.4 on page 141. If we add in the A0,∗-terms we get:

S0(x) = S−1(x) +

(
2635

65536
− 155

√
3

8192

)
W4(x+ 1) +

(
919
√

3

16384
− 5579

32768

)
W4(x)

−

(
5

8192
+

3
√

3

8192

)
W4(x− 2)

It is plotted against the original function f(x) in figure 5.3.2.
The next step involves adding in the A1,∗-terms

S1(x) = S0(x) +

(
275

16384
− 15

√
3

2048

)
W4(2x+ 1)−

(
339

16384
+

67
√

3

4096

)
W4(2x)

−

(
531

16384
− 485

√
3

4096

)
W4(2x− 2)−

(
1

512
+

√
3

1024

)
W4(2x− 3)

Figure 5.3.2 shows how the wavelet-series begins to approximate f(x).
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FIGURE 5.3.7.

The A3,∗ contribute:

S2(x) = S1(x) +

(
23

4096
−
√

3

512

)
W4(4x+ 1)−

(
27

4096
+

3
√

3

256

)
W4(4x)

+

(
15
√

3

512
− 295

4096

)
W4(4x− 3)

+

(
315

4096
− 35

√
3

256

)
W4(4x− 4)−

(
1

256
+

√
3

256

)
W4(4x− 5)

Incidentally, this series (and, in fact, Fourier series) converges in following sense
(we will not prove this)

(5.3.9) lim
n→∞

ˆ ∞
−∞
|f(x)− Sn(x)|2 dx→ 0

This, roughly speaking, means that the area of the space between the graphs of
f(x) and Sn(x) approaches 0 as n approaches ∞. This does not necessarily mean
that Sn(x) → f(x) for all values of x. It is interesting that there are points x0 where
limn→∞ Sn(x) 6= f(x) — x = 1 is such a point23. Equation (5.3.9) implies that the total
area of this set of points is zero. Luckily, most of the applications of wavelets only
require the kind of convergence described in equation (5.3.9).

We will conclude this section with a discussion of the converse of algorithm 5.3.1 —
it is an algorithm that computes partial sums of a wavelet-series, given the coefficients
{Aj,k}. Although there is a straightforward algorithm for doing this that involves sim-
ply plugging values into the functions w(2jx − k) and plugging these values into the
wavelet-series, there is also a faster algorithm for this. This algorithm is very similar to

23This is a well-known phenomena in Fourier series — it is called Gibbs phenomena.
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FIGURE 5.3.8.

the algorithm for computing the {Aj,k} in the first place. We make use of the recursive
definition of the scaling and wavelet-functions in equation (5.3.4) on page 164.

PROPOSITION 5.3.9. In the notation of 5.3.8 on page 171 define the following two sets of
matrices:

(1) L(r)∗i,j = ξi−2j . Here i runs from L(r) to U(r) and j runs from L(r− 1) to U(r− 1).
(2) H(r)∗i,j = (−1)jξ1−i+2j . Here i runs from L(r) + 1 to U(r) and j runs from L(r− 1)

to U(r − 1).

Also, let R(u, v) denote the v−u-dimensional subspace of R∞ spanned by coordinates u through
v.

Then

L(r)L(r)∗ =I on R(L(r − 1),U(r − 1))

H(r)H(r)∗ =I on R(L(r − 1) + 1,U(r − 1))

and

H(r)L(r)∗ =0

L(r)H(r)∗ =0
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PROOF. This follows directly from the orthogonality conditions (Condition O) on
the {ξi} on page 165. We get

(L(r)L(r)∗)i,k =
∑
j

ξj−2iξj−2k/2

=
∑
`

ξ`ξ`−2(k−i)/2 (Setting ` = j − 2i)

=

{
1 if i = k

0 otherwise
(by equation (5.3.8))

and

(H(r)H(r)∗)i,k =
∑
j

(−1)i+kξ1−j+2iξ1−j+2k/2

=
∑
`

(−1)i+kξ`ξ`+2(k−i)/2 (Setting ` = 1− j + 2i)

=
∑
`

(−1)i−kξ`ξ`+2(k−i)/2 (Setting ` = 1− j + 2i)

=

{
1 if i = k

0 otherwise
(by equation (5.3.8))

We also have

(H(r)L(r)∗)i,k =
∑
j

(−1)jξ1−i+2jξj−2k/2

Setting` = 1− j + 2i

=
∑
`

(−1)1−`ξ`ξ1−`+2(i−k)/2

Now we can pair up each term (−1)`ξ`ξ1−`+2(i−k)/2 with a term (−1)1−`ξ1−`+2(i−k)ξ`/2,
so the total is 0.

The remaining identity follows by a similar argument. �

This implies:

COROLLARY 5.3.10. The maps L(r)∗L(r) and H(r)∗H(r) satisfy the equations:

L(r)∗L(r)L(r)∗L(r) =L(r)∗L(r)

H(r)∗H(r)H(r)∗H(r) =H(r)∗H(r)

H(r)∗H(r)L(r)∗L(r) =0

L(r)∗L(r)H(r)∗H(r)) =0

L(r)∗L(r) +H(r)∗H(r) =I

The last equation applies to the space R(L(r) + 1,U(r)) (in the notation of 5.3.9).
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PROOF. The first four equations follow immediately from the statements of 5.3.9.
The last statement follows from the fact that

L(r)(L(r)∗L(r) +H(r)∗H(r)) =L

H(r)(L(r)∗L(r) +H(r)∗H(r)) =H

so that L(r)∗L(r) +H(r)∗H(r) is the identity on the images of L(r) and H(r). The span
of L(r) and H(r) is the entire space of dimension d2r(b− a) + R − 1e because the rank
of L(r) is d2r−1(b − a) + Re and that of d2r−1(b − a) + R − 1e and the ranks add up to
this. �

This leads to the reconstruction-algorithm for wavelets:

5.3.2. Given the output of algorithm 5.3.1 on page 171, there exists an algorithm for re-
constructing the inputs to that algorithm that O(n) sequential time, and O(lg n) parallel time
with a CREW-PRAM computer with O(n) processors.

• Input: The values of the Ak,j for −1 ≤ k ≤ p, and, for each value of k, j runs from
L(k) to U(k). There are approximately d2p+1(b− a) +Re such inputs.
• Output:The quantities {Bp+1,j}, where j runs from b2p+1ac to U(p + 1). There are
n = d2p+1(b− a) +Re such inputs (in the notation of 5.3.5 on page 169).

The algorithm amounts to a loop:
for k ← −1 to p do

Compute Bk+1,∗ ← L(k + 1)∗Bk,∗ +H(k + 1)∗Ak,∗
endfor

PROOF. This is a straightforward consequence of 5.3.9 above, and the main formu-
las of algorithm 5.3.1 on page 171. �

5.3.3. Discussion and Further reading. The defining coefficients for the
Daubechies wavelets W2n for n > 2 are somewhat complex — see [42] for a general
procedure for finding them. For instance, the defining coefficients for W6 are

c0 =

√
5 + 2

√
10

16
+ 1/16 +

√
10

16

c1 =

√
10

16
+

3
√

5 + 2
√

10

16
+

5

16

c2 =5/8−
√

10

8
+

√
5 + 2

√
10

8

c3 =5/8−
√

10

8
−
√

5 + 2
√

10

8

c4 =
5

16
− 3

√
5 + 2

√
10

16
+

√
10

16

c5 =1/16−
√

5 + 2
√

10

16
+

√
10

16
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In [150], Sweldens and Piessens give formulas for approximately computing coef-
ficients of wavelet-expansions:

Br,j = 2r
ˆ ∞
−∞

φ(2rx− j)f(x) dx

(defined in 5.3.4 on page 169). For the Daubechies wavelet W4(x) the simplest case of
their algorithm gives:

Br,j ≈ f

(
2j + 3−

√
3

2r+1

)
(the accuracy of this formula increases with increasing r). This is more accurate than
the estimates we used in the example that appeared in pages 172 to 176 (for instance,
it is exact if f(x) = x). We didn’t go into this approximation in detail because it would
have taken us too far afield.

The general continuous wavelet-transform of a function f(x) with respect to a
wavelet w(x), is given by

Tf (a, b) =
1√
a

ˆ ∞
−∞

w̄

(
x− b
a

)
f(x) dx

where ∗̄ denotes complex conjugation. The two variables in this function correspond
to the two indices in the wavelet-series that we have been discussing in this section.
This definition was proposed by Morlet, Arens, Fourgeau and Giard in [9]. It turns out
that we can recover the function f(x) from its wavelet-transform via the formula

f(x) =
1

2πCh

ˆ ∞
−∞

ˆ ∞
−∞

Tf (a, b)√
|a|

w

(
x− b
a

)
da db

where Ch is a suitable constant (the explicit formula for Ch is somewhat complicated,
and not essential for the present discussion).

The two algorithms 5.3.1 and 5.3.2 are, together, a kind of wavelet-analogue to the
FFT algorithm. In many respects, the fast wavelet transform and its corresponding re-
construction algorithm are simpler and more straightforward than the FFT algorithm.

Wavelets that are used in image processing are two-dimensional. It is possible to
get such wavelets from one-dimensional wavelets via the process of taking the tensor-
product. This amounts to making definitions like:

W (x, y) = w(x)w(y)

The concept of wavelets predate their “official” definition in [62].
Discrete Wavelet-transforms of images that are based upon tensor-products of the

Haar wavelet were known to researchers in image-processing — such transforms are
known as quadtree representations of images. See [71] for a parallel algorithm for image
analysis that makes use of wavelets. In [87], Knowles describes a specialized VLSI
design for performing wavelet transforms — this is for performing image-compression
“on the fly”. Wavelets were also used in edge-detection in images in [109].

Many authors have defined systems of wavelets that remain nonvanishing over the
entire x-axis. In every case, these wavelets decay to 0 in such a way that conditions like
equation 5.3.2 on page 164 are still satisfied. The wavelets of Meyer decay like 1/xk for
a suitable exponent k — see [112].
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See [17] for an interesting application of wavelets to astronomy — in this case, the
determination of large-scale structure of the universe.

EXERCISES.

3. Write a C* program to compute wavelet-coefficients using algorithm 5.3.1 on
page 171.

4. Improve the program above by modifying it to minimize roundoff-error in the
computations, taking into account the following two facts:

• We only compute wavelets at dyadic points.
• The coefficients {ξi} used in most wavelet-expansions involve rational num-

bers, and perhaps, a few irrational numbers with easily-described properties
— like

√
3.

5. Find a wavelet-series for the function

f(x) =

{
1 if 0 ≤ x ≤ 1/3

0 otherwise

6. Suppose that

Sn(x) =
n∑

i=−1

∞∑
j>−∞

Ak,jw(2kx− j)

is a partial sum of a wavelet-series, as in 5.3.2 on page 179. Show that this partial sum
is equal to

Sn(x) =
∞∑

j>−∞

Bn,jφ(2nx− j)

so that wavelet-series correspond to series of scaling functions.

5.4. Numerical Evaluation of Definite Integrals

5.4.1. The one-dimensional case. In this section we will discuss a fairly straight-
forward application of parallel computing. See § 7.1.1.1 on page 359 for related mate-
rial.

Suppose we have a definite integral

A =

ˆ b

a

f(x) dx

where f(x) is some function and a and b are numbers. It often happens that there is no
simple closed-form expression for the indefinite integralˆ

f(x) dx
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FIGURE 5.4.1. Rectangular approximation to a definite integral

and we are forced to resort to numerical methods. Formulas for numerically calcu-
lating the approximate value of a definite integral are sometimes called quadrature for-
mulas. The simplest of these is based upon the definition of an integral. Consider the
diagram in figure 5.4.1.

The integral is defined to be the limit of total area of the rectangular strips, as their
width approaches 0. Our numerical approximation consists in measuring this area
with strips whose width is finite. It is easy to compute the area of this union of rectan-
gular strips: the area of a rectangle is the product of the width and the height. If the
strips are aligned so that the upper right corner of each strip intersects the graph of the
function y = f(x), we get the formula:

(5.4.1) A ≈
n−1∑
i=0

b− a
n

f(a+ i(b− a)/n)

where n is the number of rectangular strips. The accuracy of the approximation in-
creases as n→∞.

In general, it is better to align the strips so that top center point intersects the graph
y = f(x). This results in the formula:

(5.4.2) A ≈
n−1∑
i=0

1

n
f(a+ i(b− a)/n+ 1/2n)

We can get a better approximation by using geometric figures that are rectangles
that lie entirely below the curve y = f(x) and are capped with triangles — see figure
5.4.2, where xi = a+(b−a)i/n. This is called the trapezoidal approximation to the definite
integral.

That this is better than the original rectangular approximation is visually apparent
— there is less space between the curve y = f(x) and the top boundary of the approx-
imating area. We will not give any other proof of its superiority here. The geometric
figure that looks like a rectangle capped with a triangle is called a trapezoid, and the
area of a trapezoid whose base is r and whose sides are s1 and s2 is

r(s1 + s2)

2
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FIGURE 5.4.2. Trapezoidal approximation to a definite integral

The area of the trapezoid from a+ i(b− a)/n to a+ (i+ 1)(b− a)/n is, thus:

(xi+1 − xi)
(

1

2
f(xi) +

1

2
f(xi+1)

)
If we add up the areas of all of the trapezoidal strips under the graph from a to b,

we get

A ≈
n−1∑
i=0

(
(a+

(i+ 1)(b− a)

n
)− (a+

i(b− a)

n
)

)
·
(

1

2
f(a+

i(b− a)

n
) +

1

2
f(a+

(i+ 1)(b− a)

n
)

)
=
b− a
n

n−1∑
i=0

(
1

2
f(a+

i(b− a)

n
) +

1

2
f(a+

(i+ 1)(b− a)

n
)

)

=
b− a
2n

f(a) +
b− a
2n

f(b) +
b− a
n

n−1∑
i=1

f

(
a+

i(b− a)

n

)
(5.4.3)

Notice that this formula looks very much like equation (5.4.1) on page 182, except
for the fact that the values at the endpoints are divided by 2. This equation is called
the Trapezoidal Rule for computing the definite integral. It is very easy to program on a
SIMD computer. Here is a C* program:
/* This is a C* program for Trapezoidal Integration. We assume given
* a function ’f’ that computes the function to be integrated.
* The number ’n’ will be equal to 8192 here. */

#include ¡stdio.h¿
#include ¡math.h¿

shape [8192]linear;
int N;
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double:current f(double:current); /* Header for a function to be integrated */

double:linear addval; /* The values that are actually added to the integral. */
double:linear xval; /* The values of the x-coordinate. */
double a,b,intval; /* The end-points of the interval of integration * /

void main()
{
intval=0;
N=8192;
with(linear)
xval=a+(b−a)*((double)pcoord(0))/((double)N);

with(linear)
where((pcoord(0)==0)|(pcoord(0)==N−1))
{
intval+=f(xval);
intval/=2.;
}
else
intval+=f(xval)/((double)N);
/* ’intval’ now contains the approximate value of the
* int(f(x),x=a..b). */
}

The execution-time of this algorithm is O(lg n).
In order to improve accuracy further, we can approximate the function being in-

tegrated by polynomials. Given k points (x1, y1), . . . , (xn, yn), we can find a unique
degree-k polynomial that passes through these k points. Consider the polynomials

pi(x) =
(x− x1)(x− x2) · · · (x− xi−1)(x− xi+1) · · · (x− xk)

(xi − x1)(xi − x2) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xk)

This is a degree-k polynomial with the property that:

pi(xj) =

{
0 if i 6= j

1 if i = j

It is not hard to see that

(5.4.4) p(x) = y1p1(x) + · · ·+ ykpk(x)

will pass though the k points (x1, y1), . . . , (xk, yk). This technique of finding a function
that fits a given set of data-points is known as Lagrange’s Interpolation formula. We
can develop integration algorithms that are based upon the idea of every sequence of
k successive points (xi, f(xi)), . . . , (xi+k−1, f(xi+k−1)) by a polynomial of degree-k − 1
and then integrating this polynomial exactly.
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In order to simplify this discussion somewhat, we will assume that a = 0 and b =
k − 1. This transformation is reasonable because:

ˆ b

a

f(x) dx =
(b− a)

k − 1

ˆ k−1

0

f

(
a+

(b− a)

k − 1
u

)
du =

(b− a)

k − 1

ˆ k−1

0

f̂(u) du

where f̂(u) = f

(
a+

(b− a)

k − 1
u

)
.

(5.4.5)
ˆ k−1

0

f̂(u) du = f̂(0)

ˆ k−1

0

Q0,k(u) du+ · · ·+ f̂(k − 1)

ˆ k−1

0

Qk−1,k(u) du

where

Qi,k(x) =
x(x− 1) · · · (x− (i− 1))(x− (i+ 1)) · · · (x− (k − 1))

i(i− 1) · · · (1)(−1) · · · (i− (k − 1))

We can compute the values of the integrals

Aj =

ˆ k−1

0

Qj,k(u) du

once and for all, and use the same values for integrations that have different values of
n.

If we want to integrate from a to b, we can transform this back to that range to get:

(5.4.6)
ˆ b

a

f(x) dx ≈ b− a
k − 1

·
k−1∑
i=0

f

(
a+

(b− a)i

n

)
Ai

with the same values of the {Aj} as before. This is known as the Newton-Cotes In-
tegration algorithm with degree-parameter k and k data-points. It is interesting to note
that, since Newton-Cotes Algorithm for a given value of k approximates f(x) by a
polynomial of degree k − 1 and exactly integrates these, it follows that

If f(x) is a polynomial of degree ≤ k − 1, Newton-Cotes Algorithm
(with degree-parameter k) computes the integral of f(x) exactly.

Now we will consider the case where we use n data-points, where n is some multiple
of k−1. We subdivide the range [a, b] into t = n/(k−1) subranges: [a, a+ (b−a)/t],[a+
(b− a)/t, a+ 2(b− a)/t], . . . , [a+ (t− 1)(b− a)/t, b]:

ˆ b

a

f(x) dx =

ˆ a+(b−a)/t

a

f(x) dx+ · · ·+
ˆ b

a+(t−1)(b−a)/t

f(x) dx
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Our integration formula for Newton-Cotes integration with degree-parameter k
and n data-points is:

(5.4.7)
ˆ b

a

f(x) dx ≈ (b− a)

n
·
{k−1∑
i=0

f

(
a+

(b− a)i

n

)
· Ai

+

2(k−1)∑
i=k−1

f

(
a+

(b− a)i

n

)
· Ai−(k−1)

+ · · ·

+
n∑

i=n−(k−1)

f

(
a+

(b− a)i

n

)
· Ai−n+(k−1)

}
We will conclude this section by discussing several integration algorithms that are

based upon this general approach.

CLAIM 5.4.1. The Trapezoidal Rule is a special case of Newton-Cotes algorithm
with k = 2.

If k = 2, we have the two coefficients A0 and A1 to compute:

A0 =

ˆ 1

0

Q0,2(x) dx =

ˆ 1

0

x− 1

−1
dx =

1

2

and

A1 =

ˆ 1

0

Q1,2(x) dx =

ˆ 1

0

x

+1
dx =

1

2
and it is not hard to see that equation (5.4.6) coincides with that in the Trapezoidal
Rule.

If k = 3 we get an algorithm called Simpson’s Rule:
Here

A0 =

ˆ 2

0

Q0,3(x) dx =

ˆ 2

0

(x− 1)(x− 2)

(−1)(−2)
dx =

1

3

A1 =

ˆ 2

0

Q1,3(x) dx =

ˆ 2

0

(x)(x− 2)

(1)(−1)
dx =

4

3

A2 =

ˆ 2

0

Q2,3(x) dx =

ˆ 2

0

(x)(x− 1)

(2)(1)
dx =

1

3

and our algorithm for the integral is:

5.4.1. Let f(x) be a function, let a < b be numbers, and let n be an even integer > 2. Then
Simpson’s Rule for approximately computing the integral of f(x) over the range [a, b] with n
data-points, is

(5.4.8)
ˆ b

a

f(x) dx ≈ b− a
3n
·
{
f(a) + f(b)

+
n−1∑
i=1

f(a+ (b− a)i/n) ·

{
2 if i is even
4 if i is odd

}



5.4. NUMERICAL EVALUATION OF DEFINITE INTEGRALS 187

If we let k = 4 we get another integration algorithm, called Simpson’s 3/8 Rule.
Here

A0 =
3

8

A1 =
9

8

A2 =
9

8

A3 =
3

8
and the algorithm is:

5.4.2. Let f(x) be a function, let a < b be numbers, and let n be a multiple of 3. Then
Simpson’s 3/8-Rule for approximately computing the integral of f(x) over the range [a, b] with
n data-points, is

(5.4.9)
ˆ b

a

f(x) dx ≈ 3(b− a)

8n
·
{
f(a) + f(b)

+
n−1∑
i=1

f(a+ (b− a)i/n) ·

{
2 if i mod 3 = 0

3 otherwise

}
The reader can find many other instances of the Newton-Cotes Integration Algo-

rithm in [1].

5.4.2. Higher-dimensional integrals. The methods of the previous section can eas-
ily be extended to multi-dimensional integrals. We will only discuss the simplest form
of such an extension — the case where we simply integrate over each coordinate via a
one-dimensional method. Suppose we have two one-dimensional integration formu-
las of the form ˆ b

a

g(x) dx ≈ b− a
n

n∑
i=0

Big

(
a+

i(b− a)

n

)
ˆ d

c

g(y) dy ≈ d− c
m

m∑
j=0

B′ig

(
c+

i(d− c)
m

)
where n is some fixed large number — for instance, in Simpson’s Rule B0 = Bn = 1/3,
B2k = 4, B2k+1 = 2, where 1 ≤ k < n/2. Given this integration algorithm, we get the
following two dimensional integration algorithm:

5.4.3. Let f(x, y) be a function of two variables and let R be a rectangular region with
a ≤ x ≤ b, c ≤ y ≤ d. Then the following equation gives an approximation to the integral of
f(x, y) over R:

(5.4.10)
ˆˆ

R

f(x, y) dx dy ≈

(b− a)(d− c)
nm

m∑
i=0

n∑
j=0

BiB
′
jf

(
a+

i(b− a)

n
, c+

j(d− c)
m

)
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Here, we are assuming that the two one dimensional-integrations have different
numbers of data-points, n, and m.

Here is a sample C* program for computing the integral
ˆˆ

R

1√
1 + x2 + y2

dx dy

where R is the rectangle with 1 ≤ x ≤ 2 and 3 ≤ y ≤ 4. We use Simpson’s 3/8-rule:
#include <stdio.h>
#include <math.h>
int NX=63; /* This is equal to n in the formula for
* a two−dimensional integral. */

int NY=126; /* This is equal to m in the formula for
* a two−dimensional integral. */

shape [64][128]twodim;
shape [8192]linear;

double:linear B,Bpr;
/* B corresponds to the coefficients Bi */
/* Bpr corresponds to the coefficients B′i */

double a,b,c,d;

/* This function computes the function to be integrated. */
double:twodim funct(double:twodim x,
double:twodim y)
{
return (1./sqrt(1.+x*x+y*y));
}

double:twodim coef,x,y;
double intval;
void main()
{
a=1.;
b=2.;
c=3.;
d=4.;

with(twodim) coef=0.;

/* Compute the coefficients in the boundary cases.
This is necessary because the formula for
Simpson’s 3/8−Rule has special values for the
coefficients in the high and low end of the range */
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[0]B=3.*(b−a)/(8.*(double)(NX));
[0]Bpr=3.*(d−c)/(8.*(double)(NY));
[NX−1]B=3.*(b−a)/(8.*(double)(NX));
[NY−1]Bpr=3.*(d−c)/(8.*(double)(NY));

/* Compute the coefficients in the remaining cases. */
with(linear)
where(pcoord(0)>0)
{
where((pcoord(0) % 3)==0)
{
B=6.*(b−a)/(8.*(double)(NX));
Bpr=6.*(d−c)/(8.*(double)(NY));
}
else
{
B=9.*(b−a)/(8.*(double)(NX));
Bpr=9.*(d−c)/(8.*(double)(NY));
};
};
with(twodim)
where((pcoord(0)<NX)|(pcoord(1)<NY))
{

/* Compute the x and y coordinates. */
x=(b−a)*((double)pcoord(0))/((double)NX);
y=(d−c)*((double)pcoord(1))/((double)NY);

/* Evaluate the integral. */
intval+=[pcoord(0)]B*[pcoord(1)]Bpr*funct(x,y);
};
printf("The integral is %g",intval);
}

5.4.3. Discussion and Further reading. There are several issues we haven’t ad-
dressed. In the one-dimensional case there are the Gaussian-type of integration formu-
las in which we form a sum likeˆ b

a

f(x) dx ≈ b− a
n

n∑
i=0

Cif(xi)

where the {xi} are not equally-spaced numbers. These algorithms have the property
that, like the Newton-Cotes algorithm, the Gauss algorithm with parameter k com-
putes the integral exactly when f(x) is a polynomial of degree ≤ k − 1. They have the
additional property that

The Gauss algorithm with degree-parameter k computes the integral of
f(x) with minimal error, when f(x) is a polynomial of degree ≤ 2k − 1.
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There are several variations of the Gauss integration algorithms:

(1) Gauss-Laguerre integration formulas. These compute integrals of the form
ˆ ∞

0

e−xf(x) dx

and are optimal for f(x) a polynomial.
(2) Gauss-Hermite integration formulas. They compute integrals of the form

ˆ ∞
−∞

e−x
2

f(x) dx

(3) Gauss-Chebyshev (Gauss-Chebyshev) integration formulas. These are for in-
tegrals of the form ˆ 1

−1

f(x)√
1− x2

dx

See [43] for more information on these algorithms. The book of tables, [1],
has formulas for all of these integration algorithms for many values of the
degree-parameter.

(4) Wavelet integration formulas. In [150], Sweldens and Piessens give formulas
for approximately computing integrals like

Br,j = 2r
ˆ ∞
−∞

φ(2rx− j)f(x) dx

which occur in wavelet expansions of functions — see 5.3.4 on page 169. For
the Daubechies wavelet W4(x) the simplest form of their algorithm gives:

Br,j ≈ f

(
2j + 3−

√
3

2r+1

)

(the accuracy of this formula increases as r increases.

In multi-dimensional integration we have only considered the case where the region
of integration is rectangular. In many cases it is possible to transform non-rectangular
regions of integration into the rectangular case by a suitable change of coordinates. For
instance, if we express the coordinates xi in terms of another coordinate system x′i we
can transforms integrals over the xi into integrals over the x′i via:

ˆ
D

f(x1, . . . , xt) dx1 . . . dxt =

ˆ
D′
f(x1, . . . , xt) det(J) dx′1 . . . dx

′
t

where det(J) is the determinant (defined in 5.1.8 on page 101) of the t × t matrix J
defined by

Ji,j =
∂xi
∂x′j
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For example, if we want to integrate over a disk, D, of radius 5 centered at the
origin, we transform to polar coordinates — x = r cos(θ), y = r sin(θ), and

J =


∂x

∂r

∂x

∂θ
∂y

∂r

∂y

∂θ

 =

(
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)

and det(J) = r
(
sin2(θ) + cos2(θ)

)
= r. We get

ˆˆ
D

f(x, y) dx dy =

ˆ 5

0

ˆ 2π

0

f(r cos(θ), r sin(θ)) · r dr dθ

We can easily integrate this by numerical methods because the new region of inte-
gration is rectangular: 0 ≤ r ≤ 5, 0 ≤ θ ≤ 2π. Volume I of [117] lists 11 coordinate
systems that can be used for these types of transformations. High-dimensional numer-
ical integration is often better done using Monte Carlo methods — see § 7.1.1.1 on page
359 for a description of Monte Carlo methods.

EXERCISES.

1. Write a C* program that implements Simpson’s 3/8-Rule (using equation (5.4.9)
on page 187). How many processors can be used effectively? Use this program to
compute the integral: ˆ 4

0

1√
1 + |2− x3|

dx

2. Derive the formula for Newton-Cotes Algorithm in the case that k = 5.

3. Numerically evaluate the integral
ˆˆ

D

sin2(x) + sin2(y) dx dy

where D is the disk of radius 2 centered at the origin.

4. The following integral is called the elliptic integral of the first kind
ˆ 1

0

dx√
(1− x2)(1− k2x2)

Write a C* program to evaluate this integral for k = 1/2. The correct value is
1.6857503548 . . . .
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5.5. Partial Differential Equations

We conclude this chapter with algorithms for solving partial differential equations.
We will focus on second-order partial differential equations for several reasons:

(1) Most of the very basic partial differential equations that arise in physics are of
the second-order;

(2) These equations are sufficiently complex that they illustrate many important
concepts;

We will consider three broad categories of these equations:
• Elliptic equations.
• Parabolic equations.
• Hyperbolic equations.

Each of these categories has certain distinctive properties that can be used to solve it
numerically.

In every case we will replace the partial derivatives in the differential equations
by finite differences. Suppose f is a function of several variables x1, . . . , xn. Recall the
definition of ∂f/∂xi:

∂f(x1, . . . , xn)

∂xi
= lim

δ→0

f(x1, . . . , xi + δ, . . . , xn)− f(x1, . . . , xn)

δ

The simplest finite-difference approximation to a partial derivative involves picking a
small nonzero value of δ and replacing all of the partial derivatives in the equations
by finite differences. We can solve the finite-difference equations on a computer and
hope that the error in replacing differential equations by difference equations is not too
great.

We initially get

∂2f(x1, . . . , xn)

∂x2
i

In general we will want to use the formula

(5.5.1)
∂2f(x1, . . . , xn)

∂x2
i

≈ f(x1, . . . , xi + δ, . . . , xn)− 2f(x1, . . . , xn) + f(x1, . . . , xi − δ, . . . , xn)

δ2

—this is also an approximate formula for the second-partial derivative in the sense that
it approaches ∂2f(x1, . . . , xn)/∂x2

i as δ → 0. We prefer it because it is symmetric about
x.

All of the differential equations we will study have an expression of the form

∇2ψ =
∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

+ · · ·+ ∂2ψ

∂x2
n

in the n-dimensional case. We will express this in terms of finite differences. Plugging
the finite-difference expression for ∂2f(x1, . . . , xn)/∂x2

i into this gives:

(5.5.2) ∇2ψ =

(
ψ(x1+δ,...,xn)+ψ(x1−δ,x2,...,xn)+···+ψ(x1,...,xn+δ)

+ψ(x1,...,xn−δ)−2nψ(x1,...,xn)

)
δ2
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This has an interesting interpretation: notice that

(5.5.3) ψaverage =

(
ψ(x1+δ,...,xn)+ψ(x1−δ,x2,...,xn)+···

+ψ(x1,...,xn+δ)+ψ(x1,...,xn−δ)

)
2n

can be regarded as the average of the function-values ψ(x1 + δ, . . . , xn),
ψ(x1 − δ, x2, . . . , xn),. . . . Consequently, ∇2ψ/2n can be regarded as the difference
between the value of ψ at a point and the average of the values of ψ at neighboring
points.

5.5.1. Elliptic Differential Equations.
5.5.1.1. Basic concepts. Elliptic partial differential equations are equations of the

form

(5.5.4) A1
∂2ψ

∂x2
1

+ · · ·+ An
∂2ψ

∂x2
2

+B1
∂ψ

∂x1

+ · · ·+Bn
∂ψ

∂xn
+ Cψ = 0

where A1,. . . ,An, B1,. . . ,Bn, and C are functions of the x1,. . . ,xn that all satisfy the con-
ditions Ai ≥ m, Bi ≥M , for some positive constants m and M , and C ≤ 0. It turns out
that, when we attempt the numerical solution of these equations, it will be advanta-
geous for them to be in their so-called self-adjoint form. The general self-adjoint elliptic
partial differential equation is

(5.5.5)
∂

∂x1

(
A′1

∂ψ

∂x1

)
+ · · ·+ ∂

∂xn

(
A′n

∂ψ

∂xn

)
+ C ′ψ = 0

where A′1,. . . ,A′n, and C ′ are functions of the x1,. . . ,xn that all satisfy the conditions
A′i ≥ M , for some positive constant M and C ′ ≤ 0. The numerical methods presented
here are guaranteed to converge if the equation is self-adjoint. See § 5.5.1.2 on page 203
for a more detailed discussion of this issue.

Here is an elliptic differential equation called the Poisson Equation — it is fairly
typical of such equations:

(5.5.6) ∇2ψ(x1, . . . , xn) = σ(x1, . . . , xn)

where ψ(x1, . . . , xn) is the unknown function for which we are solving the equation,
and σ(x1, . . . , xn) is some given function. This equation is clearly self-adjoint.

We will focus upon one elliptic partial differential equation that occurs in physics
— it is also the simplest such equation that is possible. The following partial differential
equation is called Laplace’s equation for gravitational potential in empty space24:

(5.5.7) ∇2ψ(x1, . . . , xn) = 0

24It can also be used for electrostatic potential of a stationary electric field.
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In this case ψ(x, y, z) is gravitational potential. This is a quantity that can be used
to compute the force of gravity by taking its single partial derivatives:

Fx = −Gm∂ψ

∂x
(5.5.8)

Fy = −Gm∂ψ

∂y
(5.5.9)

Fz = −Gm∂ψ

∂z
(5.5.10)

where G is Newton’s Gravitational Constant (= 6.673 × 10−8cm3/g sec2) and m is the
mass of the object being acted upon by the gravitational field (in grams).

Partial differential equations have an infinite number of solutions — we must select
a solution that is relevant to the problem at hand by imposing boundary conditions.
We assume that our unknown function ψ satisfies the partial differential equation in
some domain, and we specify the values it must take on at the boundary of that domain.
Boundary conditions may take many forms:

(1) If the domain of solution of the problem is finite (for our purposes, this means
it is contained within some large but finite cube of the appropriate dimension),
the boundary conditions might state that ψ(boundary) takes on specified val-
ues.

(2) If the domain is infinite, we might require that ψ(x, y, z)→ 0 as x2 + y2 + z2 →
∞.

Here is an example:

EXAMPLE 5.5.1. Suppose that we have a infinitely flexible and elastic rubber sheet
stretched over a rectangle in the x-y plane, where the rectangle is given by

0 ≤ x ≤ 10

0 ≤ y ≤ 10

Also suppose that we push the rubber sheet up to a height of 5 units over the point
(1, 2) and push it down 3 units over the point (7, 8). It turns out that the height of the
rubber sheet over any point (x, y) is a function ψ(x, y) that satisfies Laplace’s equation,
except at the boundary points. We could compute this height-function by solving for
ψ where:

• ψ satisfies the two-dimensional form of Laplace’s equation

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0

for

0 < x < 10

0 < y < 10

(x, y) 6= (1, 2)

(x, y) 6= (7, 8)

• (Boundary conditions). ψ(0, y) = ψ(x, 0) = ψ(10, y) = ψ(x, 10) = 0, and
ψ(1, 2) = 5, ψ(7, 8) = −3.
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FIGURE 5.5.1. Digitized form of oval-shaped region

There is an extensive theory of how to solve partial differential equations analyt-
ically when the domain has a geometrically simple shape (like a square or circle, for
instance). This theory essentially breaks down for the example above because the do-
main is very irregular — it is a square minus two points.

If we plug the numeric approximation to∇2ψ into this we get:

(5.5.11)

(
ψ(x+δ,y,z)+ψ(x−δ,y,z)+ψ(x,y+δ,z)+ψ(x,y−δ,z)

+ψ(x,y,z+δ)+ψ(x,y,z−δ)−6ψ(x,y,z)

)
δ2

= 0

We can easily rewrite this as:

(5.5.12) ψ(x, y, z) =

(
ψ(x+ δ, y, z) + ψ(x− δ, y, z) + ψ(x, y + δ, z)

+ψ(x, y − δ, z) + ψ(x, y, z + δ) + ψ(x, y, z − δ)

)
6

This essentially states that the value of ψ at any point is equal to the average of
its values at certain neighboring points25. This implies that a solution to this equation
cannot have a maximum or minimum in the region where the equation is satisfied (we
usually assume that it isn’t satisfied on the boundary of the region being considered,
or at some selected points of that region). In any case we will use this form of the
numerical equation to derive an algorithm for solving it. The algorithm amounts to:

(1) Overlay the region in question with a rectangular grid whose mesh size is equal
to the number δ. This also requires “digitizing” the boundary of the original
region to accommodate the grid. We will try to compute the values of the
function ψ at the grid points.

(2) Setψ to zero on all grid points in the interior of the region in question, and to the
assigned boundary values on the grid points at the boundary (and, possibly at
some interior points). See figure 2.

Here the “digitized” boundary points have been marked with small circles.
(3) Solve the resulting finite-difference equations for the values of ψ on the grid-

points.
This procedure works because:

25 This also gives a vague intuitive justification for the term “elliptic equation” — the value of ψ at
any point is determined by its values on an “infinitesimal sphere” (or ellipsoid) around it.
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1 2 3

4 5 6

c1 c2 c3 c4 c5

c6

c7

c8c9c10c11c12

c13

c14

FIGURE 5.5.2. A digitized region with interior points numbered

The finite-difference equation is nothing but a system of linear equations for ψ(x, y, z)
(for values of x, y, and z that are integral multiples of δ). This system is very large —
if our original grid was n × m, we now have nm − b equations in nm − b unknowns,
where b is the number of boundary points (they are not unknowns). For instance, if
our digitized region is a 4 × 5 rectangular region, with a total of 14 boundary points,
we number the 6 interior points in an arbitrary way, as depicted in figure 5.5.1.1.

This results in the system of linear equations:

(5.5.13)


1 −1/4 0 −1/4 0 0
−1/4 1 0 0 −1/4 0

0 −1/4 1 0 0 −1/4
−1/4 0 0 1 −1/4 0

0 −1/4 0 −1/4 1 −1/4
0 0 −1/4 0 −1/4 1

 ·

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6



=


c2/4 + c14/4

c3/4
c4/4 + c6/4
c11/4 + c13/4

c10/4
c7/4 + c9/4


Here the c’s are the values of ψ on the boundary of the region. This example was a
small “toy” problem. In a real problem we must make δ small enough that the finite
differences are a reasonable approximation to the original differential equation. This
makes the resulting linear equations very large. For instance in example 5.5.1 on page
194 above, if we make δ = .1, we will almost get 10000 equations in 10000 unknowns. It
is not practical to solve such equations by the usual numerical methods (like Gaussian
elimination, for instance). We must generally use iterative methods like those discussed
in § 5.1.2.3 (on page 112). We will consider how to set up the Jacobi method to solve
the numerical form of Laplace’s equation.

Suppose we have a finite-difference form of Laplace’s equation defined on a grid,
as described above. The function ψ is now a vector over all of the grid-points — for
instance in example 5.5.1 on page 194 with δ = .1, ψ has 10000 components. Let Aaverage
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be the matrix such that
Aaverage · ψ(at a grid-point)

is equal to the average of the values of ψ at the four adjacent grid-points. We will not
have to write down what this huge array is explicitly (equation (5.5.13) on page 196
gives it in a simple case). We only need to know that each row of Aaverage has at most 4
non-zero entries, each equal to 1/4. Laplace’s equation says that

∇2ψ ≈ 4

δ2

(
Aaverage · ψ − ψ

)
= 0

or
Aaverage · ψ − ψ = 0

or
I · ψ − Aaverage · ψ = 0

(where I is the identity matrix) or
A · ψ = 0

whereA = I−Aaverage. Now we apply the Jacobi method, described in § 5.1.2.3 on page
112. The array of diagonal elements, D(A) = I , so D(A)−1 = I , Z(A) = I −D(A)−1A =
Aaverage and the Jacobi iteration scheme amounts to

ψ(n+1) = Aaverage · ψ(n)

Our numerical algorithm is, therefore,

5.5.1. The n-dimensional Laplace equation can be solved by performing the steps: Digitize
the region of solution, as in figure 5.5.1.1 on page 196 (using an n-dimensional lattice).
ψ ← 0 at all grid-points

(of the digitized region of solution),
except at boundary points for which ψ
must take on other values
(for instance points like (1, 2) and (7, 8)
in example 5.5.1 on page 194.)

for i← 1 until ψ doesn’t change appreciably
do in parallel

if grid-point p is not a boundary point
ψ(p)← average of values of ψ at 2n adjacent

grid-points.

Our criterion for halting the iteration is somewhat vague. We will come back to
this later. Essentially, we can just test whether ψ has changed over a given iteration
and halt the iteration when the total change in ψ is sufficiently small. The program
on page 198 totals up the absolute value of the change in ψ in each iteration and halts
when this total is ≤ 2.

It is possible to prove that when the original partial differential equation was self-
adjoint, or if the quantity δ is sufficiently small, this iteration-procedure converges26 to

26The question of such convergence was discussed in 5.1.33 on page 113. In § 5.5.1.3 on page 205
we explore the rate of convergence of this iteration-scheme. The self-adjointness of the original partial
differential equation implies that the criteria in that result are satisfied.
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a solution of finite-difference equations — and an approximate solution to the original
partial differential equation (at least at the grid-points). This is known as a relaxation
method for solving the set of finite-difference equations. The difference-equations that
arise as a result of the procedure above turn out to have matrices that are dominated
by their main diagonal (a necessary condition for the Jacobi method to converge). The
molecule-structure depicted above turns out to be very significant in finding consistent-
ordering schemes for speeding up the Jacobi iteration technique for solving these finite-
difference equations.

The term “relaxation method” came from a vaguely similar problem of computing
the shape of a membrane hanging from its boundary under its own weight. The solu-
tion was found by first assuming a upward force that opposes gravity and makes the
membrane flat. This restoring force is then “relaxed”, one grid-point at a time until the
membrane hangs freely.

In many cases the convergence of this procedure is fairly slow — it depends upon
the spectral radius of the matrix of the system, when it is written in a form like equation
(5.5.13) — see 5.1.34 on page 113.

We will present a GPU program for implementing the relaxation algorithm in the
two-dimensional case. The region under consideration consists of the rectangle −2 ≤
x ≤ +2,−4 ≤ y ≤ +4. We assign one processor to each grid-point. The size of the mesh,
δ, will be 1/16 — this is dictated by the number of processors available to perform the
computation. The smaller δ is the more accurate the solution. Each processor has float-
variables x and y containing the coordinates of its grid point, float-variables psi, oldpsi
and diff containing, respectively, the value of ψ in the current iteration, the value in the
last iteration, and the difference between them. There is also and int-variable isfixed
that determines whether the iteration is to be performed on a given grid-point. In
general, we will not perform the calculations on the boundary grid-points — at these
points the value of ψ is assigned and fixed.

When the program is run, it performs the computation that replaces ψ by ψaverage
and computes the difference. This difference is totaled into the (mono) variable totald-
iff and the computation is stopped when this total difference is less than some pre-
determined amount (2 in this case):

We will want to speed up this iteration-scheme. We can do so by using the SOR or
consistently-ordered methods described in § 5.1.2.5 on page 118. Our iteration formula
is now:

ψ(n+1) = (1− µ) · ψ(n) + µ · Aaverage · ψ(n)

where µ is a suitable over-relaxation coefficient. We will delay considering the question
of what value we should use for µ for the time being. Recall that the SOR method per
se is a sequential algorithm. We must find a consistent-ordering scheme in order to
parallelize it.

At each grid-point the two-dimensional form of equation (5.5.12) relates each grid-
point with its four neighbors. We express this fact by saying the molecule of the finite-
difference equations is what is depicted in figure 5.5.3:

The interpretation of consistent-ordering schemes in terms of graph-coloring in
5.1.44 on page 122 is very significant here. Our main result is:
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FIGURE 5.5.3.

PROPOSITION 5.5.2. Given finite-difference equations representing elliptic differential
equations, with the molecule shown in figure 5.5.3, there exists a consistent-ordering with
only two sets.

These two sets turn out to be
(1) S1 = grid-points for which the sum of indices is even; and
(2) S2 = grid-points for which the sum of indices is odd.

PROOF. Suppose that our digitized region of solution is an n×m grid, as discussed
above, and we have b boundary points (at which the values of ψ are known. The fact
that the molecule of the finite-difference equations is what is depicted in 5.5.3 implies
that however we map the digitized grid into linear equations, two indices (i.e., rows of
the matrix of the linear equations) will be associated in the sense of statement 1 of 5.1.40
on page 119, if and only if they are neighbors in the original grid. We want to find a
consistent ordering vector in the sense of statement 3 of that definition. Recall that such
an ordering vector γ must satisfy:

(1) γi − γj = 1 if i and j are associated and i > j;
(2) γi − γj = −1 if i and j are associated and i < j;

Let us map the grid-points of our digitized region into the array in the following way:
• Map all grid-points with the property that the sum of the coordinates is even

into the lower half of the dimensions of the array.
• Map all grid-points with the property that the sum of the coordinates is odd

into the upper half of the dimensions of the array.
Figure 5.5.1.1 shows this in the case where n = 5 and m = 7.

The numbers in circles are the row-number of the that grid-point in the matrix that
represent the difference equations. If we go back to our original grid, we see that each
grid point is only associated (in the sense of statement 1 of 5.1.40 on page 119) with its
four neighbors. This implies that the following is a valid consistent-ordering vector for
our problem:

γi =

{
1 if the sum of grid-coordinates is even
2 if the sum of grid-coordinates is odd

�
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FIGURE 5.5.4. Numbering the grid-points for the odd-even order-
ing vector

We can now apply 5.1.41 on page 120 to solve this as a consistently-ordered system of
linear equations. We essentially perform the update-computations on the processors
whose coordinates have the property that their sum is even (these turn out to be the
elements for which the order-vector is equal to 1) and then (in a separate phase) on the
processors such that the sum of the coordinates is odd — these represent the elements
of the array with an ordering vector27 that is equal to 2.

There is an extensive theory on how one determines the best value of µ to use. The
Ostrowski-Reich Theorem and the theorem of Kahan states that this overrelaxation

parameter must satisfy the inequality 0 < µ < 2, in order for this SOR-algorithm to
converge — see 5.1.39 on page 119. For the Laplace Equation over a region Ω with the
kind of boundary conditions we have discussed (in which values of ψ are specified on
the boundary), Garabedian (see [56]) has given a formula that estimates the optimal
value to use for µ:

(5.5.14) µ ≈ 2

1 + πδ/
√
A(Ω)

where A(Ω) is the area of the region Ω. Compare this formula of Garabedian with the
formula in 5.1.42 on page 122. Compare this to equation (5.5.26) on page 211 — in
that section we derive estimates of the rate of convergence of the Jacobi method. The
second statement of 5.1.42 implies that the spectral radius of the effective matrix used
in the SOR method is µ− 1 or

ρ(Lµ) =

√
A(Ω)− πδ√
A(Ω) + πδ

The rate of convergence is

(5.5.15) − ln(ρ(Lµ)) =
2πδ√
A(Ω)

+O(δ3)

This implies that the execution time of the algorithm (in order to achieve a given
degree of accuracy) is O(1/δ).

27See statement 3 on page 120 of 5.1.40 for a definition of this term.
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FIGURE 5.5.5. Solution of Laplace’s Equation

In the case of the problem considered in the sample program above, we get µ =
1.932908695 . . . See algorithm 1 on the following page is a CUDA program implement-
ing this.

This program simply prints out some of the data-points produced by the program.
One can use various graphics-packages to generate better displays. Figure 5.5.1.1
shows the result of using matlab to produce a 3 dimensional graph in the case where
ψ was constrained on the boundary to 0 and set to a positive and negative value at
some interior points.

The most efficient implementations of this algorithm involve so-called multigrid
methods. These techniques exploit the fact that the algorithm converges quickly if the
mesh-size is large, but is more accurate (in the sense of giving a solution to the original
differential equation) if the mesh-size is small. In multigrid methods, the solution-
process is begun with a large mesh-size, and the result is plugged into28 a procedure
with a smaller mesh-size. For instance, we could halve the mesh-size in each phase
of a multigrid program. Each change of the mesh-size will generally necessitate a re-
computation of the optimal overrelaxation coefficient — see equation (5.5.14) on page
200.

As has been mentioned before, even an exact solution to the difference equations
will not generally be an exact solution to the differential equations. To get some idea of
how accurate our approximation is, the previous program has boundary conditions for
which the exact solution is known: ψ(x, y) = x + y. Other exact solutions of the Laplace
equation are: ψ(x, y) = xy, ψ(x, y) = x2 − y2, and ψ(x, y) = log((x − a)2 + (y − b)2),
where a and b are arbitrary constants. One important way to get solutions to Laplace’s
equation is to use the fact (from the theory of complex analysis) that the real and the
imaginary parts of any analytic complex-valued function satisfy the two dimensional
Laplace equation. In other words if f(z) is a complex analytic function (like ez or z3,
for instance) and we write f(x + iy) = u(x, y) + iv(x, y), then u(x, y) and v(x, y) each
satisfy Laplace’s equation.

If the accuracy of these solutions is not sufficient there are several possible steps to
take:

28I.e., used as the initial approximation to a solution.
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Algorithm 1 CUDA Program to implement SOR

/ / Thread b l o c k s i z e
# define BLOCK SIZE 8
/ / Forward d e c l a r a t i o n o f t h e s o r k e r n e l

g l o b a l void sor ( f l o a t [ ] [ 1 0 0 ] ,
f l o a t [ ] [ 1 0 0 ] ,
f l o a t [ ] [ 1 0 0 ] ,
f l o a t ,
i n t ) ;

/ / e v e r y program you w r i t e w i l l have t h e f o l l o w i n g two l i n e s :
# include <iostream>

# include <fstream> / / ou tp ut c o n s t r u c t o r f o r named f i l e s .
using namespace std ;
i n t main ( )

{
f l o a t ∗newgrid ; / / a p o i n t e r t o t h e d a t a we w i l l compute wi th
f l o a t ∗oldgrid ; / / t h i s h o l d s t h e p r e v i o u s g r i d v a l u e
f l o a t ∗change ; / / t h i s h o l d s t h e amount t h e v a l u e changed

/ / in an i t e r a t i o n
f l o a t z [ 1 0 0 ] [ 1 0 0 ] = {{0}} ; / / We s t a r t wi th a 100 x100

/ / ma t r ix e q u a l t o 0 .
f l o a t to ta l change [ 1 0 0 ] [ 1 0 0 ] ;
f l o a t changeamt = 0 ;
s i z e t s i z e = 100∗100 ∗ s i ze of ( f l o a t ) ;
cudaMalloc ( ( void∗∗)& oldgrid , s i z e ) ; / / a l l o c a t e t h e d a t a

/ / on t h e d e v i c e
cudaMalloc ( ( void∗∗)&newgrid , s i z e ) ;
cudaMalloc ( ( void∗∗)&change , s i z e ) ;

/ / copy t h e a r r y o f 0 ’ s t o t h e d e v i c e
cudaMemcpy ( newgrid , z , s ize ,

cudaMemcpyHostToDevice ) ;
/ / s e t up cuda p a r a m e t e r s

dim3 dimBlock ( BLOCK SIZE , BLOCK SIZE ) ;
dim3 dimGrid (100/ dimBlock . x , 100 / dimBlock . y ) ;

/ / main l o o p
for ( i n t i t e r a t i o n =0; i t e r a t i o n < 5000 ; i t e r a t i o n ++)

{
/ / l aunch t h e k e r n e l
/ / n o t e t h a t ( f l o a t ( ∗ ) [ 1 0 0 ] ) i s a TYPECAST, c a u s i n g
/ / one t y p e t o be r e g a r d e d as a n o t h e r

sor<<<dimGrid , dimBlock>>>(
( f l o a t ( ∗ ) [ 1 0 0 ] ) oldgrid ,
( f l o a t ( ∗ ) [ 1 0 0 ] ) newgrid ,
( f l o a t ( ∗ ) [ 1 0 0 ] ) change ,
1 ,
i t e r a t i o n ) ;

/ / We a r e us ing 1 . 9 9 as t h e over−r e l a x a t i o n c o e f f i c i e n t
/ / wa i t f o r a l l t h e t h r e a d s t o c o m p l e t e

cudaThreadSynchronize ( ) ;
}

/ / Read t h e r e s u l t from d e v i c e memory
cudaMemcpy ( z , newgrid , s ize ,

cudaMemcpyDeviceToHost ) ;
/ / g e t some i d e a o f how b i g t h e l a s t i t e r a t i o n was

cudaMemcpy ( tota lchange , change , s ize ,
cudaMemcpyDeviceToHost ) ;

/ / F r e e d e v i c e memory
cudaFree ( newgrid ) ;
cudaFree ( oldgrid ) ;
cudaFree ( change ) ;

/ / add up t h e s i z e o f t h e l a s t i t e r a t i o n
/ / t h i s g i v e s some i d e a o f how w e l l t h e
/ / a l g o r i t h m c o n v e r g e d

for ( i n t i =0 ; i <100; i ++)
for ( i n t j =0 ; j <100; j ++)

changeamt += abs ( to ta l change [ i ] [ j ] ) ;
cout << ”The l a s t i t e r a t i o n made a t o t a l change\n” ;
cout << ” = ”<< changeamt << endl ;

/ / Now w r i t e a f i l e named ’ l a p l a c e . t x t ’ wi th t h e r e s u l t s .
/ / open t h e ou tp ut s t r e am

ofstream o u t f i l e ( ” l a p l a c e . t x t ” ) ;
/ / now w r i t e i t !

for ( i n t i =0 ; i <100; i ++)
{
for ( i n t j =0 ; j <100; j ++)

o u t f i l e <<z [ i ] [ j ]<<” ” ;
o u t f i l e << ”\n” ;
}

/ / Th i s f o r m a t s i t t o be r e a d i n t o Maple v i a
/ / z := r e a d d a t a (” l a p l a c e . t x t ” , 1 0 0 ) :
/ / A:= c o n v e r t ( z , Array ) :
/ /
/ / Th i s d a t a can be p l o t t e d v i a ( f o r i n s t a n c e ) :
/ / func : = ( x , y)−>A[ f l o o r (10∗ x )+1 , f l o o r (10∗ y ) + 1 ] ;
/ / p l o t 3 d ( ’ func ( x , y ) ’ , x = 0 . . 9 . 9 , y = 0 . . 9 . 9 ) ;

o u t f i l e . c l o s e ( ) ; / / c l o s e t h e f i l e
/ / we don ’ t need ’ e n d l ’

}
/ / Where t h e main a c t i o n t a k e s p l a c e

g l o b a l void sor ( f l o a t B [ ] [ 1 0 0 ] ,
f l o a t A[ ] [ 1 0 0 ] ,
f l o a t C[ ] [ 1 0 0 ] ,
f l o a t mu,
i n t i t e r a t i o n )

{
/ / Compute who we a r e . . .

i n t row = blockIdx . y ∗ blockDim . y + threadIdx . y ;
i n t c o l = blockIdx . x ∗ blockDim . x + threadIdx . x ;
f l o a t temp ;

/ / t h e Gauss−S e i d e l p r o c e s s i s c o m p l e t e on even i t e r a t i o n s
i f ( i t e r a t i o n % 2 == 0)

{
B [ row ] [ c o l ]=A[ row ] [ c o l ] ;
}

/ / Check t h a t we ’ r e in t h e r e c t a n g l e
i f ( row > 99 | | c o l > 99) return ;

/ / A=0 on r e c t a n g l e−boundary
i f ( row == 0 | |

c o l == 0 | |
row == 99 | |
c o l== 99)

{
A[ row ] [ c o l ] = 0 ;
return ;
}

/ / F ix two v a l u e s o f A
i f ( row == 15 && c o l == 10)

{
A[ row ] [ c o l ] = 5 ;
return ;
}

i f ( row == 70 && c o l == 50)
{
A[ row ] [ c o l ]=−5;
return ;
}

/ / I f t h e p a r i t y o f t h e i t e r a t i o n i s r i g h t , do i t !
i f ( ( ( row+ c o l ) % 2) == ( i t e r a t i o n % 2 ) )

A[ row ] [ c o l ] = (A[ row +1 ] [ c o l ]+A[ row−1][ c o l ]
+A[ row ] [ c o l +1]+A[ row ] [ col −1])/4;

/ / on even i t e r a t i o n s , a
/ / a Gauss−S e i d e l p h a s e i s c o m p l e t e
/ /−−− we can over−r e l a x .

i f ( i t e r a t i o n % 2 == 0)
{

/ / over−r e l a x !
temp = mu∗A[ row ] [ c o l ] + (1−mu)∗B [ row ] [ c o l ] ;
A[ row ] [ c o l ]=temp ;
C[ row ] [ c o l ]=A[ row ] [ c o l ]−B [ row ] [ c o l ] ;
}

}
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(1) Use a smaller mesh size. In the sample programs given we would have to
increase the number of threads.

(2) Use a better finite-difference approximation of the partial derivatives.

5.5.1.2. Self-adjoint equations. Now we will consider how to convert many different
elliptic differential equations into self-adjoint equations. Our solution-techniques in
this case will be minor variations on the methods described in the previous section.

Throughout this section, we will assume given an elliptic partial differential equa-
tions:

(5.5.16) A1
∂2ψ

∂x2
1

+ · · ·+ An
∂2ψ

∂x2
2

+B1
∂ψ

∂x1

+ · · ·+Bn
∂ψ

∂xn
+ Cψ = 0

where A1,. . . ,An, B1,. . . ,Bn, and C are functions of the x1,. . . ,xn that all satisfy the con-
ditions Ai ≥ m, Bi ≥ M , for some positive constant M and C ≤ 0. Our integrat-
ing factor is a function Φ(x1, . . . , xn), and we will write ψ(x1, . . . , xn) = Φ(x1, . . . , xn) ·
u(x1, . . . , xn).

This equation is self-adjoint if
∂Ai
∂xi

= Bi

for all i = 1, . . . , n. If these conditions are not satisfied, we can sometimes transform
the original equation into a self-adjoint one by multiplying the entire equation by a
function Φ(x1, . . . , xn), called an integrating factor. Elliptic differential equations that
can be transformed in this way are called essentially self adjoint. If we multiply (5.5.4)
by Φ, we get:

(5.5.17) A1Φ
∂2ψ

∂x2
1

+ · · ·+ AnΦ
∂2ψ

∂x2
2

+B1Φ
∂ψ

∂x1

+ · · ·+BnΦ
∂ψ

∂xn
+ CΦψ = 0

and this equation is self-adjoint if

∂ΦAi
∂xi

= ΦBi

It is straightforward to compute Φ — just set:

∂ΦAi
∂xi

= ΦBi

∂Φ

∂xi
Ai + Φ

∂Ai
∂xi

= ΦBi

∂Φ

∂xi
Ai = Φ

{
Bi −

∂Ai
∂xi

}
(5.5.18)

and temporarily “forget” that it is a partial differential equation. We get

∂Φ

Φ
= ∂xi

Bi −
∂Ai
∂xi

Ai
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Now integrate both sides to get

log Φ =

ˆ Bi −
∂Ai
∂xi

Ai
dxi + C(x1, . . . , xi−1, xi+1, . . . , xn)

Note that our “arbitrary constant” must be a function of the other variables, since our
original equation was a partial differential equation. We get an equation for Φ that has
an unknown part, C(x2, . . . , xn), and we plug this into equation (5.5.18) for i = 2 and
solve for C(x2, . . . , xn). We continue this procedure until we have completely determined
Φ.

A function, Φ, with these properties exists29 if and only if the following conditions
are satisfied:

(5.5.19)
∂

∂xi

(
Bj − ∂Aj/∂xj

Aj

)
=

∂

∂xj

(
Bi − ∂Ai/∂xi

Ai

)
for all pairs of distinct indices i, j = 1, . . . , n. If this condition is satisfied, the original
partial differential equation is called essentially self adjoint, and can be re-written in the
self-adjoint form

(5.5.20)
∂

∂x1

(
A1Φ

∂ψ

∂x1

)
+ · · ·+ ∂

∂xn

(
AnΦ

∂ψ

∂xn

)
+ CΦψ = 0

Our method for solving this equation is essentially the same as that used for the
Laplace equation except that we use the approximations in equation (5.5.1) on page
192 for the partial derivatives. The self-adjointness of the original differential equation
guarantees that the numerical approximations can be solved by iterative means.

EXERCISES.

1. Run the program with boundary conditions ψ(x, y) = x2 − y2 and determine
how accurate the entire algorithm is in this case. (This function is an exact solution to
Laplace’s Equation).

2. Determine, by experiment, the best value of µ to use. (Since the formula given
above just estimates the best value of µ).

3. Is the algorithm described in the program on page 202 EREW (see page 15)? Is it
calibrated (see page 51)?

4. Is the partial differential equation

∂2ψ

∂x2
+

2

x

∂ψ

∂x
+
∂2ψ

∂y2
= 0

self-adjoint? If not, how can it be put into a self-adjoint form?

5. Determine whether the following equation is essentially self-adjoint:

∂2ψ

∂x2
+

2

x+ y

∂ψ

∂x
+
∂2ψ

∂y2
+

2

x+ y

∂ψ

∂y
= 0

29This is also a condition for our technique for computing Φ to be well-defined.
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If it is, convert it into a self-adjoint form.

6. It is possible to approximate the Laplacian operator (equation (5.5.2) on page
192) by using the following approximation for a second partial derivative:

∂2f(x)

∂x2

≈ 35f(x− 2δ)− 104f(x− δ) + 114f(x)− 56f(x+ δ) + 11f(x+ 2δ)

12δ2

If f(x) is a smooth function, this is more accurate than the approximation used in
equation (5.5.1) on page 192 — for instance, this equation is exact if f(x) is a polynomial
whose degree is ≤ 4.

a. What is the molecule of this approximation for the Laplacian?

7. Let Ω denote the region 1 ≤ x ≤ 3, 1 ≤ y ≤ 5. Give finite-difference formulations
for the following equations:

a.
∂2ψ

∂x2
+
∂2ψ

∂y2
= −2

b.
∂2ψ

∂x2
+
∂2ψ

∂y2
= xyψ

5.5.1.3. Rate of convergence. In this section we will determine how fast the iterative
methods in the preceding sections converge in some cases. We will do this by comput-
ing the spectral radius (and 2-norm) of the matrices involved in the iterative computa-
tions. We will restrict our attention to the simplest case:the two-dimensional form of
Laplace’s equation for which the domain of the problem is a rectangle. This computa-
tion will make extensive use of the material in § 5.2.4 on page 157, and in particular the
computation of the eigenvalues of the matrices Z(n) defined there.

We will begin by defining matrices E(n) by

DEFINITION 5.5.3. Let n > 0 be an integer and define the n× n matrix E(n) by

E(n) =

{
1 if |i− j| = 1

0 otherwise

For instance E(5) is the matrix 
0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0


Note that E(n) looks very similar to Z(n) defined in 5.2.7 on page 159 — they only
differ in the extra 1’s that Z(n) has in the upper right and lower left corners. The
matrices E(n) turn out to be closely related to the matrices that appear in the Jacobi
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iteration scheme for solving the finite-difference approximations of elliptic differential
equations. We will calculate their eigenvalues and eigenvectors. It is tempting to try
use our knowledge of the eigenvalues and eigenvectors of the matrices Z(n) to perform
these computations. This is indeed possible, as is clear by recalling that Z(n) has a set
of eigenvectors:

w′(j) = {0, sin(2πj/n), sin(4πj/n), . . . , sin(2πj(n− 1)/n)}

(see equation (5.2.16) on page 160). The corresponding eigenvalue is 2 cos(2πjk/n)
and the equation these satisfy is

Z(n) · w′(j) = 2 cos(2πjk/n)w′(j)

The significant aspect of this equation is that the first component of w′(j) is zero — this
implies that the first row and column of that matrix effectively does not exist:

(5.5.21) Z(n+ 1) =


0 1 0 · · · 0 1
0
...
0
1

E(n)

 ·


0
sin(2πk/(n+ 1)

...
sin(2πkn/(n+ 1)



= 2 cos 2πk/(n+ 1)


0

sin(2πk/(n+ 1)
...

sin(2πkn/(n+ 1)


so

E(n) ·

 sin(2πk/(n+ 1)
...

sin(2πkn/(n+ 1)

 = 2 cos 2πk/(n+ 1)

 sin(2πk/(n+ 1)
...

sin(2πkn/(n+ 1)


and {2 cos 2πk/(n+ 1)} are eigenvalues of E(n). Unfortunately, we don’t know that we
have found all of the eigenvalues — there are at most n such eigenvalues and we have
found dn/2e of them30. In fact, it turns out that we can find additional eigenvalues and
eigenvectors. To see this, consider the eigenvalue equation like equation (5.5.21) for

30In the case of computing the eigenvalues of Z(n) we had other ways of knowing that we found all
of the eigenvalues, since the Z(n) are cyclic matrices.



5.5. PARTIAL DIFFERENTIAL EQUATIONS 207

Z(2(n+ 1)):

Z(2(n+ 1)) =



0 1 0 · · · 0 · · · 0 1
1
...
0

E(n)

...
0
1

0
0
...
0

0 · · · 1 0 1 · · · 0
...
1

0 1
...

E(n)


·



0
sin(2πk/2(n+ 1))

...
sin(2πkn/2(n+ 1))

0
...

sin(2πk(2n+ 1)/2(n+ 1))



= 2 cos 2πk/2(n+ 1)



0
sin(2πk/2(n+ 1))

...
sin(2πkn/2(n+ 1))

0
...

sin(2πk(2n+ 1)/2(n+ 1))


where the second 0 in the w′(2(n + 1)) occurs in the row of Z(2(n + 1)) directly above

the second copy of E(n). This implies that the large array Z(2(n + 1)) can be regarded
as effectively splitting into two copies of E(n) and two rows and columns of zeroes —
in other words

0 1 0 · · · 0 · · · 0 1
1
...
0

E(n)

...
0
1

0
0
...
0

0 · · · 1 0 1 · · · 0
...
1

0 1
...

E(n)


·



0
sin(2πk/2(n+ 1))

...
sin(2πkn/2(n+ 1))

0
...

sin(2πk(2n+ 1)/2(n+ 1))



=



0 0 0 · · · 0 · · · 0 0
0
...
0

E(n)

...
0
0

0
0
...
0

0 · · · 0 0 0 · · · 0
...
0

0 0
...

E(n)


·



0
sin(2πk/2(n+ 1))

...
sin(2πkn/2(n+ 1))

0
...

sin(2πk(2n+ 1)/2(n+ 1))


This implies that the values {2 cos 2πk/2(n + 1) = 2 cos πk/(n + 1)} are also eigen-

values of E(n). Since there are n of these, and they are all distinct, we have found all of
them. We summarize this:

THEOREM 5.5.4. If the arrays E(n) are defined by

E(n) =

{
1 if |i− j| = 1

0 otherwise

then the eigenvalues are {λk = 2 cosπk/(n + 1)} for k = 1, . . . , n, and with corresponding
eigenvectors:

vk = (sinπk/(n+ 1), sin 2πk/(n+ 1), . . . , sinnπk/(n+ 1))
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Now we will relate this with the numerical solutions of elliptic differential equa-
tions. We will assume that the domain of the solution (i.e., the region in which the
function ψ is defined) is a rectangle defined by 0 ≤ x < a and 0 ≤ y < b. The numeric
approximation to the two dimensional Laplace equation is equation (5.5.12) on page
195:

ψ(x, y) =
ψ(x+ δ, y) + ψ(x− δ, y) + ψ(x, y + δ) + ψ(x, y − δ)

4

As a system of linear equations, this has
⌊a
δ

⌋
×
⌊
b

δ

⌋
equations, and the same number

of unknowns (the values of ψ(jδ, kδ), for integral values of j and k).

DEFINITION 5.5.5. We will call the matrix of this linear system E(r, s), where r =⌊a
δ

⌋
and s =

⌊
b

δ

⌋
.

In greater generality, if we have a Laplace equation in n dimensions whose domain
is an n-dimensional rectangular solid with si steps in coordinate i (i.e., the total range
of xi is siδ), then

E(s1, . . . , sn)

denotes the matrix for(
ψ(x1 + δ, . . . , xn) + ψ(x1 − δ, . . . , xn)+

+ψ(x1, . . . , xn + δ) + ψ(x1, . . . , xn − δ)

)
2n

Equation (5.5.13) on page 196 gives an example of this matrix. We will try to com-
pute the eigenvalues of this matrix — this involves solving the system:

λψ(x, y) =
ψ(x+ δ, y) + ψ(x− δ, y) + ψ(x, y + δ) + ψ(x, y − δ)

4

Now we make an assumption that will allow us to express this linear system in
terms of the arrays E(n), defined above (in 5.5.3 on page 205): we assume that ψ(x, y)

can be expressed as a product of functions u(x) and v(y)31. The equation becomes:

λu(x) · v(y) =
u(x+ δ) · v(y) + u(x− δ) · v(y) + u(x) · v(y + δ) + u(x) · v(y − δ)

4

=
(u(x+ δ) + u(x− δ)) · v(y) + u(x) · (v(y + δ) + v(y − δ))

4

If we divide this by u(x) · v(y) we get

λ =

u(x+ δ) + u(x− δ)
u(x)

+
v(y + δ) + v(y − δ)

v(y)

4
(5.5.22)

=
1

4

u(x+ δ) + u(x− δ)
u(x)

+
1

4

v(y + δ) + v(y − δ)
v(y)

(5.5.23)

Now we notice something kind of interesting:

31This is a very common technique in the theory of partial differential equations, called separation of
variables.
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We have a function of x (namely
1

4

u(x+ δ) + u(x− δ)
u(x)

) added to a func-

tion of y (namely
1

4

v(y + δ) + v(y − δ)
v(y)

)and the result is a constant.

It implies that a function of x can be expressed as constant minus a function of y. How
is this possible? A little reflection shows that the only way this can happen is for both
functions (i.e., the one in x and the one in y) to individually be constants. Our equation
in two variables splits into two equations in one variable:

λ =λ1 + λ2

λ1 =
1

4

u(x+ δ) + u(x− δ)
u(x)

or

λ1u(x) =
1

4
(u(x+ δ) + u(x− δ))

and

λ2v(y) =
1

4
(v(y + δ) + v(y − δ))

Incidentally, the thing that makes this separation of variables legal is the fact that
the region of definition of ψ(x, y) was a rectangle. It follows that eigenvalues of the
original equation are sums of eigenvalues of the two equations in one variable. Exami-
nation of the arrays that occur in these equations show that they are nothing but 1

4
E(r)

and 1
4
E(s), respectively, where r =

⌊
a
δ

⌋
and s =

⌊
b
δ

⌋
. Consequently, 5.5.4 on page 207

implies that

(1) The possible values of λ1 are {2 cosπj/(r + 1)/4 = cos πj/(r + 1)/2};

(2) The possible values of λ2 are {2 cosπk/(s+ 1)

4
=

cosπk/(s+ 1)

2
};

(3) The eigenvalues of E(r, s) include the set of values {cos πj/(r + 1)

2
+

cosπk/(s+ 1)

2
}, where j runs from 1 to r and k runs from 1 to s.

(4) Since ψ(x, y) = u(x)v(y) the eigenfunctions corresponding to these eigenvalues
are, respectively,

(sin(πj/(r + 1)) sin(πk/(s+ 1)), . . . , sin(πjn/(r + 1)) sin(πkm/(s+ 1)),

. . . , sin(πj/(r + 1)) sin(πk/(s+ 1)))

where m runs from 1 to r and n runs from 1 to s.

It is possible to give a direct argument to show that these eigenfunctions are all linearly
independent. Since there are r × s of them, we have found them all. To summarize:
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THEOREM 5.5.6. Suppose δ > 0 is some number and r ≥ 1 and s ≥ 1 are integers.
Consider the system of linear equations

λψ(x, y) =
ψ(x+ δ, y) + ψ(x− δ, y) + ψ(x, y + δ) + ψ(x, y − δ)

4

where:
(1) 0 ≤ x < a = rδ and 0 ≤ y < b = sδ, and
(2) ψ(x, y) is a function that is well-defined at points x = nδ and y = mδ, where n and

m are integers;
(3) ψ(0, x) = ψ(x, 0) = ψ(x, sδ) = ψ(rδ, y) = 0.

Then nonzero values of ψ only occur if

λ =

{
1

2

(
cos

πj

r + 1
+ cos

πk

s+ 1

)
= 1− π2j2

4(r + 1)2
− π2k2

4(s+ 1)2
+O(δ4)

}
where j and k are integers running from 1 to r and 1 to s, respectively.

PROOF. The only new piece of information in this theorem is the estimate of the
values of the eigenvalues:

λ =

{
1− π2j2

4(r + 1)2
− π2k2

4(s+ 1)2
+O(δ4)

}
This is a result of using the power series expansion of the cosine function:

cos(x) = 1− x2

2!
+
x4

4!
· · ·

�

We can compute the rate of convergence of the basic iterative solution to Laplace’s
equation using 5.1.34 on page 113:

THEOREM 5.5.7. Consider the numeric approximation to Laplace’s equation in two dimen-
sions, where δ > 0 is the step-size, and 0 < x < a and 0 < y < b. The basic Jacobi iteration
method has an error that is reduced by a factor of

ρ(E(r, s)) =
1

2

(
cos

π

r + 1
+ cos

π

s+ 1

)
=1− π2

4(r + 1)2
− π2

4(s+ 1)2
+O(δ4)

≈1− π2δ2

4

(
1

a2
+

1

b2

)
where r =

⌊
a
δ

⌋
and s =

⌊
b
δ

⌋
.

PROOF. The spectral radius of E(r, s) is equal to the largest value that occurs as
the absolute value of an eigenvalue of E(r, s). This happens when j = k = 1 in the
equation in 5.5.6 above. �
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We can estimate the optimum relaxation coefficient for the SOR method for solving
Laplace’s equation, using the equation in 5.1.42 on page 122. We get:

ω =
2

1 +
√

1− ρ(Z(A))2
(5.5.24)

=
2

1 +

√
1−

(
1− π2δ2

4

(
1
a2

+ 1
b2

))2
(5.5.25)

≈ 2

1 + πδ
√

1
2a2

+ 1
2b2

(5.5.26)

If we assume that a = b and a2 = b2 = A, the area of the region, then equation
(5.5.26) comes to resemble Garabedian’s formula (equation (5.5.14) on page 200).

EXERCISES.

8. Compute the eigenvalues and eigenvectors of the matrix E(r, s, t) define in 5.5.5
on page 208, where r, s, and t are integers.

5.5.2. Parabolic Differential Equations.
5.5.2.1. Basic Methods. These equations frequently occur in the study of diffusion

phenomena in physics, and in quantum mechanics.
The simplest parabolic differential equation 32 is called the Heat Equation. We have

a function ψ(x1, . . . , xn, t), where x1, . . . , xn are spatial coordinates and t is time:

(5.5.27) ∇2ψ =
1

a2

∂ψ

∂t
Here a is a constant called the rate of diffusion. In a real physical problem ψ repre-

sents temperature, and the heat equation describes how heat flows to equalize temper-
atures in some physical system.

Another common parabolic equation is the Schrödinger Wave Equation for a par-
ticle in a force field:

(5.5.28) − ~2

2m
∇2ψ + V (x, y, z)ψ = i~

∂ψ

∂t

Here ~ is Planck’s Constant/2π = 1.054592 × 10−27g cm2/sec, m is the mass of the
particle, i =

√
−1, and V (x, y, z) is potential energy, which describes the force field

32For anyone who is interested, the most general parabolic equation looks like:
n∑
i,k

aik
∂2ψ

∂xi∂xk
= f(x, ψ,

∂ψ

∂x
)

where aik = aki and det(a) = 0.
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acting on the particle. Although this equation looks much more complicated than the
Heat Equation, its overall behavior (especially from the point of view of numerical
solutions) is very similar. Since ~, i, and m are constants they can be removed by a
suitable change of coordinates. The only real additional complexity is the function
V (x, y, z). If this vanishes we get the Heat equation exactly. Unfortunately, physically
interesting problems always correspond to the case where V (x, y, z) is nonzero.

Incidentally, the physical interpretation of the (complex-valued) function ψ(x, y, z, t)
that is the solution of the Schrödinger Wave Equation is something that even physicists
don’t completely agree on. It is generally thought that the absolute value of ψ (in
the complex sense i.e., the sum of the squares of the real and imaginary parts) is the
probability of detecting the particle at the given position in space at the given time.

As with the elliptic differential equations, we assume that the differential equation
is valid in some region of space (or a plane) and we specify what must happen on the
boundary of this region. When the differential equation contains time as one of its
variables the boundary conditions usually take the form

We specify the value of ψ(xi, t) completely at some initial time t0 over
the domain Ω of the problem, and specify the behavior of ψ on the
boundary of Ω at all later times.

Boundary conditions of this sort are often called initial conditions. The solution of the
partial differential equation then gives the values of ψ(xi, t) at all times later than t0,
and over all of Ω.

Here is an example:
EXAMPLE 5.5.8. Suppose we have an iron sphere of radius 5, centered at the origin.

In addition, suppose the sphere is heated to a temperature of 1000 degrees K at time
0 and the boundary of the sphere is kept at a temperature of 0 degrees K. What is the
temperature-distribution of the sphere at later times, as a function of x, y, z, and t?

Here we make Ω the sphere of radius 5 centered at the origin and we have the
following boundary conditions:

• ψ(x, y, z, 0) = 1000 for (x, y, z) ∈ Ω;
• ψ(x, y, z, t) = 0, if (x, y, z) ∈ ∂Ω (∂Ω denotes the boundary of Ω).

With these boundary conditions, it turns out that the 3-dimensional heat equation
solves our problem:

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
=

1

a2

∂ψ

∂t
where we must plug a suitable value of a (the thermal conductivity of iron).

Our basic approach to a numerical solution remains the same as in the previous
section — we replace ∇2ψ and now ∂ψ/∂t by finite differences and solve the resulting
linear equations. We will work this out for the Heat equation. We get

((ψ(x1+δ,...,xn,t)+ψ(x1−δ,x2,...,xn,t)+···+ψ(x1,...,xn+δt)
+ψ(x1,...,xn−δ,t)−2nψ(x1,...,xn,t)

)
δ2

= 1
a2
ψ(x1,...,xn,t+δt)−ψ(x1,...,xn,t)

δt

)
Although this equation is rather formidable-looking we can rewrite it in the form

(multiplying it by a2 and δt, and replacing the numerical∇2ψ by
2n

δ2
(ψaverage − ψ)):



5.5. PARTIAL DIFFERENTIAL EQUATIONS 213

(5.5.29) ψ(x1, . . . , xn, t+ δt) = ψ(x1, . . . , xn, t) +
2na2δt

δ2

(
ψaverage − ψ

)
where ψaverage is defined in equation (5.5.3) on page 193.

This illustrates one important difference between parabolic and elliptic equations:
(1) The value of ψ at time t + δt at a given point depends upon its value at time

t at that point and at neighboring points (used to compute ψaverage(t)). It is
not hard to see that these, in turn, depend upon the values of ψ at time t − δt
over a larger set of neighboring points. In general, as we go further back in
time, there is an expanding (in spatial coordinates) set of other values of ψ that
determine this value of ψ — and as we go back in time and plot these points
they trace out a parabola33 (very roughly).

(2) We use a different mesh-sizes for the time and space coordinates, namely δt
and δ, respectively. It turns out that the iteration will diverge (wildly!) unless
2na2δt/δ2 < 1 or δt < δ2/2na2. See proposition 5.5.9 on page 219 for a detailed
analysis. This generally means that large numbers of iterations will be needed
to compute ψ at late times.

In the parabolic case, we will specify the values of ψ over the entire region at time 0, and
on the boundaries of the region at all times. We can then solve for the values of ψ at
later times using equation 5.5.29. This can easily be translated into a CUDA program:

/ / Thread b l o c k s i z e
# define BLOCK SIZE 8

/ / Forward d e c l a r a t i o n o f t h e s o r k e r n e l
g l o b a l void t ime s tep ( f l o a t [ ] [ 1 0 0 ] ,

f l o a t [ ] [ 1 0 0 ] ,
f l o a t ,
f l o a t ) ;

/ / e v e r y program you w r i t e w i l l have t h e f o l l o w i n g two l i n e s :
# include <iostream>

# include <fstream> / / ou tp ut c o n s t r u c t o r f o r named f i l e s .
using namespace std ;

i n t main ( )
{

f l o a t ∗ temperature1 ; / / a p o i n t e r t o t h e d a t a we w i l l compute wi th
f l o a t ∗ temperature2 ;

33In this discussion, it looks like they trace out a cone, but in the limit, as δt → 0 it becomes a
parabola.
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f l o a t i n i t i a l t e m p [ 1 0 0 ] [ 1 0 0 ] ; / / i n i t i a l h ea t−d i s t r i b u t i o n
f l o a t z [ 1 0 0 ] [ 1 0 0 ] ={{0 . f }} ; / / We s t a r t wi th a 100 x100 ma t r ix e q u a l t o 0 .

f l o a t d e l t a x =.01 f ; / / s p a c i a l g r id−s i z e
f l o a t d e l t a t =.000001 f ; / / t ime−s t e p

f l o a t c u r r e n t t i m e =0. f ;

s i z e t s i z e = 100∗100 ∗ s i ze of ( f l o a t ) ;

/ / I n i t i a l i z e t h e t e m p e r a t u r e
for ( i n t i =0 ; i < 1 0 0 ; i ++)

for ( i n t j =0 ; j < 1 0 0 ; j ++)
i n i t i a l t e m p [ i ] [ j ] = 1 . f ;

cudaMalloc ( ( void∗∗)& temperature1 , s i z e ) ; / / a l l o c a t e t h e d a t a on t h e d e v i c e
cudaMalloc ( ( void∗∗)& temperature2 , s i z e ) ; / / a l l o c a t e t h e d a t a on t h e d e v i c e

cudaMemcpy ( temperature1 , i n i t i a l t e m p , s ize ,
cudaMemcpyHostToDevice ) ;

dim3 dimBlock ( BLOCK SIZE , BLOCK SIZE ) ;
dim3 dimGrid (100/ dimBlock . x +1 , 100 / dimBlock . y + 1 ) ; / / Note
/ / t h e ’+1 ’ a f t e r 100 / d imBlock . x −−− t h i s e l i m i n a t e s p r o b l e m s o f
/ / l a r g e f l o a t i n g p o i n t numbers b e i n g g e n e r a t e d b e c a u s e t h e c o m p u t a t i o n
/ / o v e r f l o w e d t h e a r e a d e s i g n a t e d f o r i t .

/ / main l o o p
for ( i n t i t e r a t i o n =0; i t e r a t i o n < 10000 ; i t e r a t i o n ++)
{

/ / l aunch t h e k e r n e l
/ / n o t e t h a t ( f l o a t ( ∗ ) [ 1 0 0 ] ) i s a TYPECAST, c a u s i n g
/ / one t y p e t o be r e g a r d e d as a n o t h e r
i f ( i t e r a t i o n%2 == 0)

t ime step<<<dimGrid , dimBlock>>>(( f l o a t ( ∗ ) [ 1 0 0 ] ) temperature1 ,
( f l o a t ( ∗ ) [ 1 0 0 ] ) temperature2 ,
de l ta x ,
d e l t a t ) ;

i f ( i t e r a t i o n %2==1)
t ime step<<<dimGrid , dimBlock>>>(( f l o a t ( ∗ ) [ 1 0 0 ] ) temperature2 ,

( f l o a t ( ∗ ) [ 1 0 0 ] ) temperature1 ,
de l ta x ,
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d e l t a t ) ;
/ / wa i t f o r a l l t h e t h r e a d s t o c o m p l e t e
cudaThreadSynchronize ( ) ;
c u r r e n t t i m e+= d e l t a t ;

}
/ / Read t e m p e r a t u r e from d e v i c e memory
cudaMemcpy ( z , temperature1 , s ize ,

cudaMemcpyDeviceToHost ) ;
/ / F r e e d e v i c e memory
cudaFree ( temperature1 ) ;
cudaFree ( temperature2 ) ;

/ / Now w r i t e a f i l e named ’ h e a t . t x t ’ wi th t h e r e s u l t s .
/ / open t h e ou tp ut s t r e am
ofstream o u t f i l e ( ” heat . t x t ” ) ;

/ / now w r i t e i t !
for ( i n t i =0 ; i <100; i ++)
{

for ( i n t j =0 ; j < 1 0 0 ; j ++)
o u t f i l e << z [ i ] [ j ]<<” ” ;

o u t f i l e << ”\n” ;
}

o u t f i l e . c l o s e ( ) ; / / c l o s e t h e f i l e
/ / we don ’ t need ’ e n d l ’

}

/ / Where t h e main a c t i o n t a k e s p l a c e
g l o b a l void t ime s tep ( f l o a t A[ ] [ 1 0 0 ] ,

f l o a t B [ ] [ 1 0 0 ] ,
f l o a t del ta x ,
f l o a t d e l t a t )

{
f l o a t average ;

/ / Compute who we a r e . . .
i n t row = blockIdx . y ∗ blockDim . y + threadIdx . y ;
i n t c o l = blockIdx . x ∗ blockDim . x + threadIdx . x ;

/ / Check t h a t we ’ r e in t h e r e c t a n g l e
i f ( row > 99 | | c o l > 99) return ;
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i f ( row==0 | | c o l == 0 | | row == 99 | | c o l == 99)
{

A[ row ] [ c o l ] = 0 . f ;
B [ row ] [ c o l ] = 0 . f ;
return ;

}

average = (A[ row +1 ] [ c o l ]+A[ row−1][ c o l ]
+A[ row ] [ c o l +1]+A[ row ] [ col −1])/4 ;

B [ row ] [ c o l ]= A[ row ] [ c o l ]+
4∗ d e l t a t ∗ ( average−A[ row ] [ c o l ] ) / ( d e l t a x ∗ d e l t a x ) ;

}

/ / Thread b l o c k s i z e
# define BLOCK SIZE 8

/ / Forward d e c l a r a t i o n o f t h e s o r k e r n e l
g l o b a l void t ime s tep ( f l o a t [ ] [ 1 0 0 ] ,

f l o a t [ ] [ 1 0 0 ] ,
f l o a t ,
f l o a t ) ;

/ / e v e r y program you w r i t e w i l l have t h e f o l l o w i n g two l i n e s :
# include <iostream>

# include <fstream> / / ou tp ut c o n s t r u c t o r f o r named f i l e s .
using namespace std ;

i n t main ( )
{

f l o a t ∗ temperature1 ; / / a p o i n t e r t o t h e d a t a we w i l l compute wi th
f l o a t ∗ temperature2 ;

f l o a t i n i t i a l t e m p [ 1 0 0 ] [ 1 0 0 ] ; / / i n i t i a l h ea t−d i s t r i b u t i o n
f l o a t z [ 1 0 0 ] [ 1 0 0 ] ={{0 . f }} ; / / We s t a r t wi th a 100 x100 ma t r ix e q u a l t o 0 .

f l o a t d e l t a x =.01 f ; / / s p a c i a l g r id−s i z e
f l o a t d e l t a t =.000001 f ; / / t ime−s t e p

f l o a t c u r r e n t t i m e =0. f ;

s i z e t s i z e = 100∗100 ∗ s i ze of ( f l o a t ) ;

/ / I n i t i a l i z e t h e t e m p e r a t u r e
for ( i n t i =0 ; i < 1 0 0 ; i ++)

for ( i n t j =0 ; j < 1 0 0 ; j ++)
i n i t i a l t e m p [ i ] [ j ] = 1 . f ;

cudaMalloc ( ( void∗∗)& temperature1 , s i z e ) ; / / a l l o c a t e t h e d a t a on t h e d e v i c e
cudaMalloc ( ( void∗∗)& temperature2 , s i z e ) ; / / a l l o c a t e t h e d a t a on t h e d e v i c e
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cudaMemcpy ( temperature1 , i n i t i a l t e m p , s ize ,
cudaMemcpyHostToDevice ) ;

dim3 dimBlock ( BLOCK SIZE , BLOCK SIZE ) ;
dim3 dimGrid (100/ dimBlock . x +1 , 100 / dimBlock . y + 1 ) ; / / Note
/ / t h e ’+1 ’ a f t e r 100 / d imBlock . x −−− t h i s e l i m i n a t e s p r o b l e m s o f
/ / l a r g e f l o a t i n g p o i n t numbers b e i n g g e n e r a t e d b e c a u s e t h e c o m p u t a t i o n
/ / o v e r f l o w e d t h e a r e a d e s i g n a t e d f o r i t .

/ / main l o o p
for ( i n t i t e r a t i o n =0; i t e r a t i o n < 10000 ; i t e r a t i o n ++)
{

/ / l aunch t h e k e r n e l
/ / n o t e t h a t ( f l o a t ( ∗ ) [ 1 0 0 ] ) i s a TYPECAST, c a u s i n g
/ / one t y p e t o be r e g a r d e d as a n o t h e r
i f ( i t e r a t i o n%2 == 0)

t ime step<<<dimGrid , dimBlock>>>(( f l o a t ( ∗ ) [ 1 0 0 ] ) temperature1 ,
( f l o a t ( ∗ ) [ 1 0 0 ] ) temperature2 ,
de l ta x ,
d e l t a t ) ;

i f ( i t e r a t i o n %2==1)
t ime step<<<dimGrid , dimBlock>>>(( f l o a t ( ∗ ) [ 1 0 0 ] ) temperature2 ,

( f l o a t ( ∗ ) [ 1 0 0 ] ) temperature1 ,
de l ta x ,
d e l t a t ) ;

/ / wa i t f o r a l l t h e t h r e a d s t o c o m p l e t e
cudaThreadSynchronize ( ) ;
c u r r e n t t i m e+= d e l t a t ;

}
/ / Read t e m p e r a t u r e from d e v i c e memory
cudaMemcpy ( z , temperature1 , s ize ,

cudaMemcpyDeviceToHost ) ;
/ / F r e e d e v i c e memory
cudaFree ( temperature1 ) ;
cudaFree ( temperature2 ) ;

/ / Now w r i t e a f i l e named ’ h e a t . t x t ’ wi th t h e r e s u l t s .
/ / open t h e ou tp ut s t r e am
ofstream o u t f i l e ( ” heat . t x t ” ) ;

/ / now w r i t e i t !
for ( i n t i =0 ; i <100; i ++)
{

for ( i n t j =0 ; j < 1 0 0 ; j ++)
o u t f i l e << z [ i ] [ j ]<<” ” ;

o u t f i l e << ”\n” ;
}

o u t f i l e . c l o s e ( ) ; / / c l o s e t h e f i l e
/ / we don ’ t need ’ e n d l ’

}

/ / Where t h e main a c t i o n t a k e s p l a c e
g l o b a l void t ime s tep ( f l o a t A[ ] [ 1 0 0 ] ,

f l o a t B [ ] [ 1 0 0 ] ,
f l o a t del ta x ,
f l o a t d e l t a t )
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FIGURE 5.5.6. Solution of the heat equation

{
f l o a t average ;

/ / Compute who we a r e . . .
i n t row = blockIdx . y ∗ blockDim . y + threadIdx . y ;
i n t c o l = blockIdx . x ∗ blockDim . x + threadIdx . x ;

/ / Check t h a t we ’ r e in t h e r e c t a n g l e
i f ( row > 99 | | c o l > 99) return ;

i f ( row==0 | | c o l == 0 | | row == 99 | | c o l == 99)
{

A[ row ] [ c o l ] = 0 . f ;
B [ row ] [ c o l ] = 0 . f ;
return ;

}

average = (A[ row + 1] [ c o l ]+A[ row−1][ c o l ]
+A[ row ] [ c o l +1]+A[ row ] [ col −1])/4;

B [ row ] [ c o l ]= A[ row ] [ c o l ]+
4∗ d e l t a t ∗ ( average−A[ row ] [ c o l ] ) / ( d e l t a x ∗d e l t a x ) ;

}

Figure 5.5.2.1 shows what the output looks like after 1 time unit has passed:
The height of the surface over each point represents the temperature at that point.

You can see the heat “draining away” along the boundary.
5.5.2.2. Error Analysis. It is very important to analyze the behavior of numerical

solutions of differential equations with respect to errors. These methods are necessarily
approximations to the true solutions to the problems they solve, and it turns out that
certain variations in the parameters to a given problem have a dramatic effect upon the
amount of error that occurs.

Each iteration of one of these algorithms creates some finite amount of error, this
error is carried forward into future iterations. It follows that there are two basic sources
of error:

(1) Stepwise error
(2) Propagation of errors
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The first source is what we expect since we are approximating a continuous equation
by a discrete one. The second source of error is somewhat more problematic — it im-
plies that the quality of the solution we obtain degrades with the number of iterations
we carry out. Since each iteration represents a time-step, it means that the quality of
our solution degrades with time. It turns out that we will be able to adjust certain
parameters of our iterative procedure to guarantee that propagation of error is min-
imized. In fact that total amount of error from this source can be bounded, under
suitable conditions.

Consider the numeric form of the basic heat equation, (5.5.29) on page 213. It turns
out that the factor A = 4na2δt

δ2
is crucial to the question of how errors propagate in the

solution.

PROPOSITION 5.5.9. In the n-dimensional heat equation, suppose that the act of replacing
the partial derivatives by a finite difference results in an error bounded by a number E — i.e.,∣∣∣∣∂ψ∂t − ψ(t+ δt)− ψ(t)

δt

∣∣∣∣ ≤ E∣∣∣∣2n(ψaverage − ψ)

δ2
−∇2ψ

∣∣∣∣ ≤ E

over the spatial region of the solution and the range of times that we want to
study. Then the cumulative error of the solution in (5.5.29) on page 213 is
≤ δtE

(
1 + 1

|a|2

) (
1 + A+ A2 + · · ·+ Ak

)
in k time-steps of size δt. Consequently, the total

error is O(δtE · Ak+1) if A > 1, and O(δtE · (1− Ak+1)/(1− A)) if A < 1.

It is interesting that if A < 1 the total error is bounded. In this analysis we haven’t
taken into account the dependence of E on δt. If we assume that ψ depends upon time
in a fashion that is almost linear, then E may be proportional to δt2.

We will assume that all errors due to flaws in the numerical computations (i.e.,
roundoff error) are incorporated into E.

PROOF. We prove this by induction on k. We begin by showing that the error of a
single iteration of the algorithm is (1 + a2)δtE.

Ẽ1 =
∂ψ

∂t
− ψ(t+ δt)− ψ(t)

δt

Ẽ2 =
4(ψaverage − ψ)

δ2
−∇2ψ

so the hypotheses imply that ∣∣∣Ẽ1

∣∣∣ ≤E∣∣∣Ẽ2

∣∣∣ ≤E
Suppose that ψ is an exact solution of the Heat equation. We will plug ψ into our

approximate version of the Heat Equation and determine the extent to which it satisfies
the approximate version. This will measure the amount of error in the approximate
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equation, since numerical solutions to those equations satisfy them exactly. Suppose

ψ(t+ δt) =δt
ψ(t+ δt)− ψ(t)

δt
+ ψ(t) exactly(5.5.30)

=δt
∂ψ

∂t
− δtẼ1 + ψ(t)(5.5.31)

=
δt

a2
∇2ψ − δtẼ1 + ψ(t) because ψsatisfies the Heat equation(5.5.32)

=
δt

a2

4(ψaverage − ψ)

δ2
− δt

a2
Ẽ2 − δtẼ1 + ψ(t)(5.5.33)

This implies that the error in one iteration of the algorithm is≤ δtE
(

1 + 1
|a|2

)
. Now we

prove the conclusion of this result by induction. Suppose, after k steps the total error
is ≤ δtE

(
1 + 1

|a|2

) (
1 + A+ A2 + · · ·+ Ak

)
. This means that that∣∣∣ψ̂ − ψ∣∣∣ ≤ δtE

(
1 +

1

|a|2

)(
1 + A+ A2 + · · ·+ Ak

)
where ψ̂ is the calculated value of ψ (from the algorithm). One further iteration of the
algorithm multiplies this error-vector by a matrix that resembles 2na2δt

δ2
(E(r, s) − I),

where I is the identity-matrix with rs rows — using the notation of 5.5.7 on page
210. (We are also assuming that the region of definition of the original Heat equa-
tion is rectangular). The eigenvalues of this matrix are 2na2δt

δ2
(eigenvalues of E(r, s) −

1) and the maximum absolute value of such an eigenvalue is ≤ 22na2δt
δ2

= A. The

result-vector has an 2-norm that is ≤ A · δtE
(

1 + 1
|a|2

) (
1 + A+ A2 + · · ·+ Ak

)
= (1 +

a2)δtE
(
A+ A2 + · · ·+ Ak+1

)
. Since this iteration of the algorithm also adds an error of

δtE
(

1 + 1
|a|2

)
, we get a total error of δtE

(
1 + 1

|a|2

) (
1 + A+ A2 + · · ·+ Ak+1

)
, which is

what we wanted to prove. �

EXERCISES.

9. Analyze the two-dimensional Schrödinger Wave equation (equation (5.5.28) on
page 211) in the light of the discussion in this section. In this case it is necessary to
make some assumptions on the values of the potential, V (x, y).

10. Find a finite-difference formulation of the equation

∂ψ

∂t
=
∂2ψ

∂t2
− ψ − 2e−t

subject to the conditions that

ψ(x, 0) = x2, ψ(0, t) = 0, ψ(1, t) = e−t

Solve this equation numerically, and compare this result (for different values of ∆ and
∆t) to the exact solution

ψ(x, t) = x2e−t
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x

t

ψ(x,t)

FIGURE 5.5.7. Domain of dependence of a parabolic partial differ-
ential equation

5.5.2.3. Implicit Methods. The finite difference approximation methods described in
the previous section have a basic flaw. Consider a parabolic partial differential equa-
tion in one dimension:

∂2ψ

∂x2
=
∂ψ

∂t

In order to understand the behavior of solutions of this equation, it turns out to be use-
ful to consider the domain of dependence of a point (x, t). This is the set of points (x′, t′) at
earlier times with the property that the values of ψ(x′, t′) influences the value of ψ(x, t).
It turns out that the domain of dependence of parabolic partial differential equations
is a parabola in the x-t plane, as shown in figure 5.5.2.3 (this is why these equations are
called parabolic). In fact this doesn’t tell the whole story — it turns out that the value
of ψ(x, t) depends upon points outside the parabola in figure 5.5.2.3 so some extent (al-
though the “amount” of dependence falls off rapidly as one moves away from that
parabola) — we should really have drawn a “fuzzy” parabola34.

On the other hand, the finite difference equations like (5.5.29) on page 213 have
a conical domain of dependence — see figure 5.5.2.3. Furthermore, unlike parabolic
differential equations, this domain of dependence is sharp.

The finite-difference approximation of parabolic differential equations loses a signif-
icant amount of information. It turns out that there is another, slightly more complex,
way of approximating parabolic differential equations that capture much of this lost
information. We call these approximation-techniques, implicit methods. They are based
upon a simple observation about how to approximate ∂ψ/∂t. In formula (5.5.29) we
used the expression

34This is because a fundamental solution of the Heat equation is e−x
2/4t
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x

t

ψ(x,t)

FIGURE 5.5.8. Domain of dependence of a finite-difference equation

∂ψ

∂t
= lim

δt→0

ψ(x1, . . . , xn, t+ δt)− ψ(x1, . . . , xn, t)

δt
Implicit methods are based upon the fact that it is also true that

(5.5.34)
∂ψ

∂t
= lim

δt→0

ψ(x1, . . . , xn, t)− ψ(x1, . . . , xn, t− δt)
δt

Note that the right sides of these equations are not the same, but they approach the
same limit as δt → 0. Using this approximation, we get the following equation for the
parabolic partial differential equation:

ψ(x1, . . . , xn, t)− ψ(x1, . . . , xn, t− δt) =
2na2δt

δ2

(
ψaverage − ψ

)
Gathering together all terms of the form ψ(x1, . . . , xn, t) gives:

(
1 +

2na2δt

δ2

)
ψ(x1, . . . , xn, t)−

2na2δt

δ2
ψaverage(x1, . . . , xn, t)

= ψ(x1, . . . , xn, t− δt)

We usually write the formula in a manner that computes ψ(x1, . . . , xn, t + δt) from
ψ(x1, . . . , xn, t):

(5.5.35)
(

1 +
2na2δt

δ2

)
ψ(x1, . . . , xn, t+ δt)− 2na2δt

δ2
ψaverage(x1, . . . , xn, t+ δt)

= ψ(x1, . . . , xn, t)

There are several important differences between this formula and (5.5.29):
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• Each iteration of this algorithm is much more complex than iterations of the al-
gorithm in (5.5.29). In fact, each iteration of this algorithm involves a type of
computation comparable to numerically solving a the Poisson equation. We
must solve a system of linear equations for ψ(x1, . . . , xn, t + δt) in terms of
ψ(x1, . . . , xn, t).
• Formula (5.5.29) explicitly expresses the dependence of ψ(x1, . . . , xn, t + δt)

upon ψ(∗, t + δt) at neighboring points. It would appear, intuitively, that the
domain of dependence of ψ is more like the parabola in figure 5.5.2.3. This
turns out to be the case.
• It turns out (although this fact might not be entirely obvious) that this algo-

rithm is usually much more numerically stable than that in equation (5.5.29).
If fact it remains numerically stable even for fairly large values of δt. See 5.5.13
on page 225 for a precise statement.

On balance, it is usually advantageous to use the implicit methods described above.
Although the computations that must be performed for each iteration of δt are more
complicated, the number of iterations needed is generally much less since the present
algorithm is more accurate and stable. See § 5.5.2.4 on page 224 for a detailed analysis.

As remarked above, we must solve a system of linear equations in order to compute
it in terms of ψ(x1, . . . , xn, t). We can use iterative methods like the Jacobi method
discussed in § 5.1.2.3 on page 112. Our basic iteration is:

(
1 +

2na2δt

δ2

)
ψ(k+1)(x1, . . . , xn, t+ δt)− 2na2δt

δ2
ψ(k)

average(x1, . . . , xn, t+ δt)

= ψ(x1, . . . , xn, t)

where ψ(k+1)(x1, . . . , xn, t + δt) is the k + 1st approximation to ψ(x1, . . . , xn, t + δt),
given ψ(k)(x1, . . . , xn, t + δt) and ψ(x1, . . . , xn, t). Note that ψ(x1, . . . , xn, t) plays the
part of b in the linear system Ax = b. We assume the values of the ψ(x1, . . . , xn, t) are
known. We may have to perform many iterations in order to get a reasonable value of
ψ(x1, . . . , xn, t+ δt). We rewrite this equation to isolate ψ(k+1)(x1, . . . , xn, t+ δt):

(5.5.36) ψ(k+1)(x1, . . . , xn, t+ δt)

=
ψ(x1, . . . , xn, t) +

2na2δt

δ2
ψ

(k)
average(x1, . . . , xn, t+ δt)(

1 +
2na2δt

δ2

)
It turns out that the molecule of these finite-difference equations is the same as that

depicted in figure 5.5.3 on page 199. It follows that we can speed up the convergence
of the iteration by using the consistently-ordered methods (see § 5.1.2.5 on page 118),
with the odd-even ordering vector discussed in 5.5.2 on page 198. Unfortunately we
have no simple way to determine the optimal overrelaxation coefficient.

Once we have found a reasonable value of ψ(x1, . . . , xn, t+ δt), we are in a position
to compute ψ(x1, . . . , xn, t + 2δt) and so on. We may also use multigrid methods like
those described on page 201 in each phase of this algorithm.
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EXERCISES.

11. Formulate the Schrödinger wave equation (equation (5.5.28) on page 211) in an
implicit iteration scheme.

5.5.2.4. Error Analysis. In this section we will show that implicit methods are far
better-behaved than the explicit ones with regards to propagation of errors. In fact, re-
gardless of step-size, it turns out that the total propagation of error in implicit methods
is strictly bounded. We will perform an analysis like that in § 5.5.2.2 on page 218.

As in § 5.5.2.2 we will assume that
(1) 0 ≤ x < a = rδ and 0 ≤ y < b = sδ, and
(2) ψ(x, y) is a function that is well-defined at points x = nδ and y = mδ, where n

and m are integers, and for values of t that are integral multiples of a quantity
δt > 0;

We will examine the behavior of the linear system (5.5.35) on page 222 in the case where
the original differential equation was two dimensional:(

1 +
4a2δt

δ2

)
ψ(x, y, t+ δt)− 4a2δt

δ2
ψaverage(x, y, t+ δt) = ψ(x, y, t)

We will regard this as an equation of the form

(5.5.37) Zψ(t+ δt) = ψ(t)

and try to determine the relevant properties of the matrix Z (namely the eigenvalues)
and deduce the corresponding properties of Z−1 in the equation:

(5.5.38) ψ(t+ δt) = Z−1ψ(t)

CLAIM 5.5.10. The matrix Z in equation (5.5.37) is equal to(
1 +

4a2δt

δ2

)
Irs −

4a2δt

δ2
E(r, s)

where Irs is an rs× rs identity matrix.

This follows from the fact that the first term of (5.5.35) on page 222 simply multi-
plied its factor of ψ by a constant, and the second term simply subtracted a multiple
of ψaverage — whose matrix-form is equal to E(r, s) (see 5.5.5 on page 208). This, and
exercise 8 on page 109 and its solution on page 390 imply:

CLAIM 5.5.11. The eigenvalues of the matrix Z defined above, are{
1 +

4a2δt

δ2
− 4a2δt

2δ2

(
cos

πj

r + 1
+ cos

πk

s+ 1

)}
where 1 ≤ j ≤ r and 1 ≤ k ≤ s are integers.

Now 5.1.19 on page 105 implies that
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PROPOSITION 5.5.12. The eigenvalues of the matrix Z−1 in equation (5.5.38) above are
1

1 +
4a2δt

δ2
− 4a2δt

2δ2

(
cos πj

r+1
+ cos πk

s+1

)
The eigenvalue with the largest absolute value is the one for which the cosine-terms are as close
as possible to 1. This happens when j = k = 1. The spectral radius of Z−1 is, consequently,

ρ(Z−1) =
δ2

δ2 + 4 a2δt− 2 a2δt cos( π
r+1

)− 2 a2δt cos( π
s+1

)
< 1

since cos( π
r+1

) < 1 and cos( π
s+1

) < 1. This means that the implicit methods are always numer-
ically stable. We can estimate the influence of r, s and δ on the degree of numerical stability:

ρ(Z−1) = 1− a2δtπ2

δ2

(
1

r2
+

1

s2

)
+O(

δ4

rusv
)

where u+ v ≥ 4.

In analogy with 5.5.9 on page 219, we get:

PROPOSITION 5.5.13. In the 2-dimensional heat equation, suppose that the act of replacing
the partial derivatives by a finite difference results in a bounded error:∣∣∣∣∂ψ∂t − ψ(t+ δt)− ψ(t)

δt

∣∣∣∣ ≤ E1(δt)∣∣∣∣4(ψaverage − ψ)

δ2
−∇2ψ

∣∣∣∣ ≤ E2(δ)

over the spatial region of the solution and the range of times that we want to study. We have
written E1 and E2 as functions of δt and δ, respectively, to represent their dependence upon
these quantities. Then the cumulative error of using the implicit iteration scheme is

≤ δ2

a2π2

(
E1(δt) +

δ2

a2
E2(δ)

)
r2s2

r2 + s2

As before, we assume that roundoff error is incorporated into E1 and E2. Compare
this result with 5.5.9 on page 219.

PROOF. First we compute the error made in a single iteration. Suppose

Ẽ1 =
∂ψ

∂t
− ψ(t+ δt)− ψ(t)

δt

Ẽ2 =
4(ψaverage − ψ)

δ2
−∇2ψ

so the hypotheses imply that ∣∣∣Ẽ1

∣∣∣ ≤E1(δt)∣∣∣Ẽ2

∣∣∣ ≤E2(δ)

As in the explicit case we will assume that ψ is an exact solution of the Heat Equa-
tion. We will plug this exact solution into our finite-difference approximation and see
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how closely it satisfies the finite-difference version. This will measure the error in us-
ing finite differences. We will get equations very similar to equations (5.5.30) through
(5.5.33) on page 220:

ψ(t+ δt) =δt
ψ(t+ δt)− ψ(t)

δt
+ ψ(t) exactly

=δt
∂ψ

∂t
(t+ δt)− δtẼ1 + ψ(t)

=
δt

a2
∇2ψ(t+ δt)− δtẼ1 + ψ(t) because ψsatisfies the Heat equation

=
δt

a2

4(ψaverage(t+ δt)− ψ(t+ δt))

δ2
− δt

a2
Ẽ2 − δtẼ1 + ψ(t)

This implies that the total error made in a single iteration of the algorithm is

≤ E =

∣∣∣∣− δta2
Ẽ2 − δtẼ1

∣∣∣∣ ≤ δt

(
E1 +

1

a2
E2

)
In the next iteration this error contributes a cumulative error EA = ρ(Z−1), and k
iterations later its effect is ≤ EAk. The total error is, consequently

E
(
1 + A+ A2 . . .

)
≤ E =

E

1− A
The estimate

ρ(Z−1) = 1− a2δtπ2

δ2

(
1

r2
+

1

s2

)
+O(

δ4

rusv
)

now implies the conclusion. �

EXERCISES.

12. Show that the implicit methods always work for the Schrödinger wave equation
(equation (5.5.28) on page 211). (In this context “work” means that total error due to
propagation of errors is bounded.)

5.5.3. Hyperbolic Differential Equations.
5.5.3.1. Background. The simplest hyperbolic partial differential equation is the

Wave Equation35. We have a function ψ(x1, . . . , xn, t), where x1, . . . , xn are spatial coor-
dinates and t is time:

(5.5.39) ∇2ψ =
1

a2

∂2ψ

∂t2

35Not to be confused with the Schrödinger Wave Equation (5.5.28).
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As its name implies, this equation is used to describe general wave-motion. For
instance, the 1-dimensional form of the equation can be used the describe a vibrating
string:

(5.5.40)
∂2ψ

∂x2
=

1

a2

∂2ψ

∂t2

Here, the string lies on the x-axis and ψ represents the displacement of the string
from the x-axis as a function of x and t (time). The Wave Equation in two dimensions
can be used to describe a vibrating drumhead. Another example is

(5.5.41)
∂2ψ

∂t2
− c2∂

2ψ

∂x2
− 2

∂ψ

∂t
= 0

This is know as the telegraph equation — it describes the propagation of electric current
in a wire with leakage.

It is possible to give a closed-form expression for the general solution of the one-
dimensional wave equation (5.5.40):

ψ(x, t) =
ψ0(x+ at) + ψ(x− ai)

2
+

1

2

ˆ x+at

x−at
ψ1(u) du

where ψ0 = ψ(x, 0), and ψ1 = ∂ψ/∂t|t = 0. This is known as d’Alembert’s solution.
Similar (but more complex) solutions exist for higher-dimensional wave equations —
these generally involve complex integrals. re complicated than boundary conditions
for parabolic equations because one usually must specify not only the value of ψ at
some time, but also its time-derivative:

We specify the values of ψ(xi, t) and
∂ψ(xi, t)

∂t
completely at some initial

time t0 over the domain Ω of the problem, and specify the behavior of
ψ on the boundary of Ω at all later times.

The additional complexity of these boundary conditions have a simple physical inter-
pretation in the case of the wave equation. We will consider the one-dimensional wave
equation, which essentially describes a vibrating string (in this case, ψ(x, t) represents
the displacement of the string, as a function of time and x-position).

• Specifying the value of ψ at time 0 specifies the initial shape of the string. If

this is nonzero, but
∂ψ(xi, t)

∂t t=0
= 0, we have a plucked string.

• Specifying
∂ψ(xi, t)

∂t t=0
specifies the initial motion of the string. If

∂ψ(xi, t)

∂t t=0
6= 0 but ψ(x, 0) = 0 we have a “struck” string (like in a piano).

Note that we can also have all possible combinations of these conditions.
Generally speaking, the best approach to finding numerical solutions to hyperbolic

partial differential equations is via the method of characteristics (related to the integral-
formulas for solutions mentioned above). See [6] for a discussion of the method of
characteristics.
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5.5.3.2. Finite differences. We will use the same technique as before — we convert
the equation into a finite difference equation. The fact that the equation is hyperbolic
gives rise to some unique properties in the finite difference equation.

(5.5.42)
ψ(x1, . . . , xn, t+ 2δt)− 2ψ(x1, . . . , xn, t+ δt) + ψ(x1, . . . , xn, t)

δt2

=
2na2

δ2

(
ψaverage − ψ

)
which means that

(5.5.43) ψ(x1, . . . , xn, t+ 2δt)

= 2ψ(x1, . . . , xn, t+ δt)− ψ(x1, . . . , xn, t) +
2na2δt2

δ2

(
ψaverage − ψ

)
where ψaverage has the meaning it had in 5.5.2.1 — it is given in equation (5.5.3) on

page 193.
Note that this equation presents its own unique features: initially we can specify

not only the value of ψ at an initial time, but we can also specify the value of ∂ψ/∂t.
As mentioned in the discussion on page 227, there are two possibilities for the

boundary conditions:

(1) The “plucked” case — here ψ is initially nonzero, but ∂ψ/∂t = 0, initially. In
this case we set ψ(x1, . . . , xn, δt) = ψ(x1, . . . , xn, 0) and we continue the numer-
ical solution from ψ(x1, . . . , xn, 2δt) on.

(2) The “struck” case. In this case ψ = 0 initially, but we specify other initial values
for ∂ψ/∂t. This is done numerically by setting ψ(x1, . . . , xn, δt) = (∂ψ/∂t)Initialδt
and solving for ψ at later times, using 5.5.42.

The numeric algorithm tends to be unstable unless the value of ∆ψ/∆t is bounded. In
general, we must set up the initial conditions of the problem so that ψ doesn’t undergo
sudden changes over the spatial coordinates.

Excellent analytic solutions can be found in many cases where the boundary has
some simple geometric structure. For instance, in the case where the drumhead is
rectangular the exact analytic solution can be expressed in terms of series involving
sines and cosines (Fourier series). In the case where it is circular the solution involves
Bessel functions. Since analytic solutions are preferable to numeric ones whenever they
are available, we won’t consider such regular cases of the wave equation. We will
consider a situation in which the boundary is fairly irregular: it is a rectangular region
with a corner chopped off and a fixed disk — i.e., a disk in the rectangle is held fixed.
Figure 5.5.3.2 shows what this looks like.

Here is a C* program that implements this algorithm in the “plucked” case:
Here canmove is a parallel variable that determines whether the iteration steps are

carried out in a given cycle through the loop. It defines the shape of the region over
which the calculations are performed. The initial values of ψ were computed in such a
way that it tends to 0 smoothly as one approaches the boundary.

The change in ψ as time passes is plotted in figures 5.5.3.2 through 5.5.3.2.
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FIGURE 5.5.9. Boundary conditions

FIGURE 5.5.10. Initial configuration.

FIGURE 5.5.11. After 80 iterations.

EXERCISES.

13. Analyze the telegraph equation (equation (5.5.41) on page 227), and formulate
it in terms of finite differences. Write a C* program for solving the telegraph equation.
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FIGURE 5.5.12. After 200 iterations.

FIGURE 5.5.13. After 240 iterations.

5.5.4. Further reading. Theoretical physics has provided much of the motivation
for the development of the theory of partial differential equations. See [117] and [38]
for compendia of physics problems and the differential equations that arise from them.

We have not discussed mixed partial differential equations. In general the question
of whether a partial differential equation is elliptic, parabolic, or hyperbolic depends
on the point at which one tests these properties. Partial differential equations of mixed
type have characteristics that actually change from one point to another — in some
regions they may be elliptic and in others they may be parabolic, for instance. Here is
an example

(5.5.44)
(

1− u2

c2

)
∂2ψ

∂x2
− 2uv

c2

∂2ψ

∂x∂y
+

(
1− v2

c2

)
∂2ψ

∂y2
= 0
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This the the equation of 2-dimensional stationary flow without rotation, of a compress-
ible fluid without viscosity. Here ψ is the velocity potential and

u =
∂ψ

∂x

v =
∂ψ

∂y

are the actual components of the velocity. The number c is the local speed of sound
within the fluid — this is some known function of q =

√
u2 + v2 (it depends upon the

problem). Equation (5.5.44) is elliptic if q < c and the flow is said to be subsonic. If q > c
the flow is supersonic and the equation is hyperbolic. As this discussion implies, these
equations are important in the study of supersonic fluid flows — see [37] and [14] for
applications of mixed differential equations to supersonic shock waves.

We have not touched upon the use of finite element methods to numerically solve
partial differential equations. See [122] for more information on finite-element meth-
ods.

Another method for solving partial differential equations that is gaining wider us-
age lately is the boundary element method. This is somewhat like the methods discussed
on page 227 for solving hyperbolic equations. The basic idea of boundary element
methods is that (for a linear differential equation) any linear combination of solutions
is also a solution. Boundary element methods involve finding fundamental solutions to
differential equations and expressing arbitrary solutions as sums or integrals of these
fundamental solutions, using numerical integration algorithms like those in § 5.4 on
page 181.





CHAPTER 6

A Survey of Symbolic Algorithms

In this section we will present a number of symbolic algorithms for the P-RAM
computer (since we now know that it can be efficiently simulated by bounded-degree
network computers).

6.1. Doubling Algorithms

6.1.1. General Principles. In this section we will present a number of P-RAM al-
gorithms that are closely related. They may be regarded as generalizations of the sim-
ple algorithm for adding numbers presented in the introduction. There are various
names for this family of algorithms: doubling algorithms, parallel-prefix algorithms
and cyclic reduction algorithms. The different name reflect different applications of
this general technique.

The example on page 56 of chapter 4 shows how to add n numbers in O(lg n)-
time. The Brent Scheduling Principle (2.4.7 on page 42) immediately enables the same
computations to be carried out with fewer processors — see 6.1.2 and 6.1.5 on page
236. It is not hard to see that this same procedure also works to multiply n-numbers in
O(lg n)-time. We can combine these to get:

PROPOSITION 6.1.1. A degree-n polynomial can be evaluated inO(lg n) time on a PRAM
computer with O(n) processors.

EXERCISES.

1. Write a C* routine to evaluate a polynomial, given an array of coefficients.

We also get:

PROPOSITION 6.1.2. Two n×nmatricesA andB can be multiplied inO(lg n)-time using
O(n3) processors.

PROOF. The idea here is that we form the n3 products AijBjk and takeO(lg n) steps
to sum over j. �

Since there exist algorithms for matrix multiplication that require fewer than n3

multiplications (the best current asymptotic estimate, as of as of 1991, is n2.376 multipli-
cations — see [34]) we can generalize the above to:

COROLLARY 6.1.3. If multiplication of n × n matrices can be accomplished with M(n)
multiplications then it can be done in O(lg n)time using M(n) processors.

233
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FIGURE 6.1.1. Computing cumulative partial sums

Now we will consider an algorithm that computes all of the cumulative partial sums.
It is illustrated in figure 6.1.1.

The top row of figure 6.1.1 has the inputs and each succeeding row represents the
result of one iteration of the algorithm. The curved arrows represent additions that take
place in the course of the algorithm. The bottom row has the cumulative sums of the
numbers on the top row.

The formal description of this algorithm is as follows:

6.1.1. Suppose we have a sequence of n = 2k numbers. The following procedure computes
all of the partial sums of these integers in k steps using n/2 processors (in a CREW parallel
computer).
for i← 0 to k − 1 do in parallel

Subdivide the n numbers into 2k−i−1 subsequences
of 2i+1 numbers each: we call these subsequences
{ei,j}, where j runs from 0 to 2k−i−1 − 1

Subdivide each of the {ei,j} into an upper and lower half
In parallel add the highest indexed number in

the lower half of each of the ei,j
to each of the numbers in the upper half of the same ei,j .

That this algorithm works is not hard to see, via induction:

We assume that at the beginning of each iteration, each of the halves of
each of the {ei,j} contains a cumulative sum of the original inputs within
its index-range. The computation in an iteration clearly makes each of
the {ei,j} satisfy this condition.

If we want to express this algorithm in a language like C* we must do a little more
work:

We suppose that the input numbers are {m0, . . . ,mn−1}.
(1) A number m` is contained in ei,j if and only if b`/2i+1c = j.
(2) A numberm`, in ei,j , is also in the lower half of ei,j if and only if the i-bit position

(i.e. the multiple of 2i in its binary expansion) of ` is 0.
(3) Similarly, a number m`, in ei,j , is also in the upper half of ei,j if and only if the

i-bit position of ` is 1. These are the numbers that get other numbers added to
them in the iteration of the algorithm.
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(4) Suppose m`, is in the upper half of ei,j . How do we compute the position of
the highest numbered element in the lower half of the same ei,j , from ` itself?
This is the number that gets added to m` in iteration i of algorithm 6.1.1. The
answer to this question is that we determine the position of the lowest num-
bered element in the upper half of ei,j , and take the position that precedes this.
This amounts to:
• Compute j = b`/2i+1c.
• The lowest-numbered element of ei,j is j · 2i+1.
• The lowest-numbered element of the upper half of ei,j is j · 2i+1 + 2i.
• The element that precedes this is numbered j · 2i+1 + 2i − 1.
It follows that iteration i of the algorithm does the operation

m` ← m` +m`0

where
`0 = b`/2i+1c · 2i+1 + 2i − 1

This algorithm for adding up n numbers, works for any associative binary opera-
tion:

PROPOSITION 6.1.4. Let A denote some algebraic system with an associative composition-
operation ?, i.e. for any a, b, c ∈ A, (a ? b) ? c = a ? (b ? c). Let a0, . . . an−1 be n elements of
A. If the computation of a ? b for any a, b ∈ A, can be done in time T then the computation
of {a0, a0 ? a1, . . . , a0 ? · · · ? an−1} can be done in time O(T lg n) on a PRAM computer with
O(n) processors.

The problem of computing these cumulative composites is called the Parallel Prefix
Problem. Note that if the operation wasn’t associative the (non-parenthesized) compos-
ite a0 ? · · · ? an−1 wouldn’t even be well-defined.

PROOF. We follow the sample algorithm in the introduction exactly. In fact we
present the algorithm as a pseudo-C* program:

shape [N]computation;
struct pdata:computation {
datatype an;/* Some data structure
containing
an. */
int PE number;
int lower(int);
void operate(int);
};

int:computation lower (int iteration)
{
int next iter=iteration+1;
int:computation PE num reduced = (PE number >>
next iter)<<next iter;
return PE num reduced + (1<<iteration) − 1;
}

void pdata::operate(int iteration)
{
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NULL

FIGURE 6.1.2. A linked list

where (lower(iteration)<PE number)
an = star op([lower(iteration)]an,an);
}

Here star op(a,b) is a procedure that computes a ? b. It would have to declared via
something like:

datatype:current starop(datatype:current,
datatype:current)

We initialize [i]an with ai and carry out the computations via:

for(i=0,i<=log(N)+1;i++)
with (computation) operate(i);

At this point, PE[i].an will equal a0 ? · · · ? ai. �

The Brent Scheduling Principle implies that the number of processors can be re-
duced to O(n/ lg n):

The following result first appeared in [27]:

6.1.2. Let {a0, . . . , an−1} be n elements, let ? be an associative operations. Given K proces-
sors, the quantity A(n) = a0 ? · · · ? an−1 can be computed in T parallel time units, where

T =

{
dn/Ke − 1 + lgK if bn/2c > K

lg n if bn/2c ≤ K

This is a direct application of 2.4.7 on page 42.
In the first case, we perform sequential computations with the K processors until

the number of data-items is reduced to 2K. At that point, the parallel algorithm 3.2 it
used. Note that the last step is possible because we have reduced the number of terms
to be added to the point where the original algorithm works.

This immediately gives rise to the algorithm:

COROLLARY 6.1.5. Let {a0, . . . , an−1} be n elements, let ? be an associative operations.
Given n/ lg n processors, the quantity A(n) = a0 ? · · · ? an−1 can be computed in O(lg n)
parallel time units.

We conclude this section with an algorithm for the related List Ranking Problem:
We begin with a linked list {a0, . . . , an−1}, where each element has a
NEXT pointer to the next entry in the list. (See figure 6.1.1). For all i
from 0 to n− 1 we want to compute the rank of ai in this list.

The standard algorithm for doing this is called Pointer Jumping — it is often a prepara-
tory step to applying the parallel-prefix computations described above.
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NULL

FIGURE 6.1.3. First iteration of pointer-jumping

NULL

FIGURE 6.1.4. Second iteration of pointer-jumping

NULL

FIGURE 6.1.5. Third iteration of pointer-jumping

6.1.3. List-Ranking The list-ranking problem can be solved on a SIMD-PRAM computer
in O(lg n)-time using O(n) processors.

INPUT: A linked list {a(0), . . . , a(n − 1)} with NEXT-pointers: N(i) (where N(i) is the
subscript value of the next entry in the linked list.
OUTPUT: An array R(i) giving the rank of a(i) in the linked list. This is equal to the distance
of a(i) from the end of the list.

We assume there is one processor/list entry.
for processors i from 0 to n− 1 do in parallel

if N(i) =NULL then
R(i)← 0

else
R(i)← 1

endfor
for i← 0 until i ≥ dlg ne do
R(i)← R(i) +R(N(i))
N(i)← N(N(i))

endfor
endfor

This is illustrated by figures 6.1.1 through 6.1.1.
Now we prove that the algorithm works. We use induction on n. Suppose n = 2k

is a power of 2 and the algorithm works for n = 2k−1. This assumption is clearly true
for k = 0.
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FIGURE 6.1.6. A Huffman decoding tree

The crucial step involves noting:
• Given a list of size 2k we can perform the algorithm for k − 1 iterations on this

list. The inductive assumption implies that the “right” half of this list will be
correctly ranked. Furthermore, the ranking of these elements won’t change
during the next iteration.
• that in each iteration, the number of edges between a(i) and a(N(i)) is equal to
R(i). This implies the result since, in iteration k, the “left” half of the list of size
2k will also be correctly ranked, since they are 2k−1 edges away from elements
of the “right” half, which are correctly ranked (by the inductive assumption).

EXERCISES.

2. Can the Cumulative sum algorithm (6.1.1 on page 234) be expressed in terms of
the generic ASCEND or DESCEND algorithms on page 55?

3. Huffman encoding involves reducing a mass of data to a bit-string and a decoding
tree — see figure 3.

The corresponding decoding operation involves scanning the bit-string and tracing
through the decoding tree from the root to a leaf. That leaf is the decoded value of the
few bits that led to it. After each leaf, the process starts anew at the root of the decoding
tree and the next bit in the string. For instance, the string 1011001 decodes to the data
ABAC, using the decoding tree in figure 3 on page 238. Clearly, a Huffman-encoded
string of length n can be sequentially decoded in time that is O(n). Give a PRAM-
parallel algorithm for decoding such a string in time O(lg n), using O(n) processors.

6.1.2. Recurrence Relations. Next, we consider the problem of solving recurrence-
relations. These are equations of the form:

xi = xi−1 − 2xi−2 + 1

and the problem is to solve these equations for all the {xi} in terms of some finite
set of parameters — in this particular case x0 and x1. Failing this we can try to compute
x0, . . . , xn for some large value of n.
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Recurrence-relations occur in a number of areas including:
• Markov-processes.
• numerical solutions of ordinary differential equations, where a differential

equation is replaced by a finite-difference equation. See [169] — this is an
entire book on recurrence relations.
• Series solutions of differential equations, in which a general power-series is

plugged into the differential equation, usually give rise to recurrence relations
that can be solved for the coefficients of that power-series. See [146] for more
information on these topics
• The Bernoulli Method for finding roots of algebraic equations. We will briefly

discuss this last application.
Suppose we want to find the roots of the polynomial:

f(x) = xn + a1x
n−1 + · · ·+ an = 0

Let S0 = S1 = · · · = Sn−2 = 0 and let Sn−1 = 1. Now we define the higher terms of
the sequence {Si} via the recurrence relation

Sk = −a1Sk−1 − a2Sk−2 − · · · − anSk−n
Suppose the roots of f(x) = 0 are α1, α2, . . . , αn with |α1| ≥ |α2| ≥ · · · ≥ |αn|. It

turns out that, if α1 is a real, simple root, then

lim
k→∞

Sk
Sk−1

= α1

If α1, α2 are a pair of complex conjugate roots set α1 = Reiθ, α2 = Re−iθ. If |α3| < R,
then

L1 = lim
k→∞

S2
k − Sk+1Sk−1

S2
k−1 − SkSk−2

= R2(6.1.1)

L2 = lim
k→∞

SkSk−1 − Sk+1Sk−2

S2
k−1 − SkSk−2

= 2R cos θ(6.1.2)

This allows us to compute the largest root of the equation, and we can solve for the
other roots by dividing the original polynomial by (x − α1), in the first case, and by
(x− α1)(x− α2), in the second. In the second case,

R =
√
L1(6.1.3)

cos θ =
L2

2
√
L1

(6.1.4)

sin θ =

√
1− (cos θ)2(6.1.5)

and

α1 = R(cos θ + i sin θ)(6.1.6)
α2 = R(cos θ − i sin θ)(6.1.7)

Now we turn to the problem of solving recurrence-equations. We first choose a
data-structure to represent such a recurrence. Let
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xi =
k∑
j=1

Bi,jxi−j + Zi

denote a general k-level recurrence relation — here Zi is a constant. We will represent
it via a triple (1, Li, Z), where Li is the list of numbers

[1,−Bi,1, . . . ,−Bi,k]

and Z is the list [Z1, . . . ]. We will also want to define a few simple operations upon lists
of numbers:

(1) If L1 and L2 are two lists of numbers we can define the elementwise sum and
difference of these lists L1 + L2, L1 − L2 — when one list is shorter than the
other it is extended by 0’s on the right.

(2) If z is some real number, we can form the elementwise product of a list, L, by
z: zL;

(3) We can define a right shift-operation on lists. If L = [a1, . . . , am] is a list of
numbers, then ΣL = [0, a1, . . . , am].

Given these definitions, we can define an operation ? on objects (t, L, Z), where t is an
integer≥ 1, L is a list of numbers [1, 0, . . . , 0, at, . . . , ak], where there are at least t−1 0’s
following the 1 on the left, and Z is a number. (t1, L1, Z1) ? (t2, L2, Z2) = (t1 + t2, L1 −∑t1+t2−1

j=j1
ajΣ

jL2, Z
′), where L1 = [1, 0, . . . , 0, ak, . . . ], and Z ′ = Z1 −

∑t1+t2−1
j=j1

aj .
Our algorithm for adding up n numbers in O(lg n)-time implies that this com-

posite can be computed in O(lg n)-time on a PRAM, where n is the size of the lists
Z1, Z2, and Z ′. This construct represents the operation of substituting the recurrence-
relation represented by L2 into that represented by L1. This follows from how we asso-
ciate integer-sequences with recurrence-relations: if the recurrence-relation is true, the
integer-sequence is a linear form that is identically equal to the number on the right in
the triple. It follows that (t1, L1, Z1)?(t2, L2, Z2) also contains a linear-form that is identi-
cally equal to Z ′ if all of the constituent recurrence-relations are satisfied. It follows that
the result of translating (t1, L1, Z1) ? (t2, L2, Z2) back into a recurrence-relation is a logi-
cal consequence of the recurrence-relations that gave rise to (t1, L1, Z1) and (t2, L2, Z2).
One interesting property of (t1, L1, Z1) ? (t2, L2, Z2) is that it has a run of at least k1 + k2

zeroes. It is not hard to see that, if (1, Li, Z), where Li = [1,−Bi, 1, . . . ,−Bi,k] represents
the recurrence-relation xi = Bi,jxi−j + Zi then (1, L1, Z) ? · · · ? (1, Ln−k, Z) represents
a formula expressing xn in terms of x1, . . . , xk and the {Zi}— this is a solution of the
recurrence-relation. Proposition 6.1.4 implies that:

THEOREM 6.1.6. Given the recurrence-relation xi =
∑k

j=1Bi,jxi−j + Zi the value of xn
can be computed in time O(lg2(n− k)) on a PRAM-computer, with O(kn2) processors.

1. It is only necessary to verify that the composition (t1, L1, Z1) ? (t2, L2, Z2) is asso-
ciative. This is left as an exercise for the reader.

2. The most general recurrence-relation has each xi and Zi a linear array and each Bj

a matrix. The result above, and 6.1.4 imply that these recurrence-relations can be solved
in time that is O(lg3 n) — the definitions of the triples (t, L, Z) and the composition-
operation (t1, L1, Z1) ? (t2, L2, Z2) must be changed slightly.
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FIGURE 6.1.7. A DFA

EXERCISES.

4. Consider the Bernoulli Method on page 239. Note that Si is asymptotic to αi1 and
so, may either go off to∞ or to 0 as i→∞. How would you deal with situation?

6.1.3. Deterministic Finite Automata. Next we consider an algorithm for the sim-
ulation of a deterministic finite automaton. See chapter 2 of [70] for a detailed treat-
ment. We will only recall a few basic definitions.

DEFINITION 6.1.7. A deterministic finite-state automaton (or DFA), D, consists of a
triple (A, S, T ) where:

A: is a set of symbols called the alphabet of D;
S: is a set of states of D with a distinguished Start state, S0, and stop states
{P0, . . . , Pk};

T : is a function T :S × A→ S, called the transition function of D.
A string of symbols {a0, . . . , an}taken from the alphabet, A, is called a string of the
language determined by D if the following procedure results in one of the stop states
of D: Let s = S0, the start state of D. for i=0 to n do s=T(s,ai);

DFA’s are used in many applications that require simple pattern-recognition capa-
bility. For instance the lexical analyzer of a compiler is usually an implementation of a
suitable DFA. The following are examples of languages determined by DFA’s:

(1) All strings of the alphabet {a, b, c}whose length is not a multiple of 3.
(2) All C comments: i.e. strings of the form ‘/*’ followed by a string that doesn’t

contain ‘*/’ followed by ‘*/’.
DFA’s are frequently represented by transition diagrams — see figure 6.1.3.

This is an example of a DFA whose language is the set of string in a and b with an
even number of a’s and an even number of b’s. The start state of this DFA is State 1 and
this is also its one stop state.

We now present a parallel algorithm for testing a given string to see whether it is in
the language determined by a DFA. We assume that the DFA is specified by:
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(1) a k × t-table, T , where k is the number of states in the DFA (which we assume
to be numbered from 0 to k − 1) and t is the number of letters in the alphabet.
Without loss of generality we assume that the start state is number 0;

(2) A list of numbers between 0 and k − 1 denoting the stop states of the DFA.
The idea of this algorithm is that:

(1) each letter, a, of the alphabet can be regarded as a function,
fa: {0, . . . , k − 1} → {0, . . . , k − 1}— simply define fa = T (∗, a).

(2) the operation of composing functions is associative.
In order to give the formal description of our algorithm we define the following oper-
ation:

DEFINITION 6.1.8. Let A and B be two arrays of size k, and whose entries are in-
tegers between 0 and k − 1. Then A ? B is defined via: (A ? B)i = B[A[i]], for all
0 ≤ i ≤ k − 1.

Our algorithm is the following:

6.1.4. Given a character-string of length n, s = {c0, . . . , cn−1}, and given a DFA, D,
with k states and transition function T , the following procedure determines whether s is in the
language recognized by D in time O(lg n)with O(kn) processors:

(1) Associate a linear array A(cj) with each character of the string via: A(cj)i = T (i, cj).
Each entry of this array is a number from 0 to k − 1.

(2) Now compute A = A(c0) ? · · · ? A(cj). The string s is in the language recognized by
D if and only if A0 is a valid stop state of D.

�

1. The composition-operation can clearly be performed in constant time with k
processors. Consequently, the algorithm requires O(lg n)with O(kn) processors.

2. DFA’s are frequently described in such a way that some states have no transitions
on certain characters. If this is the case, simply add an extra “garbage state” to the DFA
such that a character that had no transition defined for it in the original DFA is given a
transition to this garbage state. All transitions from the garbage state are back to itself,
and it is never a valid stop state.

3. This algorithm could be used to implement the front end of a compiler. DFA’s in
such circumstances usually have actions associated with the various stop states and we
are usually more interested in these actions than simply recognizing strings as being
in the language defined by the DFA.

EXERCISES.

5. Write a C* program to recognize the language defined by the DFA in figure 6.1.3.

6. Consider algorithm 6.1.4 on page 235. Suppose you are only given only n/ lg n
processors (rather than n). Modify this algorithm so that it performs its computations
in O(T lg2 n) time, rather than O(T lg n)-time. (So the “price” of using only n/ lg n pro-
cessors is a slowdown of the algorithm by a factor of O(lg n)).
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7. Same question as exercise 1 above, but give a version of algorithm 6.1.4 whose
execution time is still O(T lg n) — here the constant of proportionality may be larger
than before, but growth in time-complexity is no greater than before. Note that this
version of algorithm 6.1.4 gives optimal parallel speedup — the parallel execution time
is proportional to the sequential execution time divided by the number of processors.
(Hint: look at §2.4.2 in chapter 2)

6.1.4. Parallel Interpolation. Now we will discuss an algorithm for the Interpola-
tion Problem for polynomials. This is the problem of finding a degree-k − 1 polynomial
that fits k given points: (x0, y0), . . ., (xk−1, yk−1). This is somewhat like what was done
in § 5.4 on page 181 with the Newton-Cotes integration formula. The main differences
are that

• The values of the x-variable are not evenly spaced.
• The coefficients of the interpolation formula are not precomputed as in the

Newton-Cotes formula: they are computed at run-time by the algorithm.

This parallel algorithm is due to Ö. Eğecioğlu, E. Gallopoulos and Ç. Koç — see [121].
This is an algorithm that might have been placed in chapter 5, but it involves so many
parallel prefix computations (á la 6.1.4 on page 235) that we placed it here. We will
look at their parallelization of an interpolation algorithm developed by Isaac Newton.

In order to describe the algorithm, we have to define the concept of divided differ-
ences. Suppose we have a table of values of a function f(x) for various different values
of x:

x0 y0

· · · · · ·
xk−1 yn−1

The first divided differences are defined by:

(6.1.8) yi,i+1 =
yi − yi+1

xi − xi+1

and higher divided differences are defined recursively by the formula

(6.1.9) yi,i+1,...,i+j =
yi,i+1,...,i+j−1 − yi+1,...,i+j

xi − xi+j

Newton’s formula for interpolation is

(6.1.10) f(x) = y0 + y01(x− x0) + y012(x− x0)(x− x1) + · · ·
+ y012···k−1(x− x0) · · · (x− xk−2)

We will find a parallel algorithm for computing the numbers {y01, . . . , y01···k−1}.
The following result of Ö. Eğecioğlu, E. Gallopoulos and Ç. Koç allows us to paral-

lelize this formula:
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PROPOSITION 6.1.9. Let j > 0. The divided differences in the table above satisfy the
formula:

y0,...,j−1 =
y0

(x0 − x1) · · · (x0 − xj−1)
+

· · ·+ yi
(xi − x1) · · · (xi − xi−1)(xi − xi+1)(xi − xj−1)

+ · · ·+ yj−1

(xj−1 − x0) · · · (xj−1 − xj−2)

PROOF. We use induction on j. It is straightforward to verify the result when j = 2.
Assuming that

y0,...,j−2 =
y0

(x0 − x1) · · · (x0 − xj−2)
+

· · ·+ yi
(xi − x1) · · · (xi − xi−1)(xi − xi+1)(xi − xj−2)

+

· · ·+ yj−2

(xj−2 − x0) · · · (xj−2 − xj−3)

=y0 · d(0;1,...,j−2) + · · ·+ yi · d(i;0,...,i−1,i+1,...,j−2)+

· · ·+ yj−2 · d(j−1;0,...,j−3)

where

d(i;0,...,i−1,i+1,...,j−2) =
1

(xi − x1) · · · (xi − xi−1)(xi − xi+1)(xi − xj−2)

Now we derive the formula given in the statement of this proposition. We can use
direct computation:

y0,...,j−1 =
y0,i+1,...,j−2 − y1,...,j−1

x0 − xj−1

1

x0 − xj−1

{
y0 · d(0;1,...,j−2)+

· · ·+ yi · d(i;0,...,i−1,i+1,...,j−2) + · · ·
+ yj−2 · d(j−1;0,...,j−3) − y1 · d(1;2,...,j−1)−
· · · − yi · d(i;1,...,i−1,i+1,...,j−1) − · · ·

− yj−1 · d(j−1;0,...,j−2)

}
=

1

x0 − xj−1

{
y0 · d(0;1,...,j−2)+

· · ·+ yi · (d(i;0,...,i−1,i+1,...,j−2)

− d(i;1,...,i−1,i+1,...,j−1))−

· · · − yj−1 · d(j−1;0,...,j−2)

}
We can incorporate the factor of 1/(x0 − xj−1) into the first and last terms to get
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y0,...,j−1 =y0 · d(0;1,...,j−1)+

· · ·+ yi
x0 − xj−1

(
d(i;0,...,i−1,i+1,...,j−2) − d(i;1,...,i−1,i+1,...,j−1)

)
+ yj−1 · d(j−1;0,...,j−1)

=y0 · d(0;1,...,j−1)+

· · ·+ yi
x0 − xj−1

d(i;1,...,i−1,i+1,...,j−2)

(
1

xi − x0

− 1

xi − xj−1

)
+ yj−1 · d(j−1;0,...,j−1)

=y0 · d(0;1,...,j−1)+

· · ·+ yi
x0 − xj−1

d(i;1,...,i−1,i+1,...,j−2)
x0 − xj−1

(xi − x0)(xi − xj−1)

+ yj−1 · d(j−1;0,...,j−1)

=y0 · d(0;1,...,j−1) + · · ·+ yi · d(i;0,...,i−1,i+1,...,j−1)

+ yj−1 · d(j−1;0,...,j−1)

and this proves the result. �

Our conclusion is a fast parallel algorithm for doing interpolation:

6.1.5. Suppose we have a table of x and y-values of an unknown function:
x0 y0

· · · · · ·
xk−1 yn−1

We can perform a degree-n − 1 interpolation to estimate the value of this function at a
data-point x′ by the following sequence of steps:
for all i such that 0 ≤ i ≤ n− 1

Compute the products {zi = (x′ − x0) · · · (x′ − xi)}
(Use the algorithm described in 6.1.4 on page 235)

for all i and j with 0 ≤ i ≤ j ≤ n− 1.
Compute the quantities d(i;0,...,i−1,i+1,...,j−1)

(This involves n applications of the algorithm in 6.1.4 on page 235)
for all i with 0 ≤ i ≤ n− 1

Compute the divided differences {y0···i}
(This involves forming linear combinations using the
function-values {yi} in the table, and the
{d(i;0,...,i−1,i+1,...,j−1)} computed earlier.)

Plug the divided differences into equation (6.1.10)
on page 243 above.
This entire algorithm can be executed in O(lg n) time using O(n2) processors on a CREW-

SIMD parallel computer.

We need the O(n2) processors because we must perform n − 1 distinct executions
of the algorithm in 6.1.4 on page 235 concurrently. Note that the parallel algorithm is
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not very numerically stable — it involves forming a large sum of small quantities. The
original sequential algorithm is much more stable.

The original paper, [121], of Ö. Eğecioğlu, E. Gallopoulos and Ç. Koç also devel-
oped an algorithm for Hermite interpolation as well as Newton interpolation. That
algorithm requires the definition of generalized divided differences and is simular to, but
more complicated than the algorithm above.

We will conclude this section with an example:
Suppose we have the following table of function-values

xi yi
1 2
2 3
3 5
4 7
5 11
6 13
7 17

This is a table of primes, and we would like to estimate prime number 4.3 (!). We
begin by computing the quantities:

• { 1
x0−x1 ,

1
(x0−x1)(x0−x2)

, . . . , 1
(x0−x1)···(x0−xn−1)

}
• { 1

x1−x0 ,
1

(x1−x0)(x1−x2)
, . . . , 1

(x1−x0)···(x1−xn−1)
}

• and so on, where xi = i+ 1.

We can tabulate these calculations in the following table. Here the entry in the ith row
and jth column is d(i;0,...,i−1,i+1,...,j)

−1
1
2
−1

6
1
24
− 1

120
1

720
− 1

5040

1 −1
1
2
−1

6
1
24

− 1
120

1
720

1
2

1
2
−1

2
1
4
− 1

12
1
48

− 1
240

1
3

1
6

1
6
−1

6
1
12

− 1
36

1
144

1
4

1
12

1
24

1
24

− 1
24

1
48

− 1
144

1
5

1
20

1
60

1
120

1
120

− 1
120

1
240

1
6

1
30

1
120

1
360

1
720

1
720

− 1
720

Now we can calculate our d01...k coefficients using 6.1.9 on page 243 to get

• d01 = 1
• d012 = 1/2
• d0123 = −1/6
• d01234 = 1/8
• d012345 = −3/40
• d0123456 = 23/720
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FIGURE 6.1.8. A function interpolating the first 7 primes

Our approximating polynomial is

f(x) = 2 + (x− 1) + (x− 1)(x− 2)/2− (x− 1)(x− 2)(x− 3)/6

+ (x− 1)(x− 2)(x− 3)(x− 4)/8− 3(x− 1)(x− 2)(x− 3)(x− 4)(x− 5)/40

+ 23(x− 1)(x− 2)(x− 3)(x− 4)(x− 5)(x− 6)/720

and we determine that the “4.3rd prime” is 8.088442663. Lest the reader think we have
found a “formula” for prime numbers, it should be pointed out that this function di-
verges wildly from prime values outside the range of integers from 1 to 7 — see its
graph in figure 6.1.4.

For instance, f(8) = 72, while the correct 8th prime is 19.

EXERCISES.

8. Write a C* program for the Newton Interpolation algorithm.

9. Can this algorithm be used to perform numerical integration, as in § 5.4 (page
181)? What are the problems involved?

6.2. Graph Algorithms

One area where a great deal of work has been done in the development of parallel
algorithms is that of graph algorithms. Throughout this section G = (V,E) will be
assumed to be an undirected graph with vertex set V and edge set E — recall the
definitions on page 83. We will also need the following definitions:
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a.

Removal of any interior vertex disconnects this graph

b.

c.

root

root

An in-tree

An out-tree

FIGURE 6.2.1. Examples of trees

DEFINITION 6.2.1. Let G = (V,E) be a connected graph. Then:
(1) G is a tree if removal of any vertex with more than one incident edge discon-

nects G. See figure 6.2, part a.
(2) G is an in-tree if it is a tree, and a directed graph, and there exists one vertex,

called the root, with the property that there exists a directed path from every
vertex in G to the root. See figure 6.2, part b.

(3) G is an out-tree if it is a tree, and a directed graph, and there exists one vertex,
called the root, with the property that there exists a directed path from the root
to every vertex in G. See figure 6.2, part c.

6.2.1. The Euler Tour Algorithm. We will begin with a very simple and ingenious
algorithm that is often used as a kind of subroutine to other algorithms. We have
already seen an application of this algorithm — see § 6.3.

The input to this algorithm is an undirected tree. The algorithm requires these edges
to be ordered in some way, but makes no additional requirements. The various versions
of this algorithm all compute functions of the tree including:

(1) the

 preorder
postorder

inorder

 rank of the vertices.
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FIGURE 6.2.2.

(2) various other functions associated with the graph like distance from the root;
number of direct descendants, etc.

In addition we will need to assume that:

(1) the edges incident upon each vertex are ordered in some way.
(2) each node has at least two children.

Applications of the algorithm may require that the ordering of the edges have some
other special properties. For instance, the algorithm in § 6.3 requires that the edges be
ordered in a way that is compatible with the terms in the original expression. Figure
6.2.1 is a sample tree that we will use in our discussion. We will assume that the root of
this tree is the top, and that the edges connecting a vertex with its children are ordered
from left to right.

6.2.1. Euler Tour.

(1) Convert the undirected tree into a directed tree, rooted at some vertex. Mark this root-
vertex. Now perform lg n iterations of the following operation:

All undirected edges incident upon a marked vertex are directed away
from it. Now mark all of the vertices at the other ends of these new
directed edges. This is illustrated in figure 1.

Since the process of directing edges can be done in constant time on a PRAM
computer, this entire procedure requires O(lg n) time. We basically use this step so
we can determine the parent of a vertex.

(2) Replace each directed edge of this tree by two new directed edges going in opposite
directions between the same vertices as the original edge. We get the result in figure 2

(3) At each vertex link each directed edge with the next higher directed edge whose direc-
tion is compatible with it. For instance, if a directed edge is entering the vertex, link
it with one that is leaving the vertex. The result is a linked list of directed edges and
vertices. Each vertex of the original tree gives rise to several elements of this linked
list. At this point, applications of the Euler Tour technique usually carry out addi-
tional operations. In most cases they associate a number with each vertex in the linked
list. Figure 6.2.1 shows the Euler Tour that results — the darkly-shaded disks repre-
sent the vertices of the Euler Tour and the larger circles containing them represent the
corresponding vertices of the original tree.
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FIGURE 6.2.4. Graph with doubled edges
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FIGURE 6.2.5. The Euler Tour

These steps can clearly be carried out in unit time with a SIMD computer. The result will be
a linked list, called the Euler Tour associated with the original tree. What is done next depends
upon how we choose to apply this Euler Tour.

We will give some sample applications of the Euler Tour technique:
1. Computation of the ordering of the vertices of the original graph in an preorder-

traversal.
As remarked above, each vertex of the original graph appears several times in the

Euler Tour: once when the vertex is first encountered during a preorder traversal, and
again each time the Euler Tour backtracks to that vertex. In order to compute the
preorder numbering of the vertices, we simply modify the procedure for forming the
Euler Tour slightly. Suppose v is a vertex of the Euler Tour, and t(v) is the correspond-
ing vertex of the original tree that gives rise to t. Then v is assigned a value of a(v),
where

• 1 if v corresponds to a directed edge coming from a parent-vertex;
• 0 otherwise.

Figure 6.2.1 illustrates this numbering scheme.
We take the list of vertices resulting from breaking the closed path in figure 2 at

the top vertex (we will assume that vertex 1 is the root of the tree). This results in the
sequence:

{(1,1), (2,1), (4,1), (2,0), (5,1), (2,0),
(1,0), (3,1), (1,0), (8,1), (7,1), (6,1), (7,0),

(13,1), (7,0), (8,0), (11,1), (9,1), (10,1), (9,0),
(14,1), (9,0), (11,0), (12,1), (11,0), (8,0), (1,0)}

Now compute the cumulative sum of the second index in this list, and we get the
rank of each vertex in a preorder traversal of the original tree. This cumulative sum
is easily computed in O(lg n) time via the List Ranking algorithm (Algorithm 6.1.3 on
page 237).
{(1,1), (2,2), (3,3), (4,4), (5,5), (8,6), (7,7),
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FIGURE 6.2.6. The preorder-numbered Euler Tour

(6,8), (13,9), (11,10), (9,11), (10,12), (14,13), (12,14)}

2. We can also compute an inorder traversal of the graph using another variant of
this algorithm. We use the following numbering scheme: In this case a(v) is defined as
follows:

• if t(v) has no children, a(v) = 1;
• if t(v) has children, but v arose as a result of a directed edge entering t(v) from

a parent vertex, a(v) = 0;
• if v arose as a result of a directed edge entering t(v) from a child, and exiting to

another child, and it is the lowest-ordered such edge (in the ordering-scheme
supplied with the input) then a(v) = 1. If it is not the lowest-ordered such
edge then a(v) = 0
• if v arose as a result of a directed edge entering t(v) from a child, and exiting

to a parent, a(v) = 0;

Figure 6.2.1 illustrates this numbering scheme.
Although this version of the algorithm is a little more complicated than the previ-

ous one, it still executed in O(lg n) time.
See [154] for more information on the Euler Tour Algorithm.
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FIGURE 6.2.7. inorder-numbered Euler Tour

EXERCISES.

1. Write a C* program to implement the Euler Tour Algorithm.

2. Give a version of the Euler Tour algorithm that produces the postfix ordering.

3. Give a version of the Euler Tour algorithm that counts the distance of each vertex
from the root.

6.2.2. Parallel Tree Contractions. This is a very general technique for efficiently
performing certain types of computations on trees in which each interior vertex has
at least two children. It was developed by Miller and Reif in [113], [114], and [115].
Usually, we start with a rooted tree1, and want to compute some quantity associated
with the vertices of the tree. These quantities must have the property that the value
of this quantity at a vertex, v, depends upon the entire subtree whose root is v. In
general, the object of the computation using parallel tree contractions, is to compute
these quantities for the root of the tree. These quantities might, for instance, be:

• the number of children of v.

• the distance from v to the
{

closest
furthest

}
leaf-vertex, in the subtree rooted at v.

The Parallel Tree-Contraction method consists of the following pruning operation:

1I.e., a tree with some vertex marked as the root.
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Select all vertices of the tree whose immediate children are
leaf-vertices. Perform the computation for the selected vertices, and
delete their children.

The requirement that each vertex of the tree has at least two immediate children implies
that at least half of all of the vertices of the tree are leaf-vertices, at any given time. This
means that at least half of the vertices of the tree are deleted in each step, and at most
O(lg n) pruning operations need be carried out before the entire tree is reduced to its
root.

Here is a simple example of parallel tree contraction technique, applied to compute
the distance from the root to the nearest leaf:

6.2.2. Let T be a rooted tree with n vertices in which each vertex has at least two and not
more than c children, and suppose a number f is associated with each vertex. The following
algorithm computes distance from the root to the nearest leaf of T in O(lg n)-time on a CREW-
PRAM computer with O(n) processors. We assume that each vertex of T has a data-item d
associated with it. When the algorithm completes, the value of d at the root of T will contain
the quantity in question.
for all vertices do in parallel
d← 0

endfor
while the root has children do in parallel

Mark all leaf-vertices
Mark all vertices whose children are leaf-vertices
for each vertex v whose children z1, . . . , zc are leaves

do in parallel
d(v)← 1 + min(d(z1), . . . , d(zc))

endfor
Delete the leaf-vertices from T

endwhile

In order to modify this algorithm to compute the distance from the root to the fur-
thest leaf, we would only have to replace the min-function by the max-function.

In order to see that this algorithm works, we use induction on the distance be-
ing computed. Clearly, if the root has a child that is a leaf-vertex, the algorithm will
compute the correct value — this child will not get pruned until the last step of the
algorithm, at which time the algorithm will perform the assignment

d(root)← 1

If we assume the algorithm works for all trees with the distance from the root to
the nearest leaf ≤ k, it is not hard to see that it is true for trees in which this distance is
k + 1:

If T ′ is a tree for which this distance is k+1, let the leaf nearest the root be
`, and let r′ be the child of the root that has ` as its descendent. Then the
distance from r′ to ` is k, and the tree-contraction algorithm will correctly
compute the distance from r′ to ` in the first few iterations (by assump-
tion).

The next iteration will set d(root) to k + 1.
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Parallel tree contractions have many important applications. The first significant ap-
plication was to the parallel evaluation of arithmetic expressions. This application is
described in some detail in § 6.3 on page 296 of this book — also see [114] and [58].

In [115] Miller and Reif develop algorithms for determining whether trees are iso-
morphic, using parallel tree-contractions.

EXERCISES.

4. Give an algorithm for finding the number of subtrees of a tree, using Parallel Tree
Contractions.

6.2.3. Shortest Paths. In this algorithm we will assume that the edges of a graph
are weighted. In other words, they have numbers attached to them. You can think of the
weight of each edge as its “length” — in many applications of this work, that is exactly
what the weights mean. Since each edge of the graph has a length, it makes sense to
speak of the length of a path through the graph. One natural question is whether it
is possible to travel through the graph from one vertex to another and, if so, what the
shortest path between the vertices is. There is a simple algorithm for finding the lengths
of the shortest path and (with a little modification), the paths themselves. We begin
with some definitions:

DEFINITION 6.2.2. Let G = (V,E) be an undirected graph with n vertices.
(1) The adjacency matrix of G is defined to be an n× n matrix A, such that

Ai,j =

{
1 if there is an edge connecting vertex iand vertex j
0 otherwise

(2) If G is a directed graph, we define the adjacency matrix by

Ai,j =

{
1 if there is an edge from vertex ito vertex j
0 otherwise

(3) If G is a weighted graph, the weight matrix of G is defined by

Ai,j =


0 if i = j

w(i, j) if there is an edge from vertex ito vertex j
∞ otherwise

where w(i, j) is the weight of the edge connecting vertex i and j (if this edge
exists).

Note that the diagonal elements of all three of these matrices are 0.

PROPOSITION 6.2.3. Let G be a positively weighted graph with |V | = n. There exists an
algorithm for the distance between all pairs of vertices ofG that executes inO(lg2 n) time using
O(n2.376) processors.
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FIGURE 6.2.8. Weighted graph

Incidentally, we call a graph positively weighted if all of the weights are ≥ 0.
Our algorithm involves defining a variant of matrix multiplication that is used for a

dynamic-programming solution to the distance problem, i.e.

(A×B)ij = min
k

(Aik +Bkj)

Here we assume the distance matrix D is set up in such a way that entries corre-
sponding to missing edges are set to ∞ — where ∞ is some number that always
compares higher than any other number under consideration. Figure 6.2.3 shows a
weighted graph that we might use. The processor-count of O(n2.376) is based upon the
results of Don Coppersmith and Schmuel Winograd in [34], which shows that matrix-
multiplication can be done with n2.376 processors. Our exotic matrix multiplication
algorithm can be implemented in a similar fashion.

The corresponding distance matrix is:

D =



0 0 2 1 ∞ ∞ ∞
0 0 ∞ 3 ∞ 1 ∞
2 ∞ 0 1 ∞ 1 ∞
1 3 1 0 ∞ 1 4
∞ ∞ ∞ ∞ 0 ∞ 2
∞ 1 1 1 ∞ 0 3
∞ ∞ ∞ 4 2 3 0


As remarked above, matrix multiplication in this sense can be done using O(n2.376)
processors in O(lg n) steps. Now “square” the distance matrix dlg ne times.

Here is a sample C* program for carrying out this “dynamic programming” variant
of matrix multiplication

#include <stdio.h>
#include <values.h>
#include <stdlib.h>
shape [64][128]mats;
void dynamic programming(int, int, int, int:current*,
int:current*, int:current*);
void dynamic programming(int m, int n, int k,
int:current *mat1,
int:current *mat2,
int:current *outmat)
{
shape [32][32][32]tempsh;
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int:tempsh tempv;
*outmat = MAXINT;
with(tempsh)
{
bool:tempsh region = (pcoord(0) < m) &
(pcoord(1) < n)
& (pcoord(2) < k);
where(region) {
tempv =[pcoord(0)][pcoord(1)](*mat1) +
[pcoord(1)][pcoord(2)](*mat2);
[pcoord(0)][pcoord(2)](*outmat) <?= tempv;
}
}
}

The number MAXINT is defined in the include-file <values.h>. It is equal to the
largest possible integer — we use it as ∞2. Also note that we have to initialize the
*outmat array at MAXINT since the reduction-operation <?= has the effect of taking
the minimum of the initial value of *outmat and the values of tempv. In other words, it
has the effect of repeatedly taking min(*outmat, some value in tempv).

The proof that this algorithm works is fairly straightforward. Suppose A is the ma-
trix giving the lengths of the edges of a graph and letAk be the result of carrying out the
dynamic programming form of matrix multiplication k times. We claim that Ak gives
the length of the shortest paths between pairs of vertices, if those paths have ≤ k + 1
vertices in them. This is clearly true for k = 1. If it is true for some value of k it is not
hard to prove it for Ak+1 — just note that:

(1) the shortest path with k + 1 vertices in it is the concatenation of its first edge,
with the shortest path from the end vertex of that edge with k vertices in it, to
the destination;

(2) we can find that shortest path by trying every edge coming out of the starting
vertex as a possible candidate for its first edge. Then we pick the combination
(first edge, shortest path with k vertices) with the shortest total length. This
variant on the algorithm above is called Floyd’s Algorithm.

The second statement basically describes our algorithm for dynamic-programming
matrix multiplication. The proof is completed by noting that we don’t have to carry
out the matrix-multiplication more than n times (if n is the number of vertices in the
graph) since no path will have more than n vertices in it.

EXERCISES.

5. The algorithm for all-pairs shortest paths requires that the edge-weights be non-
negative. What goes wrong if some edge-weights are negative?

6. In the context of the preceding problem, how could the results of this section be
generalized to graphs for which some edge-weights are negative.

2You should use MAXINT/2, or MAXINT>>1 for∞ in the entries of the A matrix. This is because
the addition-step in the dynamic-programming matrix multiplication algorithm could add MAXINT to
another number, resulting in overflow.
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7. Does the algorithm for distances between pairs of vertices also work for directed
graphs? If not, what goes wrong?

6.2.4. Connected Components. Another problem for which there is significant in-
terest in parallel algorithms is that of connected components and the closely related
problem of minimal spanning trees of graphs.

The first algorithm for connected components was published in 1979. It is due to
Hirschberg, Chandra and Sarawate — see [69].It was designed to run on a CREW-
PRAM computer and it executes in O(lg2 n) time using O(n2/ lg n) processors. This
algorithm was improved by Willie in his doctoral dissertation so that it used O(|V | +
|E|) processors, where |V | is the number of vertices in a graph, and |E| is the number
of edges of the graph in question. It was further improved by Chin, Lam, and Chen in
1982 in [28] to use O(n2/ lg2 n) processors.

In 1982 Shiloach and Vishkin published (see [145]) an algorithm for connected com-
ponents that executes in O(lg n) time using O(|V | + 2|E|) processors. This algorithm
is interesting both for its simplicity, and the fact that it requires the parallel computer
to be a CRCW-PRAM machine.

6.2.4.1. Algorithm for a CREW Computer. We will discuss a variation on the algo-
rithm of Chin, Lam, and Chen because of its simplicity and the fact that it can be easily
modified to solve other graph-theoretic problems, such as that of minimal spanning
trees.

Component numbers are equal to the minimum of the vertex numbers over the
component.

We regard the vertices of the graph as being partitioned into collections called
“super-vertices”. In the beginning of the algorithm, each vertex of the graph is re-
garded as a super-vertex itself. In each phase of the algorithm, each super-vertex is
merged with at least one other super-vertex to which it is connected by an edge. Since
this procedure halves (at least) the number of super-vertices in each phase of the algo-
rithm, the total number of phases that are required is ≤ lg n. We keep track of these
super-vertices by means of an array calledD. If v is some vertex of the graph, the value
of D(v) records the number of the super-vertex containing v. Essentially, the number
of a super-vertex is equal to the smallest vertex number that occurs within that super
vertex — i.e., if a super-vertex contains vertices {4, 7, 12, 25}, then the number of this
super-vertex is 4.

At the end of the algorithm D(i) is the number of the lowest numbered vertex that
can be reached via a path from vertex i.

6.2.3. Connected Components.
Input:: A graph G with |V | = n described by an n× n adjacency matrix A(i, j).
Output:: A linear array D(i), where D(i) is equal to the component number of the

component that contains vertex i.
Auxiliary memory:: One-dimensional arrays C, Flag, and S, each with n components.

(1) Initialization-step:
for all i, 0 ≤ i < n do in parallel
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D(i)← i
Flag(i)← 1

endfor
The remainder of the algorithm consists in performing

do steps 2 through 8 lg n times:
(2) (a) Construct the set S: S ← {i|Flag(i) = 1}.

(b) Selection. All vertices record the number of the lowest-numbered neighbor in a
parallel variable named C:
for all pairs (i, j), 0 ≤ i, j < n and j ∈ S do in parallel

C(i)← min{j|Ai,j = 1}
if Ai,j = 0 for all j, then set C(i)← i

endfor
(3) Isolated super-vertices are eliminated. These are super-vertices for which no neighbors

were found in the previous step. All computations are now complete for these super-
vertices, so we set their flag to zero to prevent them from being considered in future
steps.
for all i ∈ S do in parallel

if C(i) = i, then Flag(i)← 0
endfor

(4) At the end of the previous step the value C(i) was equal to the smallest super-vertex
to which super-vertex i is adjacent. We set the super-vertex number of i equal to
this.
for all i ∈ S, do in parallel
D(i)← C(i)

endfor
(5) Consolidation. One potential problem arises at this point. The super-vertices might

no longer be well-defined. One basic requirement is that all vertices within the same
super-vertex (set) have the same super-vertex number. We have now updated these
super-vertex numbers so they are equal to the number of some neighboring super-
vertex. This may destroy the consistency requirement, because that super-vertex may
have been assigned to some third super-vertex. We essentially want D(D(i)) to be the
same as D(i) for all i.

We restore consistency to the definition of super-vertices in the present step —
we perform basically a kind of doubling or “folding” operation. This operation never
needs to be performed more than lg n times, since the length of any chain of super-
vertex pointers is halved in each step. We will do this by operating on the C array, so
that a future assignment of C to D will create well-defined super-vertices.
for i← 0 until i > lg n do

for all j ∈ S do in parallel
C(j)← C(C(j))

endfor
endfor

(6) Update super-vertex numbers.
(a) Now we updateD array again. We only want to update it if the new super-vertex

values are smaller than the current ones:
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for all i ∈ S do in parallel
D(i)← min(C(i), D(C(i)))

endfor
This corrects a problem that might have been introduced in step 4 above — if i
happens to be the vertex whose number is the same as its super-vertex number
(i.e., its number is a minimum among all of the vertices in its super-vertex), then
we don’t want its D-value to change in this iteration of the algorithm. Unfortu-
nately, step 4 will have changed its D-value to be equal to the minimum of the
values that occur among the neighbors of vertex i. The present step will correct
that.

(b) Update D array for all vertices (i.e. include those not in the currently-active set).
This step is necessary because the activity of the algorithm is restricted to a subset
of all of the vertices of the graph. The present step updates vertices pointing to
super-vertices that were newly-merged in the present step:

for all i do in parallel
D(i)← D(D(i))

endfor
(7) Here, we clean up the original adjacency matrix A to make it reflect the merging of

super-vertices:
(a) This puts an arc from vertex i to new super-vertex j — in other words A(i, j)←

1 if there is an edge between i and a vertex merged into j.
for all i ∈ S do in parallel

for all j ∈ S and j = D(i) do in parallel
A(i, j)←

∨
for all k ∈ S

{A(i, k)|D(k) = j}

endfor
endfor
Although this step appears to requireO(n3) processors, as written here, it actually
involves combining certain rows of the A-matrix. See the C* program at the end
of this section (page 264).

(b) This puts an arc from super-vertex vertex i to super-vertex j if there is an arc to
j from a vertex merged into i.
for all j ∈ S such that j = D(j) do in parallel

for all i ∈ S and i = D(i) do in parallel
A(i, j)←

∨
for all k ∈ S

{A(k, j)|D(k) = i}

endfor
endfor

(c) Remove diagonal entries:
for all i ∈ S do in parallel
A(i, i)← 0

endfor
(8) One of the ways the algorithm of Chin, Lam and Chen achieves the processor-

requirement of only O(n2/ lg2 n) is that processors not working on super-vertices are
removed from the set of active processors. The original algorithm of Hirschberg,
Chandra and Sarawate omits this step.
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FIGURE 6.2.9. Initial Graph
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FIGURE 6.2.10. After the first step

for all i ∈ S do in parallel
if D(i) 6= i then

Flag(i)← 0
endfor

As written, and implemented in the most straightforward way, the algorithm
above has an execution-time of O(lg2 n), using O(n2) processors. Hirschberg, Chandra
and Sarawate achieve a processor-bound of O(ndn/ lg ne) by using a version of
6.1.2 on page 236 in the steps that compute minima of neighboring vertex-numbers.
The algorithm of Chin, Lam and Chen in [28] achieves the processor-requirement
of O(ndn/ lg2 ne) by a much more clever (and complex) application of the same
technique. Their algorithm makes explicit use of the fact that the only processors that
are involved in each step of the computation are those associated with super-vertices
(so the number of such processors decreases in each phase of the algorithm).

Here is an example of this algorithm. We will start with the graph in figure 6.2.4.1.
After the initial step of the algorithm, the C-array will contain the number of the

smallest vertex neighboring each vertex. We can think of the C-array as defining
“pointers”, making each vertex point to its lowest-numbered neighbor. We get the
graph in figure 6.2.4.1.



262 6. A SURVEY OF SYMBOLIC ALGORITHMS

6 7

1,2,5,11,13

9,10

4,8

3,12

FIGURE 6.2.11. After the first consolidation

Vertices that are lower-numbered than any of their neighbors have no pointers com-
ing out of them — vertex 6, for instance.

The C-array does not define a partitioning of the graph into components at this
stage. In order for the C-array to define a partitioning of the graph into components,
it would be necessary for the C-pointer of the vertex representing all vertices in the
same partition to be the same. For instance vertex 5 is the target of 13, but couldn’t
possibly be the vertex that represents a partition of the graph because vertex 5 points
to vertex 1, rather than itself. We must perform the “folding”-operation to make these
partition-pointers consistent. The result is the graph in figure 6.2.4.1.

The partitioning of the graph is now well-defined and the number of vertices of the
graph has been strictly reduced — each vertex of the present graph is a super-vertex,
derived from a set of vertices of the original graph. In the next step of the algorithm,
the super-vertices will correspond to components of the original graph.

In our C* program we will assume the A-matrix is stored in a parallel variable A
in a shape named ‘graph’, and C, D, and Flag are parallel variables stored in a parallel
variable in a shape named ‘components’.

Here is a C* program that implements this algorithm:

#include <values.h>
#include <math.h>
#include <stdio.h>
shape [64][128]graph;
shape [8192]components;
#define N 10
int:graph A, temp;
int:components C, D, Flag,in S;
int i, j;
FILE *graph file;
void
main()
{
int L = (int) (log((float) N) /
log(2.0) + 1);

/* Adjacency matrix stored in a text file. */
graph file = fopen("gfile", "r");
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
{
int temp;

fscanf(graph file, "%d", &temp);
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[i][j]A = temp;
}

/*
* Initialize super−vertex array so that each
* vertex starts out being a super vertex.
*/
with (components)
{
D = pcoord(0);
Flag=1;
}

/* Main loop for the algorithm. */
for (i = 0; i <= L; i++)
with (graph)
where ((pcoord(0) < N) &
(pcoord(1) < N))
{
int i;

/* This is step 2. */

with(components) in S=Flag;

/*
* Locate smallest−numbered
* neighboring super vertex:
*/

with(components)
where ([pcoord(0)]in S == 1)
C=pcoord(0);

where ([pcoord(0)]in S == 1)
where (A == 1)
{
[pcoord(0)]C <?= pcoord(1);
}

/* This is step 3 */
where ([pcoord(0)]in S == 1)
where ([pcoord(0)]C == pcoord(0))
[pcoord(0)]Flag = 0;

/* This is step 4 */

with(components)
where (in S == 1)
D=C;

/* This is step 5 */

for (i = 0; i <= L; i++)
with (components)
C = [C]C;

/* This is step 6a */

with(components)
where (in S == 1)
D=(C <? [D]C);
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/* This is step 6b */

with(components)
D=[D]D;

/* Step 7a */
where ([pcoord(0)]in S == 1)
where ([pcoord(1)]in S == 1)
[[pcoord(1)]D][pcoord(1)]A |= A;

/* Step 7b */
where ([pcoord(0)]in S == 1)
where ([pcoord(1)]in S == 1)
[pcoord(0)][[pcoord(1)]D]A |= A;

/* Step 7c */
with(components)
where ([pcoord(0)]in S == 1)
[pcoord(0)][pcoord(0)]A = 0;

/* Step 8 */
with(components)
where ([pcoord(0)]in S == 1)
where ([pcoord(0)]D != pcoord(0))
[pcoord(0)]Flag = 0;
} /* End of big for−loop. */

for (i = 0; i < N; i++)
printf("%d \n",[i]D);
}

A few comments are in order here:
In step 7a, the original algorithm, 6.2.3 on page 258 does

for all i ∈ S do in parallel
for all j ∈ S and j = D(i) do in parallel
A(i, j)←

∨
for all k ∈ S

{A(i, k)|D(k) = j}

endfor
endfor

This pseudocode in step 7a of 6.2.3 states that we are to compute the OR of all of
the vertices in each super-vertex and send it to the vertex that represents it.

The C* language doesn’t lend itself to an explicit implementation of this operation.
Instead, we implement an operation that is logically equivalent to it:

where ([pcoord(0)]in S == 1)
where ([pcoord(1)]in S == 1)

[[pcoord(1)]D][pcoord(1)]A |= A;

Here, we are using a census-operation in C* to route information in selected por-
tions of theA-array to vertices numbered by D-array values (which represent the super-
vertices), and to combine these values by a logical OR operation.

6.2.4.2. Algorithm for a CRCW computer. Now we will discuss a faster algorithm for
connected components, that takes advantage of concurrent-write operations available
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on a CRCW-PRAM computer. It is due to Shiloach and Vishkin and it runs in O(lg n)
time using |V | + 2|E| processors, where |V | is the number of vertices in the graph and
|E| is the number of edges. It also takes advantage of a changed format of the input
data. The input graph of this algorithm is represented as a list of edges rather than an
adjacency-matrix.

6.2.4. The following algorithm computes the set of connected components of a graph G =
(V,E), where |V | = n. The algorithm executes inO(lg n) steps usingO(|V |+2|E|) processors.

Input:: A graph, G = (V,E), represented as a list of edges {(v1, v2), (v2, v1), . . . }. Here
each edge of G occurs twice — once for each ordering of the end-vertices. Assign one
processor to each vertex, and to each entry in the edge-list.

Output:: A 1-dimensional array, D2 lgn, with n elements. For each vertex i, D(i) is the
number of the component containing i. Unlike the output produced by the Chin, Lam,
Chen algorithm (6.2.3 on page 258), the value D(i) produced by this algorithm might
not be the smallest numbered vertex in its component. We can only conclude (when
the algorithm is finished) that vertices i and j are in the same component if and only if
D(i) = D(j).

Auxiliary memory:: One dimensional arrays Q,and Di each of which has n elements.
Here i runs from 0 to 2 lg n. Scalar variables s, and s′.

Initialization. Set D0(i) ← i, Q(i) ← 0, for all vertices i ∈ V . Set s ← 1, and s′ ← 1.
Store the D-array in the first n processors, where n = |V |. Store the list of edges in the next
2m processors, where m = |E|.

• 0. while s = s′ do in parallel:
• 1. Shortcutting:

for i, 1 ≤ i ≤ n do in parallel
Ds(i)← Ds−1(Ds−1(i))

if Ds(i) 6= Ds−1(i)
Q(D(i))← s

endfor
This is like one iteration of step 5 of algorithm 6.2.3 — see page 259. We will use

theQ array to keep track of whether an array entry was changed in a given step. When
none of the array entries are changed, the algorithm is complete.
• 2. Tree-Hooking

for all processors holding an edge (u, v)) do in parallel
then if Ds(u) = Ds−1(u)

then if Ds(v) < Ds(u)
then Ds(Ds(u))← Ds(v)
Q(Ds(v))← s

endfor
This is essentially the merging phase of algorithm 6.2.3. Note that:

(1) the present algorithm “pipelines” consolidation and merging, since we only per-
form one step of the consolidation-phase (rather than lg n steps) each time we
perform this step.

(2) Only processors that point to super-vertex representatives participate in this step.
This limitation is imposed precisely because the consolidation and merging phases
are pipelined. Since we have only performed a single consolidation step, not all
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vertices are properly consolidated at this time. We do not want to merge vertices
that are not consolidated into super-vertices.

If Ds(u) hasn’t been changed (so it pointed to a representative of the current su-
pervertex), then the processor checks to see whether vertex v is contained in a smaller-
numbered supervertex. If so, it puts Ds(u) into that supervertex (starting the merge-
operation of this supervertex). Many processors carry out this step at the same time
— the CRCW property of the hardware enables only one to succeed.
• 3. Stagnant Supervertices

if i > n and processor i contains edge (u, v)
then if Ds(u) = Ds(Ds(u)) and Q(Ds(u)) < s

then if Ds(u) 6= Ds(v)
then Ds(Ds(u))← Ds(v)

These are supervertices that haven’t been changed by the first two steps of this
iteration of the algorithm — i.e. they haven’t been hooked onto any other super-vertex,
and no other super-vertex has been hooked onto them. (This fact is determined by
the test Q(Ds(u)) < s — Q(Ds(u)) records the iteration in which the super-vertex
containing u was last updated) The fact that a super-vertex is stagnant implies that:
(1) The super-vertex is fully consolidated (so no short-cutting steps are taken).
(2) None of the vertices in this super-vertex is adjacent to any lower-numbered super-

vertex. It follows that every vertex of this super-vertex is adjacent to either:
(a) Another vertex of the same super-vertex.
(b) Higher numbered super-vertices. This case can never occur in algorithm

6.2.3 (so that stagnant super-vertices also never occur), because that algo-
rithm always connects super-vertices to their lowest numbered neighbors.
In the merging step of the present algorithm, one (random3) processor suc-
ceeds in updating the D-array — it might not be the “right” one.

Stagnant super-vertices have numbers that are local minima among their neigh-
bors. The present step arbitrarily merges them with any neighbor.
• 4. Second Shortcutting

for i, 1 ≤ i ≤ n do in parallel
then Ds(i)← Ds(Ds(i))

endfor
This has two effects:

– It performs a further consolidation of non-stagnant super-vertices.
– It completely consolidates stagnant super-vertices that were merged in the previ-

ous step. This is due to the definition of a stagnant super-vertex, which implies
that it is already completely consolidated within itself (i.e., all vertices in it point
to the root). Only one consolidation-step is required to incorporate the vertices of
this super-vertex into its neighbor.

• 5. Completion criterion
if i ≤ n and Q(i) = s (for any i)

then s′ ← s′ + 1
s← s+ 1

3At least, it is unspecified. However the hardware decides which store-operation succeeds, it has
nothing to do with the present algorithm.
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FIGURE 6.2.12. Result of the Tree-Hooking step of the Shiloach-
Vishkin Algorithm

We conclude this section with an example.

EXAMPLE 6.2.4. We use the graph depicted in figure 6.2.4.1 on page 261. Initially
D(i)← i.

(1) The first short-cutting step has no effect.
(2) The first tree-hooking step makes the following assignments:

(a) D(D(2))← D(1);
(b) D(D(11))← D(1)
(c) D(D(5))← D(1);

(d)

{
D(D(13))← D(5)

D(D(13))← D(9)
— this is a CRCW assignment. We assume that

D(D(13))← D(9) actually takes effect;
(e) D(D(10))← D(9);

(f)

{
D(D(8))← D(4)

D(D(8))← D(6)
— this is a CRCW assignment. We assume that

D(D(8)← D(4) actually takes effect;

(g)

{
D(D(12))← D(7)

D(D(12))← D(3)
— this is a CRCW assignment. We assume that

D(D(12)← D(7) actually takes effect;
The result of this step is depicted in figure 2.

(3) Vertices 3 and 6 represents supervertices that weren’t changed in any way in
the first two steps of the algorithm. The are, consequently, stagnant. The second
tree-hooking step hooks them onto neighbors. The result is depicted in figure
3.

(4) The second consolidation-step combines all of the stagnant vertices into their
respective super-vertices to produce the graph in figure 4.

(5) The next iteration of the algorithm completely processes all of the components
of the graph.
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FIGURE 6.2.13. Tree-Hooking of Stagnant Vertices
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FIGURE 6.2.14. Second Short-cutting

EXERCISES.

8. The Connection Machine is a CRCW computer. Program the Shiloach-Vishkin
algorithm in C*.

9. Modify the Chin-Lam-Chen algorithm to accept its input as a list of edges. This
reduces the execution-time of the algorithm somewhat. Does this modification allow
the execution-time to become O(lg n)?

10. The remark on page 265 says that the D-array in the output produced by the
Shiloach-Vishkin algorithm might sometimes not be point to the lowest numbered ver-
tex in a component. Since the Merge-step of this algorithm always merges super-
vertices with lower numbered super-vertices, where is this minimality property de-
stroyed?

11. Where do we actually use the CRCW property of a computer in the Shiloach-
Vishkin algorithm?

6.2.5. Spanning Trees and Forests. Another interesting problem is that of finding
spanning trees of undirected graphs.
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DEFINITION 6.2.5. Let G = (V,E) be a connected graph. A spanning tree of G is a
subgraph T such that:

(1) All of the vertices of G are in T ;
(2) T is a tree — i.e. T has no cycles.

If G is not connected, and consists of components {G1, . . . , Gk}, then a spanning forest
of G is a set of trees {T1, . . . , Tk}, where Ti is a spanning tree of Gi.

In [136], Carla Savage showed that the connected components algorithm, 6.2.3 on
page 258, actually computes a spanning forest of G.

Whenever a vertex (or super-vertex) of the algorithm is merged with a
lower-numbered neighboring vertex (or super-vertex) we select the edge connecting
them to be in the spanning tree. It is clear that the set of selected edged will form a
subgraph of the original graph that spans it — every vertex (and, in the later stages,
every super-vertex) participated in the procedure. It is not quite so clear that the result
will be a tree (or forest) — we must show that it has no closed cycles.

We show this by contradiction:
Suppose the set of selected edges (in some phase of the algorithm) has
a cycle. Then this cycle has a vertex (or super-vertex) whose numbers is
maximal. That vertex can only have a single edge incident upon it since:
• No other vertex will select it;
• It will only select a single other vertex (its minimal neighbor).

This contradicts the assumption that this vertex was in a cycle.
We can modify algorithm 6.2.3 by replacing certain steps, so that whenever it merges
two super-vertices along an edge, it records that edge. The result will be a spanning
tree of the graph. We augment the data-structures in that algorithm with four arrays:

• Edge(1, ∗), Edge(2, ∗), where {(Edge(1, i),Edge(2, i))|i such that D(i) 6= i}, is
the set of edges of the spanning tree.
• B(1, i, j), B(2, i, j) record the endpoints of the edge connecting super-vertices i

and j, when those super-vertices get merged. This reflects a subtlety of the
spanning-tree problem: Since we have collapsed sets of vertices into super-
vertices in each iteration, we need some mechanism for recovering information
about the original vertices and edges in the graph. When we merge two super-
vertices in our algorithm, we use the B-arrays to determine which edge in the
original graph was used to accomplish this merge.

The execution-time of the present algorithm is, like the connected-components algo-
rithm, equal to O(lg2 n). Like that algorithm, it can be made to use O(n2/ lgn) proces-
sors, though a clever (and somewhat complicated) application of the Brent Scheduling
Principle. The modified algorithm is

6.2.5. Spanning Forest.
Input:: A graph G with |V | = n described by an n× n adjacency matrix A(i, j).
Output:: A 2 × n array Edge, such that Edge(1, i) and Edge(2, i) are the end-vertices

of the edges in a spanning tree.
Auxiliary memory:: A one-dimensional arrays C and Flag, each with n elements. A

2× n× n array B.
• 1. Initialization.
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– a.
for all i, 0 ≤ i < n− 1 do in parallel
D(i)← i
Flag(i)← 1
Edge(1, i)← 0
Edge(2, i)← 0

endfor
– b. We initialize the B-arrays. B(1, i, j) and B(2, i, j) will represent the end-

vertices that will connect super-vertices i and j.
for all i, j, 0 ≤ i, j ≤ n− 1 do in parallel
B(1, i, j)← i
B(2, i, j)← j

endfor
The remainder of the algorithm consists in

do steps 2 through 9 lg n times:
Construct the set S: S ← {i|Flag(i) = 1}.

• 2. Selection. As in algorithm 6.2.3, we choose the lowest-numbered super-vertex, j0,
adjacent to super-vertex i. We record the edge involved in Edge(1, i) and Edge(2, i).
It is necessary to determine which actual edge is used to connect these super-vertices,
since the numbers i and j are only super-vertex numbers. We use the B-arrays for
this.
for all i ∈ S do in parallel

Choose j0 such that j0 = min{j|A(i, j) = 1; j ∈ S}
if none then j0 ← j
C(i)← j0
Edge(1, i)← B(1, i, j0)
Edge(2, i)← B(2, i, j0)

endfor
• 3. Removal of isolated super-vertices.

for all i such that i ∈ S do in parallel
if C(i) = i, then Flag(i)← 0

• 4. Update D.
for all i ∈ S, do in parallel
D(i)← C(i)

endfor
• 5. Consolidation.

for i← 0 until i > lg n
j ∈ S do in parallel
C(j)← C(C(j))

endfor
• 6. Final update.

– a.
for all i ∈ S do in parallel
D(i)← min(C(i), D(C(i)))

endfor
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– b. Propagation of final update to previous phase.
for all i do in parallel
D(i)← D(D(i))

endfor
• 7. Update the incidence-matrix and B-arrays.

– a. We update the A-array, as in algorithm 6.2.3. We must also update the B
arrays to keep track of which actual vertices in the original graph will be adja-
cent to vertices in other super-vertices. We make use of the existing B-arrays in
this procedure. This step locates, for each vertex i, the super-vertex j that con-
tains a vertex j0 adjacent to i. We also record, in the B-arrays, the edge that is
used.
for all i ∈ S do in parallel

for all j ∈ S such that j = D(j) do in parallel
Choose j0 ∈ S such that D(j0) = j AND A(i, j0) = 1
if none then j0 ← j

endfor
endfor
A(i, j)← A(i, j0)
B(1, i, j)← B(1, i, j0)
B(2, i, j)← B(2, i, j0)

– b. This step locates, for each super-vertex j, the super-vertex i that contains a
vertex i0 adjacent to j. We make explicit use of the results of the previous step.
This step completes the merge of the two super-vertices. The A-array now reflects
adjacency of the two super-vertices (in the last step we had vertices of one super-
vertex being adjacent to the other super-vertex). The B-arrays for the pair of
super-vertices now contain the edges found in the previous step.
for all j ∈ S such that j = D(j) do in parallel

for all i ∈ S such that i = D(i) do in parallel
Choose i0 ∈ S such that D(i0) = i AND A(i0, j) = 1
if none then i0 ← i

endfor
endfor A(i, j)← A(i0, j)
B(1, i, j)← B(1, i0, j)
B(2, i, j)← B(2, i0, j)

– c.
for all i ∈ S do in parallel
A(i, i)← 0

endfor
• 8. Select only current super-vertices for remaining phases of the algorithm.

for all i ∈ S do in parallel
if D(i) 6= i then

Flag(i)← 0
endfor

• 9. Output selected edges.
for all i, 0 ≤ i ≤ n− 1 do in parallel

if i 6= D(i) then output
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FIGURE 6.2.15.

(Edge(1, i),Edge(2, i))
endfor

The handling of the B-arrays represents one of the added subtleties of the present
algorithm over the algorithm for connected components. Because of this, we will give
a detailed example:

EXAMPLE 6.2.6. We start with the graph depicted in figure 6.2.6. Its incidence ma-
trix is:

(6.2.1) A =



1 0 1 1 0 0 0 0
0 1 0 0 1 0 1 0
1 0 1 1 0 1 0 0
1 0 1 1 0 1 0 0
0 1 0 0 1 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 1 0 1 1
0 0 0 0 1 0 1 1


Now we run the algorithm. At the start of phase 1 we have:

• B(1, i, j) = i, B(2, i, j) = j, for 1 ≤ i, j ≤ 8;
• Flag(i) = 1, for 1 ≤ i ≤ 8;
• Edge(1, i) = Edge(2, i) = 0 for 1 ≤ i ≤ 8;
• S = {1, 2, 3, 4, 5, 6, 7, 8};

Step 2 sets the C-array and updates the Edge(1, ∗) and Edge(2, ∗) arrays:

C =



3
5
1
1
2
3
2
5


, Edge(1, ∗) =



1
2
3
4
5
6
7
8


and, Edge(1, ∗) =



3
5
1
1
2
3
2
5
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FIGURE 6.2.16.

In step 4 we perform the assignment D ← C, and in step 5 we consolidate the
C-array. The outcome of this step is:

D =



3
5
1
1
2
3
2
5


and C =



1
2
3
3
5
1
5
2


In step 6 we perform the final update of the D-array to get:

D =



1
2
1
1
2
1
2
2


Note that the construction of the spanning tree is not yet complete — we have two
supervertices (numbered 1 and 2), as depicted in figure 6.2.6, and spanning-trees of
each of these super-vertices.

Now we update the incidence matrix and the B arrays, in step 7. Part a:
i = 1: No change.
i = 2: No change.
i = 3: When j = 1 there is no change, but when j = 2, we get

• j0 = 5;
• B(1, 3, 2)← 3;
• B(2, 3, 2)← B(2, 3, 5) = 5.

i = 5: When j = 2 there is no change, but when j = 1, we get
• j0 = 3;
• B(1, 5, 1)← 5;
• B(2, 5, 1)← B(2, 5, 3) = 3.
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Note that the updating of the arrays is not yet complete. We know that
vertex 3 is adjacent to super-vertex 1, but we don’t know that super-vertices 1
and 2 are adjacent.

The next phase of the algorithm completes the spanning tree by adding edge (3, 5) =
(B(1, 1, 2), B(2, 1, 2)) to it.

Part b:

j = 1: If i = 2 we get i0 = 5 and
• A(2, 1) = 1;
• B(1, 2, 1) = 5;
• B(2, 2, 1) = 3.

j = 2: If 1 = 2 we get i0 = 3 and
• A(1, 2) = 1;
• B(1, 1, 2) = 3;
• B(2, 1, 2) = 5.

The next iteration of this algorithm merges the two super-vertices 1 and 2 and com-
pletes the spanning tree by adding edge (B(1, 1, 2), B(2, 1, 2)) = (3, 5).

EXERCISES.

12. In step 7 the updating of the A-matrix and the B-matrices is done in two steps
because the algorithm must be able to run on a CREW computer. Could this operation
be simplified if we had a CRCW computer?

13. Is it possible to convert the Shiloach-Vishkin algorithm (6.2.4 on page 265) for
connected components into an algorithm for a spanning-tree that runs in O(lg n) time
on a CRCW computer? If so, what has to be changed?

6.2.5.1. An algorithm for an inverted spanning forest. The algorithm above can be
modified to give an algorithm for an inverted spanning forest of the graph in ques-
tion. This is a spanning tree of each component of a graph that is a directed tree, with
the edges of the tree pointing toward the root. There are a number of applications for
an inverted spanning forest of an undirected graph. We will be interested in the appli-
cation to computing a cycle-basis for a graph in section 6.2.7 on page 290. A cycle-basis
can be used to determine and enumerate the closed cycles of a graph.

Algorithm 6.2.5 on page 269 almost accomplishes this: it finds directed edges that
point to the vertex representing a super-vertex. The problem with this algorithm is
that, when two super-vertices are merged, the vertices that get joined by the merge-
operation may not be the parents of their respective sub-spanning trees. Consequently,
the directions of the edges are not compatible, and we don’t get a directed spanning
tree of the new super-vertex that is formed — see figure 6.2.5.1. The two super-vertices
in this figure cannot be merged along the indicated edge in such a way that that the
directionality of the subtrees are properly respected. The solution to this problem is
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FIGURE 6.2.17. Forming a directed spanning tree
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FIGURE 6.2.18. Directed spanning tree on merged super-vertices

to reverse the directions of the edges connecting one root to a vertex where the merge-
operation is taking effect.

Several steps are involved. Suppose we want to merge super-vertex 1 with super-
vertex 2 in such a way that super-vertex 1 becomes a subset of super-vertex 2. Suppose,
in addition, that this merging operation takes place along an edge (a, b). We must find
the path in super-vertex 1 that connects vertex a with the representative of this super-
vertex, r1. Then we reverse the directions of the edges along this path — and we obtain
the result shown in 6.2.5.1.

In order to carry out this operation we must have an algorithm for computing the
path from a to r1. We have an in-tree (see 6.2.1 on page 248 for the definition) on the
super-vertex represented by r1 — we only need to follow the directed edges to their
target.

We will want to regard these directed edges as defining a function on the vertices in
this super-vertex. The value of this function on any vertex, v, is simply the vertex that
is at the other end of unique directed edge containing v. This is simpler than it sounds
— the directed edges are given by the arrays (Edge(1, i),Edge(2, i)) in algorithm 6.2.8
on page 284. We define f(Edge(1, i)) = Edge(2, i).

The path from a to r1 is nothing but the sequence of vertices that result from repeated
iteration of f : {a, f(a), f(f(a)), . . . , f (k)(a)}. Having computed f itself, we can compute
the result of repeatedly iterating f in O(lg n) time by a cyclic-reduction type of algo-
rithm like 6.1.4 on page 235. We get the following algorithm for computing paths from
vertices in an in-tree (defined in 6.2.1 on page 248) to its root:
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6.2.6. Suppose T is an in-tree with root r and let f , be the function that maps a vertex to
its successor in T . Then, given any vertex a in the super-vertex4 corresponding to f , we can
compute the sequence {a, f(a), f(f(a)), . . . , f (k)(a)} by the following procedure:
for all i such that 1 ≤ i ≤ n do in parallel
f 0(i)← i, f 1(i)← f(i)

for t← 0 to lg(n− 1)− 1 do
for s such that 1 ≤ s ≤ 2t

and i such that 1 ≤ i ≤ n do in parallel
f 2t+s(i)← f 2t(f s(i))

endfor
endfor

We will use the notation f̂ to denote the table that results from this procedure. This can be
regarded as a function of two variables: f̂(v, i) = f i(v).

We are now in a position to give an algorithm for finding an inverted spanning
forest of a graph. We basically perform the steps of the spanning-tree algorithm, 6.2.5
on page 269, and in each iteration of the main loop:

Each super-vertex is equipped with an inverted spanning tree of itself (i.e., as a
subgraph of the main graph). Whenever we merge two super-vertices, one of the
super-vertices (called the subordinate one gets merged into the other (namely, the lower
numbered one). We perform the following additional steps (beyond what the original
spanning-tree algorithm does):

(1) We determine which vertex, v, of the subordinate super-vertex is attached to
the other. This is a matter of keeping track of the edge being used to join the
super-vertices.

(2) We compute a path, p, from v in the inverted spanning tree of its super-vertex,
to its root. We use algorithm 6.2.6 above.

(3) We reverse the direction of the edges along this path.
This amounts to modifying several steps of algorithm 6.2.5 and results in an algorithm
that requires O(lg2 n) time and uses O(n2/ lg n) processors. The step in which we apply
algorithm 6.2.6 can be done in O(lg n)-time using O(ndn/ lg ne) processors — it, con-
sequently, dominates the execution-time or the processor-count of the algorithm. In
[155], Tsin and Chin present a fairly complicated algorithm for an inverted spanning
forest that is a variation upon the present one, but only requiresO(n2/ lg2 n) processors.
Our algorithm for an inverted spanning forest is thus:

6.2.7. Inverted Spanning Forest.
Input:: A graph G with |V | = n described by an n× n adjacency matrix A(i, j).
Output:: A function, f , such that for all vertices, v ∈ V , f(v) is the successor of v in

an inverted spanning tree of G.
Auxiliary memory:: A one-dimensional arrays C, Flag, and f̂ , each with n elements.

A 2× n× n array B.
• 1. Initialization.

– a.

4Recall that f is a directed spanning-tree defined on a super-vertex of the original graph.
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for all i, 0 ≤ i < n− 1 do in parallel
D(i)← i
Flag(i)← 1
f(i)← i

endfor
– b. We initialize the B-arrays. B(1, i, j) and B(2, i, j) will represent the end-

vertices that will connect super-vertices i and j.
for all i, j, 0 ≤ i, j ≤ n− 1 do in parallel
B(1, i, j)← i
B(2, i, j)← j

endfor
The remainder of the algorithm consists in

do steps 2 through 8 lg n times:
Construct the set S: S ← {i|Flag(i) = 1}.

• 2. Selection. As in algorithm 6.2.3, we choose the lowest-numbered super-vertex,
j0, adjacent to super-vertex i. We record the edge involved in the f -function. It is
necessary to determine which actual edge is used to connect these super-vertices, since
the numbers i and j are only super-vertex numbers. We use the B-arrays for this.
(1) a.

for all i ∈ S do in parallel
Choose j0 such that j0 = min{j|A(i, j) = 1; j ∈ S}
if none then j0 ← j
C(i)← j0

if (D(B(1, i, j0) = D(i)) then
f(B(1, i, j0))← B(2, i, j0)

endfor
(2) b. In this step we compute f̂ , using algorithm 6.2.6.

f̂(1, ∗)← f
for i← 1 to lg(n− 1)− 1 do

for j, 1 ≤ j ≤ 2i do in parallel
f̂(2i + j, ∗)← f̂(2i, ∗) ◦ f̂(j, ∗)

endfor
endfor

(3) c. Now we compute the lengths of the paths connecting vertices to the roots of
their respective super-vertices. We do this by performing a binary search on the
sequence f̂(j, i) for each vertex i
for j, 1 ≤ j ≤ n do in parallel

Depth(i)← min{j|f̂(j, i) = D(i)}
endfor

(4) d. Step 2a above adjoined a new edge, e, to the spanning tree. This edge con-
nected two super-vertices, i and j0, where super-vertex i is being incorporated
into super-vertex j0. Now we reverse the edges of the path that from the end of e
that lies in super-vertex i to vertex i. The end of e that lies in super-vertex i is
numbered B(1, i, j0).
for k, 1 ≤ k ≤ Depth(B(1, i, j0)) do in parallel

temp1(i)← B(1, i, j0)
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temp2(i)← f(temp1(i))
endfor

for k, 1 ≤ k ≤ Depth(B(1, i, j0)) do in parallel
f(temp2(i))← temp1(i)

endfor
• 3. Removal of isolated super-vertices.

for all i such that i ∈ S do in parallel
if C(i) = i, then Flag(i)← 0

endfor
• 4. Update D.

for i ∈ S, do in parallel
D(i)← C(i)

endfor
• 5. Consolidation.

for i← 0 until i > lg n
j ∈ S do in parallel
C(j)← C(C(j))

endfor
endfor
• 6. Final update.

– a.
for i ∈ S do in parallel
D(i)← min(C(i), D(C(i)))

endfor
– b. Propagation of final update to previous phase.

for all i do in parallel
D(i)← D(D(i))

endfor
• 7. Update the incidence-matrix and B-arrays.

– a.
for all i ∈ S do in parallel

for all j ∈ S such that j = D(j) do in parallel
Choose j0 ∈ S such that D(j0) = j AND A(i, j0) = 1
if none then j0 ← j
A(i, j)← A(i, j0)
B(1, i, j)← B(1, i, j0)
B(2, i, j)← B(2, i, j0)

endfor
endfor

– b.
for all j ∈ S such that j = D(j) do in parallel

for all i ∈ S such that i = D(i) do in parallel
Choose i0 ∈ S such that D(i0) = i AND A(i0, j) = 1
if none then i0 ← i
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A(i, j)← A(i0, j)
B(1, i, j)← B(1, i0, j)
B(2, i, j)← B(2, i0, j)

endfor
endfor

– c.
for all i ∈ S do in parallel
A(i, i)← 0

endfor
• 8. Select only current super-vertices for remaining phases of the algorithm.

for all i ∈ S do in parallel
if D(i) 6= i then

Flag(i)← 0
endfor

6.2.6. Minimal Spanning Trees and Forests. If G is a weighted graph — i.e. there
exists a weight function w:E → R, then a minimal spanning tree is a spanning tree such
that the sum of the weights of the edges is a minimum (over all possible spanning trees).

1. We will assume, for the time being, that the weights are all positive.
2. Minimal spanning trees have many applications. Besides the obvious ones in

network theory there are applications to problems like the traveling salesman problem,
the problem of determining cycles in a graph, etc.

We will briefly discuss some of these applications:

DEFINITION 6.2.7. Let {c1, . . . , cn} be n points on a plane. A minimal tour of these
points is a closed path that passes through all of them, and which has the shortest
length of all possible such paths.

1. Given n points on a plane, the problem of computing a minimal tour is well-
known to be NP-complete. This means that there is probably no polynomial-time algo-
rithm for solving it. See [57] as a general reference for NP-completeness.

2. In the original traveling salesman problem, the points {c1, . . . , cn} represented
cities and the idea was that a salesman must visit each of these cities at least once. A
solution to this problem would represent a travel plan that would have the least cost.
Solutions to this problem have obvious applications to general problems of routing
utilities, etc.

There do exist algorithm for finding an approximate solution to this problem. One
such algorithm makes use of minimal spanning trees.

Suppose we are given n points {c1, . . . , cn} on a plane (we might be given the coordi-
nates of these points). Form the complete graph on these points — recall that a complete
graph on a set of vertices is a graph with edges connecting every pair of vertices — see
page 83. This means the the complete graph on n vertices has exactly

(
n
2

)
= n(n− 1)/2

edges. Now assign a weight to each edge of this complete graph equal to the distance
between the “cities” at its ends. We will call this weighted complete graph the TSP
graph associated with the given traveling salesman problem.

PROPOSITION 6.2.8. The total weight of the minimal spanning tree of the TSP graph of
some traveling salesman problem is ≤ the total distance of the minimal tour of that traveling
salesman problem.
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PROOF. If we delete one edge from the minimal tour, we get a spanning tree of the
complete graph on the n cities. The weight of this spanning tree must be ≥ the weight
of the corresponding minimal spanning tree. �

Note that we can get a kind of tour of the n cities by simply tracing over the minimal
spanning tree of the TSP graph — where we traverse each edge twice. Although this
tour isn’t minimal the proposition above immediately implies that:

PROPOSITION 6.2.9. The weight of the tour of the n cities obtained from a minimal span-
ning tree by the procedure described above is ≤ 2W , where W is the weight of a minimal tour.

This implies that the tour obtained from a minimal spanning tree is, at least, not
worse than twice as bad as an optimal tour. If you don’t like the idea of traversing some
edges twice, you can jump directly from one city to the next unvisited city. The triangle
inequality implies that this doesn’t increase the total length of the tour.

There is a well-known algorithm for computing minimal spanning trees called
Bor

o
uvka’s Algorithm. It is commonly known as Soullin’s Algorithm, but was actually

developed by Bor
o
uvka in 1926 — see [19], and [153]. It was developed before parallel

computers existed, but it lends itself easily to parallelization. The resulting parallel
algorithm bears a striking resemblance to the algorithm for connected components and
spanning trees discussed above.

We begin by describing the basic algorithm. We must initially assume that the
weights of all edges are all distinct. This is not a very restrictive assumption since we
can define weights lexicographically.

The idea of this algorithm is as follows:
As with connected components, we regard the vertices of the graph as being parti-

tioned into collections called “super-vertices”. In the beginning of the algorithm, each
vertex of the graph is regarded as a super-vertex itself. In each phase of the algorithm,
each super-vertex is merged with at least one other super-vertex to which it is connected
by an edge. Since this procedure halves (at least) the number of super-vertices in each
phase of the algorithm, the total number of phases that are required is ≈ lg n. Each
phase consists of the following steps:

(1) Each super-vertex selects the lowest-weight edge that is incident upon it. These
lowest-weight edges become part of the minimal spanning tree.

If we consider the super-vertices, equipped only with these minimal-weight
edges, we get several disjoint graphs. They are subgraphs of the original
graph.

(2) These subgraphs are collapsed into new super-vertices. The result is a graph
with edges from a vertex to itself, and multiple edges between different super-
vertices. We eliminate all self-edges and, when there are several edges between
the same two vertices, we eliminate all but the one with the lowest weight.

THEOREM 6.2.10. (Bor
o
uvka’s Theorem) Iteration of the two steps described above, lg n

times, results in a minimal spanning tree of the weighted graph.

PROOF. 1. We first prove that the algorithm produces a tree. This is very similar
to the proof that the spanning-tree algorithm of the previous section, produced a tree.
This argument makes use of the assumption that the edge-weights are all distinct. If we
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FIGURE 6.2.19. A possible cycle in the MST Algorithm

drop this assumption, it is possible (even if we resolve conflicts between equal-weight
edges arbitrarily) to get cycles in the set of selected edges. Consider the graph that is a
single closed cycle with all edges of weight 1.

It is clearly possible to carry out step 1 of Bor
o
uvka’s algorithm (with arbitrary selec-

tion among equal-weight edges) in such a way that the selected edges form the original
cycle. If the weights of the edges are all different the edge with the highest weight is
omitted in the selection process — so we get a path that is not closed. If we assume
that the result (of Bor

o
uvka’s algorithm) contains a cycle we get a contradiction by the

following argument (see figure 6.2.6 on page 281):

Consider the edge, e, with the highest weight of all the edges in the cycle
— this must be unique since all weights are distinct. This edge must be
the lowest-weight edge incident on one of its end vertices, say v. But this
leads to a contradiction since there is another edge, e′, incident upon v
that is also included in the cycle. The weight of e′ must be strictly less
than that of e since all weights are distinct. But this contradicts the way
e was selected for inclusion in the cycle — since it can’t be the lowest
weight edge incident upon v.

2. Every vertex of the original graph is in the tree — this implies that it is a spanning
tree. It also implies that no new edges can be added to the result of Bor

o
uvka’s algorithm

— the result would no longer be a tree. This follows the Edge-Selection step of the
algorithm.

3. All of the edges in a minimal spanning tree will be selected by the algorithm.
Suppose we have a minimal spanning tree T , and suppose that the edges of the graph
not contained in T are {e1, . . . , ek}. We will actually show that none of the ei are ever
selected by the algorithm. If we add ek to T , we get a graph T ∪ ek with a cycle.

We claim that ek is the maximum-weight edge in this cycle.
If not, we could exchange ek with the maximum-weight edge in this

cycle to get a new tree T ′ whose weight is strictly less than that of T . This
contradicts the assumption that T was a minimal spanning tree.
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FIGURE 6.2.20.

Now mark these edges {e1, . . . , ek} ∈ G and run Bor
o
uvka’s algorithm on the original

graph. We claim that the ei are never selected by Bor
o
uvka’s algorithm. Certainly, this

is true in the first phase. In the following phases

(1) If one of the ei connects a super-vertex to itself, it is eliminated.
(2) If there is more than one edge between the same super-vertices and one of

them is ei, it will be eliminated, since it will never be the minimum-weight edge
between these super-vertices.

(3) Each super-vertex will consist of a connected subtree of T . When we collapse
them to single vertices, T remains a tree, and a cycle containing an ei remains
a (smaller) cycle — see figure 6.2.6. The edge ei remains the maximum-weight
edge of this new smaller cycle, and is not selected in the next iteration of the
algorithm.

4. The algorithm executes in O(lg2 n) time. This follows from exactly the same
argument that was used in algorithm 6.2.3 on page 258. �

We can convert this procedure into a concrete algorithm by making a few small changes
to 6.2.5 on page 269. We eliminate the incidence matrix and replace it by a weight
matrix W . The fact that no edge connects two vertices is represented in W by a weight
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of∞. We also eliminate ties in weights of edges5 by numbering the edges of the graph,
and selecting the lowest-numbered edge with a given weight.

6.2.8. (Bor
o
uvka’s Algorithm.)

Input:: A graph G with |V | = n described by an n× n weight matrix W (i, j).
Output:: A 2 × n array Edge, such that Edge(1, i) and Edge(2, i) are the end-vertices

of the edges in a minimal spanning tree.
Auxiliary memory:: A one-dimensional arrays C and Flag, each with n elements. A

2× n× n array B.
• 1. Initialization.

– a.
for all i, 0 ≤ i < n− 1 do in parallel
D(i)← i
Flag(i)← 1
Edge(1, i)← 0
Edge(2, i)← 0

endfor
– b.

for all i, j, 0 ≤ i, j ≤ n− 1 do in parallel
B(1, i, j)← i
B(2, i, j)← j

endfor
The remainder of the algorithm consists in

do steps 2 through 8 lg n times:
Construct the set S: S ← {i|Flag(i) = 1}.

• 2. Selection.
for all i ∈ S do in parallel

Choose j0 such that W (i, j0) = min{W (i, j)|j ∈ S}
if none then j0 ← i
C(i)← j0

Edge(1, i)← B(1, i, j0)
Edge(2, i)← B(2, i, j0)

endfor
• 3. Removal of isolated super-vertices.

for all i such that i ∈ S do in parallel
if C(i) = i, then Flag(i)← 0

endfor
• 4. Update D.

for all i ∈ S, do in parallel
D(i)← C(i)

endfor
• 5. Consolidation.

5Since Bor
o
uvka’s algorithm required that all edge-weights be unique.
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for i = 0 until i > lg n
j ∈ S do in parallel
C(j)← C(C(j))

endfor
• 6. Final update.

– a.
for all i ∈ S do in parallel
D(i)← min(C(i), D(C(i)))

endfor
– b.

for all i do in parallel
D(i)← D(D(i))

endfor
• 7. Update the weight-matrix and B-arrays.

– a.
for all i ∈ S do in parallel

for all j ∈ S such that j = D(j) do in parallel
Choose j0 ∈ S such that
W (i, j0) = min{W (i, k)|D(k) = i, k ∈ S}

if none then j0 ← j
W (i, j) = W (i, j0)
B(1, i, j)← B(1, i, j0)
B(2, i, j)← B(2, i, j0)

endfor
endfor

– b.
for all j ∈ S such that j = D(j) do in parallel

for all i ∈ S such that i = D(i) do in parallel
Choose i0 ∈ S such that
W (i0, j) = min{W (k, j)|D(k) = i, k ∈ S}

if none then i0 ← i
W (i, j) = W (i0, j)
B(1, i, j)← B(1, i0, j)
B(2, i, j)← B(2, i0, j)

endfor
endfor

– c.
for all i ∈ S do in parallel
W (i, i)←∞

endfor
• 8. Select only current super-vertices for remaining phases of the algorithm.

for all i ∈ S do in parallel
if D(i) 6= i then

Flag(i)← 0
endfor
• 9. Output selected edges.
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for all i, 0 ≤ i ≤ n− 1 do
if i 6= D(i) then output

(Edge(1, i),Edge(2, i))
endfor

Our program for computing minimal spanning trees is very much like that for con-
nected components.

Input: A graph G with |V | = n described by an n−1×n−1 weight matrix W (i, j)6.
(Nonexistence of an edge between two vertices i and j is denoted by setting W (i, j)
and W (j, i) to “infinity”. In our C* program below, this is the pre-defined constant
MAXFLOAT, defined in <values.h>).

Output: An n × n array B, giving the adjacency matrix of the minimal spanning
tree.

1. We will assume the A-matrix is stored in a parallel float variable A in a shape
named ’graph’, and B is stored in a parallel int variable.

2. This algorithm executes in O(lg2 n) time using O(n2) processors.
This operation never combines super-vertices that are not connected by an edge,

so it does no harm. This operation never needs to be performed more than lg n times,
since the length of any chain of super-vertex pointers is halved in each step.

Here is a C* program for minimal spanning trees.
#include <values.h>
#include <math.h>
#include <stdio.h>
shape [64][128]graph;
shape [8192]components;
#define N 10
int:graph temp, T, B1, B2; /* T holds the minimal
* spanning forest. */

float:graph W;
float:components temp2;
int:components C, D, Flag, in S, Edge1, Edge2,
i 0, j 0;

int i, j;
FILE *graph file;

void main()
{
int L = (int) (log((float) N) /
log(2.0) + 1);

/* Weight matrix stored in a text file. */
graph file = fopen("gfile", "r");
with (graph)
{
char temp[100];
for (i = 0; i < N; i++)
{
char *p;
fscanf(graph file, "%[ˆ\n]\n", temp);
p = temp;
for (j = 0; j < N; j++)
if (i != j)
{

6This is an n× n weight matrix with the main diagonal omitted
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char str[20];
float value;
int items read = 0;
sscanf(p, "%s", str);
p += strlen(str);
p++;
items read = sscanf(str, "%g", &value);
if (items read < 1)
{
if (strchr(str, ’i’) != NULL)
value = MAXFLOAT;
else
printf("Invalid field = %s\n", str);
}
[i][j]W = value;
} else
[i][j]W = MAXFLOAT;
}
}

/*
* Initialize super−vertex array so that each
* vertex starts out being a super vertex.
*/
with (components)
{
D = pcoord(0);
Flag = 1;
Edge1 = 0;
Edge2 = 0;
}
with (graph)
{
B1 = pcoord(0);
B2 = pcoord(1);
}

/* Main loop for the algorithm. */
for (i = 0; i <= L; i++)
{
int i;

/* This is step 2. */

with (components)
where (pcoord(0) < N)
in S = Flag;
else
in S = 0;

with (graph)

where (([pcoord(0)]in S == 1) &&
([pcoord(1)]in S == 1))
{
[pcoord(0)]temp2 = MAXFLOAT;
[pcoord(0)]temp2 <?= W;
[pcoord(0)]j 0 = N + 1;
where ([pcoord(0)]temp2 == W)
[pcoord(0)]j 0 <?= pcoord(1);
where ([pcoord(0)]j 0 == N + 1)
[pcoord(0)]j 0 = pcoord(0);
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[pcoord(0)]C = [pcoord(0)]j 0;
[pcoord(0)]Edge1 = [pcoord(0)][[pcoord(0)]j 0]B1;
[pcoord(0)]Edge2 = [pcoord(0)][[pcoord(0)]j 0]B2;
}

/* This is step 3 */
with (components)
where ([pcoord(0)]in S == 1)
where ([pcoord(0)]C == pcoord(0))
[pcoord(0)]Flag = 0;

/* This is step 4 */

with (components)
where (in S == 1)
D = C;

/* This is step 5 */

for (i = 0; i <= L; i++)
with (components)
where (in S == 1)
C = [C]C;

/* This is step 6a */

with (components)
where (in S == 1)
D = (C <?[C]D);

/* This is step 6b */

with (components)
where (in S == 1)
D = [D]D;

/* Step 7a */
with (graph)
where ([pcoord(0)]in S == 1)
where ([pcoord(1)]in S == 1)
where (pcoord(1) == [pcoord(1)]D)
{
[pcoord(0)]temp2 = MAXFLOAT;
[pcoord(0)]temp2 <?= W;

[pcoord(0)]j 0 = N + 1;
where ([pcoord(0)]temp2 == W)
[pcoord(0)]j 0 <?= pcoord(1);
where ([pcoord(0)]temp2 == MAXFLOAT)
[pcoord(0)]j 0 = pcoord(1);

W = [pcoord(0)][[pcoord(0)]j 0]W;
B1 = [pcoord(0)][[pcoord(0)]j 0]B1;
B2 = [pcoord(0)][[pcoord(0)]j 0]B2;
}

/* Step 7b */
with (graph)
where ([pcoord(0)]in S == 1)
where ([pcoord(1)]in S == 1)
where (pcoord(0) == [pcoord(0)]D)
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where (pcoord(1) == [pcoord(1)]D)
{
[pcoord(1)]temp2 = MAXFLOAT;
[pcoord(1)]temp2 <?= W;

[pcoord(1)]i 0 = N + 1;
where ([pcoord(1)]temp2 == W)
[pcoord(1)]i 0 <?= pcoord(0);
where ([pcoord(1)]temp2 == MAXFLOAT)
[pcoord(1)]i 0 = pcoord(0);

W = [[pcoord(1)]i 0][pcoord(1)]W;
B1 = [[pcoord(1)]i 0][pcoord(1)]B1;
B2 = [[pcoord(1)]i 0][pcoord(1)]B2;
}

/* Step 7c */
with (components)
where ([pcoord(0)]in S == 1)
[pcoord(0)][pcoord(0)]W = MAXFLOAT;

/* Step 8 */
with (components)
where ([pcoord(0)]in S == 1)
where ([pcoord(0)]D != pcoord(0))
[pcoord(0)]Flag = 0;

} /* End of big for−loop. */
/* Step 9 */
for (i = 0; i < N; i++)
if ([i]D != i)
printf("Edge1=%d, Edge2=%d\n",[i]Edge1,[i]Edge2);
}

Here is a sample run of this program:
The input file is:

1.1 i 1.0 i i i i i i
1.1 3.1 i i i i i i i
i 3.1 0.0 1.3 i i i i i

1.0 i 0.0 1.2 i i i i i
i i 1.3 1.2 3.5 i i i i
i i i i 3.5 2.1 i 2.4 i
i i i i i 2.1 2.2 i i
i i i i i i 2.2 .9 1.7
i i i i i 2.4 i .9 i
i i i i i i i 1.7 i

here we don’t include any diagonal entries, so the array is really N-1×N-1. The letter
i denotes the fact that there is no edge between the two vertices in question – the input
routine enters MAXFLOAT into the corresponding array positions of the Connection
Machine (representing infinite weight).

See figure 6.2.6 for the graph that this represents.
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FIGURE 6.2.21. Input graph for the MST program
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FIGURE 6.2.22. Minimal spanning tree

The output is

0 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0

and this represents the minimal spanning tree shown in figure 6.2.6.
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EXERCISES.

14. Find a minimal spanning tree of the graph with weight-matrix

2 3 1 0 4 5 ∞ ∞
2 ∞ ∞ 8 −1 ∞ −3 6
3 ∞ 9 ∞ 7 ∞ −2 ∞
1 ∞ 9 ∞ −4 ∞ ∞ 10
0 8 ∞ ∞ 11 12 ∞ ∞
4 −1 7 −4 11 ∞ 13 ∞
5 ∞ ∞ ∞ 12 ∞ ∞ 14
∞ −3 −2 ∞ ∞ 13 ∞ ∞
∞ 6 ∞ 10 ∞ ∞ 14 ∞


How many components does this graph have?

15. Find an algorithm for computing a maximum weight spanning tree of an undi-
rected graph.

6.2.7. Cycles in a Graph.
6.2.7.1. Definitions. There are many other graph-theoretic calculations one may

make based upon the ability to compute spanning trees. We will give some examples.

DEFINITION 6.2.11. If G = (V,E) is a graph, a:
(1) path in G is a sequence of vertices {v1, . . . , vk} such that (vi, vi+1) ∈ E for all

1 ≤ i ≤ k;
(2) cycle is a path in which the start point and the end point are the same vertex.
(3) simple cycle is a cycle in which no vertex occurs more than once (i.e. it does not

intersect itself).

We define a notion of sum on the edges of an undirected graph. The sum of two
distinct edges is their union, but the sum of two copies of the same edge is the empty
set. We can easily extend this definition to sets of edges, and to cycles in the graph.
Given this definition, the set of all cycles of a graph, equipped with this definition of
sum form a mathematical system called a group. Recall that a group is defined by:

DEFINITION 6.2.12. A group, G, is a set of objects equipped with an operation ?:G×
G→ G satisfying the conditions:

(1) It has an identity element, e. This has the property that, for all g ∈ G, e ? g =
g ? e = g.

(2) The operation ? is associative: for every set of three elements g1, g2, g3 ∈ G,
g1 ? (g2 ? g3) = (g1 ? g2) ? g3.

(3) Every element g ∈ G has an inverse, g−1 with respect to ?: g ? g−1 = g−1 ? g = e.
A group will be called abelian if its ?-operation is also commutative — i.e., for any two
elements g1, g2 ∈ G, g1 ? g2 = g2 ? g1.

The identity-element in our case, is the empty set. The inverse of any element is itself.
Figure 6.2.7.1 illustrates this notion of the sum of two cycles in a graph. Notice that the
common edge in cycle A and B disappears in the sum, A+B.



6.2. GRAPH ALGORITHMS 291

Cycle  A Cycle  B

Cycle  A+B

FIGURE 6.2.23. The sum of two cycles in a graph

DEFINITION 6.2.13. A basis for the cycles of a graph are a set of cycles with the
property that all cycles in the graph can be expressed uniquely as sums of elements of
the basis.

Given a graph G with some spanning tree T , and an edge E ∈ G − T the cycle
corresponding to this edge is the cycle that results from forming the union of E with
the path P connecting the endpoints of E in T .

6.2.7.2. A simple algorithm for a cycle basis. In general, there are many distinct bases
for the cycles of a graph. It turns out that there is a 1-1 correspondence between the
cycles in such a basis, and the edges that do not occur in a spanning tree of the graph.

Given:
(1) algorithm 6.2.5 on page 269.
(2) Algorithm 6.2.3 on page 255 for finding shortest paths in the spanning tree.

we can easily compute a basis for the cycles of a graph by:

(1) Finding a spanning tree for the graph, using Bor
o
uvka’s algorithm (after assign-

ing unique weights to the edges);
(2) Computing the set of omitted edges in the graph — these are edges that ap-

peared in the original graph, and do not appear in the spanning tree.
(3) Compute the shortest paths in the spanning tree, between the end-vertices of

these omitted edges — using algorithm 6.2.3 on page 255. The union of an
omitted edge with the shortest path connecting its end-vertices is a basis-cycle
of the graph.

This algorithm for a cycle-basis of a graph is not particularly efficient: it requires O(n2)
processors for the computation of the spanning tree andO(n2.376) processors for finding
the minimal paths in this spanning tree. The path-finding step is the most expensive,
and makes the processor requirement for the whole algorithm O(n2.376).

6.2.7.3. Lowest Common Ancestors. We will present an algorithm for finding these
paths that uses fewer processors. It was developed in [155] by Tsin and Chin and
makes use of the algorithm for an inverted spanning forest in section 6.2.5.1 on page
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FIGURE 6.2.24. Lowest common ancestor

274. A key step in this algorithm involves finding lowest common ancestors of pairs of
vertices in a inverted spanning tree.

DEFINITION 6.2.14. Let T = (V,E) be an in-tree (see 6.2.1 on page 248).
(1) A vertex v ∈ V is an ancestor of a vertex v′ ∈ V , written v � v′, if there is a

directed path from v′ to v in T .
(2) Let v1, v2 ∈ V be two vertices. A vertex v ∈ V is the lowest common ancestor of v1

and v2 if v � v1 and v � v2, and for any vertex w, w � v1 and w � v2 =⇒ w � v.
See figure 6.2.14 for an example.

It is fairly simple to compute the lowest common ancestor of two vertices in an
inverted spanning tree. We use an algorithm based on algorithm 6.2.6 on page 276:

6.2.9. Let T = (V,E) be an in-tree described by a function f :V → V that maps a vertex
to its immediate ancestor. Given two vertices v1, v2 ∈ V , we can compute their lowest common
ancestor v by:

(1) Compute the path-function, f̂ , associated with f , using 6.2.6 on page 276.
(2) Perform a binary search of the rows f̂(v1, ∗) and f̂(v2, ∗) to determine the smallest

value of j such that f̂(v1, j) = f̂(v2, j). Then the common value, f̂(v1, j) is the lowest
common ancestor of v1 and v2.

This algorithm can clearly be carried out in parallel for many different pairs of
vertices in T . It is the basis of our algorithm for a cycle-basis of a graph. We use lowest
common ancestors to compute a path connecting the endpoints of an omitted edge in a
spanning tree — recall the algorithm on page 291.

6.2.10. Let G = (V,E) be an undirected graph, with |V | = n. We can compute a basis for
the cycles of G by:

(1) Compute an inverted spanning forest, T = (V,E ′), of G, via algorithm 6.2.7 on page
276.

(2) Compute the set, {e1, . . . , ek}, of omitted edges of G — these are edges of G that do
not occur in T . They are E − E ′ (where we must temporarily regard the edges in E ′
as undirected edges).
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(3) Compute the set of paths from the leaves of T to the root, using algorithm 6.2.6 on page
276.

(4) For each of the ei, do in parallel:
(a) Compute the end-vertices {vi,1, vi,2};
(b) Compute the lowest-common ancestor vi of {vi,1, vi,2}.
(c) Compute the paths p1,i and p2,i from vi,1 and vi,2 to vi, respectively.
(d) Output ei ∪ p1,i ∪ p2,i as the ith fundamental cycle of G.

Unlike the simple algorithm on page 291, this algorithm requires O(n2) in
its straightforward implementation. The more sophisticated implementations
described in [155] require O(n2/ lg2 n) processors. The execution time of both of these
implementations is O(lg2 n).

EXERCISES.
16. Write a C* program to implement the algorithm described on page 397 for test-

ing whether weighted graphs have negative cycles
17. Suppose G is a complete graph on n vertices (recall that a complete graph has

an edge connecting every pair of vertices). Describe a cycle-basis for G.
18. A planar graph, G, is a graph that can be embedded in a plane — in other words,

we can draw such a graph on a sheet of paper in such a way that no edge crosses
another. If we delete the planar graph from the plane into which it is embedded7, the
plane breaks up into a collection of polygon, called the faces of the embedding. The
faces of such an embedding correspond to simple cycles in the graph — say {c1, . . . , ck}.
Show that one of these cycles can be expressed as a sum of the other, and if we delete
it, the remaining cycles form a basis for the cycles of G.

6.2.8. Further Reading. Graph theory has many applications to the design and
analysis of networks. A good general reference on graph theory is [65] by Harary.
Research on the design of efficient parallel algorithms in graph theory goes back to
the mid 1970’s. Many problems considered in this section were studied in Carla Sav-
age’s thesis [136]. Chandra investigated the use of graphs in relation to the problem
of multiplying matrices — see [24]. Planar graphs are graphs that can be embedded in
a plane. In 1982 Ja’ Ja’ and Simon found NC-parallel algorithms for testing whether a
given graph is planar, and for embedding a graph in a plane if it is — see [74]. This
was enhanced by Klein and Reif in 1986 — see [86], and later by Ramachandran and
Reif in 1989 — see [129].

One problem we haven’t considered here is that of computing a depth-first search of
a graph. Depth-first search is the process of searching a graph in such a way that the
search moves forward8 until it reaches a vertex whose neighbors have all been searched

7I.e., if draw the graph on a piece of paper in such a way that no edge crosses over another, and then
cut the paper along the edges.

8I.e., moves to new vertices
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— at this point it backtracks a minimum distance and continues in a new direction.It
is easy to see that the time required for a sequential algorithm to perform depth-first
search on a graph with n vertices is O(n). Depth-first search forms the basis of many
sequential algorithms — see [151].

In 1977, Alton and Eckstein found a parallel algorithm for depth first search that
required O(

√
n)-time with O(n) processors — see [5]. Corneil and Reghbati conjec-

tured that depth-first search was inherently sequential in [36] and Reif proved that
lexicographically first depth-first search9 is P-complete in [130].

The author found an NC-algorithm for depth-first search of planar graphs — see
[147]. This was subsequently improved by Hagerup in 1990 — see [63]. The best par-
allel algorithm (in terms of time and number of processors required) for depth-first
search of planar graphs is currently (1992) that of Shannon — see [144]. This was ex-
tended to arbitrary graphs that do not contain subgraphs isomorphic toK3,3 by Khuller
in [84]10.

In 1987 Aggarwal and Anderson found a random NC algorithm for depth-first
search of general graphs. This is an algorithm that makes random choices during its
execution, but has expected execution-time that is poly-logarithmic in the number of
processors. See chapter 7 for a discussion of randomized algorithms in general.

A graph is called chordal if every cycle of length ≥ 4 can be “short-circuitted” in the
sense that there exists at least one pair of non-consecutive vertices in every such cycle
that are connected by an edge. These graphs have the property that there exist NC
algorithms for many important graph-theoretic problems, including: optimal coloring,
maximum independent set, minimum clique cover. See the paper, [119], of Naor, Naor
and Schäffer.

If the maximum degree of a vertex in a graph is ∆, there is an algorithm, due to
Luby, for coloring the graph in ∆ + 1 colors. This algorithm runs on a CREW PRAM
and executes in O(lg3 n lg lg n) time, using O(n + m) processors — see [105]. In [79],
Karchmer and Naor found an algorithm that colors the graph with ∆ colors — this
second algorithm runs on a CRCW-PRAM.

There are several algorithms for finding a maximal independent set in a graph —
see page 375 of the present book for a discussion of these results.

In general we haven’t considered algorithms for directed graphs here. These graphs
are much harder to work with than undirected graphs and, consequently, much less is
known about them. For instances, the problem of finding even a sequential algorithm
for spanning in-trees and out-trees of a weighted directed graph is much more difficult
than the corresponding problem for undirected graphs. Several incorrect papers were
published before a valid algorithm was found. See [152], by Robert Tarjan. The first
NC-parallel algorithms for this problem were developed by Lovász in 1985 ([102]) and
in the thesis of Zhang Yixin ([172]).

9This is the form of depth-first search that always selects the lowest-numbered vertex when it has
multiple choices.

10K3,3 is the complete bipartite graph on two sets of 3 vertices — see 3.8.6 on page 87.
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EXERCISES.

19. Write a program that not only finds the length of the shortest path between
every pair of vertices, but also finds the actual paths as well. This requires a variant on
the algorithm for lengths of shortest paths presented above. In this variant every entry
of the matrix is a pair: (distance, list of edges). The algorithm not only adds the distances
together (and selects the smallest distance) but also concatenates lists of edges. The lists
of edges in the original A-matrix initially are either empty (for diagonal entries) or have
only a single edge.

20. Given an example of a weighted graph for which Bor
o
uvka’s algorithm finds a

minimal spanning tree in a single step.

21. Suppose G = (V,E) is a connected undirected graph. An edge e with the prop-
erty that deleting it disconnects the graph is called a bridge of G. It turns out that an edge
is a bridge if and only if it is not contained in any fundamental cycle of the graph. Give
an algorithm for computing all of the bridges of a connected graph. It should execute
in O(lg2 n) time and require no more than O(n2) processors.

22. Give an example of a weighted graph with n vertices, for which Bor
o
uvka’s

algorithm requires the full dlg ne phases.

23. The program for minimal spanning trees can be improved in several ways:

a. The requirement that all weights be distinct can be eliminated by either redefin-
ing the method of comparing weights so that the weights of all pairs of edges
behave as if they are distinct;

b. The method of storing edge-weights can be made considerably more memory-
efficient by storing them in a list of triples (start-vertex, end-vertex, weight).

Modify the program for minimal spanning trees to implement these improvements.

24. Write a C* program for finding an approximate solution to the Traveling Sales-
men problem

25. What is wrong with the following procedure for finding an inverted spanning
forest of a graph?

a. Find a spanning tree of the graph using Bor
o
uvka’s algorithm (with some ar-

bitrary distinct values given for the weights. It is easy to modify Bor
o
uvka’s

algorithm to give a minimal undirected spanning forest of a graph with more
than one component.

b. Select an arbitrary vertex to be the root.
c. Make this undirected spanning tree into a directed tree via a technique like the

first step of 6.2.1 on page 249. Make the directed edges all point toward the
root.
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6.3. Parsing and the Evaluation of arithmetic expressions

6.3.1. Introduction. This section develops an algorithm for parsing precedence
grammars and the evaluation of an arithmetic expression in O(lg n) time. Although
parts of this algorithm are somewhat similar to the doubling algorithms of the
previous section, we put these algorithms in a separate section because of their
complexity. They are interesting for a number of reasons.

Parsing is a procedure used in the front-end of a compiler — this is the section that
reads and analyzes the source program (as opposed to the sections that generate object
code).

The front end of a compiler generally consists of two modules: the scanner and the
parser. The scanner reads the input and very roughly speaking checks spelling — it
recognizes grammatic elements like identifiers, constants, etc. The parser then takes
the sequence of these identified grammatic elements (called tokens) and analyzes their
overall syntax. For instance, in a Pascal compiler the scanner might recognize the oc-
currence of an identifier and the parser might note that this identifier was used as the
target of an assignment statement.

In the preceding section we saw how a DFA can be efficiently implemented on a
SIMD machine. This essentially amounts to an implementation of a scanner. In the
present section we will show how a parser (at least for certain simple grammars) can
also be implemented on such a machine. It follows that for certain simple program-
ming languages (ones whose grammar is a operator-precedence grammar), the whole
front end of a compiler can be implemented on a SIMD machine We then show how
certain operations similar to those in the code-generation part of a compiler can also be
efficiently implemented on a SIMD machine. Essentially the algorithm presented here
will take a syntax tree for an arithmetic expression (this is the output of the parser) and
evaluate the expression, but it turns out not to be much more work to generate code to
compute the expression.

Recall that a syntax-tree describes the order in which the operations are performed
— it is like a parse tree that has been stripped of some unnecessary verbiage (i.e. unit
productions, names of nonterminals, etc.). If the expression in question is (a + b)/(c−
d) + e/f the corresponding syntax tree is shown in figure 6.3.1.

See [2], chapter 2, for more information on syntax trees.

6.3.2. An algorithm for building syntax-trees. The algorithm for building syntax
trees of expressions is due to Bar-On and Vishkin in [12]. We begin with a simple
algorithm for fully-parenthesizing an expression. A fully parenthesized expression
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is one in which all precedence rules can be deduced by the patterns of parentheses:
for instance a + b ∗ c becomes a + (b ∗ c), since multiplication generally (i.e. in most
programming languages) has precedence over addition. Operators within the same
level of nesting of parentheses are assumed to be of equal precedence. The algorithm
is:

6.3.1. 1. Assume the original expression was enclosed in parentheses.
2. for each ‘+’, ‘-’ operator insert two left parentheses to its right and two right parentheses

to its left — i.e. ‘a+ b’ becomes ‘a)) + ((b’.
3. For each ‘*’, ‘/’ operator insert one left parenthesis to its right and one right parenthesis

to its left — i.e. ‘a ∗ b’ becomes ‘a) ∗ (b’.
4. For each left (resp. right) parenthesis, insert two additional left (resp. right parentheses)

to its right (resp. left). �

These four steps, applied to ‘a+b∗ (c−d)’ lead to ‘(((a))+((b)∗ ((((c))− ((d))))))’. It
is intuitively clear that this procedure will respect the precedence rules — *’s will tend
to get buried more deeply in the nested parentheses since they only get one layer of
opposing parentheses put around them, while +’s get two. Note that this procedure al-
ways results in too many parentheses — this does not turn out to create a problem. At
least the parentheses are at the proper level of nesting. In the expression with extrane-
ous parentheses computations will be carried out in the correct order if the expressions
inside the parentheses are evaluated first. For instance, if we strip away the extraneous
parentheses in the sample expression above we get: ‘(a + (b ∗ (c − d)))’. Bar-On and
Vishkin remark that this procedure for handling precedence-rules was used in the first
FORTRAN compilers.

This little trick turns out to work on general operator-precedence grammars.
This construction can clearly be carried out in unit time with n processors — simply

assign one processor to each character of the input. Each processor replaces its charac-
ter by a pointer to a linked list with the extra symbols (for instance). Although the rest
of the algorithm can handle the data in its present form we copy this array of charac-
ters and linked lists into a new character-array. This can be done in O(lg n) time using
n processors — we add up the number of characters that will precede each character
in the new array (this is just adding up the cumulative lengths of all of the little linked
lists formed in the step above) — this gives us the position of each character in the new
array. We can use an algorithm like that presented in the introduction for adding up n
numbers — i.e. algorithm 6.1.1 (on page 234) with ? replaced by +. We now move the
characters in constant time (one step if we have enough processors).

We will, consequently, assume that our expression is the highly parenthesized out-
put of 6.3.1. We must now match up pairs of parentheses. Basically this means we want
to have a pointer associated with each parenthesis pointing to its matching parenthesis
— this might involve an auxiliary array giving subscript-values. Now we give an algo-
rithm for matching up parentheses. The algorithm given here is a simplification of the
algorithm due to Bar-On and Vishkin — our version assumes that we have n proces-
sors to work with, rather that n/ lg n. See the appendix for this section for a discussion
of how the algorithm must be changed to allow for the smaller number of processors.

6.3.2. Input: An array C[i] of the characters in the original expression.
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FIGURE 6.3.2. Parenthesis-matching algorithm

Output: An array M[i]. If i is the index of a parenthesis in C[i], M[i] is the index of the
matching parenthesis.

Auxiliary arrays: Min-left[i, j], Min-right[i, j], where j runs from 1 to lg n and, for a
given value of j, i runs from 0 to 2n−j . A[i], L[i].

We present an algorithm that is slightly different from that of Bar-On and Vishkin — it is
simpler in the present context since it makes use of other algorithms in this book. We start by
defining an array A[∗]:

A[j] =

{
1, if there is a left parenthesis at position j;
−1, if there is a right parenthesis at position j.

Now we compute the cumulative sums of this array, using the algorithm in the introduction
on page 234 (or 6.1.1). Let this array of sums be L[∗], so L[i] =

∑i
j=1A[j]. Basically, L[i]

indicates the level of nesting of parentheses at position i of the character array, if that position
has a left parenthesis, and the level of nesting −1, if that position has a right parenthesis.

Here is the idea of the binary search: Given any right parenthesis in, say, position i of the
character array, the position, j, of the matching left parenthesis is the maximum value such that
L[j] = L[i] + 1. We set up an tree to facilitate a binary search for this value of j. Each level of
this tree has half as many siblings as the next lower level and each node has two numbers stored
in it: Min-Right, which is equal to the minimum value of L[i] for all right parentheses among
that node’s descendants and Min-Left, which is the corresponding value for left parentheses.
See figure 6.3.2.

We can clearly calculate these values for all of the nodes of the tree in O(lg n) time using
n processors (actually we can get away with n/ lg n processors, if we use an argument like that
in the solution to exercise 3 at the end of §6.1). Now given this tree and a right parenthesis at
location i, we locate the matching left parenthesis at location j by:

1. Moving up the tree from position i until we arrive at the right child of a node whose left
child, k, satisfies Min-Left ≤ L[i] + 1;

2. Travel down the tree from node k, always choosing right children if possible (and left
children otherwise). Choosing a right child is possible if its Min-Left value is ≤ L[i] + 1.

Given this matching of parentheses, we can build the syntax tree, via the following
steps:



6.3. PARSING AND THE EVALUATION OF ARITHMETIC EXPRESSIONS 299

(1) Remove extra parentheses: In this, and in the next step processors assigned
to parentheses are active and all others are inactive. Every right parenthesis is
deleted if there is another right parenthesis to its left, and the corresponding
left parentheses are also adjacent Similarly, a left parenthesis is deleted if there
is another one to its right and the corresponding right parentheses are adjacent.
In terms of the array M[i] we delete position i if

M[i− 1] = M[i] + 1

Having made the decision to delete some parentheses, we re-map the entire
expression. We accomplish this by using two extra auxiliary arrays: D[i] and
V[i]. We set D[i] to 1 initially and mark elements to be deleted by setting the
corresponding values of D[i] to 0. Having done this, we make V[i] into the
cumulative sum of the D-array. When we are done V[i] is equal to the index-
position of the ith element of the original C-array, if it is to be retained.

Now we re-map the C[i] and M[i] arrays, using the V array.
When we are done:
• The entire expression is enclosed in parentheses
• Each variable or constant is enclosed in parentheses
• All other extraneous parentheses have been deleted

(2) Each pair of parentheses encloses a subexpression representing a small subtree
of the entire syntax tree. The root of this little subtree corresponds to the arith-
metic operation being performed in the subexpression. We assign a processor
to the left parenthesis and it searches for the operator being executed in the
subexpression. We store the locations of these operators in a new array Op[i].
Suppose we are in position i of the re-mapped expression. There are several
possibilities:
• the quantity to the right of the left parenthesis is a constant or variable and

the quantity to the right of that is the matching right parenthesis. Then
position i is the left parenthesis enclosing a variable or constant. Op[i]←
i+ 1, Op[M[i]]← i+ 1.
• the quantity to the right of the left parenthesis is a constant or variable and

the quantity to the right of that is not a right parenthesis. In this case the
operator is the next token, in sequence. Op[i]← i+ 1, Op[M[i]]← i+ 1.
• the quantity to the right of the left parenthesis is another left parenthe-

sis, p. In this case the left-operand (i.e. child, in the subtree) is another
subexpression. The operator (or root of the subtree) is the token following
the right parenthesis corresponding to p. We perform the assignments:

Op[i]←M[i+ 1]+1
Op[M[i]]←M[i+ 1]+1

(3) Pointers are set between the root (operator) and the pair of matching paren-
theses that enclose the expression. We store these in new arrays Lpar[i] and
Rpar[i]. These pointers are set at the same time as the Op-array.

(4) Processors assigned to operators are active, all others are inactive. Suppose the
operator is one of ‘+,−, ∗, or/’. The previous operator is set to be its left child
and the operand to its right its right child. We store these pointers in two new
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arrays: Lchild[i] and Rchild[i]. The processor finds them as follows: if we are
in position i and:
• C[i− 1] is a constant or a variable. In this case the previous entry contains

the operator. and we set Lchild[i]← i− 2
• C[i − 1]=’)’. In this case the operator is in the entry to the left of the left

match. We set Lchild[i]←M[i− 1]−1
We set the Rchild[i]-array by an analagous set of steps:
• If C[i + 1] is a constant or a variable, then the next entry contains the op-

erator and we set Rchild[i]← i+ 2
• If C[i+1]=’(’, then the operator is in the entry to the left of the left match.

We set Rchild[i]←M[i+ 1]+1

The parse-tree is essentially constructed at this point. Its root is equal to Op[0]. Figure
6.3.2 gives an example of this algorithm.

6.3.3. An algorithm for evaluating a syntax tree. Given a syntax tree for an expres-
sion, we can evaluate the expression using an algorithm due to Gibbons and Rytter in
[58].

The statement of their result is:

THEOREM 6.3.1. There exists an algorithm for evaluating an expression of length n con-
sisting of numbers, and operations +,−, ∗, and / in time O(lg n) using n/ lg n processors.

6.3.1. (1) Note that this algorithm is asymptotically optimal since its execution time
is proportional to the sequential execution time divided by the number of processors.

(2) The methods employed in this algorithm turn out to work for any set of algebraic
operations {?1, . . . , ?k} with the property that:
(a) The most general expression involving these operations in one variable and con-

stant parameters is of bounded size. Say this expression is: f(x; c1, . . . , ct), where
x is the one variable and the ci are parameters.

(b) the composite of two such general expressions can be computed in bounded time.
In other words, if f(x; c′1, . . . , c

′
t) = f(f(x; c1, . . . , ct); d1, . . . , dt), then the {c′i}

can be computed from the {ci} and the {di} in constant time.
In the case of the arithmetic expressions in the statement of the theorem, the most

general expression in one variable is f(x; a, b, c, d) = (ax+b)/(cx+d). The composite
of two such expressions is clearly also of this type and the new coefficients can be
computed in constant time:

If f(x; a, b, c, d) = (ax + b)/(cx + d), then f(f(x; â, b̂, ĉ, d̂); a, b, c, d) =

f(x; a′, b′, c′, d′), where a′ = âa + ĉb, b′ = ab̂ + d̂b, c′ = âc + ĉd, d′ = cb̂ + dd̂.
In fact it is easy to see that, if we write these sets of four numbers as matrices(
a′ b′

c′ d′

)
=

(
a b
c d

)(
â b̂

ĉ d̂

)
(matrix product).

This reasoning implies that the algorithms presented here can also evaluate certain
kinds of logical expressions in time O(lg n). It turns out (as pointed out by Gibbons
and Rytter in [58]) that the problem of parsing bracket languages and input-driven
languages can be reduced to evaluating a suitable algebraic expression, hence can also
be done in O(lg n) time. In the case of parsing these grammars conditions a and b turn
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FIGURE 6.3.5. After pruning

out to be satisfied because the algebraic expressions in question live in a mathematical
system with only a finite number of values — i.e. it is as if there were only a finite
number of numbers upon which to do arithmetic operations.

The idea of this algorithm is to take a syntax tree and prune it in a certain way so
that it is reduced to a single node in O(lg n) steps. This is nothing but the Parallel Tree
Contraction method, described in § 6.2.2 (page 253). Each step of the pruning operation
involves a partial computation of the value of the expression and in the final step the
entire expression is computed. Figures 6.3.4 and 6.3.5 illustrate this pruning operation.

Here c is a constant and op1 and op2 represent operations or formulas of the form
f(x; a, b, c, d) in remark 6.3.1.4 above. Note that every node of the syntax tree has two
children — it is not hard to see that in such a tree at least half of all of the nodes
are leaves. This pruning operation removes nodes with the property that one of their
children is a leaf. The total number of leaves is halved by this operation when it is
properly applied — we will discuss what this means shortly. Since the property of
having two children is preserved by this operation, the tree will be reduced to a single
node (the root) in O(lg n) steps.

The phrase “properly applied” in the sentence above means that the operation can-
not be applied to two adjacent nodes in the same step. We solve this problem by num-
bering all of:

(1) the leaf nodes that are right children; and
(2) the leaf nodes that are left children.

In each step of the computation we perform the pruning operation of all
odd-numbered right-child leaf nodes, then on all odd numbered left-child leaf
nodes. The net result is that the number of leaf-nodes is at least halved in a step. We
re-number the leaf-nodes of the new graph by halving the numbers of the remaining
nodes (all of which will have even numbers).

The numbers are initially assigned to the leaves by an algorithm called the Euler-
Tour Algorithm. This is a simple and ingenious algorithm due to Tarjan and Vishkin,
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that is described in § 6.2.1 in chapter 6 of this book. The main thing that is relevant to
the present topic is that the execution-time of this algorithm is O(lg n).

Now put two numbers, Right-count, and Left-count, on each node of this path:
(1) Non leaf nodes get 0 for both values;
(2) A right-child leaf node gets 1 for Right-count and 0 for Left-count;
(3) A left-child leaf node gets 0 for Right-count and 1 for Left-count;

Now form cumulative totals of the values of Right-count and Left-count over this
whole Euler Tour. This can be done in O(lg n) time and results in a numbering of the
leaf-nodes. This numbering scheme is arbitrary except that adjacent leaf-nodes (that
are both right-children or left-children) will have consecutive numerical values.

The whole algorithm for evaluating the expression is:
1. Form the syntax tree of the expression.
2. Number the leaf-nodes of this syntax tree via the Euler-Tour algorithm (6.2.1).
3. Associate an identity matrix with every non leaf node of the tree. Following re-

mark 6.3.1, the identity matrix,
(

1 0
0 1

)
, is associated with the function f(x; 1, 0, 0, 1) = x

— the identity function. Interior nodes of the tree will, consequently, have the following
data associated with them:

(1) an operation;
(2) two children;
(3) a 2× 2 matrix;

The meaning of this data is: calculate the values of the two child-nodes; operate upon
them using the operation, and plug the result (as x) into the equation (ax+ b)/(cx+ d),
where is the matrix associated with the node.

4. Perform lg n times:
(1) the pruning operation on odd-numbered right-child leaf-nodes. We refer to

diagrams 6.3.4 and 6.3.5. The matrix, M ′, on the node marked op1(op2(∗, ∗), c)
is computed using the matrix, M , on the node marked op2 and the operation
coded for op1 via:
• If the corresponding left sibling is also a constant, then just perform the

indicated operation and compute the result; otherwise

• (a) If op1 = ‘+’ then M ′ =

(
1 c
0 1

)
·M ;

(b) If op1 = ‘∗’ then M ′ =

(
c 0
0 1

)
·M ;

(c) If op1 = ‘−’ then M ′ =

(
1 −c
0 1

)
·M ;

(d) If op1 = ‘/’ then M ′ =

(
1 0
0 c

)
·M ;

Perform a pruning operation on odd-numbered left-child leaf nodes, using
a diagram that is the mirror image of 6.3.4 and:
• If the corresponding right sibling is also a constant, then just perform the

indicated operation and compute the result; otherwise

• (a) If op1 = ‘+’ then M ′ =

(
1 c
0 1

)
·M ;
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FIGURE 6.3.6. Original parse tree

(b) If op1 = ‘∗’ then M ′ =

(
c 0
0 1

)
·M ;

(c) If op1 = ‘−’ then M ′ =

(
−1 c
0 1

)
·M ;

(d) If op1 = ‘/’ then M ′ =

(
0 c
1 0

)
·M ;

In every case the old matrix is left-multiplied by a new matrix that represents the effect
of the operation with the value of the subtree labeled op2 (see figures 6.3.4 and 6.3.5)
plugged into an equation of the form (ax + b)/(cx + d) (as x). For instance, consider
the case of a reduction of a left leaf-node where the operation is division. In this case
the value of the whole tree is c/x, where x = the value of the subtree labeled op2. But

c/x = (0 · x + c)/(1 · x + 0), so its matrix representation is
(

0 c
1 0

)
, and the value

computed for the subtree labeled op2 is to be plugged into this equation. Remark 6.3.1
implies that this is equivalent to multiplying the matrix, M , associated with this node

(op2) by
(

0 c
1 0

)
.

Divide the numbers (i.e. the numbers computed using the Euler Tour algorithm
— 6.2.1) of the remaining leaves (all of which will be even), by 2. This is done to
number the vertices of the new graph — i.e. we avoid having to perform the Euler Tour
Algorithm all over again.

When this is finished, we will have a matrix,
(
a b
c d

)
, at the root node and one

child with a value ‘t’ stored in it. Plug this value into the formula corresponding to the
matrix to get (at+ b)/(ct+ d) as the value of the whole expression.

We conclude this section with an example. Suppose our initial expression is (2 +
3/4) ∗ 5 + 2/3.

(1) We fully-parenthesize this expression, using algorithm 6.3.1, to get: ((((((2)) +
((3)/(4)))) ∗ (5)) + ((2)/(3))).

(2) We carry out the parenthesis-matching algorithm, 6.3.2 (or the somewhat more
efficient algorithm described in the appendix), to construct the parse-tree de-
picted in figure 2.
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FIGURE 6.3.8. Inorder traversal of the labeled parse tree

(3) We “decorate” this tree with suitable matrices in order to carry out the pruning
operation described above. We get the parse-tree in figure 3.

(4) We order the leaf-nodes of the syntax tree, using the Euler Tour algorithm de-
scribed in § 6.2.1 on page 249. We get the digram in figure 4.

(5) We carry out the pruning algorithm described above:
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FIGURE 6.3.10. Result of pruning odd-numbered, left-child leaf nodes

(a) Prune odd-numbered, right-child leaf nodes. There is only 1 such node —
the child numbered 3. Since the left sibling is also a number, we compute
the value at the parent — and we get figure 5a.

(b) Prune odd-numbered, left-child leaf nodes. There are two of these —
nodes 1 and 5. We get the parse-tree in figure 5b.

We renumber the leaf-nodes. All of the present node-numbers are even
since we have pruned all odd-numbered nodes. We just divide these in-
dices by 2 to get the tree in figure 5b.

(c) Again, prune odd-numbered right-child leaf-nodes — there is only node
3. In this step we actually carry out one of the matrix-modification steps
listed on page 303. The result is figure 5c.

Now prune the odd-numbered left-child leaf node — this is node 1. The
result of this step is the value of the original expression.
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6.3.4. Discussion and Further Reading. There is an extensive literature on the
problem of parsing and evaluating arithmetic expressions, and related problems.

We have already discussed Brent’s Theorem (§ 2.4.1 on page 39) — see [21]. Also see
[22] and [92]. This work considered how one could evaluate computational networks
for arithmetic expressions (and how one could find computational networks for an
expression that facilitated this evaluation).

In [90] (1975), Kosoraju showed that the Cocke-Younger-Kasami algorithm for pars-
ing context-free grammars lent itself to parallelization on an array processor. An im-
proved version of this algorithm appeared in [25] (1987) by Chang, Ibarra, and Palis.
An NC algorithm for parsing general context-free grammars was published by Rytter
in 1985 — see [132]. This algorithm executes in O(lg2 n) time using O(n6) processors
on a PRAM computer. This algorithm can be implemented on cube-connected cycles
and perfect shuffle computers with no asymptotic time degradation — see [133].

Also see [72], by Ibarra Sohn, and Pong for implementations of parallel parsing
algorithms on the hypercube. In [134] Rytter showed that unambiguous grammars can
be parsed in O(lg n) time on a PRAM computer, but the number of processors required
is still very large in general (although it is polynomial in the complexity of the input).
If we restrict our attention to bracket languages the number of processors can be reduced
to O(n/ lg n), as remarked above — see [135].

The Japanese 5th Generation Computer Project has motivated some work on paral-
lel parsing algorithms — see [110] by Y. Matsumoto.

In 1982 Dekel and Sahni published an algorithm for putting arithmetic expressions
in postfix form — see [44].
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Gary L. Miller, Vijaya Ramachandran, and Erich Kaltofen have developed a fast
parallel11 algorithm for evaluating certain types of computational networks — see
[116]. Their algorithm involved performing matrix operations with n × n matrices
to evaluate computational networks that have n vertices. Their algorithm has a faster
execution-time than what one gets by a straightforward application of Brent’s Theorem
(the time is O(lg n(lg nd)) for a computational network of total size n and depth d), but
uses many more processors (O(n2.376), where n2.376 is the number of processors needed
to multiply two n× n matrices).

In [10], Baccelli and Fleury, and in [11], Baccelli and Mussi consider problems that
arise in evaluating arithmetic expressions asynchronously.

Richard Karp and Vijaya Ramachandran have written a survey of parallel parsing
algorithms — see [83].

Besides the obvious applications of parsing algorithms to compiling computer lan-
guages, there are interesting applications to image processing. See [26] by Chang and
Fu for a discussion of parallel algorithms for parsing pattern and tree grammars that
occurred in the analysis of Landsat images.

EXERCISES.

1. Consider the language consisting of boolean expressions — that is, expressions of
the form a ∨ (b ∧ c), where ∨ represents OR and ∧ represents AND. This is clearly an
operator-precedence grammar (in fact, it is the same grammar as that containing arith-
metic expressions, if we require all variables to take on the values 0 and 1). Recall the
Circuit Value Problem on page 35. Does the algorithm in the present section provide a
solution to this problem12?

2. Modify the algorithms of this section to compile an expression. Assume that we
have a stack-oriented machine. This does all of its computations on a computation
stack. It has the following operations:

LOAD op — pushes its operand onto the stack
ADD — pops the top two elements of the stack, adds them, and pushes the sum.
MULT — pops the top two elements of the stack, multiplies them, and pushes the

product.
SUB — pops the top two elements of the stack, subtracts the second element from

the top element them, and pushes the difference.
DIV — pops the top two elements of the stack, divides the second element by the

top element them, and pushes the quotient.
EXCHA — exchanges the top two elements of the stack.
The idea is to write a program using these instructions that leaves its result on the

top of the stack. Incidentally, one advantage of this type of assembly language is that
you rarely have to be concerned about addresses. There exist some actual machines
with this type of assembly language. If Ex is an expression and C(Ex) represents the

11In general it is much faster than using Brent’s Theorem, as presented on page 39 in the present
book.

12And, therefore, a proof that no inherently sequential problems exist!
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code required to compute the expression, you can generate code to compute general
expressions by following the rules:

a. C(Ex1 ‘+’ Ex2) = C(Ex1)| |C(Ex2)| |‘ADD’;
b. C(Ex1 ‘∗’ Ex2) = C(Ex1)| | C(Ex2)| |‘MULT’;
c. C(Ex1 ‘−’ Ex2) = C(Ex2)| | C(Ex1)| |‘SUB’;
d. C(Ex1 ‘/’ Ex2) = C(Ex2)| | C(Ex1)| |‘DIV’;

Here ‘| |’ represents concatenation of code.
The problem is to modify the algorithm of §6.3 for evaluating an expression so that

it produces assembly code that will compute the value of the expression when run on a
computer. This algorithm should execute in timeO(lg n) using n processors. The main
problem is to replace the 2 × 2 matrices used in the algorithm (actually, the formula
(ax + b)/(cx + d) that the matrices represent) by a data structure that expresses a list
of assembly language instructions with an unknown sublist — this unknown sublist
takes the place of the variable x in the formula (ax + b)/(cx + d). This data structure
should designed in conjunction with an algorithm to insert another such list into the
position of the unknown sublist in unit time.

3. Find a fast parallel algorithm for parsing LISP.

6.3.5. Appendix: Parenthesis-matching algorithm. We perform the following ad-
ditional steps at the beginning of the parentheses-matching algorithm:

1. Partition the array (of characters) into n/ lg n segments of length lg n each. Assign
one processor to each of these segments.

2. Each processor scans its segment for matching pairs of parentheses within its
segment. This uses a simple sequential algorithm (using a stack, for instance). The
parentheses found in this step are marked and not further considered in this matching-
algorithm. The remaining unmatched parentheses in each segment form a sequence of
right parentheses followed by left parentheses: ‘))((’. We assume that the each proces-
sor forms a data-structure listing these unmatched parentheses in its segment — this
might be a linked list of their positions in the character array. Since each segment is
lg n characters long, this can be done in O(lg n) time.

Next each processor matches its leftmost unmatched left parenthesis and its right-
most unmatched right parenthesis — we will call these the extreme parentheses — with
corresponding parentheses in the whole original sequence. This is done by a kind of
binary search algorithm that we will discuss shortly.

Note that this operation of matching these extreme parentheses in each sequence
basically solves the entire matching-problem. Essentially, if we match the rightmost
right parenthesis in the sequence: ‘))))’ with the leftmost left parenthesis in another
sequence ‘((((((’, the remaining parentheses can be matched up by simply scanning both
sequences. Here we are making crucial use of the fact that these sequences are short
(2 lg n characters) — i.e. we can get away with using a straightforward sequential al-
gorithm for scanning the sequences:



310 6. A SURVEY OF SYMBOLIC ALGORITHMS

Now we use the binary search algorithm in § 6.3, 6.3.2, to match up the extreme
parentheses in each sequence, and then use the sequential scan in each sequence to
match up the remaining parentheses.

6.4. Searching and Sorting

In this section we will examine several parallel sorting algorithms and the related
problem of parallel searching. We have already seen one sorting algorithm at the end
of § 2.1.1 in chapter 2. That algorithm sorted n numbers in time O(lg2 n) using O(n)
processors. The theoretical lower bound in time for sorting n numbers is O(lg n) (since
this many comparisons must be performed). The algorithms presented here take ad-
vantage of the full power of SIMD computers.

6.4.1. Parallel searching. As is usually the case, before we can discuss sorting, we
must discuss the related operation of searching. It turns out that, on a SIMD computer
we can considerably improve upon the well-known binary search algorithm. We will
follows Kruskal’s treatment of this in [91].

PROPOSITION 6.4.1. It is possible to search a sorted list of n items using p processors in
time dlog(n+ 1)/ log(p+ 1)e.

This algorithm will be called Searchp(n).

PROOF. We will prove by induction that k comparison steps serve to search a sorted
list of size (p+ 1)k − 1. In actually implementing a search algorithm the inductive
description of the process translates into a recursive program. The result is certainly
true for k = 0. Assume that it holds for k − 1. Then to search a sorted list of size
(p+ 1)k − 1 we can compare the element being searched for to the elements in the
sorted list subscripted by i(p+ 1)k−1 − 1 for i = 1, 2, . . . . There are no more than p

such elements (since (p + 1)(p+ 1)k − 1 > (p+ 1)k − 1). Thus the comparisons can be
performed in one step and the problem is reduced to searching a list of size (p+ 1)k−1−
1. �

EXERCISES.

1. Write a CUDA program to implement this search algorithm.

6.4.2. Sorting Algorithms for a PRAM computer. We have already seen
the Batcher sorting algorithm. It was one of the first parallel sorting algorithms
developed. In 1978 Preparata published several SIMD-parallel algorithms for sorting
n numbers in O(lg n) time — see [126]. The simplest of these sorting algorithms
required O(n2) processors. Essentially this algorithm used the processors to compare
every key value with every other and then, for each key, counted the number of
key values less than that key. When the proper key sequence was computed one
additional step sufficed to move the data into sequence. This is fairly characteristic
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of unbounded parallel sorting algorithms — they are usually enumeration sorts and
most of the work involves count acquisition (i.e. determining where a given key value
belongs in the overall set of key values).

A more sophisticated algorithm in the same paper required only O(n lg n) proces-
sors to sort n numbers inO(lg n) time. That algorithm uses a parallel merging algorithm
due to Valiant (see [160]) to facilitate count acquisition.

In 1983, Ajtai, Komlós, Szemerédi published (see [3] and [4]) a description of a
sorting network that has n nodes and sorts n numbers in O(lg n) time. The original
description of the algorithm had a very large constant of proportionality (2100), but
recent work by Lubotzky, Phillips and Sarnal implies that this constant may be more
manageable — see [104].

6.4.2.1. The Cole Sorting Algorithm — CREW version. This section will discuss a sort-
ing algorithm due to Cole in 1988 (see [29]) that is the fastest parallel sort to date. Un-
like the algorithm of Ajtai, Komlós, Szemerédi, it is an enumeration-sort rather than a
network. There are versions of this algorithm for a CREW-PRAM computer and an
EREW-PRAM computer. Both versions of the algorithm use n processors and run in
O(lg n) time although the version for the EREW computer has a somewhat larger con-
stant of proportionality. We will follow Cole’s original treatment of the algorithm in
[29] very closely.

Although this sorting algorithm is asymptotically optimal in execution time and
number of processors required, it has a rather large constant of proportionality in
these asymptotic estimates13. In fact Lasse Natvig has shown that it is slower than
the Batcher sorting algorithm unless we are sorting > 1021 items! See [120] for the de-
tails. Nevertheless, Cole’s algorithm has enormous theoretical value, and may form
the basis of practical sorting algorithms.

The high-level description of the Cole sorting algorithm is fairly simple. We will
assume that all inputs to the algorithm are distinct. If this is not true, we can modify the
comparison-step so that a comparison of two elements always finds one strictly larger
than the other.

Suppose we want to sort n = 2k data-items. We begin with a binary-tree with n
leaves (and k levels), and each node of the tree has three lists or arrays attached to it
(actual implementations of the algorithm do not require this but the description of the
algorithm is somewhat simpler if we assume the lists are present). The leaves of the
tree start out with the data-items to be sorted (one per leaf). Let p be a node of the tree.

Throughout this discussion, this tree will be called the sorting tree of the
algorithm.

DEFINITION 6.4.2. We call the lists stored at each node:
(1) L(p) — this is a list that contains the result of sorting all of the data-items

that are stored in leaf-nodes that are descendants of p. The whole algorithm
is essentially an effort to compute L(the root). Note: this list would not be
defined in the actual algorithm — we are only using it as a kind of descriptive
device.

(2) UP(p) — this contains a sorted list of some of the data-items that started out
at the leaves of the tree that were descendants of p. UP(p) ⊆ L(p). In the

13At least the asymptotic time estimate.
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beginning of the algorithm, all nodes of the tree have UP(p) = {}— the empty
list, except for the leaf-nodes: they contain the input data to the algorithm.

(3) SUP(p) — this is a subsequence of UP(p) that is computed during the execution
of the algorithm in a way that will be described below. SUP(p) ⊆ UP(p).

Although we use the term list to describe these sequences of data-items, we will often
want to refer to data within such a list by its index-position. Consequently, these lists
have many of the properties of variable-sized arrays. Actual programs implementing
this algorithm will have to define them in this way.

This algorithm is based upon the concept of pipelining of operations. It is essentially
a merge-sort in which the recursive merge-operations are pipelined together, in order
the reduce the overall execution-time. In fact, Cole describes it as sorting algorithm
that uses an O(lg n)-time merging algorithm. A straightforward implementation of a
merge-sort would require an execution-time of O(lg2 n) time. We pipeline the merging
operations so that they take place concurrently, and the execution-time of the entire al-
gorithm is O(lg n). The list SUP is an abbreviation for “sample-UP”. They are subsets of
the UP-list and are the means by which the pipelining is accomplished — the algorithm
merges small subsets of the whole lists to be merged, and use them in order to compute
the full merge operations. The partial merges execute in constant time.

We will classify nodes of the tree as external or internal:

DEFINITION 6.4.3. A node, p, of the tree will be called external if UP(p) = L(p) —
otherwise it will be called internal.

1. Note that we don’t have to know what L(p) is, in order to determine whether
UP(p) = L(p) — we know the size of the list L(p) (which is 2k, if p is in the kth level
from the leaves of the tree), and we just compare sizes.

2. The status of a node will change as the algorithm executes. At the beginning of
the algorithm all nodes will be internal except the leaf-nodes. The interior-nodes will
be internal because they contain no data so that UP(p) is certainly 6= L(p). The leaf-nodes
will be external because they start out each containing a single item of the input-data —
and a single data-item is trivially sorted.

3. All nodes of the tree eventually become external (in this technical sense of the
word). The algorithm terminates when the root of the tree becomes external.

6.4.1. Cole Sorting Algorithm — CREW version With the definitions of 6.4.2 in mind,
the execution of the algorithm consists in propagating the data up the tree in a certain fash-
ion, while carrying out parallel merge-operations. In each phase we perform operations on the
lists defined above that depend upon whether a node is internal or external. In addition the
operations that we carry out on the external nodes depend on how long the node has been exter-
nal. We define a variable e_age to represent this piece of data: when a node becomes external
e_age= 1. This variable is incremented each phase of the algorithm thereafter. With all of this
in mind, the operations at a node p are:

(1) p internal:
(a) Set the list SUP(p) to every fourth item of UP(p), measured from the right. In

other words, if |UP(p)| = t, then SUP(p) contains items of rank t − 3 − 4i, for
0 ≤ i < bt/4c.

(b) If u and v are p’s immediate children, set UP(p) to the result of merging SUP(u)
and SUP(v). The merging operation is described in 6.4.2, to be described later.
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(2) p external with e_age= 1: Same as step 1 above.
(3) p external with e_age= 2: Set the list SUP(p) to every second item of UP(p), mea-

sured from the right. In other words, if |UP(p)| = t, then SUP(p) contains items of
rank t− 1− 2i, for 0 ≤ i < bt/2c.

(4) p external with e_age= 3: Set SUP(p) = UP(p).
(5) p external with e_age> 3: Do nothing. This node no longer actively participates in

the algorithm.

Several aspects of this algorithm are readily apparent:
(1) The activity of the algorithm “moves up” the tree from the leaves to the root.

Initially all nodes except the leaves are internal, but they also have no data in
them. Consequently, in the beginning, the actions of the algorithm have no real
effect upon any nodes more than one level above the leaf-nodes. As nodes
become external, and age in this state, the algorithm ceases to perform any
activity with them.

(2) Three phases after a given node, p, becomes external, its parent also becomes
external. This is due to:
(a) UP(p) = L(p) — the sorted list of all data-items that were input at leaf-

nodes that were descendants of p.
(b) the rule that says that SUP(p) = UP(p) in the third phase after node p has

become external.
(c) step 2 of the algorithm for internal nodes (the parent, p′, of p in this case)

that says that UP(p′) to the result of merging SUP(p) its the data in its
sibling SUP(p′′).

It follows that the execution time of the algorithm will be≤ 2 lg n ·K, where
K is > the time required to perform the merge-operations described above for
internal nodes. The interesting aspect of this algorithm is that K is bounded by
a constant, so the overall execution-time is O(lg n).

(3) The algorithm correctly sorts the input-data. This is because the sorted se-
quences of data are merged with each other as they are copied up the tree to the
root.

The remainder of this section will be spent proving that the algorithm executes in the
stated time. The only thing that must be proved is that the merge-operations can be
carried out in constant time. We will need several definitions:

DEFINITION 6.4.4. Rank-terminology.
(1) Let e, f , and g be three data-items, with e < g. f is between e and g if e ≤ f < g.

In this case e and g straddle f .
(2) Let L and J be sorted lists. Let f be an item in J , and let e and g be two adjacent

items in L that straddle f (in some cases, we assume e = −∞ or g = ∞. With
this in mind, the rank of f in L is defined to be the rank of e in L. If e = −∞,
the rank of f is defined to be 0.

(3) If e ∈ L, and g is the next larger item then we define [e, g) to be the interval
induced by e. It is possible for e = −∞ and g =∞.

(4) If c is a positive integer, L is a c-cover of J , if each interval induced by an item
in L contains at most c items from J . This implies that, if we merge L and J , at
most c items from J will ever get merged between any two items of L.
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(5) L is defined to be ranked in J , denoted L → J , if for each item in L, we know
its rank in J . This basically means that we know where each item in L would
go if we decided to merge L and J .

(6) Two lists L and J are defined to be cross ranked, denoted L ↔ J , if L → J
and J → L. When two lists are cross-ranked it is very easy to merge them in
constant time: the rank of an element in the result of merging the two lists is
the sum of its rank in each of the lists.

In order to prove that the merge can be performed in constant time, we will need
to keep track of OLDSUP(v) — this is the SUP(v) in the previous phase of the algorithm.
NEWUP(v) is the value of UP(v) in the next phase of the algorithm. The main statement
that will imply that the merge-operations can be performed in constant time is:

In each phase of the algorithm, and for each vertex, u of the graph
OLDSUP(u) is a 3-cover of SUP(u). This and the fact that UP(u) is the
result of merging OLDSUP(v) and OLDSUP(w) (where v and w are the
children of u) will imply that UP(u) is a 3-cover of SUP(v) and SUP(w).

Now we describe the merging-operations. We assume that:

(1) UP(u)→ SUP(v) and UP(u)→ SUP(w) are given at the start of the
merge-operation.

(2) The notation a ∪ b means “the result of merging lists a and b”.

6.4.2. Cole Merge Algorithm — CREW version We perform the merge in two phases:
Phase 1. In this phase we compute NEWUP(u). Let e be an item in SUP(v); the rank

of e in NEWUP(u) = SUP(v) ∪ SUP(w) is equal to the sum of its ranks in SUP(v) and
SUP(w). We must, consequently, cross-rank SUP(v) and SUP(w), by a procedure described
below. Having done that, for each item e ∈ SUP(v), we know:

(1) Its rank in NEWUP(u);
(2) The two items d, f ∈ SUP(w) that straddle e.
(3) We know the ranks of d and f in NEWUP(u).

For each item in NEWUP(u) we record:
• whether it came from SUP(v) or SUP(w);
• the ranks of the straddling items from the other set.

This completes the description of phase 1. We must still describe how to cross-rank SUP(v) and
SUP(w):

Step 1: For each item in SUP(v), we compute its rank in UP(u). This is performed by
the processors associated with the items in UP(u) as follows:

If y ∈ UP(u), let I(y) be the interval induced by y in UP(u) — recall
that this is the interval from y to the next higher element of UP(u).
Next consider the items of SUP(v) contained in I(y) — there are at
most 3 such items, by the 3-cover property. The processor associated
with y assigns ranks to each of these 3 elements — this step, conse-
quently, requires constant time (3 units of the time required to assign
ranks).

Step 2: For each item e ∈ SUP(v), we compute its rank on SUP(w). This is half
of the effort in cross-ranking SUP(v) and SUP(w). We determine the two items
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SUP(v)

UP(u)

SUP(w)

e

d f

r t

Rank of SUP(v) in UP(u) (computed in Step 1)

Rank of UP(u) in SUP(w) (given at the

start of the merge-operation)

FIGURE 6.4.1. Ranking SUP(v) in SUP(w)

d, f ∈ UP(u) that straddle e, using the rank computed in the step immediately above.
Suppose that d and f have ranks r and t, respectively, in SUP(u) — we can determine
this by the information that was given at the start of the merge-operation. See figure
6.4.2. Then:

• all items of rank ≤ r are smaller than item e — since all inputs are distinct (one of the
hypotheses of this sorting algorithm).

– all items of rank > t are larger than e.
The only items about which there is any question are those with ranks between r

and t. The 3-cover property implies that there are at most 3 such items. Computing
the rank of e and these (≤ 3) other items can be computed with at most 2 comparisons.

The cross-ranking of SUP(v) and SUP(w) is completed by running these last two steps with v
and w interchanged. Once we know these ranks, we can perform a parallel move-operation to
perform the merge (remember that we are using a PRAM computer).

We have made essential use of rankings UP(u) → SUP(v) and UP(u) → SUP(w). In
order to be able to continue the sorting algorithm in later stages, we must be able to provide this
kind of information for later merge-operations. This is phase 2 of the merge:

Phase 2. We will compute rankings NEWUP(U) → NEWSUP(v) and NEWUP(u) →
NEWSUP(w). For each item e ∈ NEWUP(U) we will compute its rank in NEWSUP(v) —
the corresponding computation for NEWSUP(w) is entirely analogous. We start by noting:

• Given the ranks for an item from UP(u) in both SUP(v) and SUP(w), we can deduce
the rank of this item in NEWUP(u) = SUP(v)∪SUP(w) — this new rank is just the
sum of the old ranks.
• Similarly, we obtain the ranks for items from UP(v) in NEWUP(v).
• This yields the ranks of items from SUP(v) in NEWSUP(v) — since each item

in SUP(v) came from UP(v), and NEWSUP(v) comprises every fourth item in
NEWUP(v).

It follows that, for every item e ∈ NEWUP(u) that came from SUP(v), we know its rank in
NEWSUP(v). It remains to compute this rank for items that came from SUP(w). Recall that
for each item e from SUP(w) we computed the straddling items d and f from SUP(v) (in phase
1 above) — see figure 6.4.2.

We know the ranks r and t of d and f , respectively, in NEWSUP(v). Every item of rank
≤ r in NEWSUP(v) is smaller than e, while every item of rank > t is larger than e. Thus
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d f

r t

NEWUP(u)

NEWSUP(v)

from SUP(w)

from SUP(v)

< e > e

FIGURE 6.4.2. Finding the rank of items from SUP(w) in NEWSUP(v)
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OLDSUP(v) OLDSUP(w)
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SUP(w)SUP(v)

≤ 2h+1 items ≤ 2j+1 items

FIGURE 6.4.3.

the only items about which there is any doubt concerning their size relative to e are items with
rank between r and t. But the 3-cover property implies that there are at most 3 such items. The
relative order of e and these (at most) three items can be determined be means of at most two
comparisons. This ranking step can, consequently, be done in constant time.

We still haven’t proved that it works. We have to prove the 3-cover property that
was used throughout the algorithm.

LEMMA 6.4.5. Let k ≥ 1. In each iteration, any k adjacent intervals in SUP(u) contain at
most 2k + 1 items from NEWSUP(u).

PROOF. We prove this by induction on the number of an iteration. The statement
of the lemma is true initially because:

(1) When SUP(u) is empty, NEWSUP(u) contains at most one item.
(2) The first time SUP(u) is nonempty, it contains one item and NEWSUP(u) con-

tains at most two items.
Now we give the induction step: We want to prove that k adjacent intervals in SUP(u)
contain at most 2k + 1 items from NEWSUP(u), assuming that the result is true in the
previous iteration — i.e., for all nodes u′ and for all k′ ≥ 1, k′ intervals in OLDSUP(u′)
contain at most 2k′ + 1 items from SUP(u′).

We first suppose that u is not external at the start of the current iteration — see
figure 6.4.2.1.
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UP = 4UP = 7UP = 0UP = 2UP = 3UP = 5UP = 1UP = 6

FIGURE 6.4.4. Sort-tree with the input-data.

Consider a sequence of k adjacent intervals in SUP(u) — they cover the same range
as some sequence of 4k adjacent intervals in UP(u). Recall that UP(u) = OLDSUP(v)∪
OLDSUP(w). The 4k intervals in UP(u) overlap some k ≥ 1 adjacent intervals in
OLDSUP(v) and some k ≥ 1 adjacent intervals in OLDSUP(w), with h+j = 4k+1. The
h intervals in OLDSUP(v) contain at most 2h+ 1 items in SUP(v), by the inductive hy-
pothesis, and similarly, the j intervals in OLDSUP(w) contain at most 2j+1 items from
SUP(w). Recall that NEWUP(u) = SUP(v) ∪ SUP(w). It follows that the 4k intervals in
UP(u) contain at most 2h+ 2j + 2 = 8k+ 4 items from NEWUP(u). But NEWSUP(u) is
formed by selecting every fourth item in NEWUP(u) — so that the k adjacent intervals
in SUP(u) contain at most 2k + 1 items from NEWSUP(u).

At this point we are almost done. We must still prove the lemma for the first and
second iterations in which u is external. In the third iteration after u becomes external,
there are no NEWUP(u) and NEWSUP(u) arrays.

Here we can make the following stronger claim involving the relationship between
SUP(u) and NEWSUP(u):

k adjacent intervals in SUP(u) contain exactly 2k items from NEWSUP(u)
and every item in SUP(u) occurs in NEWSUP(u).

Proof of claim: Consider the first iteration in which u is external. SUP(u) is made up
of every fourth item in UP(u) = L(u), and NEWSUP(u) contains every second item in
UP(u). The claim is clearly true in this iteration. A similar argument proves the claim
in the following iteration. �

COROLLARY 6.4.6. For all vertices u in the sorting-tree, SUP(u) is a 3-cover of
NEWSUP(u).

PROOF. Set k = 1 in 6.4.5 above. �

We have seen that the algorithm executes inO(lg n) time. A detailed analysis of the
algorithm shows that it performs (15/2)n lg n comparisons. This analysis also shows
that the number of active elements in all of the lists in the tree in which the sorting
takes place is bounded by O(n), so that the algorithm requires O(n) processors.

6.4.2.2. Example. We will conclude this section with an example. Suppose our ini-
tial input-data is the 8 numbers {6, 1, 5, 3, 2, 0, 7, 4}. We put these numbers at the leaves
of a complete binary tree — see figure 6.4.4.

In the first step, the leaf-vertices are external and all other nodes are internal, in the
terminology of 6.4.3 on page 312, and UP will equal to the data stored there.

In the notation of 6.4.1 on page 312, the leaf-vertices have e_age equal to 1. In the
first step of computation, SUP of the leaf vertices are set to every 4th value in UP of that
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FIGURE 6.4.5. The sort-tree in step 4 of the Cole sorting algorithm.

vertex — this clearly has no effect. Furthermore, nothing significant happens at higher
levels of the tree.

In step 2 of the algorithm, nothing happens either, since the SUP-lists of the leaf
vertices are set to every second element of the UP-lists.

In step 3 of the algorithm e_age is 3 and SUP of each leaf vertex is set to the corre-
sponding UP set. Nothing happens at higher levels of the tree. Since the e_age of leaf
vertices is ≥ 4 in the remaining steps, no further activity takes place at the leaf vertices
after this step.

In step 4 the UP lists of the vertices one level above the leaf-vertices are given non-
null values. These vertices will be external in the next step with e_age equal to 1. Our
tree is changed to the one in figure 6.4.5.

UP =
{4, 7} In step 5 the only vertices in which any significant activity takes place are

those one level above the leaf-nodes. these vertices are external with e_age equal to 1.
No assignment to the SUP lists occurs in this step, due to the rules in 6.4.1 on page 312.

In step 6 the active vertices from step 5 have assignments made to the SUP lists, the
resulting tree appears in figure fig:colesortexampd3.

The leaf-vertices have significant data stored in them, but do not participate in fu-
ture phases of the algorithm in any significant way, so we mark them “Inactive”.

In step 8 we assign data to the UP lists one level higher, and we expand the SUP
lists in the next lower level to get the sort-tree in figure 6.4.7.

In step 9, we expand the UP lists of the vertices one level below the top. We are only
merging a few more data-items into lists that are already sorted. In addition, the data
we are merging into the UP lists are “well-ranked” with respect to the data already
present. Here the term “well-ranked” means that UP is a 3-cover of the SUP lists of
the child vertices — see line 3 of 6.4.4 on page 313. These facts imply that the merging
operation can be carried out in constant time. We get the sort-tree in figure 6.4.8.

In step 10, we expand the SUP lists (in constant time, making use of the fact that
the UP lists are a 3-cover of them), and put some elements into the UP lists of the
root-vertex. The result is the sort-tree in figure 6.4.9.

In step 11, we:
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UP =

{4, 7}
SUP =

{4}

Inact.Inact.

UP =

{0, 2}
SUP =
{0}

Inact.Inact.

UP =

{3, 5}
SUP =
{3}

Inact.Inact.

UP =
{1, 6}
SUP =

{1}

Inact.Inact.

FIGURE 6.4.6. The sort-tree at the end of step 6.

UP = {0, 4}

UP =

{4, 7}
SUP =
{4, 7}

Inact.Inact.

UP =
{0, 2}
SUP =

{0, 0}

Inact.Inact.

UP = {1, 3}

UP =
{3, 5}
SUP =

{3, 5}

Inact.Inact.

UP =

{1, 6}
SUP =

{1, 6}

Inact.Inact.

FIGURE 6.4.7. Sort-tree at the end of step 8.

UP = {0, 2, 4, 7}
SUP = {0}

Inact.

Inact.Inact.

Inact.

Inact.Inact.

UP = {1, 3, 5, 6}
SUP = {1}

Inact.

Inact.Inact.

Inact.

Inact.Inact.

FIGURE 6.4.8. The sort-tree at the end of step 9.

• Put elements into the SUP list of the root.
• Merge more elements into the UP list of the root.
• Expand the SUP lists of the vertices below the root.

The result is the sort-tree in figure 6.4.10.
In step 13, we essentially complete the sorting operation — the resulting sort-tree

is shown in figure 6.4.11.
The next step would be to update the SUP list of the root. It is superfluous.
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UP = {0, 1}

UP = {0, 2, 4, 7}
SUP = {0, 4}
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UP = {1, 3, 5, 6}
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FIGURE 6.4.9. The sort-tree at the end of step 10.

UP = {0, 1, 4, 5}
SUP = {0}

UP = {0, 2, 4, 7}
SUP = {0, 2, 4, 7}

Inact.

Inact.Inact.
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Inact.Inact.

UP = {1, 3, 5, 6}
SUP = {1, 3, 5, 6}

Inact.

Inact.Inact.

Inact.

Inact.Inact.

FIGURE 6.4.10. The sort-tree at the end of step 11.

UP = {0, 1, 2, 3, 4, 5, 6, 7}
SUP = {0, 4}

Inact.

Inact.

Inact.Inact.

Inact.

Inact.Inact.

Inact.

Inact.

Inact.Inact.

Inact.

Inact.Inact.

FIGURE 6.4.11. Sort-tree at the end of the Cole sorting algorithm.

6.4.2.3. The Cole Sorting Algorithm — EREW version. Now we will consider a ver-
sion of the Cole sorting algorithm that runs on an EREW computer in the same asymp-
totic time as the one above (the constant of proportionality is larger, however). The
basic sorting algorithm is almost the same as in the CREW case. The only part of the
algorithm that is not EREW (and must be radically modified) is the merging operations.
We will present an EREW version of the merging algorithm, described in 6.4.2 on page
314.

We will need to store some additional information in each node of the sorting-tree:

6.4.3. Cole Sorting Algorithm — EREW version This is the same as the CREW ver-
sion 6.4.1 (on page 312) except that we maintain lists (or variable-sized arrays) UP(v), and
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u

wv

x y

FIGURE 6.4.12. A small portion of the sorting-tree

DOWN(v), SUP(v), and SDOWN(v) at each node, v, of the sorting tree. The SDOWN(v)-list
is composed of every fourth item of the DOWN(v)-list.

Consider a small portion of the sorting-tree, as depicted in figure 6.4.3.
At node v, in each step of the sorting algorithm, we:
(1) Form the arrays SUP(v) and SDOWN(v);
(2) Compute NEWUP(v) = SUP(x)∪ SUP(y). Use the merge algorithm 6.4.4 described

below.
(3) Compute NEWDOWN(v) = SUP(w)∪ SDOWN(u). Use the merge algorithm 6.4.4

described below.
In addition, we maintain the following arrays in order to perform the merge-operations in con-
stant time:

• UP(v) ∪ SDOWN(v);
• SUP(v) ∪ SDOWN(v);

We have omitted many details in this description — the EREW version of the merge-operation
requires many more cross-rankings of lists than are depicted here. The remaining details of the
algorithm will be given below, on page 322.

Here SDOWN(v) is a 3-cover of NEWSDOWN(v) — the proof of this is identical to
the proof of the 3-cover property of the SUP arrays in 6.4.6 on page 317.

6.4.4. Cole Merging Algorithm — EREW Case Assume that J and K are two sorted
arrays of distinct items and J and K have no items in common. It is possible to compute
J ↔ K in constant time (and, therefore, also L = J ∪ K), given the following arrays and
rankings:

(1) Arrays SK and SJ that are 3-covers of J and K, respectively;
(2) SJ ↔ SK — this amounts to knowing SL = SJ ∪ SK;
(3) SK → J and SJ → K;
(4) SJ → J and SK → K.

These input rankings and arrays are depicted in figure 6.4.4.
This merge algorithm will also compute SL→ L, where L = J ∪K.
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SJ SK

J K

FIGURE 6.4.13. Input-rankings for the EREW form of the Cole
Merge Algorithm

The algorithm is based upon the observation that the interval I between two adjacent items
e and f , from SL = SJ ∪ SK, contains at most three items from each of J and K. In order to
cross-rank J and K, it suffices, for each such interval, to determine the relative order of the (at
most) six items it contains. To carry out this procedure, we associate one processor with each
interval in the array SL. The number of intervals is one larger than the number of items in the
array SL. The ranking takes place in two steps:

(1) We identify the two sets of (at most) three items contained in I . These are the items

straddled by e and f . If e is in
{
SJ
SK

}
, we determine the leftmost item of these (at

most) three items using
{
SJ → J
SK → J

}
; the rightmost item is obtained in the same way.

The (at most) three items from K are computed analogously.
(2) For each interval in SL, we perform at most five comparisons to compute the rankings

of the at most three items from each of J and K.
We compute SL→ L as follows:

For each item e ∈ SL, we simply add its ranks in J and K, which wields its
rank in L. These ranks are obtained from{

SJ → J and SJ → K if eis from SJ

SK → J and SK → K if eis from SK

This completes the description of the merging procedure. It is clear, from its hy-
potheses, that a considerable amount of information is required in each step of 6.4.3 in
order to carry out the merges described there. In fact, at each step of 6.4.3, we will need
the following rankings:

6.4.1. Input Rankings
(1) OLDSUP(x)↔ OLDSUP(y)
(2) OLDSUP(v)→ SUP(v);
(3) OLDSUP(w)↔ OLDSDOWN(u);
(4) OLDSDOWN(v)→ SDOWN(v);
(5) SUP(v)↔ SDOWN(v);
(6) UP(v)↔ SDOWN(v);
(7) SUP(v)↔ DOWN(v);
(8) Since DOWN(v) = OLDSUP(w) ∪ OLDSDOWN(u), and since we have the cross-

ranking in line 7, we get OLDSUP(w)→ SUP(v), and
(9) OLDSDOWN(u)→ SUP(v).
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OLDSUP(x) OLDSUP(y)

SUP(y) SUP(x)

FIGURE 6.4.14. Input template for the merge in step 1

OLDSUP(w) OLDSDOWN(u)

SUP(w) SDOWN(u)

FIGURE 6.4.15. Input template for the merge in step 2

(10) Since UP(v) = OLDSUP(x)∪OLDSUP(y), and we have the cross-ranking in line 7,
we get the rankings OLDSUP(x)→ SDOWN(v) and OLDSUP(y)→ SDOWN(v).

The remainder of the sorting algorithm involves five more steps, that each apply
the merge-algorithm 6.4.4 to compute the information in the list above. The following
facts should be kept in mind during these five merge-operations:

The node v is the current node of the graph. All of the merge-operations
are being carried out in order to compute information for node v. Node v
is surrounded by other nodes that contribute information for the merge-
operations — see figure 6.4.3 on page 321.

Each merge-operation requires four lists with five-rankings between them as input —
we represent these by a “template”, as in figure 6.4.4 on page 322.

Step 1: We compute the rankings in lines 1 and 2 in the list above. We begin by
computing SUP(x) ↔ SUP(y). This computation also gives the rankings UP(v) →
NEWUP(v) and SUP(v) → NEWSUP(v). This is a straightforward application of the
merge-algorithm 6.4.4, using the following input-information (that we already have) and
template 6.4.2.3:

• OLDSUP(x)↔ OLDSUP(y), from line 1 in the list above, at node v.
• OLDSUP(x)↔ SUP(y), from line 8 at node y.
• OLDSUP(y)→ SUP(x), from line 8 at node x.
• OLDSUP(x)→ SUP(x), from line 2 at node x.
• OLDSUP(y)→ SUP(y), from line 2 at node y.

Here, we have made essential use of knowledge of the rankings in 6.4.1 at nodes other
than the current node.

Step 2: Compute SUP(w) ↔ SDOWN(u), giving rise to NEWDOWN(v),
DOWN(v)→ NEWDOWN(v), and DOWN(v)→ NEWSDOWN(v). Again, we perform
the merge-algorithm 6.4.4 using the (known) data and template 6.4.2.3:

• OLDSUP(w)↔ OLDSDOWN(u), from line 3 of statement 6.4.1 at node v.
• OLDSUP(w)→ SDOWN(u), from line 10 of statement 6.4.1 at node u.
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SDOWN(v)

NEWSUP(v) NEWSDOWN(v)

SUP(v)

FIGURE 6.4.16. Input template for the merge in step 3

NEWSUP(v) SDOWN(v)

NEWUP(v) NEWSDOWN(v)

FIGURE 6.4.17. Input template for the merge in step 4

• OLDSDOWN(u)→ SUP(w), from line 9 of statement 6.4.1 at node w.
• OLDSUP(w)→ SUP(w), from line 2 of statement 6.4.1 at node w.
• OLDSDOWN(u)→ SDOWN(u), from line 4 of statement 6.4.1 at node u.

Step 3: Compute NEWSUP(v) ↔ NEWSDOWN(v). As before, we have the following
input-information for algorithm 6.4.4 on page 321 and template 6.4.2.3:

(1) SUP(v)↔ SDOWN(v), from line 5 of statement 6.4.1 at node v.
(2) SUP(v) ↔ NEWDOWN(v), and, therefore, SUP(v) → NEWSDOWN(v). This

is computed from
(a) SUP(v)↔ SUP(w), at step 1 and node u, and
(b) SUP(v)↔ SDOWN(u), from step 2 at node w.

These rankings give rise to SUP(v)↔ [SUP(w) ∪ SDOWN(u)] = SUP(v)↔
SUP(w).

(3) NEWUP(v) ↔ SDOWN(v), and, therefore, SDOWN(v) → NEWSUP(v). This
is computed from
(a) SUP(x)↔ SDOWN(v), at step 2 and node y, and
(b) SUP(y)↔ SDOWN(v), from step 2 at node x.

These rankings give rise to [SUP(x) ∪ SUP(y)] ↔ SDOWN(v) =
NEWUP(v)↔ SDOWN(v).

(4) SUP(v)→ NEWSUP(v), from step 1 at node v.
(5) SDOWN(v)→ NEWSDOWN(v) from step 3 at node v.

Step 4: Compute NEWUP(v)↔ NEWSDOWN(v). This is an application of the merge-
algorithm 6.4.4 on page 321 using the (known) input-data and template 6.4.2.3:

• NEWSUP(v)↔ SDOWN(v), from step 3.3 above, at node v.
• SDOWN(v)→ NEWUP(v), from step 3.3 above, at node v.
• NEWSUP(v)→ NEWSDOWN(v), form step 3 at node v.
• NEWSUP(v)→ NEWUP(v).
• SDOWN(v)→ NEWSDOWN(v), from step 2 at node v.
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SUP(v) NEWSDOWN(v)

NEWSUP(v) NEWDOWN(v)

FIGURE 6.4.18. Input template for the merge in step 5

Step 5: Compute NEWSUP(v) ↔ NEWDOWN(v). We have the input information to
the merge algorithm and template 6.4.2.3:

• SUP(v)↔ NEWDOWN(v), from step 3.2 above, applied to node v.
• SUP(v)→ NEWDOWN(v), from step 3.2 above, applied to node v.
• NEWSDOWN(v)→ NEWSUP(v), from step 3 at node v.
• SUP(v)→ NEWSUP(v), from step 1 at node v.
• NEWSDOWN(v)→ NEWDOWN(v).

6.4.3. The Ajtai, Komlós, Szemerédi Sorting Network. In this section we will
present an asymptotically optimal sorting algorithm developed by Ajtai, Komlós, Sze-
merédi. It differs from the Cole sorting algorithm of the previous section in that:

• it is a sorting network. Consequently, it could (at least in principle) be used as a
substitute for the Batcher sort in the simulation-algorithms in chapter 2.
• it is not uniform. This means that, given a value of n, we can construct (with

a great deal of effort) a sorting network with O(n lg n) comparators and with
depthO(lg n). Nevertheless, we don’t have anO(lg n)-time sorting algorithm in
the sense of the Cole sorting algorithm. The complexity-parameter, n, cannot
be regarded as one of the inputs to the sorting algorithm. In other words, we
have a different algorithm for each value of n.

As remarked above, this algorithm uses O(n) processors and executes in O(lg n) time.
Unfortunately, the constant factor in this O(lg n) may well turn out to be very large.
It turns out that this constant depends upon knowledge of a certain combinatorial
construct known as an expander graph. The only known explicit constructions of these
graphs give rise to very large graphs (i.e., ≈ 2100 vertices), which turn out to imply a
very large constant factor in the algorithm. Recent results suggest ways of reducing
this constant considerably — see [104].

On the other hand, there is a probabilistic argument to indicate that these known
constructions are extraordinarily bad, in the sense that there are many known “small”
expander graphs. This is an area in which a great deal more research needs to be done.
See §6.4.5 for a discussion of these issues.

With all of these facts in mind, we will regard this algorithm as essentially a theoret-
ical result — it proves that a sorting network with the stated properties exists.

DEFINITION 6.4.7. 1. Given a graph G = (V,E), and a set, S, of vertices Γ(S) is
defined to be the set of neighbors of S — i.e., it is the set of vertices defined by:

z ∈ Γ(S)⇔ ∃x ∈ S such that (z, e) ∈ E
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Original graph

FIGURE 6.4.19. A graph with some of its 1-factors

2. A bipartite graph (see definition 3.8.6 on page 87 and figure 3.8.2 on page 88)
G(V1, V2, E), with |V1| = |V2| = n is called an expander graph with parameters (λ, α, µ) if

• for any set A ⊂ V1 such that |A| ≤ αn we have |Γ(A)| ≥ λ|A|
• The maximum number of edges incident upon any vertex is ≤ µ

In § 3.8 in chapter 3, expander graphs were used with α = n/(2c − 1), λ = (2c −
1)/b, µ = 2c − 1, in the notation of lemma 3.8.7 on page 88. That result also gives a
probabilistic proof of the existence of expander graphs, since it shows that sufficiently
large random graphs have a nonvanishing probability of being expander graphs.

Our algorithm requires that we have expander-graphs with certain parameters to
be given at the outset. We will also need the concept of a 1-factor of a graph:

DEFINITION 6.4.8. LetG = (V,E) be a graph. A 1-factor ofG is a set S = {e1, . . . , ek}
of disjoint edges that span the graph (regarded as a subgraph).

Recall that a subgraph of a graph spans it if all the vertices of the containing graph
are also in the subgraph. It is not hard to see that a graph that has a 1-factor must have
an even number of vertices (since each edge in the 1-factor has two end-vertices). A 1-
factor of a graph can also be called a perfect matching of the graph. Here is an example.
Figure 6.4.3 shows a graph with a few of its 1-factors.

We will need an expander graph with many 1-factors. The question of whether a
graph has even one 1-factor is a nontrivial one — for instance it is clear that any graph
with an odd number of vertices has no 1-factor14. We can ensure that this property
exists by construction — we do this by forming the union of many 1-factors on the same
set of vertices.

Section 6.4.5 discusses some of the probabilistic arguments that can be used to study
these random bipartite graphs. Counting arguments like that used in lemma 3.8.7 on
page 88 show that there exists an expander graph with parameters (2, 1/3, 8). In fact,
counting arguments show that a bipartite graph that is the union of µ random 1-factors

14Since each edge has two ends.
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is probably an expander graph with parameters (λ, 1/(λ+ 1), µ) if only

µ >= 2λ(ln(λ) + 1) + 1− 2 + ln(λ)

3λ
+O(λ−3)

— see 6.4.26 on page 341 for the precise statement. Such a graph has precisely µ edges
incident upon each vertex. A random bipartite 1-factor on the vertex-sets V1 and V2,
with |V1| = |V2| = m is easily specified by giving a random permutation on m objects —
say, σ. We simply connect the ith vertex in V1 to the σ(i)th vertex of V2.

We will, consequently, assume that our expander-graphs with parameters (λ, α, µ)
has µ distinct 1-factors.

The idea of this algorithm (in its crudest form) is as follows:
Assume that we have n numbers stored in n storage locations and cn processors,

where each processor is associated with 2 of the storage locations, and c is a constant.
Now in c lg n parallel steps, each involving n of the processors the following operation
is carried out:

Each processor compares the numbers in the two storage locations it can access and
interchanges them if they are out of sequence.

It turns out that different sets of n processors must be used in different phases of the
algorithm so that we ultimately need cn processors. If we think of these processors as
being connected together in a network-computer (i.e., like the butterfly computer, or
the shuffle-exchange computer), we get a computer with cn processors and n distinct
blocks of RAM.

Each block of RAM must be shared by c processors. Such a network computer can,
using the Ajtai, Komlós, Szemerédi sorting algorithm, simulate a PRAM computer
with a time-degradation factor of c lg n rather than the factor of O(lg2 n) that one gets
using the Batcher Sorting algorithm (see chapter 2, § 2.1.1).

Throughout this algorithm we will assume that ε′,ε,A, and c are four numbers, such
that

ε′ � ε� 1� c

and 1� A. Here�means “sufficiently smaller than”. It is known that
• The algorithm works for any sufficiently small value of ε, and any smaller

values of ε
• Given any sufficiently small value of ε, there exists some value of ε′ <

ε

lg(1/ε)
that makes the algorithm work, and the algorithm works for any smaller val-
ues of ε.
• c must be large enough that there exist expander-graphs of any size with the

parameters ((1− ε′)/ε′, ε′, c).
• A must be > ε−1/4.

In [3], Ajtai, Komlós, Szemerédi suggest the value of 10−15 for ε′, 10−9 for ε, and 10−6

for η. We will also assume given an expander graph with parameters ((1− ε′)/ε′, ε′, c).
Now we will present the algorithm in somewhat more detail. We divide it into

three sub-algorithms:

6.4.5. ε′-halving In a fixed finite time an ε′-halver on m registers puts the lower half of
the m numbers in the lower half of the registers with at most εm errors. In fact, for all k,
1 ≤ k ≤ m/2, the first k numbers are in the lower half of the registers with at most εk errors
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m/2 m/2

FIGURE 6.4.20. Expander graphs and approximate halving operations

(and similarly for the top k numbers). This is the step that makes use of Expander Graphs. Our
expander graph, G(V1, V2, E), has a total of m vertices and parameters ((1 − ε′)/ε′, ε′, c). The
sets V1 and V2 are each of sizem/2 and we associate V1 with the lower half of them registers, and
V2 with the upper half. See figure 6.4.5. We decompose G(V1, V2, E) into c different 1-factors:
{F1, . . . , Fc}
for i = 1, . . . , c,

for all edges e ∈ Fi, do in parallel
Compare numbers at the ends of e

and interchange them if they are
out of sequence

endfor
This requires at most c parallel operations.

Note that it is possible to do all of these parallel comparison- and interchange-
operations because the edges of a 1-factor are disjoint.

This algorithm bears a striking resemblance to the Halving operation in the
Quicksort Algorithm. Unlike that algorithm, however, we do not scan the upper
and lower halves of our set of m numbers and make decisions based upon the
values we encounter. Instead, we perform a kind of “sloppy” halving operation:
we compare (and sort) fixed sequences of elements (determined by 1-factors of the
expander-graph)regardless of the values we encounter. Because we have been so
sloppy, some large elements may end up in the lower half of the set, and small
elements may end up in the upper set. Nevertheless, the combinatorial property of an
expander graph guarantees that the number of “errors” in our halving operation will
be limited. The following result gives a precise statement of this fact:

PROPOSITION 6.4.9. Suppose the set S = {a1, . . . , an} of numbers is the result of per-
forming the ε′-halving algorithm described above on some set of n numbers. Then:

• for all k ≤ bn/2c, ai > abn/2c for at most ε′k values of i ≤ k.
• for all k > bn/2c, ai ≤ abn/2c for at most ε′(n− k) values of i > k.

In general, when we prove that this algorithm works, we will assume that the input
consists of some permutation of the sequence of numbers S = {1, 2, . . . , n}. Since
the algorithm as a whole is a sorting network, it suffices to prove that it works for all
sequences of 0’s and 1’s (see the discussion of the 0-1 principle on page 16). Clearly, if
we prove the algorithm for all permutations of the set S, it will work for all sequences
of 0’s and 1’s, and, therefore, for all possible sequences of numbers.



6.4. SEARCHING AND SORTING 329

PROOF. This follows directly from the combinatorial definition of an expander
graph. Suppose that Z = {1, . . . , k} is a set of numbers embedded in the input
somewhere, with the property that more than ε′k elements of Z end up in the upper
half of the output of the ε′-halving algorithm.

But, if > ε′k elements of Z end up in the upper half of the output, then it follows
that < (1− ε′)k elements of Z are left to end up in the lower half of the output.

Then these ε′k elements must be incident upon at least (1 − ε′)k elements on the
lower half of the output, by the defining property of the (ε′, (1 − ε′)/ε′, c)-expander
graph used to implement the ε′-halving algorithm. Since the number of elements of Z
than lies in the lower half of the output is strictly less than (1− ε′)k, it follows that one
of the elements of Z in the upper-half of the output must be incident upon an element
of the lower half of the output that is not in the set Z. But this is a contradiction,
since elements of the upper half of the output must be > any element of the lower
half, that they are incident upon15. It is impossible for any element of Z to be larger
than any element of the complement of Z — Z was chosen to consist of the smallest
numbers. �

This result implies that the ε′-halving algorithm works with reasonably good ac-
curacy at the ends of the sequence {1, . . . , n}. Most of the errors of the algorithm are
concentrated in the middle.

DEFINITION 6.4.10. Let π be a permutation of the sequence (1, . . . ,m). Let S ⊆
(1, . . . ,m) be a set of integers. Define:

(1) πS = {πi|i ∈ S};
(2) Given ε > 0

Sε = {1 ≤ j ≤ m| |j − i| ≤ εm}
(3) A permutation π is ε-nearsorted if

|S − πSε| < ε|S|
holds for all initial segments S = (1, . . . , k) and endsegments S = (k, . . . ,m),
where 1 ≤ k ≤ m.

PROPOSITION 6.4.11. Suppose π is an ε-nearsorted permutation. Statement 3 in definition
6.4.10 implies that:

|S − πSε| < 3εm

holds for all sequences S = (a, . . . , b).

6.4.6. ε-nearsort This is a kind of approximate sorting algorithm based upon the ε′-halving
algorithm mentioned above. It also executes in a fixed finite amount of time that is independent
of n. For a given value of ε, it sorts the n input values into n storage locations with at most
εn mistakes. In fact, for every k such that 1 ≤ k ≤ εn, the first k numbers are in the lower
ε′n storage locations with at most ε′k mistakes. To carry out the nearsort apply an ε′-halver
to the whole set of n numbers, then apply ε′-halvers to the top and bottom half of the result,
then to each quarter, eighth, etc, until the pieces each have size < nε′. (The algorithm executes
in constant time because we stop it when the pieces become a fixed fraction of the size of the

15By the way the ε′-halving algorithm works — it has a comparator on each of the edges of the
graph.
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original set of numbers). It is not hard to see that each piece of size w = nε has at most εw
errors.

The upshot of all of this is that we have an algorithm for approximately sorting n numbers
in constant time. The sorting operation is approximate in the sense that a small fraction of the
n numbers may end up being out of sequence when the algorithm is over.

Note the similarities between the ε-nearsort algorithm and the quicksort algorithm.
The ε-nearsort algorithm executes in a constant time. Intuition says that, if we can
reduce the number of “errors” in the sorting process by a constant factor (of ε) each
time we perform an ε-nearsort, we may be able to get an exact sorting algorithm by
performing an ε-nearsort O(lg n) times. This is the basic idea of the Ajtai, Komlós,
Szemerédi sorting algorithm. One potential problem arises in following our intuitive
analysis:

Simply applying the ε-nearsort to the same set of numbers O(lg n) times
might not do any good. It may make the “same mistakes” each time we
run it.

Something like this turns out to be true — we must use some finesse in repeating the ε-
nearsort algorithm. We use the fact that the ε′-halving algorithm make fewer mistakes
at the ends of the range of numbers it is sorting to get some idea of where the errors
will occur in the ε-nearsort.

The remainder of the Ajtai, Komlós, Szemerédi sorting algorithm consists in ap-
plying the ε-nearsort to the n numbers in such a way that the “errors” in the sorting
operation get corrected. It turns out that this requires that the ε′-nearsort operation be
carried out O(lg n) times.

Let {m1, . . . ,mn} be the memory locations containing the numbers to be sorted.
Now the sorting algorithm is divided into lg n phases, each of which is composed of
three smaller steps.

In each of these steps we perform an ε-nearsort separately and simultaneously on
each set in a partition of the memory-locations.

The procedure for partitioning the registers is somewhat arcane. Although we will
give formulas describing these partitions later, it is important to get a somewhat more
conceptual mental image of them. We will use a binary tree of depth lg n as a descriptive
device for these partitions. In other words, we don’t actually use a binary tree in the al-
gorithm — we merely perform ε-nearsorts on sets of memory-locations {mi1 , . . . ,mis}.
Describing these sets, however, is made a little easier if we first consider a binary tree16.

DEFINITION 6.4.12. Consider a complete binary tree of depth lg n. To each vertex,
v, there corresponds a natural interval, I(v), of memory locations — regard the vertices
at each level as getting equal subdivisions of the n registers. This means that the natural
interval of the root is all of the locations from 1 to n. The natural interval of the two
children of the root is 1 to n/2 for the left child, and n/2 + 1 to n for the right child,
respectively. See figure 6.4.21.

In the following description we will assume given a parameter A that satisfies the
condition thatA� 1/ε—A = 100, for instance. In generalAmust satisfy the condition

16The original paper of Ajtai, Komlós, Szemerédi ([4]) simply gave mathematical formulas for the
partitions, but people found the formulas hard to understand.
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1 . . . n

n/2 + 1 . . . n

3n/4 + 1 . . . nn/2 + 1 . . . 3n/4

1 . . . n/2

n/4 + 1 . . . n/21 . . . n/4

FIGURE 6.4.21. A complete binary tree of depth 3, with natural intervals

that ε < A−4 — see [3], section 8. Although the authors do not state it, it turns out that
their term α must be equal to 1/A.

We will define a set of memory-locations associated to each vertex in the binary tree
in phase i — recall that 0 ≤ i ≤ lg n:

DEFINITION 6.4.13. The following two steps describe how the memory-locations
are distributed among the vertices of the binary tree in phase i of the Ajtai, Komlós,
Szemerédi sorting algorithm

(1) Initial Assignment Step:
• Vertices of depth > have an empty set of memory-locations associated

with them.
• Vertices of depth i have their natural interval of memory-locations associ-

ated with them — see 6.4.12 and figure 6.4.21.
• Vertices of depth j < i have a subset of their natural interval associated

with them — namely the lower A−(i−j) and upper A−(i−j) portions. In
other words, if the natural interval would have had k elements, this vertex
has a subset of that natural interval associated with it, composed of terms
1 through bA−(i−j)kc and terms k − bA−(i−j)kc through k.

(2) Sifting Step: The partitioning-scheme described above has each memory lo-
cation associated with several vertices of the binary-tree. Now we cause each
memory-location to be associated with a unique vertex via the following rule:

Each memory-location only remains associated with the highest
(i.e., lowest depth) vertex that step 1 assigned it to. In other
words, higher vertices have higher priority in getting memory-
locations assigned to them.

Basically the algorithm distributes the memory locations among the vertices of a
depth-t subtree in phase t. Now we are in a position to describe the sorting-steps of
the algorithm.

EXAMPLE 6.4.14. Suppose n = 8 and A = 4. In phase 1, the tree is of depth 0 and
we only consider the root, with its natural interval of memory locations 1..8.

In phase 2, the initial assignment step gives rise to the arrangement depicted in
figure 6.4.22.

The sifting step modifies this to get what is depicted in figure 6.4.23.
In phase 3, the assignment of memory locations filters down to the leaves of the

tree. We ultimately get the result that appears in figure 6.4.24.

DEFINITION 6.4.15. Define a triangle of the tree to be a parent vertex and its two
children. Define the set of memory-locations associated with the triangle of vertices to
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{1, 2, 7, 8}

5 . . . 81 . . . 4

FIGURE 6.4.22.

{1, 2, 7, 8}

5, 63, 4

FIGURE 6.4.23. Phase 2

Empty

5,8

76

1, 4

324

FIGURE 6.4.24. Phase 3

FIGURE 6.4.25. Partition in the Zig phase

be the union of the sets of memory-locations associated with its vertices (as described
in 6.4.13 above).

Zig-step: Partition the tree into triangles with apexes at even levels, and perform
independent ε-nearsort operations on the sets of vertices associated with each
of these triangles. Each triangle of vertices defines one set in the partition of
the memory locations. See figure 6.4.15.

Zag step: Partition the binary tree into triangles with apexes at odd levels and
perform the ε-nearsort to every triangle, as described above. See figure 6.4.15.

Now we can describe the entire Ajtai, Komlós, and Szemerédi sorting algorithm:

6.4.7. The Ajtai, Komlós, and Szemerédi sorting algorithm consists in performing the fol-
lowing steps:
for all i← 1 to lg n do

{
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FIGURE 6.4.26. Partition in the Zag phase

Compute the association of memory-locations with vertices
for phase i in 6.4.13

Perform:
Zig
Zag
Zig

}
endfor

At the end of this procedure, the number in the original memory-locations will be correctly
sorted.

Note that this is a sorting network because:
• Each ε′-halving operation is given as a network of comparators;
• Each ε-nearsort can be described in terms of a sorting network, using the de-

scription of ε′-halving operations above.
• Whenever we must perform an ε-nearsort on disjoint sets of memory-locations,

we merely splice suitably-sized copies of the networks described in the previ-
ous line, into our whole sorting network.

Also note that this algorithm is far from being uniform. Although the execution of
the algorithm doesn’t depend upon the data-values being sorted, it does depend upon
the number n of data-items. We basically have a set of algorithms parameterized by
n. The amount of work needed to compute the partitions in 6.4.13 and 6.4.15, and the
expander-graphs used in the ε′-halving operations can be very significant.

If we perform all of these preliminary computations17, set up the algorithm, and
simply feed data to the resulting sorting network, then the time required for this data to
pass through the network (and become sorted) is O(lg n).

It is clear that the algorithm executes in O(lg n)-time (if we assume that all par-
titions, expander-graphs, etc. have been pre-computed). We must still prove that it
works.

The pattern used to associate the memory-locations with the vertices of the tree is
interesting. Most of the memory-locations in phase t are associated with the vertices
of depth t in the tree, but a few memory-locations remain associated with the higher

17I.e., computation of the partitions in 6.4.13 and 6.4.15, and the expander-graphs used in the ε′-
halving operations.
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X

ZY

FIGURE 6.4.27. A triangle of vertices

vertices — namely the lower 1/Ath and upper 1/Ath (in depth t − 1). The purpose of
this construction becomes clear now — these small intervals of registers serve to catch
the data that belongs outside a given triangle — the ε-nearsort is sufficiently accurate
that there is very little of this data.

Note that, if these small intervals (of size 1/A) did not exist, the activity of the algo-
rithm in phase t would be entirely concentrated in the vertices of depth t in the tree. The
partitions of the data would be disjoint and remain so throughout the algorithm.

DEFINITION 6.4.16. We define the wrongness of a memory location M at time t.
Suppose it is associated to a vertex v. If the data x ∈ M lies in the natural interval I(v)
(as defined in 6.4.12 on page 330) the wrongness w(R) is defined to be 0. If x lies in the
parent vertex of v the wrongness is defined to be 1, and so on. Since the natural interval
of the root vertex is the entire range of numbers, wrongness is always well-defined.

We will prove that the following inductive hypothesis is satisfied in every phase of
the algorithm:

At every vertex, v, of the tree, the fraction of memory-locations associ-
ated with v that have wrongness ≥ r is ≤ (8A)−3r.

Note that wrongness starts out being 0 for all memory locations, because they are all
initially assigned to the root of the tree. If the inductive hypothesis is still satisfied at
the end of the algorithm, all of the data-items will have been correctly sorted, since
each vertex will have only a single data-item in it, so none of the memory-locations
associated with a vertex will have any wrongness.

As the time-step advances from t to t + 1 the wrongness of most of the memory-
locations is increased by 1. This is due to the fact that we have redefined the partitions
of the memory-locations, and have refined them.

Consider the triangle in figure 6.4.27, and the memory-locations with wrongness 1:

• If they are associated with vertex Y, they should be associated with vertex Z.
This is because the natural interval of vertex X is equal to the unions of the nat-
ural intervals of Y and Z. The ZigZagZig operation will move most of them18

into memory-locations associated with vertices X or Z, and decrease wrong-
ness.
• A corresponding argument applies to memory-locations with wrongness of 1

that are associated with Z.
Now consider memory-locations with wrongness r > 1 that really belong to lower
numbered vertices than X. In the data associated with the triangle X-Y-Z (called the
cherry of X, by Ajtai, Komlós, Szemerédi) these memory-locations will form an initial
segment, hence will be ε-nearsorted more accurately than data in the center of the

18All but 3ε of them, by 6.4.11 on page 329.
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interval — see line 3 of 6.4.10 on page 329. They will, consequently, be sorted into one
of the initial segments of vertex X — recall how the memory-locations are associated
with X, Y, and Z in this step.

Although most of the memory-locations in this phase are associated with Y and
Z, 2/A of the natural interval of X remains associated with X — the lower 1/A of this
interval and the upper 1/A. After it is sorted into the initial segment of vertex X, its
wrongness has been decreased by 1.

6.4.4. Detailed proof of the correctness of the algorithm. Now we will make the
heuristic argument at the end of the previous section precise. We will assume that
we are in the beginning of phase t of the algorithm. As before, we will assume that
the original set of numbers being sorted by the algorithm was initially some random
permutation of the numbers {1, . . . , n}.

DEFINITION 6.4.17. We have a partition of {1, . . . , n} into intervals {J1, . . . , Jm}, as
defined in 6.4.13 on page 331. Each such interval is associated with a vertex of the
tree and consists of a consecutive sequence of memory-locations {x, x+ 1, . . . , y−1, y}.
Note that we can order the intervals and write Ji < Jk, if every element of Ji is less
than every element of Jk.

(1) If i is a memory-location, R(i) denotes its contents. In like manner, if J is some
interval of memory-locations, R(J) is defined to be the set of values that occur
in the memory-locations of J .

(2) If v is a vertex of the tree, the set of memory-locations assigned to v and its two
child-vertices, is called the cherry associated to v.

(3) If J is an interval, the lower section L(J) is the union of all intervals≤ J and the
upper section U(J) is the union of all intervals ≥ J .

(4) Let J and K be two intervals with K < J that are not neighbors in the partition
{J1, . . . , Jm} (i.e. if a is the highest element of K, then a+ 1 is strictly less than
every element of J). Then d(J,K) is defined to be the distance between the
vertices of the tree associated with these intervals.

(5) Given an interval J and an integer r ≥ 0, set S1 = max |R(J) ∩ L(K)|, where
the maximum is taken over all intervals K, K < J , K not adjacent to J (in
the partition of all of the processors, {J1, . . . , Jm}), such that d(J,K) ≥ r. Set
S2 = max |R(J) ∩ U(K)|, where the maximum is taken over all intervals K,
K > J , K not adjacent to J , such that d(J,K) ≥ r. Given these definitions,
define

∆r(J) =
max(J1, J2)

|J |
This is essentially the proportion of elements of J whose “wrongness” (as

defined in 6.4.16 on page 334) is ≥ r.
(6) If r ≥ 0, ∆r = maxJ ∆(J)

(7) Given an interval J , define δ(J) =
|R(J) \ J |
|J |

. Here \ denotes set difference.

Define δ = maxJ δ(J).
This measures the proportion of element that are mis-sorted in any given

step of the algorithm.
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At the beginning of the first phase of the algorithm, δ = 0 and ∆r = 0 for all r ≥ 0.
The main result of Ajtai, Komlós, Szemerédi is:

THEOREM 6.4.18. After each phase of the algorithm:
(1) ∆r < A−(3r+40), for r ≥ 1.
(2) δ < A−30.

This result implies that the sorting algorithm works because, in the final phase of
the algorithm, each interval has a size of 1. The remainder of this section will be spent
proving this result.

LEMMA 6.4.19. Suppose ∆r and δ are the values of these quantities at the end of a given
phase of the algorithm, and ∆′r and δ′ are the values at the beginning of the next phase after the
new partition of the memory-locations is computed. Then

• ∆′r < 6A∆r−4, r ≥ 6.
• δ′ < 6A(δ + ε)

This shows that the initial refinement of the partition of the processors at the begin-
ning of a phase of the algorithm, wrongness is generally increased.

PROOF. A new interval J ′ is the union of at most three subintervals, each one con-
tained in an old interval J , and |J ′| > |J |/(2A) for any one of them. Each such subin-
terval is at most two levels away (in the tree) from the old interval, J . Similarly, a new
lower-section L(K ′) is contained in an old lower-section L(K), and K ′ is at most two
levels away from K in the tree. This implies that the total distance in the tree is≤ 4. �

LEMMA 6.4.20. Let ∆r and δ be the error-measures before a Zig (or a Zag)-step, and let
∆′r and δ′ be the values after it. If δ < 1/A2, then

• ∆′r < 8A(∆r + ε∆r−2), for r ≥ 3;
• ∆′r < 8A(∆r + ε), for r = 1, 2;
• δ′ < 4A(δ + ε)

This implies that the Zig or Zag-steps compensate for the increases in the errors
that took place in 6.4.19.

PROOF. Each cherry of the tree (see line 2 of 6.4.17, on page 335 for the definition)
has ≤ 6 intervals associated with it. For any interval K, and any cherry of the tree, the
closest (in the sequence of intervals) interval of the cherry that is outside of a lower-
section L(K) is either:

• the closest (on the tree); or
adjacent to K (in the list of intervals).

Most elements of L(K) will be sorted to the left, or to this closest interval. The pro-
portion of elements that are not (the exceptional elements) will be < ε, which is <
8Aε × (the size of any interval in the cherry). Since this closest interval (in the list of
intervals) is also the closest in the tree, the size of the errors cannot increase except for
the exceptional elements — and, for these elements, the errors (measured by levels of
the tree) can increase by at most 2.

We assume that δ < 1/A2 to ensure that the extreme interval of the cherry (which
represents about 1/(4A) of the entire cherry), can accommodate all of the foreign ele-
ments. This extreme interval might be empty. In this case, however, the total num-
ber of memory-locations associated with the cherry is < 4A, and 4Aδ < 1 — all
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memory-locations associated with the cherry contain the proper (sorted) elements so
R(i) = i. �

LEMMA 6.4.21. If δ < 1/A4, then a Zig-Zag step will change the errors as follows:
• ∆′r < 64A2(∆r+1 + 3ε∆r−4), r ≥ 5;
• ∆′r < 64A2(∆r+1 + 3ε), r = 1, 2, 3, 4;
• δ′ < 16A2(δ + 2ε)

PROOF. This is essentially the same as the proof of the previous lemma. We only
make one additional remark:

Given any intervals J and L with d(J, L) ≥ 1, if J was closest to L (in the sequence
of intervals) in the Zig step, then it won’t be the closest (in the tree) in the succeeding
Zag-step. This implies that the errors won’t increase (as a result of composing Zig and
Zag steps). �

We finally have:

LEMMA 6.4.22. After a completed phase of the algorithm, we have:

(6.4.1) δ < 10

(
Aε+

∑
r≥1

(4A)r∆r

)
< α30

PROOF. We consider an interval J and estimate the number x = |R(J) ∩ U(J ′)|,
where J ′ is the interval adjacent to J on its left (i.e., J ′ < J). This number is certainly
bounded by the number y = |R(L(J))∩U(J ′)|, which is equal to z = |R(U(J ′))∩L(J)|.
The equality y = z implies the identity:

y1 − x1 =|R(J) ∩ (U(J ′) \ J ′)| − |R(J ′) ∩ (L(J) \ J)|
+ |R(L(J) \ J) ∩ U(J ′)| − |R(U(J ′) \ J ′) ∩ L(J)|

=x2 − y2 + x3 − y3

where x1 = |R(J) ∩ J ′| and y1 = |R(J ′) ∩ J |.
Now we estimate the terms on the right-hand side; for reasons of symmetry, it is

enough to work with x2 and x3. Clearly, x2 ≤ ∆1 · |J |, and the hard part is estimating
x3.

We partition L(J)\J into intervals. We may have an interval J0 among them which
is as a distance 0 from J ′. For this J0

|R(J0) ∩ U(J ′)| ≤ |R(J0) ∩ U(J)| < ∆1 · |J0| < ∆1 · |J |

The number of intervals of this partition that are at a distance r ≥ 1 from J ′ is at
most 2r+1, and their size is at most (2A)r|J |. Thus

(6.4.2) x3 < |J |

(
∆1 +

∑
r≥1

22r+1Ar∆r

)
We have shown that |y1 − x1| is small. Assume that the intervals J and J ′ are in

the same cherry for a Zig-step (if they are not in the same cherry in either a Zig or a
Zag step, then they belong to different components, and in this case δ(J) = 0). If the
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bound on the right side of equation (6.4.2) is less than A−35 after a Zag-step, then the
next Zig-step will exchange all foreign elements J and J ′ except for at most:

|x1 − y1|+ 8A(∆′1 + ε)|J | < (8A+ 20A∆′1 +
∑
r≥2

22r+1Ar∆′r)|J | < A−30|J |

�

We have tacitly use the following fact:
For any k, 1 ≤ k ≤ n the numbers

|R({1, . . . , k}) ∩ {k + 1, . . . , n}|

and
|R({k + 1, . . . , n}) ∩ {1, . . . , k}|

are monotone decreasing throughout the algorithm.

6.4.5. Expander Graphs. We will compute the probability that the union of a set of
random 1-factors is an expander-graph with parameters (λ, 1/(λ + 1), µ). It turns out
that it will be easier to compute the probability that such a graph is not an expander
graph.

PROPOSITION 6.4.23. Let n be an integer > 1 and let G(V1, V2) be the union of µ random
bipartite 1-factors on 2n elements. Let S be a given set of vertices in V1 with |S| = g. The
probability that |Γ(S)| is contained in some given set of size β is ≤

(6.4.3)
(
β!(n− g)!

n!(β − g)!

)µ
PROOF. We assume that the sets V1 and V2 are ordered. Since the 1-factors are ran-

dom we can assume, without loss of generality, that
• The set S consists of the first g elements of V1;
• The target-set (of size β) is the first β elements of V − 2 — if this isn’t true, we

can compose all of the 1-factors with the permutation that maps S into the first
g elements of V1 and the permutation that maps the target-set into the first β
elements of V2.

Now we consider the probability that a random 1-factor maps S into the first β element
of V2. The number of ways that it can map S into V2 (respecting ordering) is

n!

(n− g)!

Similarly, the number of ways it can map S into the first β elements of V2 is

β!

(β − g)!

It follows that the probability that it maps S into the first β elements of V2 is

β!/(β − g)!

n!/(n− g)!
=
β!(n− g)!

n!(β − g)!

�
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COROLLARY 6.4.24. Under the hypotheses of the previous result, the probability that there
exists a set S of size g such that |Γ(S)| ≤ β is

(6.4.4)
(
n

g

)(
n

β

)(
β!(n− g)!

n!(β − g)!

)µ
PROOF. We have simply multiplied equation (6.4.3) by the number of ways of

choosing sets of size g and β. �

COROLLARY 6.4.25. Let λ, n, µ be integers> 1. IfG(V1, V2) is a bipartite graph composed
of µ random 1-factors, and S ⊂ V1 is of size n/(λ + 1), the probability that |Γ(S)| ≤ λ|S| is
asymptotic to {

λ2λ

(λ− 1)λ−1 (λ+ 1)λ+1

}µ(n−1/2)
λ+1 (

λ− 1

λ

) µ
λ+1

as n→∞.

Here, the term “asymptotic” means that the ratio of the two quantities approaches
1 as n→∞.

PROOF. If we plug g = n/(λ+ 1) and β = λn/(λ+ 1) into equation (6.4.3), we get
(

λn

λ+ 1

)
!

(
λn

λ+ 1

)
!

n!

(
n
λ− 1

λ+ 1

)
!


µ

Now we use Stirling’s Formula for the factorial function — see page 89. It states
that k! is asymptotic to kk−.5e−k. The factors of e cancel out and we get:((

nλ

λ+ 1

)2 nλ
λ+1
−1

ene
n(λ−1)
λ+1 e−2 nλ

λ+1n−n+1/2

(
n (λ− 1)

λ+ 1

)−n(λ−1)
λ+1

+1/2
)µ

Atthispoint,allofthefactorsofninsidethelargebracketscanceloutandweget:

=
(
λ2λ−1/(n−1/2)(λ− 1)−λ+1+1/(n−1/2)(λ+ 1)−λ−1

)µ(n−1/2)
λ+1

=

{
λ2λ

(λ− 1)λ−1 (λ+ 1)λ+1

}µ(n−1/2)
λ+1 (

λ− 1

λ

) µ
λ+1

This proves the result. �

We will use this to get a crude estimate of the probability that a graph composed of
random 1-factors is an expanding graph.

The result above can be used to estimate the probability that a graph is not an ex-
pander. We want to bound from above by a simpler expression. We get the following
formula, which is larger than the probability computed in 6.4.25:

(6.4.5)

{
λ2λ

(λ− 1)λ−1 (λ+ 1)λ+1

} µn
λ+1
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This is an estimate for the probability that a single randomly chosen set has a
neighbor-set that is not λ times larger than itself. In order to compute the probability
that such a set exists we must form a kind of sum of probabilities over all possible
subsets of V1 satisfying the size constraint. Strictly speaking, this is not a sum, because
we also have to take into account intersections of these sets — to do this computation
correctly we would have to use the Möbius Inversion Formula. This leads to a fairly
complex expression. Since we are only making a crude estimate of the probability of
the existence of such a set, we will simply sum the probabilities. Moreover, we will
assume that all of these probabilities are the same. The result will be a quantity that is
strictly greater than the true value of the probability.

Now we apply 6.4.24 and Stirling’s formula to this to get:(
n
n
λ+1

)(
n
λn
λ+1

)
= nλ−

2λn−λ−1
λ+1 (λ+ 1)2n−2

= n
λ

λ+ 1

(λ+ 1)2n

λ
2λn
λ+1

= n
λ

λ+ 1

{
(λ+ 1)2(λ+1)

λ2λ

} n
λ+1

Since we want to get an upper bound on the probability, we can ignore the factor

of
λ

λ+ 1
so we get:

(6.4.6)
(
n
n
λ+1

)(
n
λn
λ+1

)
≥ n

{
(λ+ 1)2(λ+1)

λ2λ

} n
λ+1

Our estimate for the probability that any set of size n/(λ + 1) has a neighbor-set of
size nλ/(λ+ 1) is the product of this with equation (6.4.5):{

λ2λ

(λ− 1)λ−1 (λ+ 1)λ+1

} µn
λ+1
{
n

{
(λ+ 1)2(λ+1)

λ2λ

} n
λ+1

}
If we combine terms with exponent n/(λ+ 1), we get

n

{(
λ2λ

(λ− 1)λ−1(λ+ 1)λ+1

)µ
(λ+ 1)2(λ+1)

λ2λ

} n
λ+1

Now the quantity raised to the power of n/(λ + 1) effectively overwhelms all of the
other terms, so we can restrict our attention to:{(

λ2λ

(λ− 1)λ−1(λ+ 1)λ+1

)µ
(λ+ 1)2(λ+1)

λ2λ

} n
λ+1

and this approaches 0 as n→∞ if and only if(
λ2λ

(λ− 1)λ−1(λ+ 1)λ+1

)µ
(λ+ 1)2(λ+1)

λ2λ
< 1

Our conclusion is:
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PROPOSITION 6.4.26. Let λ, n, µ be integers > 1. If G(V1, V2) is a bipartite graph com-
posed of µ random 1-factors. The probability that there exists a set S ⊂ V1 of size n/(λ + 1)
such that |Γ(S)| ≤ λ|S|, approaches 0 as n→∞ if and only if

(6.4.7)
{

λ2λ

(λ− 1)λ−1(λ+ 1)λ+1

}µ
(λ+ 1)2(λ+1)

λ2λ
< 1

or

µ >
2 ln(λ+ 1)(λ+ 1)− 2λ ln(λ)

ln(λ− 1)(λ− 1) + ln(λ+ 1)(λ+ 1)− 2λ ln(λ)

= 2λ(ln(λ) + 1) + 1− 2 + ln(λ)

3λ
+O(λ−3)(6.4.8)

PROOF. We simply took the logarithm of equation (6.4.5) and solved for µ. After
that, we obtained an asymptotic expansion of the value of µ. �

6.5. Computer Algebra

6.5.1. Introduction. In this section we will discuss applications of parallel process-
ing to symbolic computation, or computer algebra. We will basically give efficient
parallel algorithms for performing operations on polynomials on a SIMD-parallel com-
puter.

At first glance, it might seem that the SIMD model of computation wouldn’t lend
itself to symbolic computation. It turns out that performing many algebraic operations
with polynomials can be easily accomplished by using the Fourier Transform. See
§ 5.2.2 in chapter 5, particularly the discussion on page 144.

Suppose we are given two polynomials:

p(x) =
n∑
i=1

aix
i(6.5.1)

q(x) =
m∑
j=1

bjx
j(6.5.2)

It is not difficult to write down a formula for the coefficients of the product of these
polynomials:

(p · q)(x) =
n+m∑
k=1

ckx
k(6.5.3)

where

ck =
∑
i+j=k

ai · bj(6.5.4)

The discussion in that section show that we can get the following algorithm for
computing the {ck}:

6.5.1. We can compute the coefficients, {ck}, of the product of two polynomials by perform-
ing the following sequence of operations:



342 6. A SURVEY OF SYMBOLIC ALGORITHMS

(1) Form the Fourier Transforms of the sequences A = {ai} and B = {bj}, giving se-
quences {Fω(A)} and {Fω(B)};

(2) Form the element-wise product of these (Fourier transformed) sequences — this is
clearly very easy to do in parallel;

(3) Form the inverse Fourier transform of the product-sequence {Fω(A) · Fω(B)}. The
result is the sequence {ck}.

The procedure described above turns out to be asymptotically optimal, even in the
sequential case — in this case it leads to an O(n lg n)-time algorithm for computing the
{ck}, rather than the execution-time of O(n2)19. In the parallel case, the advantages
of this algorithm become even greater. Step 2 is easily suited to implementation on a
SIMD machine. In effect, the procedure of taking the Fourier Transform has converted
multiplication of polynomials into ordinary numerical multiplication. The same is true
for addition and subtraction.

Division presents additional complexities: even when it is possible to form the
termwise quotient of two Fourier Transforms, the result may not be meaningful. It
will only be meaningful if is somehow (magically?) known beforehand, that the de-
nominator exactly divides the numerator.

EXERCISES.

1. Modify the program on page 153 to compute the product of two polynomials, by
performing steps like those described in algorithm 6.5.1. The program should prompt
the user for coefficients of the two polynomials and print out the coefficients of the
product.

6.5.2. Number-Theoretic Considerations. When one does the exercise 6.5.1, one
often gets results that are somewhat mysterious. In many cases it is possible to plug
polynomials into the programs that have a known product, and the values the pro-
gram prints out don’t resemble this known answer. This is a case of a very common
phenomena in numerical analysis known as round-off error. It is a strong possibility
whenever many cascaded floating-point calculations are done. There are many tech-
niques 20 for minimizing such errors, and one technique for totally eliminating it: per-
form only fixed-point calculations.

The reader will probably think that this suggestion is not particularly relevant:
• Our calculations with Fourier Transforms involve irrational, and even complex

numbers. How could they possibly be rephrased in terms of the integers?
• The polynomials that are input to the algorithm might have rational numbers

as coefficients.
• When we use integers (assuming the the two problems above can be solved)

we run into the problem of fixed point overflow.

19This is what one gets by using the naive algorithm
20In fact an entire theory
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The second objection is not too serious — we can just clear out the denominator of all
of the rational number that occur in expressing a polynomial (in fact we could use a
data-structure for storing the polynomials that has them in this form).

It turns out that there are several solutions to these problems. The important point
is that Fourier Transforms (and their inverses) really only depend upon the existence
of a “quantity” s that has the following two structural properties

(1) sn=1; (in some suitable sense).
(2)

(6.5.5)
n−1∑
i=0

sik = 0 for all 0 < k < n− 1

(3) the number n has a multiplicative inverse.
The structural conditions can be fulfilled in the integers if we work with numbers mod-
ulo a prime number21. In greater generality, we could work modulo any positive inte-
ger that had suitable properties. In order to explore these issues we need a few basic
results in number theory:

PROPOSITION 6.5.1. Suppose n and m are two integers that are relatively prime. Then
there exist integers P and Q such that

Pn+Qm = 1

Recall that the term “relatively prime” just means that the only number that exactly
divides both n and m is 1. For instance, 20 and 99 are relatively prime. Numbers are
relatively prime if and only if their greatest common divisor is 1.

PROOF. Consider all of the values taken on by the linear combinations Pn+Qm as
P and Q run over all of the integers, and let Z be the smallest positive value that occurs
in this way.

Claim 1: Z < n,m. If not, we could subtract a copy of n or m from Z (by altering P
or Q) and make it smaller. This would contradict the fact that Z is the smallest positive
value Pn+Qm takes on.

Claim: n and m are both divisible by Z. This is a little like the last claim. Suppose
n is not divisible by Z. Then we can write n = tZ + r, where t is some integer and r is
the remainder that results from dividing n by Z — r < Z. We plug Z = Pn+Qm into
this equation to get

n = t(Pn+Qm) + r

or
(1− tP )n−Qm = r

where r < Z. The existence of this value of r contradicts the assumption that Z was
the smallest positive value taken on by Pn+Qm.

Consequently, Z divides n and m. But the only positive integer that divides both of
these numbers is 1, since they are relatively prime. �

This implies:

21Recall that a prime number is not divisible by any other number except 1. Examples: 2, 3, 5, 7. . .
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COROLLARY 6.5.2. Let m be a number > 1 and let a be a number such that a is relatively
prime to m. Then there exists a number b such that

ab ≡ 1 (mod m)

PROOF. Proposition 6.5.1 implies that we can find integers x and y such that ax +
my = 1. When we reduce this modulo m we get the conclusion. �

COROLLARY 6.5.3. Let p be a prime number and let a and b be two integers such that
0 ≤ a, b < p. Then ab ≡ 0 (mod p) implies that either a ≡ 0 (mod p) or b ≡ 0 (mod p)

We will also need to define:

DEFINITION 6.5.4. The Euler φ-function.
(1) If n and m are integers, the notation n|m — stated as “n divides m”— means

that m is exactly divisible by n.
(2) Let m be a positive integer. Then the Euler φ-function, φ(m) is defined to be

equal to the number of integers k such that:
(a) 0 < k < m;
(b) k is relatively prime to m. This means that the only integer t such that t|m

and t|k, is t = 1.

The Euler φ function has many applications in number theory. There is a simple
formula (due to Euler) for calculating it:

(6.5.6) φ(m) = m
∏
p|m

(
1− 1

p

)
where

∏
p|m

means “form the product with p running over all primes such that m is

divisible by p”. It is not hard to calculate: φ(36) = 12 and φ(1000) = 400. It is also clear
that, if p is a prime number, then φ(p) = p− 1.

Many computer-algebra systems perform symbolic computations by considering
numbers modulo a prime number. See [75] and [76] for more information on this
approach. The following theorem (known as Euler’s Theorem) gives one important
property of the Euler φ-function

THEOREM 6.5.5. Let m be any positive integer and let a be any nonzero integer that is
relatively prime to m. Then

aφ(m) ≡ 1 (mod m)

CLAIM 6.5.6. There exists some number k such that ak mod m = 1.

PROOF. First, consider the result of forming higher and higher powers of the num-
ber a, and reducing the results mod m. Since there are only a finite number of possibil-
ities, we have to get au mod m = av mod m, for some u and v, with u 6= v — suppose
u < v. Corollary 6.5.2 implies that we can find a value b such that ab mod m = 1, and
we can use this cancel out au:

aubu mod m =avbu mod m

1 =av−u mod m
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so k = v − u. Now consider the set, S, of all numbers i such that 1 ≤ i < m and
i is relatively prime to m. There are φ(m) such numbers, by definition of the Euler
φ-function. If i ∈ S, define Zi to be the the set of numbers {i, ia, ia2, . . . , iak−1}, all
reduced mod m. For instance Za is {a, a2, . . . , ak−1, ak} = {a, a2, . . . , ak−1, 1} = Z1.

CLAIM 6.5.7. If i, j ∈ S, and there exists any number t such that t ∈ Zi ∩ Zj , then
Zi = Zj .

This means that the sets Zi are either equal, or entirely disjoint. If t ∈ Zi, then
t mod m = iau mod m, for some integer u. Similarly, t ∈ Zj implies that t mod m =
jav mod m, for some integer v. If we multiply the first equation by bu mod m (where
ab mod m = 1, we get i = tbu mod m and this implies that i = javbu mod m, so i ∈ Zj .
Since all multiples of i by powers of a are also in Zj , it follows that Zi ⊆ Zj . Since these
sets are of the same size, they must be equal.

All of this implies that the set S is the union of a number of disjoint sets Zi, each of
which has the same size. This implies that the size of S (i.e., φ(m)) is divisible by the size
of each of the sets Zi. These sets each have k elements, where k is the smallest integer
> 1 such that ak mod m = 1. Since φ(m) is divisible by k it follows that aφ(m) mod m =
1. �

This leads to the corollary, known as Fermat’s Little Theorem:

THEOREM 6.5.8. Let p be a prime number and let a be any nonzero integer. Then

ap−1 ≡ 1 (mod p)

Some of these numbers a have the property that they are principal p− 1th roots of 1
modulo p i.e., ai 6≡ 1 (mod p) for 0 < i < p−1. In this case it turns out that the property
expressed by equation (6.5.5) is also true for such numbers. For instance, suppose p = 5
and n = 2. Then 2 is a principal 4th root of 1 modulo 5, since 22 ≡ 4 (mod 5), 23 = 8 ≡ 3
(mod 5), and 24 = 16 ≡ 1 (mod 5).

PROPOSITION 6.5.9. Let p be a prime number, and let a be a principal p− 1th root of 1
modulo p. Then

(6.5.7)
n−1∑
i=0

aik = 0

for all 0 < k < p.

The proof is essentially the same as that of equation 5.2.7. We have to show that
(a− 1)

∑n−1
i=0 a

ik = 0 implies that
∑n−1

i=0 a
ik = 0.

Since principal roots modulo a prime have the two required structural properties,
we can use them to compute Fourier Transforms.

The advantages to this will be:
• there is be no round-off error in the computations because we are working over

the integers, and
• there is be no problem of integer overflow, because all numbers will bounded

by p
We also encounter the “catch” of using these number-theoretic techniques:
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The results of using mod-p Fourier Transforms to do Computer Alge-
bra will only be correct mod p.

In many cases this is good enough. For instance:

PROPOSITION 6.5.10. If we know a number n satisfies the condition −N/2 < n < N/2,
where N is some big number, then n is uniquely determined by its mod N reduction. If we pick
a very big value for p, we may be able to use the mod p reductions of the coefficients of the result
of our calculations to compute the results themselves.

Suppose z is the reduction of n modulo N . If z > N/2, then n must be equal to
−(N − z).

We need one more condition to be satisfied in order to use the Fast Fourier Trans-
form algorithm, described in § 5.2.2 of chapter 5:

The number of elements in the sequence to be transformed must be an
exact power of 2.

This imposes a very significant restriction on how we can implement the Fast Fourier
Transform since Fermat’s Theorem (6.5.8) implies that the principal roots of 1 are the
p− 1th-ones. In general, the main constraint in this problem is the size of n = 2k. This
must be a number > the maximum exponent that will occur in the computations, and
it determines the number of processors that will be used.

Claim: Suppose p is a prime with the property that p = tn + 1, for some
value of t, and suppose ` is a principal p− 1th root of 1 modulo p. Then `t

will be a principal nth root of 1.
We must, consequently, begin with n = 2k and find a multiple tn of nwith the property
that tn+ 1 is a prime number.

This turns out to be fairly easy to do. In order to see why, we must refer to two
famous theorems of number theory: the Prime Number Theorem and the Dirichlet
Density theorem:

THEOREM 6.5.11. Let the function π(x) be defined to be equal to the number of primes
≤ x. Then π(x) ∼ x/ log(x) as x→∞.

The statement that π(x) ∼ x/ log(x) as x → ∞ means that limx→∞
π(x)

x/ log(x)
= 1.

This was conjectured by Gauss and was proved almost simultaneously by Hadamard
and C. J. de La Vallée Poussin in 1896. See [142] and [143].

THEOREM 6.5.12. Letm be a number≥ 2 and letM > m be an integer. For all 0 < k < m
that are relatively prime to m, define z(k,M) to be the proportion of primes < M and ≡ k
(mod m). Then lim z(k,M) = 1/φ(m) as M →∞.

Note that limM→∞ z(k,M) = 0, if k is not relatively prime to m, since all sufficiently
large primes are relatively prime to m. The number of numbers < m and relatively
prime to m is equal to φ(m), so that the Dirichlet Density Theorem says that the primes
tend to be evenly distributed among the numbers (mod m) that can possibly be ≡ to
primes. In a manner of speaking this theorem basically says that primes behave like
random numbers22 when we consider their reductions modulo a fixed number m.

22Truly random numbers, of course, would also be ≡ (mod m) to numbers that are not relatively prime to
m
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k n = 2k t p = tn+ 1 ω ω−1 (mod p) n−1 (mod p)
7 128 2 257 9 200 255
8 256 1 257 3 86 256
9 512 15 7681 7146 7480 7681

10 1024 12 12289 10302 8974 12277
11 2048 6 12289 1945 4050 12283
12 4096 3 12289 1331 7968 12286
13 8192 5 40961 243 15845 40956
14 16384 4 65537 81 8091 65533
15 32768 2 65537 9 7282 65535
16 65536 1 65537 3 21846 65536
16 131072 6 786433 213567 430889 786427
18 262144 3 786433 1000 710149 786430
19 524288 11 5767169 177147 5087924 5767158

TABLE 6.5.1. Indices for performing the FFT modulo a prime number

This implies that on the average the smallest value of t with the property that tn + 1
is a prime is ≤ log(n). This is because the Prime number Theorem (6.5.11) implies that
there are approximately n primes < log(n)n + 1, and the Dirichlet Density theorem
(6.5.12) implies that on the average one of these primes will be ≡ 1 (mod n). Table 6.5.1
lists primes and primitive roots of 1.

We can now carry out the Fast Fourier Transform Algorithm 5.2.2 on page 152 using
this table:

(1) We start with a value of k such that we have n = 2k processors available for
computations.

(2) We perform all computations modulo the prime p that appears in the same
row of the table.

(3) We use the corresponding principal nth root of 1 in order to perform the Fourier
Transform.

EXAMPLE 6.5.13. Suppose we are performing the computations on a Connection
Machine, and we have 213 = 8192 processors available. When we execute the Fast
Fourier Transform algorithm, it is advantageous to have one processor per data el-
ement. We perform the calculations modulo the prime 40961 and set ω = 243 and
ω−1 = 15845. We will also use 40956 ≡ 8192−1 (mod 40961).

Here is a program that implements this version of the Fast Fourier Transform:

#include <stdio.h>
#include <math.h>
shape [8192]linear;
unsigned int MODULUS;

unsigned int n; /* Number of data points. */
int k; /* log of number of
* data−points. */
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unsigned int inv n;

unsigned int:linear temp;
int j;
void fft comp(unsigned int, unsigned int:current, unsigned int:current *);

int clean val(unsigned int, unsigned int);

void fft comp(unsigned int omega, unsigned int:current in seq,
unsigned int:current * out seq)
{
/* Basic structure to hold the data−items. */
int:linear e vals; /* Parallel array to hold
* the values of the e(r,j) */
unsigned int:linear omega powers[13]; /* Parallel array to
* hold the values of
* omegaˆe(r,j). */
unsigned int:linear work seq; /* Temporary variables,
* and */
unsigned int:linear upper, lower;

/*
* This block of code sets up the e vals and the
* omega powers arrays.
*/

with (linear)
where (pcoord(0) >= n)
{
in seq = 0;
*out seq = 0;
}
with (linear)
{
int i;
int:linear pr number = pcoord(0);
int:linear sp;
e vals = 0;
for (i = 0; i < k; i++)
{
e vals <<= 1;
e vals += pr number % 2;
pr number >>= 1;
}
/*
* Raise omega to a power given by



6.5. COMPUTER ALGEBRA 349

* e vals[k−1]. We do this be repeated
* squaring, and multiplying omegaˆ(2ˆi),
* for i corresponding to a 1−bit in the
* binary representation of e vals[k−1].
*/

temp = omega;

omega powers[k − 1]= 1;
sp = e vals;
for (i = 0; i < 31; i++)
{
where (sp % 2 == 1)
omega powers[k − 1]
= (omega powers[k − 1]* temp) % MODULUS;

sp = sp >> 1;
temp = (temp * temp) % MODULUS;
}

for (i = 1; i < k; i++)
{
omega powers[k − 1 − i]= (omega powers[k − i]*
omega powers[k − i]) % MODULUS;
}
work seq = in seq;
pr number = pcoord(0);
for (i = 0; i < k; i++)
{
int:linear save;

save = work seq;
lower = pr number & (˜(1 << (k − i − 1)));
upper = lower | (1 << (k − i − 1));
where (pr number == lower)
{
[lower]work seq = ([lower]save
+[lower]omega powers[i]*[upper]save
+ MODULUS) % MODULUS;
[upper]work seq = ([lower]save +
[upper]omega powers[i]*[upper]save
+ MODULUS) % MODULUS;
}
}
}
with (linear)
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where (pcoord(0) < n)
[e vals]* out seq = work seq;
}

/*
* This routine just maps large values to negative numbers.
* We are implicitly assuming that the numbers that
* actually occur in the course of the computations will
* never exceed MODULUS/2.
*/

int clean val(unsigned int val, unsigned int modulus)
{
if (val < modulus / 2)
return val;
else
return val − modulus;
}

void main()
{
unsigned int:linear in seq;
unsigned int:linear out seq;
int i, j;
unsigned int primroot = 243;
unsigned int invprimroot = 15845;

MODULUS = 40961;
k = 13;
n = 8912; /* Number of data−points. */
inv n = 40956;
with (linear) in seq = 0;

[0]in seq = (MODULUS − 1);
[1]in seq = 1;
[2]in seq = 1;
[3]in seq = 2;
fft comp(primroot, in seq, &out seq);

/*
* Now we cube the elements of the Fourier
* Transform of the coefficients of the polynomial.
* After taking the inverse Fourier Transform of
* the result, we will get the coefficients of the
* cube of the original polynomial.
*/
with (linear)
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{
in seq = out seq * out seq % MODULUS;
in seq = in seq * out seq % MODULUS;
}
fft comp(invprimroot, in seq, &out seq);
with (linear)
where (pcoord(0) < n)
out seq = (inv n * out seq) % MODULUS;

for (i = 0; i < 20; i++)
printf("i=%d, coefficient is %d\n", i,
clean val([i]out seq, MODULUS));
}

Here we have written a subroutine to compute the Fourier Transform with respect
to a given root of unity. Using theorem 5.2.2 in § 5.2.2 of chapter 5, we compute the
inverse Fourier transform the of the result by:

• taking the Fourier Transform with respect to a root of unity that is a multiplica-
tive inverse of the original root of unity.
• multiplying by the multiplicative inverse of the number of data-points — this

is 40956, in the present case

In the program above, the original input was a sequence {−1, 1, 1, 2, . . . , 0}. result of
taking the Fourier Transform and the inverse is the sequence {40960, 1, 1, 2, . . . , 0}, so
that the −1 in the original sequence has been turned into 256. Since we know that the
original input data was inside the range −40961/2,+40961/2, we subtract 40961 from
any term > 40961/2 to get the correct result.

This program illustrates the applicability of Fast Fourier Transforms to symbolic
computation. In this case, we compute the Fourier Transform and cube the resulting
values of the Fourier Transform. When we take the Inverse Transform, we will get
the result of forming a convolution of the original sequence with itself 3 times. If the
original sequence represented the polynomial 1 + x + x2 + 2x3, the final result of this
whole procedure will be the coefficients of (1 + x+ x2 + 2x3)3. We will have used 8192
processors to compute the cube of a cubic polynomial! Although this sounds more
than a little ridiculous, the simple fact is that the step in which the cubing was carried
out is entirely parallel, and we might have carried out much more complex operations
than cubing.

Suppose the coefficients of the problem that we want to study are too large — i.e.,
they exceed p/2 in absolute value. In this case we can perform the calculations with
several different primes and use the Chinese Remainder Theorem. First, recall that two
integers n and m are called relatively prime if the only number that exactly divides both
of them is 1. For instance 7 and 9 are relatively prime, but 6 and 9 aren’t (since they are
both divisible by 3).
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THEOREM 6.5.14. Suppose n1, . . . , nk are a sequence of numbers that are pairwise rela-
tively prime (i.e. they could be distinct primes), and suppose we have congruences:

M ≡ z1 (mod n1)
· · ·

M ≡ zk (mod nk)

Then the value of M is uniquely determined modulo
∏k

i=1 ni.

The term “pairwise relatively prime” means that every pair of numbers ni and nj are
relatively prime. If a given prime is too small for the calculations modulo that prime to
determine the answer, we can perform the calculations modulo many different primes
and use the Chinese Remainder Theorem. Table 6.5.2 lists several primes that could be
used for the problem under considerations.

We will now prove the Chinese Remainder theorem, and in the process, give an
algorithm for computing the value M modulo the product of the primes. We need the
following basic result from Number Theory:

6.5.2. Given relatively prime integers m and n such that 0 < m < n, we can compute a
number z such that zm ≡ 1 (mod n) by computing mφ(n)−1 mod n.

This follows immediately from Euler’s theorem, 6.5.5, on page 344. The running
time of this algorithm is clearly O(lg n) because φ(n) < n (which follows from formula
(6.5.6) on page 344), and we can compute mφ(n)−1 mod n by repeated squaring.

Now we are in a position to prove the Chinese Remainder theorem. Suppose we
have congruences:

M ≡z1 (mod n1)

· · ·
M ≡zk (mod nk)

Now set P =
∏k

i=1 ni and multiply the ith equation by P/ni =
∏

j 6=i nj . We get:

M

(
P

n1

+ · · ·+ P

nk

)
= z1

P

n1

+ · · ·+ zk
P

nk
(mod P )

The fact that the {ni} are relatively prime implies that
(
P

n1

+ · · ·+ P

nk

)
and

P are relatively prime. We can use 6.5.2 to compute a multiplicative inverse J to(
P

n1

+ · · ·+ P

nk

)
. We compute

M = J ·
(
z1
P

n1

+ · · ·+ zk
P

nk

)
(mod P )

Table 6.5.2 gives a list of primes we can use in an application of the Chinese Re-
mainder Theorem.

We will conclude this section with an example. We will do some algebraic cal-
culations over two different primes, p1 = 40961 and p2 = 65537, and use the Chinese
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p 8192−1 (mod p) ω =Principal nth root of 1 ω−1

40961 40956 243 15845
65537 65529 6561 58355

114689 114675 80720 7887
147457 147439 62093 26569
163841 163821 84080 15743
188417 188394 59526 383

TABLE 6.5.2. Distinct primes for the FFT with 8912 processors

Remainder Theorem to patch the results together. The final results will be correct mod-
ulo 231 < p1p2 = 2684461057 < 232. Since we will be using a machine with a word-size23

of 32 bits, we will have to use unsigned integers for all calculations. In addition, we will
need special routines for addition and multiplication, so that the calculations don’t
produce an overflow-condition. Since the primes p1 and p2 are both <

√
232, we will

only need these special routines in the step that uses the Chinese Remainder Theorem.
We will also need:

• a1 = p2/(p1 + p2) ≡ 894711124 (mod p1p2)
• a2 = p1/(p1 + p2) ≡ 1789749934 (mod p1p2)

#include <stdio.h>
#include <math.h>
shape [8192]linear;
unsigned int p1=40961;
unsigned int p2=65537;
unsigned int MODULUS=40961*65537;
/* (40961+65537)&ˆ(−1) mod 40961*65537 */
unsigned int invpsum=597020227;

unsigned int n; /* Number of data points. */
int k; /* log of number of
* data−points. */

unsigned int inv n;

unsigned int:linear temp;
int j;
void fft comp(unsigned int, unsigned int:current, unsigned int:current *);

int clean val(unsigned int, unsigned int);

void fft comp(unsigned int omega, unsigned int:current in seq,
unsigned int:current * out seq)
{

23We won’t use any of the unique features of the CM-2, such as the availability of large (or variable)
words.
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/* Basic structure to hold the data−items. */
int:linear e vals; /* Parallel array to hold
* the values of the e(r,j) */
unsigned int:linear omega powers[13]; /* Parallel array to
* hold the values of
* omegaˆe(r,j). */
unsigned int:linear work seq; /* Temporary variables,
* and */
unsigned int:linear upper, lower;

/*
* This block of code sets up the e vals and the
* omega powers arrays.
*/

with (linear)
where (pcoord(0) >= n)
{
in seq = 0;
*out seq = 0;
}
with (linear)
{
int i;
int:linear pr number = pcoord(0);
int:linear sp;
e vals = 0;
for (i = 0; i < k; i++)
{
e vals <<= 1;
e vals += pr number % 2;
pr number >>= 1;
}
/*
* Raise omega to a power given by
* e vals[k−1]. We do this be repeated
* squaring, and multiplying omegaˆ(2ˆi),
* for i corresponding to a 1−bit in the
* binary representation of e vals[k−1].
*/

temp = omega;

omega powers[k − 1]= 1;
sp = e vals;
for (i = 0; i < 31; i++)
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{
where (sp % 2 == 1)
omega powers[k − 1]
= (omega powers[k − 1]* temp) % MODULUS;

sp = sp >> 1;
temp = (temp * temp) % MODULUS;
}

for (i = 1; i < k; i++)
{
omega powers[k − 1 − i]= (omega powers[k − i]*
omega powers[k − i]) % MODULUS;
}
work seq = in seq;
pr number = pcoord(0);
for (i = 0; i < k; i++)
{
int:linear save;

save = work seq;
lower = pr number & (˜(1 << (k − i − 1)));
upper = lower | (1 << (k − i − 1));
where (pr number == lower)
{
[lower]work seq = ([lower]save
+[lower]omega powers[i]*[upper]save
+ MODULUS) % MODULUS;
[upper]work seq = ([lower]save +
[upper]omega powers[i]*[upper]save
+ MODULUS) % MODULUS;
}
}
}
with (linear)
where (pcoord(0) < n)
[e vals]* out seq = work seq;
}

/*
* This routine just maps large values to negative numbers.
* We are implicitly assuming that the numbers that
* actually occur in the course of the computations will
* never exceed MODULUS/2.
*/

int clean val(unsigned int val, unsigned int modulus)
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{
if (val < modulus / 2)
return val;
else
return val − modulus;
}

void main()
{
unsigned int:linear in seq;
unsigned int:linear out seq;
int i, j;
unsigned int primroot = 243;
unsigned int invprimroot = 15845;

MODULUS = 40961;
k = 13;
n = 8912; /* Number of data−points. */
inv n = 40956;
with (linear) in seq = 0;

[0]in seq = (MODULUS − 1);
[1]in seq = 1;
[2]in seq = 1;
[3]in seq = 2;
fft comp(primroot, in seq, &out seq);

/*
* Now we cube the elements of the Fourier
* Transform of the coefficients of the polynomial.
* After taking the inverse Fourier Transform of
* the result, we will get the coefficients of the
* cube of the original polynomial.
*/
with (linear)
{
in seq = out seq * out seq % MODULUS;
in seq = in seq * out seq % MODULUS;
}
fft comp(invprimroot, in seq, &out seq);
with (linear)
where (pcoord(0) < n)
out seq = (inv n * out seq) % MODULUS;

for (i = 0; i < 20; i++)
printf("i=%d, coefficient is %d\n", i,
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clean val([i]out seq, MODULUS));
}

The procedure in this program only works when the coefficients of the result lie in
the range −2684461057/2,+2684461057/2. If the coefficients of the result do not meet
this requirement, we must perform the calculations over several different primes (like
the ones in table 6.5.2 on page 353) and use the Chinese Remainder Theorem on page
351 to patch up the results.

6.5.3. Discussion and further reading. D. Weeks has developed fast parallel algo-
rithms for performing computations in algebraic number fields. See [167] for details.
Algebraic number fields are extensions of the rational numbers that contain roots of
polynomials.

EXERCISES.

2. Given a prime p and a positive number n, give an algorithm for computing the
inverse of n modulo p. (Hint: use Fermat’s theorem — 6.5.8.

3. Can the interpolation algorithm in § 6.1.4 (page 243) be used to do symbolic
computations?

4. Suppose m is a large number24. Give algorithms for performing computations
modulo m. Note:

a. A number modulo m can be represented as a linked list of words, or an array.
b. Multiplication can be carried out using an algorithm involving a Fast Fourier

Transform25. The hard part is reducing a number > m that represented as an
array or linked list of words, modulo m.

5. Most computer-algebra systems (i.e., Maple, Reduce, Macsyma, etc.) have some
number-theoretic capabilities and have an associated programming language. If you
have access to such a system, write a program in the associated programming language
to:

a. Write a function that takes an exponent k as its input and:
(a) Finds the smallest prime p of the form t2k + 1;
(b) Finds a principal p− 1th root of 1 modulo p
(c) Raises that principal root of 1 to the tth power modulo p in order to get a

principal nth root of 1 modulo p, where n = 2k.
For instance, the author wrote such a function in the programming lan-

guage bundles with Maple on a Macintosh Plus computer to compute table
6.5.1 (in about 20 minutes).

24In other words, it is large enough that it is impossible to represent this number in a word on the
computer system to be used for the computations

25Where have we heard of that before! See the discussion on using Fourier Transforms to perform
multiplication of binary numbers on page 145.





CHAPTER 7

Probabilistic Algorithms

7.1. Introduction and basic definitions

In this chapter we will discuss a topic whose importance has grown considerably in
recent years. Several breakthroughs in sequential algorithms have been made, in such
diverse areas as computational number theory (with applications to factoring large
numbers and breaking Public-Key Encryption schemes, etc.), and artificial intelligence
(with the development of Simulated Annealing techniques). A complete treatment of
this field is beyond the scope of the present text. Nevertheless, there are a number of
simple areas that we can touch upon.

Perhaps the first probabilistic algorithm ever developed predated the first comput-
ers by 200 years. In 1733 Buffon published a description of the so-called Buffon Needle
Algorithm for computing π — see [23]. Although it is of little practical value, many
modern techniques of numerical integration can be regarded as direct descendants of
it. This algorithm requires a needle of a precisely-known length and a floor marked
with parallel lines with the property that the distance between every pair of neighbor-
ing lines is exactly double the length of the needle. It turns out that if the needle is
dropped on this floor, the probability that it will touch one of the lines is equal to 1/π.
It follows that if a person randomly drops this needle onto the floor and keeps a record
of the number of times it hits one of the lines, he or she can calculate an approximation
of π by dividing the number of times the needle hits a line of the floor into the total
number of trials. This “algorithm” is not practical because it converges fairly slowly,
and because there are much better ways to compute π.

There are several varieties of probabilistic algorithms:

7.1.1. Numerical algorithms. The Buffon Needle algorithm falls into this category.
These algorithms involve performing a large number of independent trials and pro-
duce an answer that converges to the correct answer as the number of trials increase.
They are ideally suited to parallelization, since the trials are completely independent —
no communication between processors is required (or even wanted). In fact the distinc-
tion between SIMD and MIMD algorithms essentially disappears when one considers
these algorithms.

7.1.1.1. Monte Carlo Integration. This is a very unfortunate name since Monte Carlo
Integration is not a Monte Carlo algorithm, as they are usually defined (see § 7.1.2, be-
low). It is based upon the principle that is used in the rain gauge — the amount of rain
hitting a given surface is proportional to the rate of rainfall and the area of the surface.
We can also regard it as a direct generalization of the Buffon needle algorithm. We will
begin by giving a very simple example of this type of algorithm. We want to solve the
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FIGURE 7.1.1. Monte-Carlo Integration

basic problem of computing a definite integral like

A =

ˆ b

a

f(x) dx

Let M = maxa≤x≤b f(x) and m = mina≤x≤b f(x). Now we pick a large number of
points in the rectangle a ≤ x ≤ b, m ≤ y ≤ M at random and count the number of
points that lie below the curve y = f(x). If the randomly-chosen points are uniformly
distributed the expected count of the points below the curve y = f(x) is proportional to
the integral A — see figure 7.1.1.1.

The algorithm for computing integrals is extremely simple:

7.1.1. All processors allocate two counters i and t. Perform the following steps as until a
desired degree of accuracy is achieved:

In parallel all processors perform the following sequence of steps:
(1) Randomly generate a point (x, y), of the domain of integration — this is given by

a ≤ x ≤ b, m ≤ y ≤M in the example above. Increment the t counter.
(2) Determines whether its generated point lies under the curve y = f(x). This is just a

matter of deciding whether the inequality y ≤ f(x) is satisfied. It, therefore, involves
a computation of f(x).

(3) If the inequality above is satisfied, increment the i counter.
Form the totals of all of the t, and i counters and call them T , and R, respectively. The estimate
of the value of

A =

ˆ b

a

f(x) dx

(M −m)(b− a)T

R

The nice features of this algorithm include:
• There is no communication whatsoever needed between processors in this al-

gorithm. It is, consequently, ideally suited for parallelization.
• This algorithm has essentially complete utilization of the processors. In other

words, the parallel version of the algorithm it almost exactly n times faster
than the sequential version, where n is the number of processors involved.

Monte Carlo integration is of most interest when we want to compute a multiple inte-
gral. Deterministic algorithms using systematic methods to sample the values of the
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function to be integrated generally require a sample size that grows exponentially with
the dimension, in order to achieve a given degree of accuracy. In Monte Carlo integra-
tion, the dimension of the problem has little effect upon the accuracy of the result. See
[148] for a general survey of Monte Carlo integration.

EXERCISES.

1. Write a C* program to perform Monte Carlo Integration to evaluate the integralˆ 2

0

1√
1 + x3 + x7

dx

(Use the prand-function to generate random numbers in parallel. It is declared as
int:current prand(void).)

7.1.2. Monte Carlo algorithms. Some authors use this term for all probabilistic al-
gorithms. Today the term Monte Carlo algorithms usually refers to algorithms that
make random choices that cause the algorithm to either produce the correct answer, or
a completely wrong answer. In this case, the wrong answers are not approximations to
the correct answer. These algorithms are equipped with procedures for comparing an-
swers — so that the probability of having a recognizably-correct answer increases with
the number of trials. There is always a finite probability that the answer produced by
a Monte Carlo algorithm is wrong.

DEFINITION 7.1.1. We distinguish certain types of Monte Carlo algorithms:
(1) A Monte Carlo algorithm is called consistent if it never produces two distinct

correct answers.
(2) If the probability that a Monte Carlo algorithm returns a correct answer in one

trial is p, where p is a real number between 1/2 and 1, then the algorithm is
called p-correct. The value p− 1/2 is called the advantage of the algorithm.

(3) Suppose y is some possible result returned by a consistent Monte Carlo algo-
rithm, A. The A is called y-biased if there exists a subset X of the problem-
instances such that:
(a) the solution returned by A is always correct whenever the instance to be

solved in not in X .
(b) the correct answer to all instances that belong to X is always y.

We do not require the existence of a procedure for testing membership in
X .

We will be interested in analyzing y-biased Monte Carlo algorithms. It turns out
that such algorithms occur in many interesting situations (involving parallel algo-
rithms), and there are good criteria for the correctness of the answers that these al-
gorithms return.

PROPOSITION 7.1.2. If a y-biased Monte Carlo algorithm returns y as its answer, the it is
correct.
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PROOF. If a problem-instance is in X , and the algorithm returns y, the answer is
correct. If the instance is not in X it always returns correct answers. �

PROPOSITION 7.1.3. Suppose A is a y-biased Monte Carlo algorithm, and we call A k
times and receive the answers {y1, . . . , yk}. In addition, suppose that A is p-correct. Then:

(1) If for some i, yi = y, then this is the correct answer.
(2) If yi 6= yj for some values of i and j, then y is the correct answer. This is due to the

fact that the algorithm is consistent. If two different answers are received, they cannot
be the correct answers. Consequently, the problem-instances must have been in X , in
which case it is known that the correct answer is y.

(3) If all of the yi = ȳ, for all 1 ≤ i ≤ k, and ȳ 6= y, then the probability that this is a
wrong answer is (1− p)k.

As an example of a y-biased, we will examine the following simple algorithm for
testing whether a polynomial is identically zero:

PROPOSITION 7.1.4. Let p(x) be a polynomial, and suppose we have a “black box” that
returns the value of p(x), given a value of x. Our Monte Carlo algorithm plugs sets x to a
random number and computes p(x) (using the “black box”). The algorithm returns p(x) 6= 0 if
this result is nonzero and reports that p(x) = 0 if this computation is zero.

Clearly, this is y-biased, where y is the answer that says that p(x) 6= 0, since a
polynomial, p(x), that is nonzero for any value of x cannot be identically zero.

7.1.3. Las Vegas algorithms. These are algorithms that, unlike Monte Carlo algo-
rithm, never produce incorrect answers. These algorithms make random choices that
sometimes prevent them from producing an answer at all. These algorithms generally
do not lend themselves to SIMD implementation. The random choices they make alter
the flow of control, so they need independent processes. The main result involving
these algorithms that is of interest to us is:

PROPOSITION 7.1.5. If a Las Vegas algorithm has a probability of p of producing an answer,
then the probability of getting an answer from it in n trials is 1− (1− p)n.

PROOF. If the probability of producing an answer in one trial is p, then the proba-
bility of not producing an answer in one trial is 1− p. The probability of this outcome
occurring repeatedly in n trials (assuming all trials are independent) is (1 − p)n. Con-
sequently, the probability of getting a answer within n trials is 1− (1− p)n. �

If we define the expected number of repetitions until success as the average number of
trials that are necessary until we achieve success. This is a weighted average of the
number of trials, weighted by the probability that a given number of trials is necessary.

PROPOSITION 7.1.6. Given a Las Vegas algorithm with a probability of success in one trial
equal to p, the expected number of trials required for success is:

1

p

PROOF. The probability of no success within k trials is qk, where q = 1 − p. The
probability of achieving success at precisely the k + 1st trial is pqk. Consequently, the
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weighted average of the number of trials, weighted by the probability of success in a
given trial is

S =
∞∑
n=1

npqn−1

We can evaluate this quantity exactly. If we multiply S by q, we get

(7.1.1) qS =
∞∑
n=1

npqn

Consider the infinite series T =
∑∞

n=1 q
n. If we multiply T by q, we get qT =

∑∞
n=2 q

n =
T − q, so T satisfies the equation qT = T − q and 0 = (1 − q)T − q or T = q/(1 − q).
Now, if we add T to qS in equation (7.1.1), we get

qS + T =
∞∑
n=1

(n+ 1)pqn

=S − p
so qS + T = S − p and T = (1− q)S − p and T + p = (1− q)S and S = (T + p)/(1− q).
Now we use the fact that T = q/(1− q) to get S = (p+ q)/(1− q) = 1/p. �

7.2. The class RNC

These are algorithms that always work, and always produce correct answers, but
the running time is indeterminate, as a result of random choices they make. In this
case, the probable running time may be very fast, but the worst case running time (as a
result of unlucky choices) may be bad. This type of algorithm is of particular interest in
Parallel Processing. We define the class RNC to denote the class of problems that can
be solved by probabilistic parallel algorithms in probable time that is poly-logarithmic,
using a polynomial number of processors (in the complexity-parameter — see 27).

The precise definition is

DEFINITION 7.2.1. Let A be a probabilistic parallel algorithm. Then:
(1) the time-distribution of this algorithm is a function p(t) with the property that

the probability of the execution-time of the algorithm being between t0 and t1
is ˆ t1

t0

p(t) dt

(2) the expected execution-time of the algorithm is

µ1(A) =

ˆ ∞
0

tp(t) dt

(3) a problem with complexity-parameter n is in the class RNC if there exists a
probabilistic parallel algorithm for it that uses a number of processors that is
a polynomial in n and which has expected execution-time that is O(lgk n) for
some value of k.

We will also distinguish a type of algorithm that is a Monte Carlo RNC algorithm. This
is a Monte Carlo algorithm that executes in expected time O(lgk n) with a polynomial
number of processors. This class of such problems will be called m-RNC.
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The expected execution is a weighted average of all of the possible execution-times.
It is weighted by the probabilities that given execution-times actually occur. It follows
that, if we run an RNC algorithm many times with the same input and compute the av-
erage running time, we will get something that is bounded by a power of the logarithm
of the input-size.

We must distinguish the class m-RNC, because these algorithms do not necessarily
produce the correct answer in expected poly-logarithmic time — they only produce an
answer with some degree of confidence. We can repeat such an algorithm many times
to increase this level of confidence, but the algorithm will still be in m-RNC.

EXERCISES.

1. Suppose we define a class of algorithms called lv-RNC composed of Las Ve-
gas algorithms whose expected execution-time is poly-logarithmic, using a polynomial
number of processors. Is this a new class of algorithms?

7.2.1. Work-efficient parallel prefix computation. This section discusses a simple
application of randomization in a parallel algorithm. Recall the discussion at the end
of § 2.4.2.2 regarding the use of the Brent Scheduling Principle to perform parallel-
prefix operations on n items stored in an array, usingO(n/ lg n) processors. The general
method for accomplishing this involves a first step of precisely ranking a linked list —
see Algorithm 6.1.3 on page 237. The problem with this algorithm is that it isn’t work-
efficient — it requiresO(n) processors, for an execution time ofO(lg n). A work-efficient
algorithm would require O(n/ lg n) processors. For many years there was no known
deterministic algorithm for the list ranking problem. In 1984 Uzi Vishkin discovered a
probabilistic algorithm for this problem in 1984 — see [165]. In 1988 Anderson and
Miller developed an simplified version of this in [8]. We will discuss the simplified
algorithm here.

7.2.1. Let {a0, . . . , an−1} be data-structures stored in an array, that define a linked list, and
let ? be some associative operation. Suppose that the data of element ai is di. Then there exists
an RNC algorithm for computing the quantity d0 ? · · · ? dn−1. The expected execution-time is
O(lg n) using O(n/ lg n) processors (on an EREW-PRAM computer).

Although the input-data is stored in an array, this problem is not equivalent to the
original problem that was considered in connection with the Brent Scheduling Princi-
ple: in the present problem the ai are not stored in consecutive memory locations. Each
of the ai has a next-pointer that indicates the location of the next term.

We begin the algorithm by assigning O(lg n) elements of the linked list to each pro-
cessor in an arbitrary way. Note that if we could know that each processor had a range
of consecutive elements assigned to it, we could easily carry out the deterministic algo-
rithm for computing d0 ? · · · ? dn−1 — see 6.1.2 on page 236.

The algorithm proceeds in phases. Each phase selects certain elements of the list,
deletes them, and splices the pieces of the list together. After carrying out these two
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steps, we recursively call the algorithm on the new (shorter) list. When we delete an
entry from the linked list, we modify the following entry in such a way that the data
contained in the deleted entry is not lost. In fact, if we delete the ith entry of the linked
list (which, incidentally, is probably not the ith entry in the array used to store the data)
we perform the operation

di+1 ← di ? di+1

In order for this statement to make any sense, our deletions must satisfy the condi-
tion that

No two adjacent elements of the list are ever deleted in the same step.
In addition, in order to maximize parallelism and make the algorithm easier to imple-
ment, we also require that:

At most one of the elements of the linked list that are assigned to a
given processor is deleted in any phase of the algorithm.

We will show that it is possible to carry out the deletions in such a way that the two
conditions above are satisfied, deletions require constant parallel time, and that, on
average, O(lg n) phases of the algorithm are need to delete all of the entries of the
linked list.

The deletions are selected by the following procedure:

7.2.1. Selection Procedure:
(1) Each processor selects one of its associated list-elements still present in the linked list.

We will call the list-element selected by processor i, ei.
(2) Each processor “flips” a coin — i. e., generates a random variable that can equal 0 or

1 with equal probability. Call the ith “coin value” ci (1=heads).
(3) If ci = 1 and ci+1 6= 1, then ei is selected for deletion.

Note that this procedure selects elements that satisfy the two conditions listed
above, and that the selection can be done in constant time. We must analyze the behav-
ior of this algorithm. The probability that a processor will delete its chosen element in
a given step is 1/4 since

(1) The probability that it will get ci = 1 is 1/2.
(2) The probability that ci+1 = 0 is also 1/2.

This heuristic argument implies that the algorithm completes its execution in O(lg n)
phases. In order to prove this rigorously, we must bound the probability that very
few list-elements are eliminated in a given step. The argument above implies that, on
the average, O(n/ lg n) list elements are eliminated in a given step. The problem is
that this average might be achieved by having a few processors eliminate all of their
list-elements rapidly, and having the others hold onto theirs. The mere statement that
each phase of the algorithm has the expected average behavior doesn’t prove that the
expected execution time is what we want. We must also show that the worst case be-
havior is very unlikely.

We will concentrate upon the behavior of the list-entries selected by a single proces-
sor in multiple phases of the algorithm. In each phase, the processor has a probability
of 1/4 of deleting an element from the list. We imagine the entries selected in step 1
of the selection procedure above as corresponding to “coins” being flipped, where the
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probability of “heads” (i.e., the chosen element being deleted from the list) is 1/4. In
c lg n trials, the probability of ≤ lg n “heads” occurring is

Prob [{H ≤ lg k}] ≤
(
c lg n

lg n

)(
3

4

)c lgn−lgn

Here, we simply compute the probability that c lg n− lg n tails occur and we ignore all

of the other factors. The factor
(

3

4

)c lgn−lgn

is the probability the first c lg n− lg n trials

result in tails, and the factor of
(
c lgn
lgn

)
is the number of ways of distributing these results

among all of the trials. We use Stirling’s formula to estimate the binomial coefficient:(
c lg n

lg n

)(
3

4

)c lgn−lgn

=

(
c lg n

lg n

)(
3

4

)(c−1) lgn

≤
(
ec lg n

lg n

)lgn(
3

4

)(c−1) lgn

=

(
ec

(
3

4

)c−1
)lgn

≤
(

1

4

)lgn

=
1

n2

as long as c ≥ 20 (this is in order to guarantee that Stirling’s formula is sufficiently
accurate). This is the probability that one processor will still have list-elements left
over at the end of c lg n phases of the algorithm. The probability that any of the n/ lg n
processors will have such list elements left over is

≤ n

lg n
· 1

n2
≤ 1

n

and this shows that the expected execution-time is O(lg n).

EXERCISES.

2. What is the worst-case running time of the randomized parallel prefix algorithm?

3. How would the algorithm have to be modified if we wanted to compute all of
the values {d0, d0 ? d1, . . . , d0 ? · · · ? dn−1}?

7.2.2. The Valiant and Brebner Sorting Algorithm. This algorithm is due
to Valiant and Brebner (see [161]). It was one of the first RNC algorithms to be
developed and illustrates some of the basic ideas involved in all RNC algorithms.
It is also interesting because an incomplete implementation of it is built into a
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physical piece of hardware — the Connection Machine. The implementation on the
Connection Machine is incomplete because it doesn’t use the randomized aspects of
the Valiant-Brebner algorithm. As a result this implementation occasionally suffers
from the problems that randomization was intended to correct — bottlenecks in the
data-flow.

Suppose we have an n-dimensional hypercube computer. Then the vertices will be
denoted by n-bit binary numbers and adjacent vertices will be characterized by the fact
that their binary numbers differ in at most one bit. This implies that we can route data
on a hypercube by the following algorithm:

LEMMA 7.2.2. Suppose we want to move data from vertex a1 . . . an to vertex b1 . . . bn,
where these are the binary representations of the vertex numbers. This movement can be ac-
complished in 2n steps by:

(1) scanning the numbers from left to right and;
(2) whenever the numbers differ (in a bit position) moving the data along the correspond-

ing communication line.

Suppose we have a hypercube computer with information packets at each vertex.
The packets look like <data,target vertex>, and we send them to their destinations in
two steps as follows:

Phase 1. Generate temporary destinations for each packet and send the packets to
these temporary destinations. These are random n-bit binary numbers (each bit has a
1/2 probability of being 1),

Phase 2. Send the packets from their temporary destinations to their true final des-
tinations.

In carrying out these data movements we must:
(1) use the left to right algorithm for routing data, and;
(2) whenever multiple packets from phase 1 or phase 2 appear at a vertex they are

queued and sequentially sent out;
(3) whenever packets from both phases appear at a vertex the packets from phase

1 have priority over those from phase 2.
The idea here is that bottlenecks occur in the routing of data to its final destination be-
cause of patterns in the numbers of the destination-vertices. This problem is solved by
adding the intermediate step of sending data to random destinations. These random
temporary destinations act like hashing — they destroy regularity of the data so that
the number of collisions of packets of data is minimized.

The main result is:

THEOREM 7.2.3. The probability is (.74)d that this algorithm, run on a hypercube of d
dimensions, takes more than 8d steps to complete.

Since the number of vertices of a hypercube of dimension d is 2d, we can regard n =
2d as the number of input data values. The expected execution-time of this algorithm
is, consequently, O(lg n).

This result has been generalized to computers on many bounded-degree networks
by Upfal in [158].

7.2.3. Maximal Matchings in Graphs. In this section we will discuss a probabilis-
tic algorithm for performing an important graph-theoretic computation.
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FIGURE 7.2.1. A graph with a perfect matching

DEFINITION 7.2.4. Let G = (V,E) denote an undirected graph.
(1) A maximal matching of G is a set of edges M ⊆ E such that

• For any two ei, ej ∈ M , ei has no end-vertices in common with ej . This is
called the vertex disjointness property.
• The set M is maximal with respect to this property. In other words, the

graph G′ spanned by E \M consists of isolated vertices.
(2) A maximal matching, M , is perfect if all vertices of G occur in the subgraph

induced by the edges in M .
(3) If G is a weighted graph then a minimum weight maximal matching, M ⊆ E is

a maximum matching such that the total weight of the edges in M is minimal
(among all possible maximum matchings).

Note that not every graph has a perfect matching — for instance the number of
vertices must be even1. Figure 7.2.3 shows a graph with a perfect matching — the edges
in the matching are darker than the other edges.

In the past, the term “maximal matching” has often been used to refer to a matching
with the largest possible number of edges. Finding that form of maximal matching is
much more difficult than finding one as we define it2. There is clearly a simple greedy
sequential algorithm for finding a maximum matching in our sense. The two different
definitions are connected via the concept of minimum-weight maximal matching —
just give every edge in the graph a weight of −1.

Sequential algorithms exist for solving the “old” form of the maximum matching
problem — the book of Lovász and Plummer, [103], and the paper of Edmonds, [48]
give a kind of survey of the techniques.

The parallel algorithms for solving the maximal matching problem are generally
based upon the theorem of Tutte proved in 1947 — see [156]. It proved that a graph
has a perfect matching if and only if a certain matrix of indeterminates, called the Tutte
matrix, is non-singular (has an inverse). A matrix is non-singular if and only if its
determinant is nonzero — see the definition of a determinant in 5.1.8 on page 101. The
first algorithm based on this result was due to Lovász in 1979 — see [101]. This algo-
rithm determines whether the Tutte matrix is nonsingular by a Monte Carlo algorithm

1Since the edges in M are vertex-disjoint, and each edge has exactly two ends.
2I.e., a matching such that adding any additional edge to destroys the vertex disjointness property.
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— namely 7.1.4 on page 362. Since it can be difficult to efficiently compute the determi-
nant of a matrix of indeterminates, the algorithm of Lovász turns the Tutte matrix into
a matrix of numbers by plugging random values into all of the indeterminates. There
are several efficient parallel algorithms for deciding whether a matrix of numbers is
nonsingular:

(1) Use Csanky’s algorithm for the determinant in § 5.1.5 of chapter 5. This is
actually not very efficient (but it is an NC algorithm).

(2) Use the results in § 5.1.3 of the same chapter to decide whether the matrix has
an inverse. This is the preferred method.

However we decide whether the modified Tutte matrix is nonsingular, we get a proba-
bilistic algorithm for deciding whether the original graph had a perfect matching: the
random values we plugged into the indeterminates might have been a “root” of the
determinant (regarded as a polynomial in the indeterminates). In other words, we
might get a “No” answer to the question of whether there exists a perfect matching,
even though the determinant of the original Tutte matrix is nonzero, as a polynomial
(indicating that the graph does have a perfect matching). Lovász’s algorithm is, con-
sequently, a Yes-biased Monte Carlo algorithm, and can be regarded as an m-RNC
algorithm.

The first m-RNC algorithm for maximal matchings was discovered by Karp, Upfal
and Wigderson in 1985 — see [81] and [82]. It solves all forms of the maximal matching
problem — including the weighted maximal matching problems3.

We will present a simpler (and ingenious) algorithm for this problem developed
by Ketan Mulmuley, Umesh Vazirani and Vijay Vazirani in 1987 — see [118]. This
algorithm computes a maximal matching in a very interesting way:

(1) It assigns weights to the edges of a graph in a random, but controlled fashion
(this will be clarified later).

(2) It computes the weight of a minimum-weight maximum matching in such a
way we can determine the only edges that could possibly have participated in
this matching. In other words, we assign weights that are not entirely random,
but with the property that numerical values of the sum of any subset of the
weights uniquely determines the weights that could have participated in the
summation.

7.2.3.1. A Partitioning Lemma. We will begin with some technical results that allow
us to “randomly” assign weights that have this property.

DEFINITION 7.2.5. A set system (S, F ) consists of a finite set S of elements
{x1, . . . , xn}, and a family, F , of subsets of S, so F = {S1, . . . , Sk}with Si ⊆ S.

If we assign a weight wi to each element xi of S, we define the weight w(Si) of a set
Si by

w(Si) =
∑
xj∈Si

wj

LEMMA 7.2.6. Let (S, F ) be a set system whose elements are assigned integer weights
chosen uniformly and independently from [1..2n]. Then the probability that there exists a
unique minimum-weight set in F is 1/2.

3Which implies that it also solves the “old” form of the maximal matching problem.
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PROOF. Pick some value of i and fix the weights of all of the elements except xi. We
define the threshold for element xi to be the number αi such that:

(1) if wi ≤ αi, then xi is contained in some minimum weight subset Sj , and
(2) if wi > αi, then xi is in no minimum-weight subset.

Clearly, if wi < αi, then the element xi must be in every minimum-weight subset. Thus
ambiguity about element xi occurs if and only if wi = αi, since in this case there is some
minimum-weight subset that contains xi and another that does not. In this case, we
will say that the element xi is singular.

Now we note that the threshold αi was defined independently of the weight wi.
Since wi was selected randomly, uniformly, and independently of the other wj , we get:

Claim: The probability that xi is singular is ≤ 1

2n
.

Since S contains n elements:
Claim: The probability that there exists a singular element is ≤ n · (1/2n) = 1/2.
It follows that the probability that there is no singular element is 1/2.
Now we observe that if no element is singular, then minimum-weight sets will be

unique, since, in this case, every element will either be in every minimum-weight set or
in no minimum-weight set. �

7.2.3.2. Perfect Matchings. Now we will consider the special case of perfect matchings
in bipartite graphs. Recall the definition of a bipartite graph in 3.8.6 on page 87. This
turns out to be a particularly simple case. The methods used in the general case are
essentially the same but somewhat more complex.

We will assume given a bipartite graph G = G(V1, V2, E) with 2n vertices and m
edges. In addition, we will assume that G has a perfect matching. As remarked above,
this is a highly nontrivial assumption. We will give an RNC algorithm for finding a
perfect matching.

We regard the edges in E and the set of perfect matchings in G as a set-system.
We assign random integer weights to the edges of the graph, chosen uniformly and
independently from the range [1..2m]. Lemma 7.2.6 on page 369 implies that the
minimum-weight perfect-matching is unique is 1/2. In the remainder of this discus-
sion, we will assume that we have assigned the random weights in such a way that the
minimum-weight perfect-matching in G is unique. We suppose that the weight of the
edge connecting vertex i and j (if one exists), if w(i, j).

DEFINITION 7.2.7. If A is an n×n matrix, we will define Āi,j = det(A′i,j), where A′i,j
is the n−1×n−1 matrix that results from deleting the ith row and the jth column from
A. We define the adjoint of A, denoted Â by

Âi,j = (−1)i+jĀi,j

for all i and j between 1 and n.

Cramer’s Rule states that A−1 = Âtr/ det(A).
In order to describe this algorithm, we will need the concept of an incidence matrix

of a bipartite graph.
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DEFINITION 7.2.8. Let G = G(U, V,E) be a bipartite graph with U = {u1, . . . , um}
and V = {v1, . . . , vn}. The incidence matrix of G is an m× n matrix A defined by

Ai,j =

{
1 if there exists an edge from uito vj
0 otherwise

This is closely related to the adjacency matrix of G, defined in 6.2.2 on page 255: if G
is a bipartite graph with incidence matrix D and adjacency matrix A, then

A =

(
0m,n D
Dtr 0n,m

)
whereDtr is the transpose ofD and 0a,b denotes a matrix with a rows and b columns, all
of whose entries are zero. Note that, if a bipartite graph has a perfect matching, both
of its vertex-sets will be exactly the same size, and its incidence matrix will be a square
matrix.

We will construct a matrix, D, associated with G by the following sequence of op-
erations:

(1) Let C be the incidence matrix of G (defined above);
(2) If Ci,j = 1 (so there is an edge connecting vertex i and vertex j), set Di,j ←

2w(i,j).
(3) If Ci,j = 0 set Di,j ← 0.

This matrix D has the following interesting properties:

LEMMA 7.2.9. Suppose the minimum-weight perfect matching in G(U, V,E) is unique.
Suppose this matching is M ⊆ E, and suppose its total weight is w. Then

det(D)

2w

is an odd number so that:

(1) det(D) 6= 0
(2) the highest power of 2 that divides det(D) is 2w.

PROOF. We analyze the terms that enter into the determinant of D. Recall the defi-
nition of the determinant in 5.1.8 on page 101:

(7.2.1) det(D) =
∑
i1,...,in

all distinct

℘(i1, . . . , in)D1,i1 · · ·Dn,in

where ℘(i1, . . . , in) is the parity of the permutation
(

1 . . . n
i1 . . . in

)
(defined in 5.1.7 on

page 101).
Now we note that every perfect matching in G corresponds to a permutation of the

numbers {1, . . . , n}. Each such perfect matching, consequently, corresponds to a term
in equation (7.2.1). Suppose σ is a permutation that corresponds to a perfect matching
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in G — this means that there is an edge connecting vertex i to vertex σ(i) and we get

t(σ) = ℘(σ)D1,σ(1) · · ·Dn,σ(n)

= ℘(i1, . . . , in)2w(1,σ(1)) · · · 2w(n,σ(n))

= ℘(i1, . . . , in)2
∑n
j=1 w(j,σ(j))

If a permutation σ doesn’t correspond to a perfect matching, then t(σ) = 0, since it will
have some factor of the form Di,σ(i), where there is no edge connecting vertex i with
vertex σ(i).

Now we divide det(D) by 2w. The quotient will have one term of the form ±1,
corresponding to the minimum-weight matching and other terms corresponding to
higher-weight matchings. There will only be one term corresponding to the minimum-
weight matching because it is unique (by assumption). The higher-weight matchings
will give rise to terms in the quotient that are all even because the numbers in the D-
matrix were powers of two that corresponded to the weights (which were higher, for
these matchings). It follows that the number

det(D)

2w

is an odd number. �

The second lemma allows us to determine which edges lie in this minimum-weight
matching:

LEMMA 7.2.10. As before, suppose M ⊆ E is the unique minimum-weight perfect match-
ing in G(U, V,E), suppose its total weight is w. Then an edge e ∈ E connecting vertex ui ∈ U
with vertex vj ∈ V is in M if and only if

2w(i,j) det(D̄i,j)

2w

is an odd number.

PROOF. This follows by an argument like that used in 7.2.9 above and the fact that
determinants can be computed by expanding using minors. It is not hard to give a
direct proof that has a more graph-theoretic flavor. Recall that D̄i,j is the matrix that
result from deleting the ith row and jth column ofD — it is the form of theD-matrix that
corresponds to the result of deleting ui from U and vj from V . Call this new, smaller
bipartite graph G′. It is not hard to see that G′ also has a unique minimum-weight
matching — namely the one that result from deleting edge e from M . Consequently,
lemma 7.2.9 above, implies that

det(D̄i,j)

2w−w(i,j)

is an odd number. Herew−w(i, j) is the weight of this unique minimum-weight perfect
matching in G′ that result by deleting e from M . But this proves the result. �

All of the statements in this section depend upon the assumption that the
minimum-weight perfect matching of G is unique. Since lemma 7.2.6 on page 369
implies that the probability of this is 1/2, so we have a probabilistic algorithm. In fact,
we have a Las Vegas algorithm, because it is very easy to verify whether the output of
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FIGURE 7.2.2.

the algorithm constitutes a perfect matching. This means we have an RNC algorithm,
since we need only execute the original probabilistic algorithm over and over again
until it gives us a valid perfect matching for G.

To implement this algorithm in parallel, we can use Csanky’s NC algorithm for
the determinant — this requires O(n · n2.376) processors and executes in O(lg2 n) time.
Since we must compute one determinant for each of them edges in the graph, our total
processor requirement is O(n ·m · n2.376). Our expected execution-time is O(lg2 n).

7.2.3.3. The General Case. Now we will explore the question of finding perfect
matchings in general undirected graphs. We need several theoretical tools.

DEFINITION 7.2.11. Let G = (V,E) be an undirected graph, such that |V | = n. The
Tutte matrix of G, denoted t(G), is defined via

t(G) =


xi,j if there exists an edge connecting viwith vjand i < j

−xi,j if there exists an edge connecting viwith vjand i > j

0 if i = j

Here the quantities xi,j with 1 ≤ i < j ≤ n are indeterminates — i.e., variables.

For instance, if G is the graph in figure 7.2.3.3, then the Tutte matrix of G is
0 x1,2 x1,3 0 x1,5 x1,6

−x1,2 0 0 x2,4 x2,5 x2,6

−x1,3 0 0 x3,4 x3,5 0
0 −x2,4 −x3,4 0 x4,5 0
−x1,5 −x2,5 −x3,5 −x4,5 0 0
−x1,6 −x2,6 0 0 0 0


In [156], Tutte proved that these matrices have a remarkable property:

THEOREM 7.2.12. Tutte’s Theorem. Let G be a graph with Tutte matrix t(G). If G does
not have a perfect matching then det(t(G) = 0. If G has perfect matchings, then4

det(t(g)) = (t1 + · · ·+ tk)
2

4Recall the definition of the determinant of a matrix in 5.1.8 on page 101.
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where the ti are expressions of the form ±xµ1,ν1 · · ·xµn,νn , and the sets of edges
{(µ1, ν1), . . . , (µn, νn)} are the perfect matchings of G.

We will not prove this result. It turns out that the proof that it vanishes is very sim-
ilar to part of the proof of 7.2.9 on page 371 — see [65]. If we compute this determinant
of the Tutte matrix of the graph in figure 7.2.3.3, we get:

(x1,6x2,4x3,5 + x1,5x3,4x2,6 + x1,3x2,6x4,5 − x1,6x2,5x3,4)2

so that this graph has precisely three distinct perfect matchings:
• {(1, 6), (2, 4), (3, 5)},
• {(1, 3), (2, 6), (4, 5)}, and
• {(1, 6), (2, 5), (3, 4)}

Given this theorem, we can generalize the results of the previous section to general
graphs fairly easily. As before we assume that we have a graph G that has a perfect
matching, and we assign weights randomly to the edges of G. Now we define the
D-matrix by the assignments

xi,j ← 2w(i,j)

in the Tutte matrix, for all 1 ≤ i < j ≤ n. So ourD -matrix is just the result of evaluating
the Tutte matrix.

LEMMA 7.2.13. Suppose G is an weighted undirected graph with n vertices, that has a
unique minimum-weight perfect matching. If w is the total weight of this perfect matching
then w. Then

det(D)

22w

is an odd number so that:
(1) det(D) 6= 0
(2) the highest power of 2 that divides det(D) is 22w.

Note that we have to use 22w rather than 2w because the sum of terms in the Tutte
matrix is squared. The determinant of the incidence matrix of a bipartite graph had the
same sum of terms, but the result wasn’t squared.

PROOF. This proof is almost exactly the same as that of 7.2.9 on page 371 — Tutte’s
theorem has done most of the work for us. It shows that det(D) in the present case has
exactly the same form as det(D)2 in 7.2.9. �

Similarly, we get:

LEMMA 7.2.14. As before, suppose M ⊆ E is the unique minimum-weight perfect match-
ing in G, and suppose its total weight is w. Then an edge e ∈ E is in M if and only if

22w(i,j) det(D̄i,j)

22w

is an odd number.

As before, we get a Las Vegas algorithm that executes in O(lg2 n) time, using O(n ·
m ·n2.376) processors. This gives us an RNC algorithm with expected execution time of
O(lg2 n). All of this assumes that we know that the graph G has a perfect matching. If
we don’t know this, Tutte’s theorem implies that det(D) = 0. Unfortunately, if we get
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we don’t necessarily know that the graph didn’t have a perfect matching – we might
have picked unlucky values for the weights of the edges to produce this result even
though the determinant of the Tutte matrix is nonzero. If we don’t know whether the
original graph had a perfect matching, our algorithm becomes an m-RNC algorithm
that is biased in the direction of saying that there is a perfect matching.

7.2.4. The Maximal Independent-Set Problem.
7.2.4.1. Definition and statement of results. We will conclude this chapter by study-

ing a very famous problem, whose first parallel solution represented something of a
breakthrough.

DEFINITION 7.2.15. Let G = (V,E) denote an undirected graph with n vertices. A
set, S ⊂ V , of vertices will be said to be independent if no two vertices in S are adjacent.

An independent set of vertices, S, is said to be maximal, if every vertex i ∈ V is
adjacent to some element of S.

The problem of finding a maximal independent set has a trivial sequential solution
— simply test all of the vertices of G, one by one. If a vertex is not adjacent to any
element of S, then add it to S. It is not clear that there is any reasonable parallel solu-
tion that is NC — it appears that the choices one makes in any step of the sequential
algorithm influences all future choices. This problem was long believed to be inher-
ently sequential. Indeed, the lexicographically first version of the problem is known to
be P-complete — see [31].

This algorithm was first discovered by Karp and Wigderson in 1984 — see [80].
They presented a probabilistic algorithm and then showed that, with a suitable choice
of probability distribution, the algorithm became deterministic. Recall the notation of
§ 6.2 and § 6.4.3 in this chapter.

7.2.2. This is an algorithm for finding a maximal independent set within a graph, whose
expected execution time is O(lg2 n) with O(n2)

• Input: Let G = (V,E) be an undirected graph with |V | = n.
• Output: A maximal independent set I ⊆ V .

(1) Initialization:
I ← ∅
G′ ← G

(2) Main loop:
while G′ 6= ∅ do
I ′ ← select(G′)
I ← I ∪ I ′
Y ← I ′ ∪ Γ(I ′)
G′ = (V ′, E ′) is the induced subgraph in V ′ \ Y

endwhile

We have omitted an important detail in this description — the subroutine select:

7.2.3. The select subroutine. First version.
select(G′ = (V ′, E ′))
I ′ ← V ′
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define a random function π of V ′ → V ′ by
for all i′ ∈ V ′ do in parallel

set π(i′) = a random element of V ′
endfor

for all edges (i, j) ∈ E ′ do
if π(i) ≥ π(j) then
I ′ ← I ′ \ {i}

else
I ′ ← I ′ \ {j}

endfor
end (of select)

It is not hard to see that select does select an independent set in G′, so that the
original algorithm selects a maximal independent set of the original graph. The only
point that is still in question is the execution time of the algorithm. It will turn out that
the expected number of iterations of the main loop in 7.2.2 is O(lg n) so the expected
execution-time of the whole algorithm is O(lg2 n).

The random choices in the select step of this algorithm are made independently of
each other.

The precise meaning of this statement is:

DEFINITION 7.2.16. Let {E1, . . . , Ek} be a finite sequence of events. These events
are said to be independent if every subsequence {Ej1 , . . . , Eji} satisfies

Prob [Ej1 ∩ · · · ∩ Eji ] =
i∏

`=1

Prob [Ej` ]

Karp and Wigderson made the very important observation that it is really only
necessary to make pairwise independent selections for the algorithm to work properly.
“Pairwise independence” just means that, of the sequence of events {E1, . . . , Ek}, every
pair of events satisfies the conditions of the definition above. In order to describe this
we define:

DEFINITION 7.2.17. For each vertex i′ ∈ V ′ define:
(1) deg(i′) = |Γ(i′)|;
(2) coin(i′) to be a {0, 1}-valued random variable such that

(a) if deg(i′) ≥ 1 then coin(i′) = 1 with probability
1

2 deg(i′)

and
(b) if deg(i′) = 0, then coin(i′) is always 1.

With this definition in mind, our new version of the select-step is

7.2.4. The select subroutine. Second version.
select(G′ = (V ′, E ′))
I ′ ← V ′

X ← ∅
for all i′ ∈ V ′ do in parallel
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compute deg(i′)
endfor
for all i′ ∈ V ′ do in parallel

randomly choose a value for coin(i′)
if coin(i′) = 1 then X ← X ∪ {i′}

endfor
for all edges (v1, v2) ∈ E ′ do in parallel

if v1 ∈ X and v2 ∈ X then
if deg(v1) ≤ deg(v2) then
I ′ ← I ′ \ {v1}
else I ′ ← I ′ \ {v2}

endfor
end (of select)

Note that this second algorithm is somewhat more complicated than the first. The
proof that the algorithms work is based upon the fact that, on average, at least 1/16
of the edges are eliminated in each iteration. This implies that all of the edges are
eliminated in O(lg n) expected iterations.

The second, more complicated algorithm, has the interesting property that the al-
gorithm continues to be valid if we restrict the set of random variables {coin(i)}, for
all vertices i in the graph, to some set of size q2, where q is some number that ≥ n but
bounded by a polynomial in n. In other words there are q2 possible values for the set
of n variables {coin(i)}, such that there is a nonzero probability that at least 1/16 of the
edges will be eliminated in an iteration of the algorithms that uses values of {coin(i)}
drawn from this set. Since the set is of size q2, we can simply test each member of this
set — i.e. we create processes that carry out an iteration of the algorithm using each of
the members of the set. Since the probability of eliminating 1/16 of the edges by using
some member of this set is nonzero, it follows that at least one of the processes we have
created must succeed in eliminating 1/16 of the edges. Our RNC algorithm becomes a
deterministic algorithm.

We will describe how this sample space is constructed. We want the probability
conditions in 7.2.17 to be satisfied.

We construct an n × q matrix, M , where q is the smallest prime >
∑

i∈V 2d(i). We
will construct this matrix in such a way that row i (representing values of coin(i) in
different “coin tosses”) has the value 1 in precisely q/2d(i) entries, if d(i) ≥ 1, and in
all entries if d(i) = 0. The upshot will be that if we “draw” q entries from this row (i.e.,
all of them), the probability of a 1 occurring is 1/2d(i), as specified in 7.2.17 above. The
entries in M are otherwise random.

Now we define a total of q2 values of the set {coin(1), . . . , coin(n)}, where we have
numbered the vertices of the graph. Let x and y be integers such that 0 ≤ x, y ≤
q − 1. Then there are q2 possible values of the pairs (x, y). We will index our sets
{coin(1), . . . , coin(n)} by these pairs. Define

coin(x,y)(i) = Mi,(x+i·y mod q)

LEMMA 7.2.18. The probability that coin(i) = 1 satisfies the conditions in 7.2.17.

PROOF. Let the probability that coin(i) = 1 required by 7.2.17, be Ri. We have put
q · Ri entries equal to 1 into the matrix M . For any value j there are precisely q pairs
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(x, y) such that
(x+ i · y) mod q = j

— this just follows from 6.5.2 on page 344, which implies that given any value of x we
can solve for a corresponding value of y that satisfies the equation: y = i−1(j−x) mod q
— here i−1 is the multiplicative inverse of i mod q. It follows that there are q ·Ri values
of j that make Mi,(x+i·y mod q) = 1. �

LEMMA 7.2.19. Given i, i′, the probability that coin(i) = 1 and coin(i′) = 1 simultane-
ously, is the product of the probabilities that each of them are 1 individually.

This lemma implies that the random variables generated by the scheme described
above, are pairwise independent.

PROOF. We use the notation of the proof of 7.2.18 above. We must show that the
probability that coin(i) = 1 and coin(i′) = 1 occur simultaneously, is equal to RiRi′ .
Given any pair of numbers j and j′ such that 0 ≤ j, j′ ≤ q − 1, the simultaneous
equations

x+ i · y mod q =j

x+ i′ · y mod q =j′

have a unique solution (for x and y). If there are a = Riq entries in M that produce a
value of 1 for coin(i) and b = Ri′q entries that produce a value of 1, then there are ab pairs
(j, j′) that simultaneously produce 1 in coin(i) and coin(i′). Each such pair (of entries
of M ) corresponds to a unique value of x and y that causes that pair to be selected.
Consequently, there are ab cases in the q2 sets of numbers {coin(1), . . . , coin(n)}. The
probability that that coin(i) = 1 and coin(i′) = 1 occur simultaneously is, therefore,
ab/q2, as claimed. �

With these results in mind, we get the following deterministic version of the Maxi-
mal Independent Set algorithm:

7.2.5. The Deterministic Algorithm. This is an algorithm for finding a maximal inde-
pendent set within a graph, whose execution time is O(lg2 n) with O(mn2) processors (where
m is the number of edges of the graph).

• Input: Let G = (V,E) be an undirected graph with |V | = n.
• Output: A maximal independent set I ⊆ V .

(1) Initialization:
I ← ∅
n← |V |
Compute a prime q such that n ≤ q ≤ 2n
G′ = (V ′, E ′)← G = (V,E)

(2) Main loop:
while G′ 6= ∅ do

for all i ∈ V ′ do in parallel
Compute d(i)

endfor
for all i ∈ V ′ do in parallel

if d(i) = 0 then
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I ← I ∪ {i}
V ← V \ {i}

endfor
find i ∈ V ′ such that d(i) is a maximum
if d(i) ≥ n/16 then
I ← I ∪ {i}
G′ ← graph induced on the vertices
V ′ \ ({i} ∪ Γ({i}))

else for all i ∈ V ′, d(i) < n/16
randomly choose x and y such that 0 ≤ x, y ≤ q − 1
X ← ∅
for all i ∈ V ′ do in parallel

compute n(i) = bq/2d(i)c
compute l(i) = (x+ y · i) mod q
if l(i) ≤ n(i) then
X ← X ∪ {i}

endfor
I ′ ← X
for all i ∈ X , j ∈ X do in parallel

if (i, j) ∈ E ′ then
if d(i) ≤ d(j) then
I ′ ← I ′ \ {i}

I ← I ∪ I ′
Y ← I ′ ∪ Γ(I ′)
G′ = (V ′, E ′) is the induced subgraph on V ′ \ Y

endfor
endfor

endwhile

7.2.4.2. Proof of the main results. The following results prove that the expected
execution-time of 7.2.3 is poly-logarithmic. We begin by defining:

DEFINITION 7.2.20. For all i ∈ V ′ such that d(i) ≥ 1 we define

s(i) =
∑
j∈Γ(i)

1

d(j)

We will also need the following technical result:

LEMMA 7.2.21. Let p1 ≥ · · · ≥ pn ≥ 0 be real-valued variables. For 1 ≤ k ≤ n, let

α` =
k∑
j=1

pj

β` =
k∑
j=1

k∑
`=j+1

pj · p`

γi =αi − c · βi
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where c is some constant c > 0. Then

max{γk|1 ≤ k ≤ n} ≥ 1

2
·min

{
αn,

1

c

}
PROOF. We can show that βk is maximized when p1 = · · · = pn = αk/k. This is

just a problem of constrained maximization, where the constraint is that the value of
αk =

∑k
j=1 pj is fixed. We solve this problem by Lagrange’s Method of Undetermined

Multipliers — we maximize
Z = βk + λ · αk

where λ is some quantity to be determined later. We take the partial derivatives of Z
with respect to the pj to get

∂Z

∂pt
=

(
k∑
j=1

pj

)
− pt + λ

(simply note that pt is paired with every other pj for 0 ≤ j ≤ k in the formula for βk). If
we set all of these to zero, we get that the pj must all be equal.

Consequently βk ≤ α2
k · (k − 1)/2k. Thus

γk ≥ αk ·
(

1− c · αk ·
(k − 1)

2k

)
If αn ≤ 1/c then γn ≥ αn/2. If αk ≥ 1/c then γ1 ≥ 1/c. Otherwise there exists a value
of k such that αk−1 ≤ 1/c ≤ αk ≤ 1/c · k/(k − 1). The last inequality follows because
p1 ≥ · · · ≥ pn. Then γk ≥ 1/2c. �

PROPOSITION 7.2.22. Principle of Inclusion and Exclusion. Let E1 and E2 be two
events. Then:

(1) If E1 and E2 are mutually exclusive then

Prob [E1 ∪ E2] = Prob [E1] + Prob [E2]

(2) In general

Prob [E1 ∪ E2] = Prob [E1] + Prob [E2]− Prob [E1 ∩ E2]

(3) and in more generality

Prob

[
k⋃
i=1

Ei

]
=
∑
i

Prob [Ei]−
∑
i1<i2

Prob [Ei1 ∩ Ei2 ]

+
∑

i1<i2<i3

Prob [Ei1 ∩ Ei2 ∩ Ei3 · · · ]

Prob

[
k⋃
i=1

Ei

]
≥
∑
i

Prob [Ei]−
∑
i1<i2

Prob [Ei1 ∩ Ei2 ]

Essentially, the probability that Prob [Ei] occurs satisfies the conditions that

Prob [E1] = Prob [E1 ∩ ¬E2] + Prob [E1 ∩ E2]

Prob [E2] = Prob [E2 ∩ ¬E1] + Prob [E1 ∩ E2]
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where Prob [E1 ∩ ¬E2] is the probability that E1 occurs, but E2 doesn’t occur. If we
add Prob [E1] and Prob [E2], the probability Prob [E1 ∩ E2] is counted twice, so be must
subtract it out.

The third statement can be proved from the second by induction.

DEFINITION 7.2.23. Conditional Probabilities. Let Prob [E1|E2] denote the condi-
tional probability that E1 occurs, given that E2 occurs. It satisfies the formula

Prob [E1|E2] =
Prob [E1 ∩ E2]

Prob [E2]

THEOREM 7.2.24. Let Y 1
k and Y 2

k be the number of edges in the graph E ′ before the kth

execution of the while-loop of algorithms 7.2.3 and 7.2.4, respectively. IfE(∗) denotes expected
value, then

(1) E[Y 1
k − Y 1

k+1] ≥ 1
8
· Y 1

k − 1
16

.
(2) E[Y 2

k − Y 2
k+1] ≥ 1

8
· Y 2

k .
In the case where the random variables {coin(∗)} in 7.2.4 are only pairwise independent, we
have

E[Y 2
k − Y 2

k+1] ≥ 1

16
Y 2
k

This result shows that the number of edges eliminated in each iteration of the
while-loop is a fraction of the number of edges that existed.

PROOF. Let G′ = (V ′, E ′) be the graph before the kth execution of the body of the
while-loop. The edges eliminated due to the kth execution of the body of the while-
loop are the edges with at least one endpoint in the set I ′ ∪ Γ(I ′), i.e., each edge (i, j)
is eliminated either because i ∈ I ′ ∪ Γ(I ′) or because j ∈ I ′ ∪ Γ(I ′), due to the line
V ′ ← V ′ \ (I ′ ∪ Γ(I ′)) in 7.2.2. Thus

E[Y 2
k \ Y 2

k+1] ≥1

2
·
∑
i∈V ′

d(i) · Prob [i ∈ I ′ ∪ Γ(I ′)]

≥1

2
·
∑
i∈V ′

d(i) · Prob [i ∈ Γ(I ′)]

Here Prob [i ∈ I ′ ∪ Γ(I ′)] is the probability that a vertex i is in the set I ′ ∪ Γ(I ′). We will
now try to compute these probabilities. In order to do this, we need two additional
results: �

LEMMA 7.2.25. For algorithm 7.2.3, and all i ∈ V ′ such that d(i) ≥ 1

Prob [i ∈ Γ(I ′)] ≥ 1

4
·min{s(i), 1} ·

(
1− 1

2n2

)
PROOF. We assume that π is a random permutation of the vertices of V ′ — this

occurs with a probability of at least 1 − 1/2n2. For all j ∈ V ′ define Ej to be the event
that

π(j) < min{π(k)|k ∈ Γ(j)}
(in the notation of 7.2.2). Set

pi = Prob [Ei] =
1

d(i) + 1
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and
Γ(i) = {1, . . . , d(i)}

Then, by the principle of inclusion-exclusion (Proposition 7.2.22 on page 380), for 1 ≤
k ≤ d(i),

Prob [i ∈ Γ(I ′)] ≥ Prob

[
k⋃
j=1

Ej

]
≥

k∑
j=1

pj −
k∑
j=1

k∑
`=j+1

Prob [Ej ∩ E`]

For fixed j, ` such that 1 ≤ j < ` ≤ k, let E ′j be the event that

(7.2.2) π(j) < min{π(u)|u ∈ Γ(j) ∪ Γ(`)}
and let E ′` be the event that

π(`) < min{π(u)|u ∈ Γ(j) ∪ Γ(`)}
Let

d(j, `) = |Γ(j) ∪ Γ(`)|
Then,

Prob [Ej ∩ E`] ≤ Prob
[
E ′j
]
· Prob

[
E`|E ′j

]
+ Prob [E ′`] · Prob [Ej|E ′`]

≤ 1

d(j, `) + 1
·
(

1

d(k) + 1
+

1

d(j) + 1

)
≤ 2 · pj · pk

let α =
∑d(i)

j=1 pj . Then, by 7.2.21,

Prob [i ∈ Γ(I ′)] ≥ 1

2
·min(α, 1/2) ≥ 1

4
·min{s(i), 1}

which proves the conclusion. �

LEMMA 7.2.26. In algorithm 7.2.4 (page 376), for all i ∈ V ′ such that d(i) ≥ 1

Prob [i ∈ Γ(I ′)] ≥ 1

4
min

{
s(i)

2
, 1

}
PROOF. For all j ∈ V ′ let Ej be the event that coin(j) = 1 and

pj = Prob [Ej] =
1

2d(i)

Without loss of generality, assume that

Γ(i) = {1, . . . , d(i)}
and assume that

p1 ≥ · · · ≥ pd(i)

Let E ′1 = E1 and for 2 ≤ j ≤ d(i) let

E ′j =

(
j−1⋂
k=1

¬Ek

)
∩ Ej

Note that E ′j is the event that Ej occurs and {E1, . . . , Ej−1} do not occur. Let

(7.2.3) Aj =
⋂

`∈Γ(j)
d(`)≥d(j)

¬E`
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This is the probability that none of the coin(∗) variables are 1, for neighboring vertices
` with d(`) ≥ d(j). Then

Prob [i ∈ Γ(I ′)] ≥
d(i)∑
j=1

Prob
[
E ′j
]
· Prob

[
Aj|E ′j

]
But

Prob
[
Aj|E ′j

]
≥ Prob [Aj] ≥ 1−

∑
`∈Γ(j)
d(`)≥d(j)

p` ≥
1

2

and
d(i)∑
j=1

Prob
[
E ′j
]

= Prob

d(i)⋃
j=1

Ej


(since the E ′j are mutually exclusive, by construction).

For k 6= j, Prob [Ej ∩ Ek] = pj · pk (since the events are independent). Thus, by the
principle of inclusion-exclusion, for 1 ≤ ` ≤ d(i),

Prob

d(i)⋃
j=1

Ej

 = Prob

[⋃̀
j=1

Ej

]
≥
∑̀
j=1

pj −
∑̀
j=1

∑̀
k=j+1

pj · pk

Let α =
∑d(i)

j=1 pj . The technical lemma, 7.2.21 on page 379, implies that

Prob [i ∈ Γ(I ′)] ≥ 1

2
·min


d(i)∑
j=1

pj, 1


It follows that Prob [i ∈ Γ(I ′)] ≥ 1

4
·min{s(i)/2, 1}. �

Now we will consider how this result must be modified when the random variables
{coin(i)} are only pairwise independent.

LEMMA 7.2.27. Prob [i ∈ Γ(I ′)] ≥ 1
8
·min{s(i), 1}

PROOF. Let α0 = 0 and for 1 ≤ ` ≤ d(i), let α` =
∑`

j=1 pj . As in the proof of 7.2.26
above, we show that

Prob [i ∈ Γ(I ′)] ≥
d(i)∑
j=1

Prob
[
E ′j
]

Prob
[
Aj|E ′j

]
where the {Aj} are defined in equation (7.2.3) on page 382 and E ′j is defined in
equation (7.2.2) on page 382. We begin by finding a lower bound on Prob

[
Aj|E ′j

]
:

Prob
[
Aj|E ′j

]
= 1− Prob

[
¬Aj|E ′j

]
. However

Prob
[
¬Aj|E ′j

]
≤

∑
v∈Γ(j)
d(v)≥d(j)

Prob
[
Ev|E ′j

]
and

Prob
[
Ev|E ′j

]
=

Prob [Ev ∩ ¬E1 ∩ · · · ∩ ¬Ej−1]

Prob [¬E1 ∩ · · · ∩ ¬Ej−1|Ej]
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The numerator is ≤ Prob [Ev|Ej] = pv and the denominator is

1− Prob

[
j−1⋃
`=1

E`|Ej

]
≥ 1−

j−1∑
`=1

Prob [E`|Ej] = 1− αj−1

Thus Prob
[
Ev|E ′j

]
≤ pv/(1− αj−1)). Consequently,

Prob
[
¬Aj|E ′j

]
≤

∑
v∈Γ(j)
d(v)≥d(j)

pv
1− αj−1

≤ 1

2(1− αj−1)

and
Prob

[
Aj|E ′j

]
≥ 1− 1

1− αj−1

=
1− 2αj−1

2(1− αj−1)

Now we derive a lower bound on Prob
[
E ′j
]
:

Prob
[
E ′j
]

= Prob [Ej] Prob [¬E1 ∩ · · · ∩ Ej−1|Ej]

=pj

(
1− Prob

[
j−1⋃
`=1

E`|Ej

])
≥ pj(1− αj−1)

Thus, for 1 ≤ ` ≤ d(v) and α` <
1
2
,

Prob [i ∈ Γ(I ′)] ≥
∑̀
j=1

pj(1− 2αj−1)

2
=

1

2
·

(∑̀
j=1

pj − 2 ·
∑̀
j=1

∑̀
k=j+1

pj · pk

)
At this point 7.2.21 on page 379 implies

Prob [i ∈ Γ(I ′)] ≥ 1

4
·min{αd(i), 1}

�

7.3. Further reading

As mentioned on page 294, Aggarwal and Anderson found an RNC algorithm for
depth-first search of general graphs. The algorithm for finding a maximal matching in
§ 7.2.3.3 on page 373 is an important subroutine for this algorithm.

There are a number of probabilistic algorithms for solving problems in linear alge-
bra, including:

• Computing the rank of a matrix — see [18] by Borodin, von zur Gathen, and
Hopcroft. This paper also gives probabilistic algorithms for greatest common
divisors of elements of an algebraic number field.
• Finding various normal forms of a matrix. See the discussion of normal forms

of matrices on page 139. In [78], Kaltofen, Krishnamoorthy, and Saunders
present RNC algorithms for computing these normal forms.

In [131], Reif and Sen give RNC algorithms for a number of problems that arise in
connection with computational geometry.



CHAPTER 8

Solutions to Selected Exercises

Chapter 1, 1.1 Exercise 1 (p. 10) We use induction on k. The algorithm clearly works for k = 1.
Now we assume that it works for some value of k and we prove it works for k+ 1. In the 2k+1-
element case, the first k steps of the algorithm perform the 2k-element version of the algorithm
on the lower and upper halves of the set of 2k+1 elements. The k + 1st step, then adds the
rightmost element of the cumulative sum of the lower half to all of the elements of the upper
half.
Chapter 2, 2.1 Exercise 2 (p. 20) Yes, it is possible for a sorting algorithm to not be equivalent to
a sorting network. This is usually true for enumeration sorts. These sorting algorithms typically
perform a series of computations to determine the final position that each input data-item will
have in the output, and then move the data to its final position. On a parallel computer, this
final move-operation can be a single step. Neither the computations of final position, nor the
mass data-movement operation can be implemented by a sorting network.
Chapter 2, 2.1 Exercise 3 (p. 20) The proof is based upon the following set of facts (we are as-
suming that the numbers are being sorted in ascending sequence and that larger numbers go
to the right):

(1) The rightmost 1 starts to move to the right in the first or second time unit;
(2) after the rightmost 1 starts to move to the right it continues to move in each time until

until it reaches position n— and each move results in a zero being put into its previous
position;

(3) 1 and 2 imply that after the second time unit the second rightmost 1 plays the same
role that the rightmost originally played — consequently it starts to move within 1
more time unit;

(4) a simple induction implies that by time unit k the k − 1st rightmost 1 has started to
move to the right and will continue to move right in each time unit (until it reaches its
final position);

(5) the k − 1st rightmost 1 has a maximum distance of n− k + 1 units to travel — but this
is also equal to the maximum number of program steps that the 1 will move to the
right by statement d above. Consequently it will be sorted into its proper position by
the algorithm;

Chapter 2, 2.1 Exercise 4 (p. 20) (1) The answer to the first part of the question is no. In
order to see this, consider a problem in which all of the alternative approaches to
solving the problem have roughly the same expected running time.

(2) The conditions for super-unitary speedup were stated in a rough form in the discus-
sion that preceded the example on page 11. If we have n processors available, we get
super-unitary speedup in an AI-type search problem whenever the expected minimum
running time of n distinct alternatives is < 1/n of the average running time of all of
the alternatives.

Chapter 2, 2.1 Exercise 5 (p. 21) PROOF. We make use of the 0-1 Principle. Suppose the A-
sequence is {1, . . . , 1, 0, . . . , 0}︸ ︷︷ ︸

r1’s

, and the B-sequence {1, . . . , 1, 0, . . . , 0}︸ ︷︷ ︸
s1’s

. Then

385
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(1) {A1, A3, · · · , A2k−1} is {1, . . . , 1, 0, . . . , 0}︸ ︷︷ ︸
d(r + 1)/2e1’s

;

(2) {A2, A4, · · · , A2k} is {1, . . . , 1, 0, . . . , 0}︸ ︷︷ ︸
dr/2e1’s

;

(3) {B1, B3, · · · , B2k−1} is {1, . . . , 1, 0, . . . , 0}︸ ︷︷ ︸
d(s+ 1)/2e1’s

;

(4) {B2, B4, · · · , B2k} is {1, . . . , 1, 0, . . . , 0}︸ ︷︷ ︸
ds/2e1’s

;

Now, if we correctly merge {A1, A3, · · · , A2k−1} and {B1, B3, · · · , B2k−1}, we get
{1, . . . , 1, 0, . . . , 0}︸ ︷︷ ︸
d(r + 1)/2e+ d(s+ 1)/2e1’s

. Similarly, the result of merging the two even-sequences together results

in {1, . . . , 1, 0, . . . , 0}︸ ︷︷ ︸
dr/2e+ ds/2e1’s

. There are three possibilities now:

(1) r and s are both even. Suppose r = 2u, s = 2v. Then d(r+1)/2e+d(s+1)/2e = u+v and
dr/2e+ ds/2e = u+ v. These are the positions of the rightmost 1’s in the merged odd
and even sequences, so the result of shuffling them together will be {1, . . . , 1, 0, . . . , 0}︸ ︷︷ ︸

r + s1’s

,

the correct merged result.
(2) One of the quantities r and s is odd. Suppose r = 2u − 1, s = 2v. Then d(r + 1)/2e +
d(s+1)/2e = u+v and dr/2e+ds/2e = u+v−1, so the rightmost 1 in the merged even
sequence is one position to the left of the rightmost 1 of the merged odd sequence. In
this case we will still get the correct result when we shuffle the two merged sequences
together. This is due to the fact that the individual terms of the even sequence get
shuffled to the right of the terms of the odd sequence.

(3) Both r and s are odd. Suppose r = 2u− 1, s = 2v− 1. Then d(r+ 1)/2e+ d(s+ 1)/2e =
u+ v and dr/2e+ ds/2e = u+ v − 2. In this case the rightmost 1 in the even sequence
is two positions to the left of the rightmost 1 of the odd sequence. After shuffling the
sequences together we get {1, . . . , 1, 0, 1, 0, . . . , 0}. In this case we must interchange a
pair of adjacent elements to put the result in correct sorted order. The two elements
that are interchanged are in positions 2(u+ v − 1) = r + s− 1 and r + s.

�

Chapter 2, 2.2 Exercise 1 (p. 26) We have to modify the second part of the CRCW write oper-
ation. Instead of merely selecting the lowest-numbered processor in a run of processors, we
compute the sum, using the parallel algorithm on page 6. The execution-time of the resulting
algorithm is asymptotically the same as that of the original simulation.

Chapter 2, 2.4 Exercise 2 (p. 41) We need only simulate a single comparator in terms of a com-
putation network. This is trivial if we make the vertices of the computation network compute
max and min of two numbers.

Chapter 3, 3.3 Exercise 1 (p. 64) The idea here is to transmit the information to one of the low-
ranked processors, and then transmit it down to all of the other processors. First send the data
to the processor at rank 0 in column 0.

Chapter 3, 3.4 Exercise 1 (p. 68) The idea is to prove this via induction on the dimension of the
hypercube and the degree of the butterfly network. The statement is clearly true when these
numbers are both 1. A degree k+1 butterfly network decomposes into two degree-k butterflies
when the vertices of the 0th rank are deleted (see statement 3.3.1 on page 60). A corresponding
property exists for hypercubes:
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A k + 1-dimensional hypercube is equal to two k-dimensional hypercubes with
corresponding vertices connected with edges.

The only difference between this and the degree k+1 butterfly network is that, when we restore
the 0th rank to the butterfly network (it was deleted above) corresponding columns of the two
degree-k sub-butterflies are connected by two edges — one at a 45◦ angle, and the other at a
135◦ angle, in figure 3.3 on page 59).

Chapter 3, 3.6 Exercise 1 (p. 82) We will map the vertical columns of a butterfly network into
the cycles of the CCC network:

First consider the trivial case of degree 1:

Here the lightly shaded edge represents the edge that has to be removed from the butterfly
to give the CCC.

In degree 2 we can take two degree 1 CCC’s with opposite edges removed and combine
them together to get:

and similarly in degree 3:

Note that column 0 has the property that all ascending diagonal lines have been deleted.
The fact that it must be possible to simulate the full butterfly by traversing two edges of the
subgraph implies that every column whose number is of the form 2s must have all of its as-
cending diagonals intact. The fact that every node can have at most 3 incident edges implies
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that every column whose number is a sum of two distinct powers of 2 must have its ascending
diagonals deleted. The general rule is as follows:

The ascending diagonal communication lines of column t are deleted if and only
if the number of 1’s in the binary representation of the number t is even.

As for the mapping of the algorithm 3.6.4 on page 80:
• The F-LOOP operation maps into a transmission of data to lower ranked processors

on vertical communication-lines;
• The B-LOOP operation maps into a transmission of data to higher ranked processors

on vertical communication-lines;
• The Lateral move operation maps into a transmission of data on the (remaining) diag-

onal communication-lines (recall that many of them were deleted in the step above).
Chapter 5, 5.1 Exercise 1 (p. 108) This follows by straight computation — let v = αv1 + βv2 be
a linear combination of v1 and v2. Then

A(αv1 + βv2) =(λ1αv1 + λ2βv2)

=(λ1αv1 + λ1βv2) (since λ1 = λ2)

=λ1(αv1 + βv2)

=λ1v

So v is an eigenvector of λ1.
Chapter 5, 5.1 Exercise 2 (p. 108) Suppose that

(8.0.1) S =
∑̀
i=1

αijvij = 0

is the smallest possible expression with none of the αij = 0 — the fact that the vectors are nonzero
implies that any expression of size 1 cannot be zero (if it has a nonzero coefficient), so there is
a lower bound to the possible size of such expressions. Now multiply this entire expression on
the left by A — the definition of an eigenvalue implies that the result is

(8.0.2)
∑̀
i=1

λij · αijvij = 0

Now we use the fact that the eigenvalues {λij} are all distinct. We subtract λi1× equation (8.0.1)
from equation (8.0.2) to get ∑̀

i=2

(λij − λi1)αijvij = 0

— the first term has canceled out, and the remaining terms are nonzero because the eigenvalues
are all distinct. This is a smaller expression that the one we started with that has nonzero
coefficients. This contradicts our assumption that we had the smallest possible such expression
and implies that no such expression exists.
Chapter 5, 5.1 Exercise 6 (p. 109) We compute the polynomial det(A− λ · I) = −λ3 + 14λ+ 15,
and the roots are {−3, 3/2 + 1/2

√
29, 3/2 − 1/2

√
29}— these are the eigenvalues. To compute

the eigenvectors just solve the equations:

Ax = λx

for each of these. The eigenvectors are well-defined up to a scalar factor. The eigenvector
for −3 is the solution of the equation Ax = −3x, so x is [−2, 1, 2]. The eigenvector for 3/2 +
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1/2
√

29 is [1/2 + 1/6
√

29,−1/6 + 1/6
√

29, 1], and the eigenvector for 3/2 − 1/2
√

29 is [1/2 −
1/6
√

29,−1/6− 1/6
√

29, 1].
The spectral radius of this matrix is 3/2 + 1/2

√
29.

Chapter 5, 5.1 Exercise 7 (p. 109) We will use define the 2-norm to be ‖A‖2 = max‖v‖2=1 ‖Av‖2.
We must maximize the expression

(x+ 2y)2 + (3x− y)2 = 10x2 − 2xy + 5 y2

subject to the condition that x2 + y2 = 1. We use the method of Lagrange Undetermined
multipliers — we try to maximize the expression

10x2 − 2xy + 5 y2 + µ(x2 + y2 − 1)

where x and y are not subject to any condition. The derivative with respect to x is

(20 + 2µ)x− 2 y

and the derivative with respect to y is

(10 + 2µ) y − 2x

If we set both of these to 0 we get the equations:

(20 + 2µ)x = 2y

(10 + 2µ)y = 2x

or

(10 + µ)x = y

(5 + µ)y = x

If we plug one equation into the other we get (10 + µ)(5 + µ) = 50 + 15µ+ µ2 = 1, and we
get the following quadratic equation for µ:

µ2 + 15µ+ 49 = 0

The solutions to this equation are

{−15±
√

29

2
}

Now we can solve for x and y. The value µ = −15+
√

29
2 gives

5 +
√

29

2
x = y

and when we plug this into x2 + y2 = 1 we get

x2

1 +

(
5 +
√

29

2

)2
 = 1
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so

x = ±
√

2√
29 + 5

√
29

y =±
√

2
(
27 + 5

√
29
)

2
√

29 + 5
√

29

The value of the expression we want to maximize is:

10x2 − 2xy + 5 y2

=
145 + 23

√
29

29 + 5
√

29
= 4.807417597

Now we consider the second possibility for µ: µ = −15−
√

29
2 . Here

x =±
√

2i√
5
√

29− 29

y =±−
i
(√

29− 5
)√

2

2
√

5
√

29− 29

where i =
√
−1. We get

10x2 − 2xy + 5 y2

=
23
√

29− 145

5
√

29− 29
= 10.19258241

The norm of A is the square root of this, or 3.192582405.
Chapter 5, 5.1 Exercise 8 (p. 109) This follows by direct computation:

(αA+ βI) vi =αAvi + βIvi

=αλivi + βvi

= (αλi + β) vi

Chapter 5, 5.1 Exercise 9 (p. 109) If v is any vector (WWHv, v) = (WHv,WHv) ≥ 0 (since we
are just calculating the squared 2-norm of the vector WHv). If W is nonsingular, then WWH

will also be nonsingular, so its eigenvalues will all be nonzero, hence positive. The conclusion
follows from 5.1.22 on page 106.
Chapter 5, 5.1 Exercise 10 (p. 109) This is similar to the previous problem, except that we must
take the square root of A — see 5.1.23 on page 106. This square root is also positive definite
(and Hermitian) and we get WAWH = WA1/2A1/2WH = (WA1/2)(WA1/2)H so the conclusion
follows by the last exercise.
Chapter 5, 5.1 Exercise 11 (p. 109) Let

A =

(
0 1
0 0

)
Then all eigenvalues of A are 0, but ‖A‖2 = 1.
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Chapter 5, 5.1 Exercise 14 (p. 126) The eigenvalues of Z(A) turn out to be .9543253815,
−.8369505436, and −.1173748380, so the spectral radius is .9543253815 < 1, and all of the
iterative methods converge. The optimal relaxation coefficient for the SOR method is
2/(1 +

√
1− .95432538152) = 1.539919425.

Chapter 5, 5.1 Exercise 15 (p. 126) If the matrix is consistently ordered, its associated graph has
a linear coloring — 5.1.44 on page 122. In other words the graph associated with the matrix
can be colored in such a way that the color-graph is a linear array of vertices. Now re-color
this color-graph — simply alternate the first two colors. We can also re-color the graph of the
matrix in a similar way. The result is a coloring with only two colors and the proof of the first
statement of 5.1.44 on page 122 implies the conclusion.
Chapter 5, 5.1 Exercise 16 (p. 134) It is possible to determine whether the matrixAwas singular
by examining the norm of R(B).

• If A was singular, then all norms of R(B) must be ≥ 1. Suppose A annihilates form
vector v. Then R(B) will leave this same vector unchanged, so that for any norm ‖ ∗ ‖,
‖R(B)v‖ ≥ ‖v‖.
• We have proved that, if A is nonsingular, then ‖R(B)‖2 < 1,

Chapter 5, 5.1 Exercise 18 (p. 134) In this case lg2 n = 4, so the constant must be approximately
3.25.
Chapter 5, 5.1 Exercise 20 (p. 134) The fact that the matrix is symmetric implies that ‖A‖1 =

‖A‖∞. By 5.1.53 on page 132 (n−1/2)‖A‖1 = (n−1/2)‖A‖∞ ≤ ‖A‖2, and ‖A‖22 ≤ ‖A‖1 · ‖A‖∞ =
‖A‖2∞, so we have the inequality

(n−1/2)‖A‖∞ ≤ ‖A‖2 ≤ ‖A‖∞
Since the matrix is symmetric, we can diagonalize it. In the symmetric case, the 2-norm of

the matrix is equal to the maximum eigenvalue, λ0, so (n−1/2)‖A‖∞ ≤ λ0 ≤ ‖A‖∞. It follows
that

n1/2

‖A‖∞
≥ 1

λ0
≥ 1

‖A‖∞
Now suppose that U−1AU = D, where D is a diagonal matrix, and U is unitary (so it

preserves 2-norms)

D =


λ0 0 . . . 0
0 λ1 . . . 0
...

. . . . . .
...

0 . . . . . . . λn


where λ0 > λ1 > · · · > λn > 0. Then U−1(I −BA)U = I −BD, and I −BD is

D =


1− λ0

‖A‖∞ 0 . . . 0

0 λ1 . . . 0
...

. . . . . .
...

0 . . . . . . . 1− λn
‖A‖∞


The inequalities above imply that

1 ≥ λ0

‖A‖∞
≥ 1

n1/2

so
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0 ≤ 1− λ0

‖A‖∞
≤ 1− 1

n1/2

Now the smallest eigenvalue is λn so

λn
λ0
≥ λn
‖A‖∞

≥ λn
λ0

1

n1/2

and

1− λn
λ0
≤ 1− λ0

‖A‖∞
≤ 1− λn

λ0

1

n1/2

The maximum of the eigenvalues of I − BD (which is also the 2-norm of I − BD and of
I −BA) is thus 1− λn

λ0n1/2 . It turns out that λn/λ0 = 1/ cond(A).

Chapter 5, 5.2 Exercise 3 (p. 156) Define the sequence {B0, . . . , Bn−1} to be
{f(0), f(2π/n), . . . , f(2(n− 1)π/n)}. Perform the Discrete Fourier Transform on this sequence,
using e2πi/n as the primitive nth root of 1. The result will be the first n coefficients of the
Fourier series for f(x).

Chapter 5, 5.2 Exercise 4 (p. 157) The formula

p(x) = u(x) + xv(x) + x2w(x)

implies that we get a formula analogous to equation (5.2.11) on page 148:

Fω(A)(i) = Fω3(A3t)(i)

+ ωiFω3(A3t+1)(i) + ω2iFω3(A3t+2)(i)

where A3t stands for the subsequence {a0, a3, a6, . . . }, A3t+1 stands for {a1, a4, a7, . . . }, and
A3t+2 stands for the subsequence {a2, a5, a8, . . . }. If T (n) is the parallel execution-time of this
algorithm then

T (n) = T (n/3) + 2

so

T (n) = 2log3(n) =
2

lg 3
lg n

It follows that this algorithm is slightly slower than the standard FFT algorithm, but its parallel
execution-time is still O(lg n).

Chapter 5, 5.2 Exercise 5 (p. 157) The answer is: Yes. This is a simple consequence of De
Moivre’s formula:

eix = cosx+ i sinx

which implies that we can get the Discrete Cosine Transform by taking the real part of the
Discrete Fourier Transform. So, the FFT algorithms also gives rise to a Fast Discrete Cosine
Transform. We can write down an explicit algorithm by using algorithm 5.2.2 on page 152 and
De Moivre’s formula, and by separating the real and imaginary parts in each step. There are a
few points to bear in mind when we go from a Discrete Fourier Transform to a Discrete Cosine
Transform.

(1) The size-parameter must be doubled. This is because the denominators in the cosine
transform are 2n rather than n.
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(2) The original set of n elements {A0, . . . , An−1} must be extended to a set
{B0, . . . , B2n−1} of size 2n. This is because the size-parameter was doubled. We
accomplish this by defining

Bk =

{
0 if k = 2j

Aj if k = 2j + 1

To see that this is the correct way to extend the n inputs, plug De Moivre’s formula into
the original formula for the Discrete Fourier Transform (equation (5.2.5) on page 143)
and compare the result with the formula for the cosine transform (equation (5.2.13) on
page 157).

(3) We must define C(A)m = Zm · ReFω(B)(m), for m < n. This follows directly from De
Moivre’s formula.

It is not hard to see that the behavior of the cosine and sine functions imply that ReFω(B)(2n−
m) = ReFω(B)(m), and ImFω(B)(2n−m) = −ImFω(B)(m) so we could also define

C(A)m = Zm
Fω(B)(m) + Fω(B)(2n−m)

2

The result is the algorithm:

8.0.1. Let A = {a0, . . . , an−1} be a sequence of numbers, with n = 2k. Define sequences {Fi,j}
and {Gi,j}, 0 ≤ r ≤ k, 0 ≤ j ≤ 2n− 1 via:

(1) F0,2j+1 = Aj , F0,2j = 0 for all 0 ≤ j < n; G0,∗ = 0;
(2) For all 0 ≤ j < 2n,

Ft+1,c0(t,j) =Ft,c0(t,j) + (cos e(t, c0(t, j)))Ft,c1(t,j) − (sin e(t, c0(t, j)))Gt,c1(t,j)

Ft+1,c1(t,j) =Ft,c0(t,j) + (cos e(t, c1(t, j)))Ft,c1(t,j) − (sin e(t, c1(t, j)))Gt,c1(t,j)

Gt+1,c0(t,j) =Gt,c0(t,j) + (cos e(t, c0(t, j)))Gt,c1(t,j) + (sin e(t, c0(t, j)))Ft,c1(t,j)

Gt+1,c1(t,j) =Gt,c0(t,j) + (cos e(t, c1(t, j)))Gt,c1(t,j) + (sin e(t, c1(t, j)))Ft,c1(t,j)

If we unshuffle the F -sequence to get a sequence F ′ = {F ′0, . . . , F ′2n−1}, we get the Discrete Cosine
Transform by defining C(A)m = Zm · F ′m, for 0 ≤ m ≤ n− 1.

Chapter 5, 5.2 Exercise 9 (p. 161) The determinant of a matrix is equal to the product of its
eigenvalues (for instance look at the definition of the characteristic polynomial of a matrix in
5.1.13 on page 102 and set λ = 0). We get

det(A) =
n−1∏
i=0

Fω(f)(i)

in the notation of 5.2.7 on page 159.
Chapter 5, 5.2 Exercise 10 (p. 161) The spectral radius is equal to the absolute value of the
eigenvalue with the largest absolute value — for the Z(n) this is 2 for all values of n.
Chapter 5, 5.3 Exercise 1 (p. 168) Here is a Maple program for computing these functions:
c0 := 1/4+1/4*3ˆ(1/2);
c1 := 3/4+1/4*3ˆ(1/2);
c2 := 3/4-1/4*3ˆ(1/2);
c3 := 1/4-1/4*3ˆ(1/2);
p1 := 1/2+1/2*3ˆ(1/2);
p2 := 1/2-1/2*3ˆ(1/2);
rphi := proc (x) option remember;

if x <= 0 then RETURN(0) fi;
if 3 <= x then RETURN(0) fi;
if x = 1 then RETURN(p1) fi;
if x = 2 then RETURN(p2) fi;

simplify(expand(c0*rphi(2*x)+c1*rphi(2*x-1)+
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c2*rphi(2*x-2)+c3*rphi(2*x-3)))
end;

w2 := proc (x)
simplify(expand(c3*rphi(2*x+2)-c2*rphi(2*x+1)+

c1*rphi(2*x)-c0*rphi(2*x-1)))
end;

Although Maple is rather slow, it has the advantage that it performs exact calculations, so
there is no roundoff error.

Chapter 5, 5.3 Exercise 2 (p. 168) For a degree of precision equal to 1/P , a parallel algorithm
would require O(lgP )-time, using O(P ) processors.

Chapter 5, 5.3 Exercise 4 (p. 181) We could assume that all numbers are being divided by a
large power of 2 — say 230. We only work with the numerators of these fractions, which we
can declare as integers. In addition, we can compute with numbers like

√
3 by working in the

extension of the rational numbers Q[
√

3] by defining an element of this extension to be a pair
of integers: (x, y) = x+ y

√
3. We define addition and multiplication via:

(1) (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2);
(2) (x1, y1) ∗ (x2, y2) = (x1 + y1

√
3)(x2 + y2

√
3) = (x1x2 + 3y1y2 + x1y2

√
3 + x2y1

√
3) =

(x1x2 + 3y1y2, x1y2 + x2y1).

We could even define division via1:

(x1, y1)/(x2, y2) =
x1 + y1

√
3

x2 + y2

√
3

=
x1 + y1

√
3

x2 + y2

√
3
· x1 − y1

√
3

x1 − y1

√
3

=
x1x2 − 3y1y2 + x1y2

√
3− x2y1

√
3

x2
2 − 3y2

2

=
(
(x1x2 − 3y1y2)/(x2

2 − 3y2
2), (x1y2 − x2y1)/(x2

2 − 3y2
2)
)

This results in relatively simple closed-form expressions for basic operations on elements of
Q[
√

3]. Note that the denominators are never 0 because
√

3 is irrational.

Chapter 5, 5.5 Exercise 3 (p. 204) No, it is not EREW. It is not hard to make it into a calibrated al-
gorithm, however. All of the data-items are used in each phase of the execution, so at program-
step i each processor expects its input data-items to have been written in program-step i − 1.
It would, consequently, be fairly straightforward to write a MIMD algorithm that carries out the
same computations as this. This is essentially true of all of the algorithms for solving differen-
tial equations presented here.

Chapter 5, 5.5 Exercise 4 (p. 204) The answer to the first part is no. In order to put it into a
self-adjoint form, we re-write it in terms of a new unknown function u(x, y), where ψ(x, y) =
u(x, y)/x. We get:

∂ψ

∂x
= − u

x2
+

1

x

∂u

∂x
∂2ψ

∂x2
= +

2u

x3
− 2

x2

∂u

∂x
+
∂2u

∂x2

∂2u

∂y2
=

1

x

∂2u

∂y2

1We assume that (x2, y2) 6= (0, 0).
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so our equation becomes:

2u

x3
− 2

x2

∂u

∂x
+
∂2u

∂x2
+

2

x

(
− u

x2
+

1

x

∂u

∂x

)
+

1

x

∂2u

∂y2
=

1

x

∂2u

∂x2
+

1

x

∂2u

∂y2

Since the original equation was set to 0, we can simply clear out the factor of 1/x, to get the
ordinary Laplace equation for u(x, y).
Chapter 5, 5.5 Exercise 5 (p. 204) This equation is essentially self-adjoint. It is not hard to find
an integrating factor: We get

log Φ =

ˆ {
2

x+ y

}
dx+ C(y)

=2 log(x+ y) + C(y)

so

Φ(x, y) = c′(y)(x+ y)2

Substituting this into equation (5.5.18) on page 203, we get that c′(y) is a constant so that we
have already completely solved for Φ(x, y). The the self-adjoint form of the equation it:

∂

∂x

(
(x+ y)2∂ψ

∂x

)
+

∂

∂y

(
(x+ y)2∂ψ

∂y

)
= 0

Chapter 5, 5.5 Exercise 9 (p. 220) Recall the Schrödinger Wave equation

− ~2

2m
∇2ψ + V (x, y)ψ = i~

∂ψ

∂t

and suppose that ∣∣∣∣∂ψ∂t − ψ(t+ δt)− ψ(t)

δt

∣∣∣∣ ≤ E1∣∣∣∣2n(ψ − ψaverage)

δ2
−∇2ψ

∣∣∣∣ ≤ E2

|V | ≤W

Our numeric form of this partial differential equation is

− ~2

2m

4(ψaverage − ψ)

δ2
+ V (x, y)ψ = i~

ψ(t+ δt)− ψ
δt

We re-write these equations in the form

− ~2

2m
∇2ψ + V (x, y)ψ − i~∂ψ

∂t
=0

− ~2

2m

4(ψaverage − ψ)

δ2
+ V (x, y)ψ − i~ψ(t+ δt)− ψ

δt
=Z

where Z is a measure of the error produced by replacing the original equation by the numeric
approximation. We will compute Z in terms of the error-estimates E1, E2, and W . If we form
the difference of these equations, we get:

Z =

(
− ~2

2m

2n(ψaverage − ψ)

δ2
+ V (x, y)ψ − i~ψ(t+ δt)− ψ

δt

)
−
(
− ~2

2m
∇2ψ + V (x, y)ψ − i~∂ψ

∂t

)
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So we get

Z =
~2

2m

(
∇2ψ −

4(ψaverage − ψ)

δ2

)
+ i~

(
∂ψ

∂t
− ψ(t+ δt)− ψ

δt

)
so

|Z| ≤
∣∣∣∣ ~2

2m

∣∣∣∣E1 + |~|E2

Now we compute ψ(t+ δt) in terms of other quantities:

ψ(t+ δt) =

(
1− 2i~δt

mδ2
− iδtV (x, y)

~

)
ψ +

3i~δt
mδ2

ψaverage +
iδtZ

~
so the error in a single iteration of the numerical algorithm is

≤ δt

~

∣∣∣∣ ~2

2m

∣∣∣∣E1 +
δt

~
|~|E2 =

δt~
2m

E1 + δtE2

This implies that

(8.0.3) ψ(t+ δt)− ψ = −
(

2i~δt
mδ2

+
iδtV (x, y)

~

)
ψ +

2i~δt
mδ2

ψaverage +
iδtZ

~
Now we estimate the long-term behavior of this error. The error is multiplied by the matrix in
equation (8.0.3). We can estimate the 2-norm of this matrix to be∣∣∣∣2i~δtmδ2

+
iδtV (x, y)

~

∣∣∣∣ ≤ 4~δt
mδ2

+
2δtW

~
Our conclusion is that the errors dominate the solution quickly unless

4~δt
mδ2

+
2δtW

~
< 1

In general, this means that the iterative algorithm will diverge unless

δt <
1

4~
mδ2

+ 2W
~

Chapter 6, 6.1 Exercise 3 (p. 238) This is a straightforward application of the basic
parallel-prefix scheme in algorithm 6.1.4 on page 235. We perform the following steps:

(1) Assign a processor to each bit in the bitstring.
(2) Each processor performs a Huffman decoding operation starting from its own bit-

position. Each processor stores the string of decoded data that it finds. For some
processors this procedure might not work: the string of bits that the processor sees
might not be a valid Huffman encoding. In that case the processor stores some symbol
indicating no valid string.

Chapter 6, 6.1 Exercise 4 (p. 241) One way to handle this situation is to note that the recurrence
is homogeneous — which means that it has no constant terms. This implies that we can divide
right side of the recurrence by a number β to get

S′k = −a1

β
S′k−1 −

a2

β
S′k−2 − · · · −

an
β
S′k−n

and this recurrence will have a solution {S′i} that is asymptotic to αi1/β
i. Consequently, if we

can find a value of β that makes the limit of the second recurrence equal to 1, we will have
found the value of α1. We can:

• carry out computations with the original recurrence until the size of the numbers in-
volved becomes too large;
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• use the ratio, β computed above, as an estimate for α1 and divide the original recur-
rence by β. The resulting recurrence will have values {S′i} that approach 1 as i → ∞,
so that it will be much better-behaved numerically.

Chapter 6, 6.1 Exercise 6 (p. 242) Just carry out the original algorithm lg n times.

Chapter 6, 6.1 Exercise 7 (p. 243) Here we use the Brent Scheduling Algorithm on page 236. We
subdivide the n characters in the string into n/ lg n substrings of length lg n each. Now one
processor to each of these substrings and process them sequentially using the algorithm 6.1.4
of page 242. This requires O(lg n) time. This reduces the amount of data to be processed to
n/ lg n items. This sequence of items can be processed in O(lg n) time via the parallel version
of algorithm 6.1.4.

Chapter 6, 6.1 Exercise 9 (p. 247) You could use this algorithm to perform numerical integra-
tion, but you would have to find an efficient way to compute the integrals

{
ˆ b

a
(x− x0) dx, . . . ,

ˆ b

a
(x− x0) · · · (x− xn−1) dx}

Chapter 6, 6.2 Exercise 3 (p. 252) Assign 1 to each element of the Euler Tour that is on the end
of a downward directed edge (i.e., one coming from a parent vertex) and assign −1 to the end of
each upward edge.

Chapter 6, 6.2 Exercise 4 (p. 255) In each vertex, v, of the tree you have to store 2 numbers:

• T (v): The number of subtrees of the subtree rooted at v that include v itself.
• N(v): The number of subtrees of the subtree rooted at v that do not include v.

Initially all of these quantities are 0 (if we assume that a subtree has at lease one edge). Suppose
a vertex v has k children {v1, . . . , vk}. Then

(1) N(v) =
∑k

i=1N(vi) + T (vi);
(2) T (v) = 2k − 1 + 2k−1 ·

∑k
i=1 T (vi) + 2k−2 ·

∑k
i,j=1 T (vi)T (vj) . . .

Chapter 6, 6.2 Exercise 5 (p. 257) If some edge-weights are negative, it is possible for a cycle to
have negative total weight. In this case the entire concept of shortest-path becomes meaningless
— we can make any path shorter by running around a negative-weight cycle sufficiently many
times. The algorithm for shortest paths given in this section would never terminate. The proof
proof that the algorithm terminates within n (“exotic”) matrix-multiplications makes use of the
fact that a shortest path has at most n vertices in it — when negative-weight cycles exist, this is
no longer true.

Chapter 6, 6.2 Exercise 6 (p. 257) It is only necessary to ensure that no negative-weight cycles
exist. It suffices to show that none of the cycles in a cycle-basis (see § 6.2.7) have negative total
weight. Algorithm 6.2.10 on page 292 is a parallel algorithm for computing a cycle-basis. After
this has been computed, it is straightforward to compute the total weight of each cycle in the
cycle-basis and to verify this condition.

Chapter 6, 6.2 Exercise 7 (p. 257) The answer is Yes.

Chapter 6, 6.2 Exercise 10 (p. 268) In the handling of Stagnant Vertices — see page 266. Here
stagnant super-vertices are merged with higher-numbered neighbors.

Chapter 6, 6.2 Exercise 11 (p. 268) In the Tree-Hooking step in which we have the code
Ds(Ds(u)) ← Ds(v) In general several different super-vertices get assigned to the same
super-vertex in this step, and we assume that only one actually succedes. The CRCW property
is also used in the merging of stagant super-vertices and the step in which s′ is incremented.
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FIGURE 8.0.1. Acyclic graph derived from a monotone circuit

Chapter 6, 6.2 Exercise 13 (p. 274) As given on page 265, the Shiloach-Vishkin algorithm can’t
be used to compute a spanning tree. The problem is that the D-array in the output of this algo-
rithm doesn’t have the property that D(i) is the smallest-numbered vertex in the component of
vertex i. Consequently, the proof that the selected edges form a tree (on page 269) falls through.

Chapter 6, 6.2 Exercise 18 (p. 293) If we cut the graph out of the plane, we get a bunch of small
polygons, and the entire plane with a polygon removed from it. This last face represents the
boundary of the embedded image of the graph in the plane. It is clearly equal to the sum of all
of the other face-cycles. Given any simple cycle, c, in the graph, we can draw that cycle in the
embedded image of the plane. In this drawing, the image of c encloses a number of face of the
graph. It turns out that c is equal to the sum of the cycles represented by these faces.

Chapter 6, 6.2 Exercise 25 (p. 295) The problem with this procedure is that the undirected span-
ning trees constructed in step 1 might not satisfy the requirement that each vertex has at least
two children. In fact the tree might simply be one long path. In this case the algorithm for
directing the tree no longer runs in O(lg n)-time — it might run in linear time.

Chapter 6, 6.3 Exercise 1 (p. 308) Not quite, although it is tantalizing to consider the connection
between the two problems. The circuit described on page 35 almost defines a parse tree of
a boolean expression. Unfortunately, it really only defines an acyclic directed graph. This is
due to the fact that the expressions computed in sequence occurring in the Monotone Circuit
Problem can be used in more than one succeeding expression. Consider the Monotone Circuit:

{t0 = T, t1 = F, t2 = t0 ∨ t1, t3 = t0 ∧ t2, t4 = T, t5 = t0 ∨ t3 ∧ t4}

This defines the acyclic graph depicted in figure 51.

It is interesting to consider how one could convert the acyclic graph occurring in the Circuit
Value Problem into a tree — one could duplicate repeated expressions. Unfortunately, the
resulting parse tree may contain (in the worst case) an exponential number of leaves — so the
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algorithm described in § 6.3 of chapter 6 doesn’t necessarily help. As before, the question of the
parallelizability of the Circuit Value Problem remains open — see § 2.3.2 and page 35.
Chapter 6, 6.3 Exercise 3 (p. 309) We can omit the step described in 6.3.1 on page 297, and pro-
ceed to the parenthesis-matching step in 6.3.2 (on page 297). The rest of the algorithm is similar
to what was described in the text, but we have to identify the operator as the first entry in a
parenthesized list.
Chapter 6, 6.5 Exercise 2 (p. 357) Fermat’s little theorem says that ap−1 ≡ 1 (mod p), if a 6≡ 0
(mod p). This implies that ap−2 ≡ a−1 (mod p). It is possible to calculate ap−2 in O(lg(p − 2))-
time with one processor, by repeated squaring.
Chapter 6, 6.5 Exercise 3 (p. 357) The answer is yes provided we represent polynomials as lin-
ear combinations of the form ∑

i

a′i(x− x0) · · · (x− xi−1)

rather than the traditional representation as∑
i

aix
i−1

We evaluate our polynomials at the data-points {xj} where 0 ≤ j ≤ n − 1 and perform all of
our computations with these values. When we are done, we use the interpolation formula to
reconstruct the polynomial.
Chapter 6, 6.5 Exercise 5 (p. 357) Here is a Maple function that does this:

np := proc(p)
local i,tp,diff,prim,pr;
tp := 2ˆp;
for i from 2 to 2*p do
diff := nextprime(i*tp)−i*tp;
if diff = 1 then
prim:=i*tp+1;
pr:=primroot(1,prim)&ˆi mod prim;
print(i,tp,prim,pr, pr&ˆ(−1) mod prim,
tp&ˆ(−1) mod prim) fi
od
end;

This function prints out most of the entries that appeared in table 6.5.1 for several different
primes. It is called by typing np(i) in Maple, where i exponent of 2 we want to use in the
computations (for instance, it represents the leftmost column of table 6.5.1).
Chapter 7, 7.2 Exercise 1 (p. 364) No. lv-RNC=RNC, because a Las Vegas algorithm produces
a correct answer in a fixed expected number of executions — see 7.1.6 on page 362.
Chapter 7, 7.2 Exercise 2 (p. 366) Infinite. If we are extraordinarily unlucky there is no reason
for any list-elements to ever be deleted.
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parallel prefix as an instance of, 78
shift as an instance of, 79, 80
shuffle-exchange computer, 99

asymptotically optimal sorting algorithm, 418
asynchronous algorithms for parsing, 395

basic wavelet, 214
Batcher merge algorithm, 27
Batcher Odd-Even Merge Algorithm, 29
Bernoulli Method, 306
bipartite graphs, 118, 419
bitonic halver, 24
bitonic sequence, 24
Bor

o
uvka’s Algorithm, 359

boundary element method, 298
Brent Scheduling Principle, 58
Brent’s Theorem, 55
bubble sort, 5

Buffon Needle Algorithm, 461
butterfly diagram, 195

calibrated SIMD algorithms, 70
Caltech Mark II computer, 93
CCC network

ASCEND algorithm, 109
DESCEND algorithm, 108

Cedar computer, 101
Chameleon, 129
characteristic polynomial of a matrix, 135
cherry of a vertex, 431
Chimp, 129
Chinese Remainder Theorem, 452
Cholesky decomposition of a matrix, 183
chordal graphs, 377
Circuit Value Problem, 48
circulant, 206
Coarse-grained parallelism, 17
cobegin, 66
coend, 66
Cole sorting algorithm, 398
combinational network, 54
comparator, 22
comparator network, 23
complete graph, 112, 358
complete unshuffle permutation, 195
complex analysis, 262
complexity parameter, 38
computational network, 54

depth, 54
Compute Unified Device Architecture, 130
concurrent programming, 17, 60
condition number (of a matrix), 136
connected components, 330

algorithm of Hirschberg, Chandra and
Sarawate, 330

algorithm of Shiloach and Vishkin, 339
Connection Machine

CM-5, 19
C*

409



410 INDEX

program for solving a hyperbolic partial
differential equation, 295

program for solving an elliptic partial
differential equation, 257

consistency of a Monte Carlo algorithm, 464
consistently ordered matrices, 158
contracting map, 178
convergence of a wavelet-series, 230
Cosmic Cube computer, 93
Cramer’s Rule, 477
CRCW, 31
CREW, 31
cube-connected cycles, 101
CUDA, 130
cyclic matrix, 206
cyclic reduction algorithms, 299
C*

program for connected components, 336
program for minimal spanning trees, 365
program for symbolic computation, 452

Data-level parallelism, 21
Daubechies W2 wavelet, 218
Daubechies W4 wavelet, 220
deadlocks, 69

necessary conditions for, 69
DeBruijn network, 100
decision problems, 47

logspace-reducibility, 47
P-reducibility, 47
reducibility, 47

degree of smoothness (of a wavelet), 216
depth of a computational network, 54
depth-first search, 376
DESCEND algorithm

Batcher merge as an instance of, 79
bitonic sort as an instance of, 77
butterfly computer, 81
CCC network, 108
generic, 76
hypercube computer, 89
LINDA implementation, 125
permutation as an instance of, 78
shuffle-exchange computer, 98

determinant, 134
deterministic finite automaton, 309
DFA, 309
diagonal matrix, 135
digraph, 112
Dining Philosopher’s Problem, 69
directed graph, 112
Dirichlet density theorem, 446
Discrete Fourier Transform, see also FFT
distributed databases, 112

divided differences, 312
Doubling Algorithms, 57
doubling algorithms, 299
dynamic-programming, 327

eigenspace, 136
eigenvalue, 136
eigenvector, 136
elliptic partial differential equation, general

form, 250
elliptic partial differential equation, self-adjoint

form, 250
encoding scheme, 38
enumeration sorts, 398
ε-nearsort, 424
ε′-halving, 421
equation of a compressible fluid, 298
EREW, 32
essentially self adjoint differential equations,

263
Euler φ-function, 443
Euler Tour, 319, 388
Euler’s Theorem, 443
evaluation of an arithmetic expression, 379
even function, 205
even permutations, 134
expander graph, 418
expander graphs, 119, 419
expected number of repetitions until success (in

a Las Vegas algorithm), 466

fan-in, 54
fan-out, 54
Fermat’s Little Theorem, 444
FFT, 188

convolution algorithm, 188
C* program for integer form, 447
C* program for parallel computation of, 201
C* program for symbolic computation, 452
inverse transform, 191
proof of algorithm, 193
use in symbolic computation, 190

finite element methods, 298
finite-difference equation, 306
Floyd’s Algorithm, 330
Flynn taxonomy, 17

MIMD, 17
MISD, 18
SIMD, 17
SISD, 18

Fourier series, 184

Garabedian Formula, 260
Gauss-Chebyshev integration formulas, 247
GCD, randomized algorithm, 495
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generic parallel algorithms, 76
Gibbs phenomena, 231
Granularity Problem, 112

memory access protocol, 118
graph, 112

1-factor, 419
adjacency matrix, 327
Bor

o
uvka’s Algorithm, 359

chordal, 377
complete, 358
connected components, 330

algorithm of Hirschberg, Chandra and
Sarawate, 330

algorithm of Shiloach and Vishkin, 339
cycle, 371
cycle-basis, 372
depth-first search, 376
edge-sum operation, 372
in-tree, 318
incidence matrix (of a bipartite graph), 477
independent set, 483
inverted spanning forest, 352
lowest common ancestors in a tree, 373
maximal independent set, 483
maximal matching, 473
minimal spanning tree, 330, 357
minimum-weight matching, 473
out-tree, 318
path, 371
perfect matching, 419, 473
planar, 376
simple cycle, 371
Soullin’s algorithm, 359
spanning forest, 345, 352
spanning subgraph, 419
spanning tree, 344
tree, 344
Tutte matrix, 474, 480
undirected, 112, 318
undirected tree, 318
weight matrix, 327
weighted, 357

graph algorithms, 318
gravitational potential, 251
group, 372

abelian, 372

Händler classification scheme, 20
Haar function, 218
Hamming distance, 90
Heat Equation, 273
Huffman encoding, 305
hypercube, 88, 472

image compression, 210
image processing, 1
in-tree, definition, 318
incidence matrix of a bipartite graph, 477
independence of events, 484
inherently sequential problems, 47
inner product, 133
inorder traversal, 323
integration, numerical, 236
Intel Touchstone Gamma computer, 93
interconnection topology, 8
Interpolation, 312
inverted spanning forest, 352
iPSC computers, 93
iterative solution of linear equations, 149

Jacobi method, 149
Joint Photographic Experts Group (JPEG), 210
JOR method, 153
Jordan normal form, 184, 495
JPEG algorithm, 210

Landsat, 395
Levialdi Counting Algorithm, 2
lexical analyzer, 309
lexicographically-first maximal independent

set problem, 483
LINDA, 123

eval statement, 125
in statement, 125
inp statement, 125
out statement, 124
rd statement, 125
rdp statement, 125
tuple, 124
tuple space, 123

Linda, explanation of the name, 130
linear equations

JOR method, 153
Linear inequality problem, 51
linear programming, 52
linear speedup, 15
List Ranking Problem, 303
logspace-completeness for P, 48
logspace-reducibility, 47
lower triangular matrices, 168
lowest common ancestors, 373

Mallat Pyramid Algorithm, 220
Markov-processes, 306
MasPar MP-1 computer, 93
matrix

characteristic polynomial, 135
Cholesky decomposition, 183
circulant, 206
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condition number, 136
cyclic, 206
determinant, 134, 179
diagonal, 135
eigenspace, 136
eigenvalue, 136
eigenvector, 136
Hermitian, 136
Hermitian positive definite, 140
Hermitian positive semidefinite, 140
Hermitian transpose, 133
inversion, 167
Jordan normal form, 184
lower triangular, 168
minimal polynomial, 136
norm, 135
nullspace, 136
positive definite

the JOR iteration-scheme, 155
similar, 137
Smith normal form, 184
spectral radius, 136
Unitary, 136

maximal independent set problem, 483
maximal matching of a graph, 473
Maximum flows, 53
merging network, 23
Message Passing Interface, 129
MIMD, 17

Local data, 67
Ordered data, 68
Read-only shared data, 67
Reduction data, 67

MIMD algorithms, simulation on SIMD
computers, 72

minimal spanning tree, 330, 357
MISD, 18
m lock, 64
molecule of a finite-difference equation, 257
Monotone circuit problem, 51
monotonically increasing functions, 29
Monsoon computer, 111
MPI, 129
m sync(), 67
Multicon computer, 111
multigrid methods, 260
Multiple Instruction Multiple Data, 17
Multivalued dependencies (in a database), 53
m unlock, 64

natural logarithms, see also ln
NC Problems, 10
nCUBE computer, 93
network

combinational, 54
comparator, 23
computational, 54
computational, depth of, 54
merging, 23
sorting, 23

Newton-Cotes integration formula, 241
degree parameter, 241
number of data points, 241

norm inequalities, 135
normal algorithm, 83
normal form of a matrix, 184, 495

Jordan, 184, 495
Smith, 184, 495

norms
matrices, 134
vector, 134

NP-complete, 358
nullspace, 136
numerical integration, 236
NYU Ultra Computer project, 100

odd permutations, 134
offline Turing machine, 40
Omega switch, 88
ordered matrices, 158
Ostrowski-Reich Theorem, 259
out-tree, definition, 318

P-complete problems, 10
circuit value problem, 49
Gaussian elimination , 52
linear inequalities, 51
linear programming, 51
maximum flows, 53
monotone circuit problem, 51
multivalued dependencies, 53

P-completeness, 48
P-reducibility, 47
p4, 129
pairwise independence, 484
Paragon, Intel, 19
parallel code-generation, 395
Parallel Prefix Problem, 302
Parallel Processing Thesis, 36
Parallel searching, 397
parallel tree contractions, 324
parallel-prefix algorithms, 57, 302
parenthesis matching algorithm, 381, 396
parity of a permutation, 133
parsing, 379

bracket languages, 386
input-driven languages, 386

partial differential equation, 249
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boundary element methods, 298
elliptic, 251

essentially self adjoint, 263
Laplace’s equation, 251
multigrid methods, 260
Poisson Equation, 251

essentially self adjoint, 264
finite differences, 250
finite element methods, 298
hyperbolic, 293

Wave Equation, 293
mixed type, 298
parabolic, 273

Heat Equation, 273
Schrödinger Wave Equation, 273

telegraph equation, 293
p-correctness of a Monte Carlo algorithm, 464
perfect matching, 473
perfect shuffle, 94
permutations

even, 134
odd, 134
parity, 133

planar graphs, 376
planar linear programming, 52
Pointer Jumping, 304
postfix form, parallel algorithms for, 394
PRAM computers

physical, 17
precedence grammars, 379
Preparata sorting algorithm, 398
Prime number theorem, 446
Principle of Unitary Speedup, 15
Probabilistic Algorithms, 461

RNC algorithms, 467
Las Vegas algorithms, 465

expected number of repetitions until
success, 466

m-RNC algorithms, 467
Monte Carlo algorithms, 464
p-correctness, 464
y-based, 464
advantage (coefficient), 464
consistency, 464

numerical, 461
probabilistic independence, 484
Procedure-level parallelism, 21
propagation of error, 281
pseudo-contracting map, 178
PVM, 129

quadrature formulas, 237
quantum mechanics, 273

race-condition, 62
rank of a matrix, randomized algorithm, 495
reconstruction algorithm for wavelets, 233
recurrence-relations, 306
reducibility, 47
relatively prime numbers, 452
relaxation coefficient, 154
Relaxation method, 149
Richardson Iteration scheme, 166

SAMD, 19
scaling function associated with a wavelet, 214
Schrödinger Wave Equation, 273
seismic analysis, 212
self adjoint equations, 263
self-adjoint equation, 250
semaphore, 65

down, 65
up, 65

semaphore-sets, 70
semaphores, tree of, 66
separation of variables, 269
shuffle-exchange, 94

Exchange, 95
Shuffle, 94

Sigma-1, 184
Sigma-1 computer, 111
signal processing, 185
SIMD, 17
SIMD algorithms, simulation on MIMD

computers, 71, 72
SIMD-MIMD Hybrids, 19
Simpson’s 3/8-Rule, 243
Simpson’s rule, 242
Single Instruction Multiple Data, 17
Single Instruction, Single Data, 18
SISD, 18
Smith normal form, 184, 495
SOR

Garabedian Formula, 260
Gauss-Seidel algorithm, 257
Ostrowski-Reich Theorem, 259

sorting, 398
0-1 Principle, 23
Ajtai Komlós, Szemerédi algorithm, 418
ε-nearsort, 424
ε′-halving, 421

arbitrary bounded-degree networks, 473
Batcher algorithm, 22
Valiant-Brebner algorithm (hypercube), 471

sorting circuit, 23
sorting network, 23
sorting tree, 399
Soullin’s Algorithm, 359
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SP-1, IBM, 20
spanning forest, 345, 352
spanning tree, 344
spectral radius, 136
Stirling’s Formula, 120, 437
strong P-completeness, 48
subsonic flow, 298
sum-operation on edges of a graph, 372
super-linear speedup, 16
super-unitary speedup, 16
supersonic flow, 298
syntax tree, 379
Systolic Arrays, 18

telegraph equation, 293
The SOR Method, 156
time-series analysis, 185
topology

interconnection, 8
traveling salesman problem, 358
tree, 344
tree, definition, 318
tree, sorting, 399
Triton computer, 101
Triton/1, 20
Tschebyscheff, 247
Turing machine, 38

alphabet, 39
nondeterministic, 45
offline, 40

Tutte matrix, 474
Tutte matrix of a graph, 480
Tutte’s Theorem, 481

Ultracomputers, 100
unambiguous grammars, parsing, 394
undirected graph, 112
undirected graphs, 318
undirected tree, definition, 318
unshuffle permutation, 195

Valiant merge algorithm, 398
vector-space, 133
vectors

Gram-Schmidt orthogonalization algorithm,
147

orthogonal, 145
orthonormal, 145

Wave Equation, 293
wavelets, 212

convergence of a wavelet-series, 230
degree of smoothness, 216
example wavelet-series, 225
reconstruction, 233

scaling functions, 214
weight function, 357
weight matrix of a graph, 327
weighted graph, 357
work performed by an algorithm, 56

y-biased Monte Carlo algorithms, 464


